# Pd-Catalysed selective C(*sp*<sup>3</sup>)-H arylation and acetoxylation of alcohols

Bing-Xin Wang, <sup>a</sup> Yang-Jie Mao, <sup>a</sup> Hong-Yan Hao, <sup>a</sup> Qiu-Zi Wu, <sup>a</sup> Kun Zhou, <sup>a</sup> Shao-Jie Lou \*<sup>a</sup> and Dan-Qian Xu \*<sup>a</sup>

Catalytic Hydrogenation Research Center, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Zhejiang University of Technology, Hangzhou 310014, China

# Table of Contents

| I.   | General                           | 2  |
|------|-----------------------------------|----|
| II.  | Preparation of substrates         | 2  |
| III. | Screening of conditions           | 9  |
| IV.  | General procedures                | 12 |
| V.   | Removal of directing groups       | 13 |
| VI.  | Hydrolysis of <b>4i</b>           | 14 |
| VII. | Competing experiments             | 14 |
| VIII | . Deuterium experiment            | 16 |
| IX.  | References                        | 17 |
| X.   | Characterization data of products | 18 |
| XI.  | NMR Spectra                       | 40 |

## I. General

Unless otherwise stated, all experiments were carried out under air atmosphere. The reagents and solvents were purchased from commercial suppliers and used without further purification unless noted. <sup>1</sup>H NMR and <sup>13</sup>C NMR spectra were obtained on a Bruker AVANCE III 500 instrument in CDCl<sub>3</sub> using TMS as an internal standard, operating at 500 MHz and 126 MHz, respectively. Chemical shifts ( $\delta$ ) are expressed in ppm and coupling constants *J* are given in Hz. For CDCl<sub>3</sub> solutions the chemical shifts are reported as parts per million (ppm) to residual protium or carbon of the solvents; CDCl<sub>3</sub>  $\delta$ H (7.28 ppm) and CDCl<sub>3</sub>  $\delta$ C (77.03 ppm). Multiplicities are reported using the following abbreviations: s = singlet, d = doublet, t = triplet, q = quartet, dd = doublet of doublets, td = triplet of doublets, m = multiplet. GC experiments were carried out using Agilent 7890B GC. GC-MS experiments that used dodecane as an internal standard were performed with a Thermo DSQ II, Trace GC Ultra. High resolution mass spectra (HRMS (ESI-TOF)) were obtained on an Agilent 6545 Q-TOF LCMS spectrometer equipped with an ESI source.

## **II.** Preparation of substrates

The substrates 1 for  $C(sp^3)$ -H arylation and acetoxylation were prepared following the previous procedures. <sup>1-5</sup> Some new substrates are characterized as below:

Characterization data of new substrates:



(E)-2-((hexan-2-yloxy)imino)-N-(perfluorophenyl)propanamide: Colourless oil;  $R_f = 0.51$  (petroleum ether-EtOAc = 10:1); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta = 8.15$  (s, 1H), 4.38 (h, J = 6.3 Hz, 1H), 2.10 (s, 3H), 1.78-1.71 (m, 1H), 1.61-1.54 (m, 1H), 1.43-1.35 (m, 4H), 1.33 (d, J = 6.3 Hz, 3H), 0.94 (t, J = 7.0 Hz, 3H) ppm; <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>):  $\delta = 161.5$ , 148.9, 144.2-144.0 (m), 142.2-142.0 (m), 141.0-140.9 (m), 139.0-138.8 (m), 137.0-136.9 (m), 111.9-111.7 (m), 81.9, 35.3, 27.6, 22.7, 19.9, 14.0, 9.7 ppm; HRMS (ESI-TOF): calcd. [M+Na]<sup>+</sup> 375.1102; found: 375.1105.



(E)-2-(((4-methylpentan-2-yl)oxy)imino)-N-(perfluorophenyl)propanamide: White soild;  $R_f = 0.64$  (petroleum ether-EtOAc = 10:1); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta = 8.15$  (s, 1H), 4.50-4.43 (m, 1H), 2.09 (s, 3H), 1.82-1.74 (m, 1H), 1.73-1.64 (m, 1H), 1.42-1.35 (m, 1H), 1.32 (d, J = 6.3 Hz, 3H), 0.96 (dd,  $J_I = 8.1$  Hz,  $J_2 = 6.6$  Hz, 6H) ppm; <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>):  $\delta = 161.5$ , 148.9, 144.2-144.0 (m), 142.2-142.0 (m), 141.1-140.9 (m), 139.0-138.7 (m), 137.0-136.7 (m), 111.9-111.6 (m), 80.4, 44.7, 24.8, 22.9, 22.6, 20.5, 9.7 ppm; HRMS (ESI-TOF): calcd. [M+Na]<sup>+</sup> 375.1102; found: 375.1102.



(E)-2-(((5-chloropentan-2-yl)oxy)imino)-N-(perfluorophenyl)propanamide: Yellow solid;  $R_f = 0.49$  (petroleum ether-EtOAc = 10:1); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta = 8.13$  (s, 1H), 4.43 (h, J = 6.4 Hz, 1H), 3.60 (t, J = 6.3 Hz, 2H), 2.10 (s, 3H), 1.98-1.92 (m, 1H), 1.91-1.85 (m, 2H), 1.84-1.76 (m, 1H), 1.36 (d, J = 6.3 Hz, 3H) ppm; <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>):  $\delta = 161.3$ , 149.4, 144.2-144.1 (m), 142.2-142.1 (m), 141.2-141.0 (m), 139.1-138.9 (m), 137.0-136.7 (m), 111.8-111.5 (m), 80.9, 44.8, 32.8, 28.5, 19.9, 9.8 ppm; HRMS (ESI-TOF): calcd. [M+Na]<sup>+</sup> 395.0556; found: 395.0556.



(E)-2-(((1-(4-methoxyphenyl)propan-2-yl)oxy)imino)-N-(perfluorophenyl)propanamide: Colourless oil;  $R_f = 0.44$  (petroleum ether-EtOAc = 10:1); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta = 7.97$  (s, 1H), 7.16-7.11 (m, 2H), 6.87-6.83 (m, 2H), 4.60 (h, J = 6.3 Hz, 1H), 3.78 (s, 3H), 2.99 (dd,  $J_1 = 14.0$  Hz,  $J_2 = 6.9$  Hz, 1H), 2.85 (dd,  $J_1 = 14.0$  Hz,  $J_2 = 5.8$  Hz, 1H), 2.09 (s, 3H), 1.35 (d, J = 6.4 Hz, 3H) ppm; <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>):  $\delta = 161.4$ , 158.2, 149.0, 144.2-144.0 (m), 142.2-142.0 (m), 141.2-141.0 (m), 139.0-138.8 (m), 137.0-136.7 (m), 130.4 (2C), 130.0, 113.7 (2C) , 111.8-111.5 (m), 82.5, 55.1, 41.4, 19.4, 9.8 ppm; HRMS (ESI-TOF): calcd. [M+Na]<sup>+</sup> 439.1052; found: 439.1052.



(E)-N-(perfluorophenyl)-2-(((4-phenylbutan-2-yl)oxy)imino)propanamide: White soild;  $R_f = 0.54$  (petroleum ether-EtOAc = 10:1); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta = 8.12$  (s, 1H), 7.34-7.30 (m, 2H), 7.24-7.20 (m, 3H), 4.43 (h, J = 6.3 Hz, 1H), 2.82-2.70 (m, 2H), 2.15-2.07 (m, 4H), 1.98-1.90 (m, 1H), 1.39 (d, J = 6.3 Hz, 3H) ppm; <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>):  $\delta = 161.4$ , 149.1, 144.2-144.0 (m), 142.2-142.0 (m), 141.6, 141.0-140.9 (m), 139.0-138.7 (m), 137.0-136.7 (m), 128.4 (2C), 128.4 (2C), 126.0, 111.8-111.6 (m), 81.0, 37.1, 31.7, 20.0, 9.8 ppm; HRMS (ESI-TOF): calcd. [M+Na]<sup>+</sup> 423.1102; found: 423.1108.



(E)-N-(perfluorophenyl)-2-(((4-(*o*-tolyl)butan-2-yl)oxy)imino)propanamide: Yellowish oil;  $R_f = 0.58$  (petroleum ether-EtOAc = 10:1); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta = 8.16$  (s, 1H), 7.21-7.13 (m, 4H), 4.49 (h, J = 6.3 Hz, 1H), 2.84-2.77 (m, 1H), 2.76-2.69 (m, 1H), 2.36 (s, 3H), 2.16 (s, 3H), 2.09-2.01 (m, 1H), 1.95-1.87 (m, 1H), 1.43 (d, J = 6.3 Hz, 3H) ppm; <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>):  $\delta = 161.4$ , 149.2, 144.2-144.0 (m), 142.2-142.0 (m), 141.0-140.9 (m), 139.8, 139.0-138.7 (m), 137.0-136.7 (m), 135.8, 130.3, 128.8, 126.1, 126.0, 111.8-111.5 (m), 81.2, 36.0, 28.9, 19.9, 19.1, 9.7 ppm; HRMS (ESI-TOF): calcd. [M+Na]<sup>+</sup> 437.1259; found: 437.1265.



(E)-N-(perfluorophenyl)-2-(((4-(trifluoromethyl)phenyl)butan-2-yl)oxy)imino)propanamide:

Yellow oil;  $R_f = 0.49$  (petroleum ether-EtOAc = 10:1); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta = 8.11$  (s, 1H), 7.56 (d, J = 8.1 Hz, 2H), 7.33 (d, J = 8.0 Hz, 2H), 4.43 (h, J = 6.3 Hz, 1H), 2.89-2.75 (m, 2H), 2.15-2.06 (m, 4H), 2.00-1.91 (m, 1H), 1.39 (d, J = 6.3 Hz, 3H) ppm; <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>):  $\delta = 161.3$ , 149.4, 145.8, 144.1-144.0 (m), 142.2-142.0 (m), 141.1-140.9 (m), 139.0-138.8 (m), 137.0-136.7 (m), 128.7 (2C), 128.4 (q, J = 32.4 Hz), 125.3 (q, J = 3.5 Hz, 2C), 124.3 (q, J = 272.2 Hz), 111.8-111.5 (m), 80.7, 36.7, 31.5, 19.9, 9.7 ppm; HRMS (ESI-TOF): calcd. [M+Na]<sup>+</sup> 491.0976; found: 491.0976.



(E)-2-(((4-(2-fluorophenyl)butan-2-yl)oxy)imino)-N-(perfluorophenyl)propanamide: Colourless oil;  $R_f = 0.57$  (petroleum ether-EtOAc = 10:1); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta = 8.11$  (s, 1H), 7.20 (q, J = 7.2Hz, 2H), 7.10-6.99 (m, 2H), 4.42 (h, J = 6.3 Hz, 1H), 2.84-2.72 (m, 2H), 2.10 (s, 3H), 2.09-2.03 (m, 1H), 1.98-1.89 (m, 1H), 1.39 (d, J = 6.3 Hz, 3H) ppm; <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>):  $\delta = 161.4$ , 161.2 (d, J =244.5 Hz), 149.2, 144.2-144.1 (m), 142.2-142.0 (m), 141.1-140.9 (m), 138.9-138.7 (m), 137.0-136.8 (m), 130.6 (d, J = 5.2 Hz), 128.4 (d, J = 15.7 Hz), 127.8 (d, J = 8.3 Hz), 124.0 (d, J = 3.5 Hz), 115.3 (d, J =22.1 Hz), 111.7-111.6 (m), 81.0 35.7, 25.1 (d, J = 2.6 Hz), 19.9, 9.7 ppm; HRMS (ESI-TOF): calcd. [M+Na]<sup>+</sup> 441.1008; found: 441.1016.



(E)-2-(((4-(3-fluorophenyl)butan-2-yl)oxy)imino)-N-(perfluorophenyl)propanamide: Colourless oil;  $R_f = 0.49$  (petroleum ether-EtOAc = 10:1); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta = 8.10$  (s, 1H), 7.28-7.24 (m, 1H), 6.98 (d, J = 7.7 Hz, 1H), 6.91 (t, J = 8.6 Hz, 2H), 4.45-4.38 (m, 1H), 2.81-2.69 (m, 2H), 2.11 (s, 3H), 2.10-2.05 (m, 1H), 1.96-1.88 (m, 1H), 1.38 (d, J = 6.3 Hz, 3H) ppm; <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>):  $\delta =$ 163.0 (d, J = 245.5 Hz), 161.3, 149.3, 144.2 (d, J = 6.9 Hz), 144.1-144.0 (m), 142.2-142.1 (m), 141.1-140.9 (m), 139.0-138.9 (m), 137.0-136.8 (m), 129.9 (d, J = 8.5 Hz), 124.0 (d, J = 2.6 Hz), 115.2 (d, J =20.9 Hz), 112.9 (d, J = 20.9 Hz), 111.8-111.6 (m), 80.8, 36.8, 31.4, 20.0, 9.8 ppm; HRMS (ESI-TOF): calcd. [M+Na]<sup>+</sup> 441.1008; found: 441.1010.



(E)-2-(((4-(4-fluorophenyl)butan-2-yl)oxy)imino)-N-(perfluorophenyl)propanamide: Colourless oil;  $R_f = 0.49$  (petroleum ether-EtOAc = 10:1); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta = 8.10$  (s, 1H), 7.18-7.14 (m, 2H), 7.01-6.96 (m, 2H), 4.44-4.37 (m, 1H), 2.78-2.66 (m, 2H), 2.12 (s, 3H), 2.09-2.03 (m, 1H), 1.93-1.86 (m, 1H), 1.38 (d, J = 6.3 Hz, 3H) ppm; <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>):  $\delta = 161.3$ , 161.3 (d, J = 243.7 Hz), 149.3, 144.2-144.0 (m), 142.2-142.0 (m), 141.2-141.0 (m), 139.0-138.8 (m), 137.2 (d, J = 3.1 Hz), 137.0-136.8 (m), 129.7 (d, J = 7.8 Hz, 2C), 115.2 (d, J = 21.2 Hz, 2C), 111.7-111.5 (m), 80.8, 37.2, 30.8, 19.9, 9.7 ppm; HRMS (ESI-TOF): calcd. [M+Na]<sup>+</sup> 441.1008; found: 441.1011.



(E)-2-((4-methylphenethoxy)imino)-N-(perfluorophenyl)propanamide: Yellow oil;  $R_f = 0.56$  (petroleum ether-EtOAc = 10:1); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta = 8.00$  (s, 1H), 7.15 (s, 4H), 4.49 (t, J = 6.9 Hz, 2H), 3.04 (t, J = 6.9 Hz, 2H), 2.33 (s, 3H), 2.10 (s, 3H) ppm; <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>):  $\delta = 161.2$ , 149.5, 144.2-144.0 (m), 142.2-142.0 (m), 141.2-141.0 (m), 139.0-138.8 (m), 136.9-136.8 (m), 136.0, 134.9, 129.2 (2C), 128.8 (2C), 111.7-111.4 (m), 76.4, 35.4, 21.0, 9.8 ppm; HRMS (ESI-TOF): calcd. [M+Na]<sup>+</sup> 409.0946; found: 409.0948.



(E)-2-((4-methoxyphenethoxy)imino)-N-(perfluorophenyl)propanamide: Colourless oil;  $R_f = 0.33$  (petroleum ether-EtOAc = 10:1); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta = 8.01$  (s, 1H), 7.18-7.15 (m, 2H), 6.88-6.85 (m, 2H), 4.47 (t, J = 6.8 Hz, 2H), 3.79 (s, 3H), 3.01 (t, J = 6.8 Hz, 2H), 2.10 (s, 3H) ppm; <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>):  $\delta = 161.2$ , 158.3, 149.6, 144.2-144.1 (m), 142.2-142.0 (m), 141.1-141.0 (m), 139.0-

138.8 (m), 136.9-136.7 (m), 130.0, 129.9 (2C), 113.9 (2C), 111.7-111.4 (m), 76.5, 55.2, 35.0, 9.8 ppm; HRMS (ESI-TOF): calcd. [M+Na]<sup>+</sup> 425.0895; found: 425.0898.



(E)-2-((2-(naphthalen-1-yl)ethoxy)imino)-N-(perfluorophenyl)propanamide: White soild;  $R_f = 0.47$  (petroleum ether-EtOAc = 10:1); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta = 8.09$  (d, J = 8.5 Hz, 1H), 7.92-7.85 (m, 2H), 7.78 (d, J = 8.0 Hz, 1H), 7.59-7.49 (m, 2H), 7.47-7.42 (m, 2H), 4.66 (t, J = 7.0 Hz, 2H), 3.55 (t, J = 7.0 Hz, 2H), 2.07 (s, 3H) ppm; <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>):  $\delta = 161.1$ , 149.7, 144.1-144.0 (m), 142.1-142.0 (m), 141.2-141.0 (m), 139.0-138.8 (m), 137.1-136.8 (m), 133.9, 133.9, 132.0, 128.9, 127.4, 127.1, 126.1, 125.7, 125.5, 123.5, 111.7-111.4 (m), 75.7, 32.9, 9.9 ppm; HRMS (ESI-TOF): calcd. [M+Na]+ 445.0946; found: 445.0953.



(E)-2-((2-bromophenethoxy)imino)-N-(perfluorophenyl)propanamide: Yellow oil;  $R_f = 0.50$  (petroleum ether-EtOAc = 10:1); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta = 8.00$  (s, 1H), 7.58 (d, J = 7.9 Hz, 1H), 7.28-7.26 (m, 2H), 7.14-7.09 (m, 1H), 4.53 (t, J = 6.7 Hz, 2H), 3.22 (t, J = 6.7 Hz, 2H), 2.09 (s, 3H) ppm; <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>):  $\delta = 161.1$ , 149.8, 144.2-144.0 (m), 142.1-142.0 (m), 141.2-141.0 (m), 138.9-138.8 (m), 137.31, 137.0-136.8 (m), 132.9, 131.2, 128.3, 127.5, 124.6, 111.8-111.5 (m), 74.6, 36.1, 9.9 ppm; HRMS (ESI-TOF): calcd. [M+Na]<sup>+</sup> 472.9895; found: 472.9895.



(E)-2-((2-iodophenethoxy)imino)-N-(perfluorophenyl)propanamide: Yellow oil;  $R_f = 0.47$  (petroleum ether-EtOAc = 10:1); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta = 8.02$  (s, 1H), 7.86 (dd,  $J_I = 7.9$  Hz,  $J_2 = 1.1$  Hz, 1H), 7.31 (td,  $J_I = 7.4$  Hz,  $J_2 = 1.1$  Hz, 1H), 7.26 (dd,  $J_I = 7.6$  Hz,  $J_2 = 1.7$  Hz, 1H), 6.94 (td,  $J_I = 7.7$  Hz,  $J_2 = 1.8$  Hz, 1H), 4.50 (t, J = 6.8 Hz, 2H), 3.24-3.19 (m, 2H), 2.10 (s, 3H) ppm; <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>):  $\delta = 161.1$ , 149.8, 144.1-144.0 (m), 142.1-142.0 (m), 141.1-140.9 (m), 140.6, 139.7, 139.0-138.9 (m), 136.9-136.8 (m), 130.3, 128.5, 128.4, 111.7-111.3 (m), 100.7, 74.8, 40.5, 9.9 ppm; HRMS (ESI-TOF): calcd. [M+Na]<sup>+</sup> 520.9756; found: 520.9760.



(E)-N-(perfluorophenyl)-2-((4-phenylbutoxy)imino)propanamide: White soild;  $R_f = 0.53$  (petroleum ether-EtOAc = 10:1); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta = 8.17$  (s, 1H), 7.36-7.29 (m, 2H), 7.26-7.20 (m, 3H), 4.32 (t, J = 6.2 Hz, 2H), 2.73 (t, J = 1.4 Hz, 2H), 2.13 (s, 3H), 1.85-1.77 (m, 4H) ppm; <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>):  $\delta = 161.2$ , 149.3, 144.1-144.0 (m), 142.1-142.0 (m), 142.0, 141.1-140.9 (m), 139.0-138.7 (m), 136.9-136.7 (m), 128.3, 128.3, 125.8, 111.7-111.5 (m), 75.7, 35.5, 28.5, 27.5, 9.6 ppm; HRMS (ESI-TOF): calcd. [M+Na]<sup>+</sup> 423.1102; found: 423.1102.



(E)-2-((pentyloxy)imino)-N-(perfluorophenyl)propanamide: Colourless oil;  $R_f = 0.64$  (petroleum ether-EtOAc = 10:1); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta = 8.14$  (s, 1H), 4.27 (t, J = 6.7 Hz, 2H), 2.11 (s, 3H), 1.79-1.72 (m, 2H), 1.42-1.37 (m, 4H), 0.98-0.91 (m, 3H) ppm; <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>):  $\delta = 161.3$ , 149.2, 144.2-144.0 (m), 142.2-142.0 (m), 141.1-140.8 (m), 139.1-138.9 (m), 137.0-136.8 (m), 111.8-111.7 (m), 76.1, 28.8, 28.0, 22.5, 14.0, 9.7 ppm; HRMS (ESI-TOF): calcd. [M+Na]<sup>+</sup> 361.0946; found: 361.0947.



(E)-2-((2-cyclohexylethoxy)imino)-N-(perfluorophenyl)propanamide: White soild;  $R_f = 0.67$  (petroleum ether-EtOAc = 10:1); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta = 8.14$  (s, 1H), 4.31 (t, J = 6.8 Hz, 2H), 2.10 (s, 3H), 1.81-1.69 (m, 5H), 1.67-1.59 (m, 3H), 1.32-1.15 (m, 3H), 1.03-0.92 (m, 2H) ppm; <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>):  $\delta = 161.3$ , 149.2, 144.2-144.0 (m), 142.2-142.0 (m), 141.1-141.0 (m), 139.0-138.8 (m), 137.0-136.8 (m), 111.8-111.6 (m), 74.3, 36.4, 34.6, 33.3, 26.5, 26.2, 9.8 ppm; HRMS (ESI-TOF): calcd. [M+Na]<sup>+</sup> 401.1259; found: 401.1262.



(E)-2-(((2-isopropyl-5-methylcyclohexyl)oxy)imino)-N-(perfluorophenyl)propanamide: White soild;  $R_f = 0.67$  (petroleum ether-EtOAc = 10:1); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta = 8.17$  (s, 1H), 4.67 (s, 1H), 2.15-2.09 (m, 4H), 1.81-1.75 (m, 2H), 1.68-1.60 (m, 2H), 1.44-1.35 (m, 1H), 1.13-1.05 (m, 2H), 0.97-0.89 (m, 7H), 0.90 (d, J = 6.6 Hz, 3H) ppm; <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>):  $\delta = 161.5$ , 149.1, 144.1-144.0 (m), 142.2-142.0 (m), 141.0-140.8 (m), 139.0-138.8 (m), 137.0-136.7 (m), 111.9-111.6 (m), 81.9, 47.1, 39.5, 34.9, 29.3, 26.3, 25.2, 22.3, 21.1, 20.8, 9.6 ppm; HRMS (ESI-TOF): calcd. [M+Na]<sup>+</sup> 429.1572; found: 429.1578.



(E)-2-((ethoxy-d<sub>5</sub>)imino)-N-(perfluorophenyl)propanamide: Yellow oil;  $R_f = 0.67$  (petroleum ether-EtOAc = 5:1); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta = 8.15$  (s, 1H), 2.11 (s, 3H) ppm; <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>):  $\delta = 161.3$ , 149.2, 144.2-144.0 (m), 142.2-142.0 (m), 141.2-140.9 (m), 139.1-138.7 (m), 137.0-136.7 (m), 111.8-111.5 (m), 71.0-70.3 (m), 13.9-13.0 (m), 9.7 ppm; HRMS (ESI-TOF): calcd. [M+Na]<sup>+</sup> 324.0790; found: 324.0790.

**III. Screening of the conditions** 

A. C(*sp*<sup>3</sup>)-H Arylation of masked alcohols



<sup>a</sup> GC Yields.

Figure S1. Screening of directing groups

Table S1. Screening of the arylation conditions

| $F + N = \begin{bmatrix} Pd \end{bmatrix} (10 \text{ mol}\%) \\ Phl (4.0 \text{ equiv.}) \\ \hline Additive (equiv.) \\ F + F \\ F + 1 (0.1 \text{ mmol}) \end{bmatrix} F + F \\ F + N = \begin{bmatrix} Ag \\ B \\ Solvent, 110 \ ^{\circ}C, 24 \text{ h} \\ F + F \\ Solvent, 110 \ ^{\circ}C, 24 \text{ h} \end{bmatrix} F + F \\ F + B \\ F + $ |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

| [Pd]<br>(10 mol%)                     | [Ag]<br>(equiv.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Additive<br>(equiv.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Solvent (mL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Yield (%) <sup>[a]</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|---------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $Pd(OAc)_2$                           | $Ag_3PO_4(2.0)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | NaHCO <sub>3</sub> $(1.0)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | PhCl (1.0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 64 (58) <sup>[b]</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Pd(OAc) <sub>2</sub>                  | $Ag_3PO_4(2.0)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | NaHCO <sub>3</sub> (1.0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PhCl (0.1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Pd(OAc) <sub>2</sub>                  | $Ag_{3}PO_{4}(1.5)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | NaHCO <sub>3</sub> (1.5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PhCl (0.1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Pd(OAc) <sub>2</sub>                  | Ag <sub>3</sub> PO <sub>4</sub> (1.5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | NaHCO <sub>3</sub> (1.0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PhCl (0.1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Pd(MeCN) <sub>2</sub> Cl <sub>2</sub> | $Ag_3PO_4(1.5)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | NaHCO <sub>3</sub> (1.0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PhCl (0.1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Pd(OTFA) <sub>2</sub>                 | $Ag_3PO_4(1.5)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | NaHCO <sub>3</sub> (1.0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PhCl (0.1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| PdCl <sub>2</sub>                     | $Ag_3PO_4(1.5)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | NaHCO <sub>3</sub> (1.0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PhCl (0.1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Pd(OAc) <sub>2</sub>                  | $Ag_3PO_4(1.5)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | NaHCO <sub>3</sub> (1.0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PhF (0.1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Pd(OAc) <sub>2</sub>                  | $Ag_3PO_4(1.5)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | NaHCO <sub>3</sub> (1.0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | TBB (0.1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Pd(OAc) <sub>2</sub>                  | $Ag_3PO_4(1.5)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | NaHCO <sub>3</sub> (1.0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <i>o</i> -DCB (0.1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Pd(OAc) <sub>2</sub>                  | Ag <sub>2</sub> CO <sub>3</sub> (1.5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | NaHCO <sub>3</sub> (1.0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PhCl (0.1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Pd(OAc) <sub>2</sub>                  | AgOAc (1.5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | NaHCO <sub>3</sub> (1.0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PhCl (0.1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Pd(OAc) <sub>2</sub>                  | AgNO <sub>3</sub> (1.5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NaHCO <sub>3</sub> (1.0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PhCl (0.1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Pd(OAc) <sub>2</sub>                  | $Ag_{3}PO_{4}(1.5)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | H <sub>3</sub> BO <sub>3</sub> (1.0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PhCl (0.1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| $Pd(OAc)_2$                           | $Ag_3PO_4(1.5)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4-ClPhOH (1.0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | PhCl (0.1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Pd(OAc) <sub>2</sub>                  | $Ag_{2}CO_{3}(2.0)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | PhCl (1.0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Pd(OAc) <sub>2</sub>                  | $Ag_3PO_4(2.0)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $Na_2CO_3(1.0)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | PhCl (1.0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                       | [Pd]   (10 mol%)   Pd(OAc)2   < | [Pd]   [Ag]     (10 mol%)   (equiv.)     Pd(OAc)2   Ag3PO4(2.0)     Pd(OAc)2   Ag3PO4(2.0)     Pd(OAc)2   Ag3PO4(2.0)     Pd(OAc)2   Ag3PO4(2.0)     Pd(OAc)2   Ag3PO4(2.0)     Pd(OAc)2   Ag3PO4(2.0)     Pd(OAc)2   Ag3PO4(1.5)     Pd(OAc)2   Ag3PO4(1.5)     Pd(OTFA)2   Ag3PO4(1.5)     Pd(OAc)2   Ag0Ac (1.5)     Pd(OAc)2   Ag0Ac (1.5)     Pd(OAc)2   Ag0Ac (1.5)     Pd(OAc)2   Ag3PO4(1.5)     Pd(OAc)2   Ag3PO4(1.5) | [Pd]   [Ag]   Additive<br>(equiv.)     Pd(OAc)2   Ag3PO4 (2.0)   NaHCO3 (1.0)     Pd(OAc)2   Ag3PO4 (2.0)   NaHCO3 (1.0)     Pd(OAc)2   Ag3PO4 (2.0)   NaHCO3 (1.0)     Pd(OAc)2   Ag3PO4 (1.5)   NaHCO3 (1.0)     Pd(OAc)2   Ag3PO4 (1.5)   NaHCO3 (1.0)     Pd(OAc)2   Ag3PO4 (1.5)   NaHCO3 (1.0)     Pd(MeCN)2Cl2   Ag3PO4 (1.5)   NaHCO3 (1.0)     Pd(OTFA)2   Ag3PO4 (1.5)   NaHCO3 (1.0)     Pd(OAc)2   Ag2CO3 (1.5)   NaHCO3 (1.0)     Pd(OAc)2   Ag0Ac (1.5)   NaHCO3 (1.0)     Pd(OAc)2   Ag3PO4 (1.5)   NaHCO3 (1.0)     Pd(OAc)2   Ag3PO4 (1.5)   NaHCO3 (1.0)     Pd(OAc)2   Ag3PO4 (1.5)   NaHCO3 (1.0)     Pd(OAc)2   Ag3PO | $\begin{array}{ c c c c c } [Ag] & Additive & Solvent \\ (10 mol%) & (equiv.) & (equiv.) & (mL) \\ \hline Pd(OAc)_2 & Ag_3PO_4(2.0) & NaHCO_3(1.0) & PhC1 (1.0) \\ Pd(OAc)_2 & Ag_3PO_4(1.5) & NaHCO_3(1.0) & PhC1 (0.1) \\ Pd(OAc)_2 & Ag_3PO_4(1.5) & NaHCO_3(1.0) & PhC1 (0.1) \\ Pd(MeCN)_2Cl_2 & Ag_3PO_4(1.5) & NaHCO_3(1.0) & PhC1 (0.1) \\ Pd(OTFA)_2 & Ag_3PO_4(1.5) & NaHCO_3(1.0) & PhC1 (0.1) \\ Pd(OAc)_2 & Ag_3PO_4(1.5) & NaHCO_3(1.0) & PhC1 (0.1) \\ Pd(OAc)_2 & Ag_3PO_4(1.5) & NaHCO_3(1.0) & PhC1 (0.1) \\ Pd(OAc)_2 & Ag_3PO_4(1.5) & NaHCO_3(1.0) & PhC1 (0.1) \\ Pd(OAc)_2 & Ag_3PO_4(1.5) & NaHCO_3(1.0) & PhF (0.1) \\ Pd(OAc)_2 & Ag_3PO_4(1.5) & NaHCO_3(1.0) & O-DCB (0.1) \\ Pd(OAc)_2 & Ag_3PO_4(1.5) & NaHCO_3(1.0) & PhC1 (0.1) \\ Pd(OAc)_2 & Ag_3PO_4(1.5) & NaHCO_3(1.0) & PhC1 (0.1) \\ Pd(OAc)_2 & Ag_0Ac (1.5) & NaHCO_3(1.0) & PhC1 (0.1) \\ Pd(OAc)_2 & Ag_0Ac (1.5) & NaHCO_3 (1.0) & PhC1 (0.1) \\ Pd(OAc)_2 & Ag_3PO_4(1.5) & NaHCO_3 (1.0) & PhC1 (0.1) \\ Pd(OAc)_2 & Ag_3PO_4(1.5) & NaHCO_3 (1.0) & PhC1 (0.1) \\ Pd(OAc)_2 & Ag_3PO_4(1.5) & H_3BO_3 (1.0) & PhC1 (0.1) \\ Pd(OAc)_2 & Ag_3PO_4 (1.5) & 4-CIPhOH (1.0) & PhC1 (0.1) \\ Pd(OAc)_2 & Ag_3PO_4 (2.0) & Na_2CO_3 (1.0) & PhC1 (1.0) \\ PhC1 (0.1) PhC1 (0.1) & PhC1 (0.1) \\ Pd(OAc)_2 & Ag_3PO_4 (2.0) & Na_2CO_3 (1.0) & PhC1 (1.0) \\ PhC1 (0.1) PhC1 (0.1) & PhC1 (0.1) \\ Pd(OAc)_2 & Ag_3PO_4 (2.0) & Na_2CO_3 (1.0) & PhC1 (1.0) \\ PhC1 (0.1) PhC1 (0.1) & PhC1 (0.1) \\ PhC1 (0.1) PhC1 (0.1) & PhC1 (1.0) \\ PhC1 (0.1) PhC1 (0.1) & PhC1 (1.0) \\ PhC1 (0.1) PhC1 (0.1) PhC1 (0.1) \\ PhC1 (0.1) PhC1 (0.1) PhC1 (0.1) \\ PhC1 (0.1) PhC1 (0.1) PhC1 (0.1) PhC1 (0.1) \\ PhC1 (0.1) PhC1 (0.1) PhC1 (0.1) PhC1 (0.1) PhC1 (0.1)$ |

<sup>[a]</sup>GC yields. <sup>[b]</sup>100 °C. TBB = *tert*-butylbenzene, *o*-DCB = ortho dichlorobenzene

B. C(*sp*<sup>3</sup>)-H Acetoxylation of masked alcohols

*Table S2.* Screening of the methyl  $C(sp^3)$ -H acetoxylation conditions



| Entry | Oxidant                 | AcOH/Ac <sub>2</sub> O | Tim   | Temp. | Yield of <b>4'/4''</b> |
|-------|-------------------------|------------------------|-------|-------|------------------------|
|       | (equiv.)                | (v/v)                  | e (h) | (°C)  | (%) <sup>[a]</sup>     |
| 1     | Oxone $(2.5)$           | 25:2                   | 24    | 110   | 60/4                   |
| 2     | Oxone (2.5)             | 25:2                   | 12    | 100   | 62/1                   |
| 3     | Oxone (2.5)             | 25:2                   | 24    | 100   | 72/22                  |
| 4     | Oxone (2.5)             | 20:4                   | 24    | 100   | 69/16                  |
| 5     | Oxone (2.5)             | 50:1                   | 24    | 100   | 63/4                   |
| 6     | Oxone (2.5)             | 50:1                   | 24    | 110   | 67/17                  |
| 7     | Oxone (2.0)             | 50:1                   | 24    | 110   | 40/2                   |
| 8     | Oxone (3.0)             | 50:1                   | 24    | 110   | 67/8                   |
| 9     | NaNO <sub>3</sub> (2.5) | 50:1                   | 16    | 110   | 8/trace                |
| 10    | $K_2S_2O_8(2.5)$        | 50:1                   | 16    | 110   | 69/15                  |
| 11    | $K_2S_2O_8(2.0)$        | 50:1                   | 24    | 110   | 49/3                   |
| 12    | $K_2S_2O_8(3.0)$        | 50:1                   | 24    | 110   | 51/46                  |
| 13    | $K_2S_2O_8(2.5)$        | 50:1                   | 24    | 100   | 60/39                  |
| 14    | $K_2S_2O_8(2.5)$        | 50:1                   | 24    | 90    | 80/10                  |
| 15    | $K_2S_2O_8(2.5)$        | 25:2                   | 24    | 100   | 77/18                  |
| 16    | $K_2S_2O_8(2.5)$        | 20:4                   | 24    | 100   | 33/2                   |
| 17    | $K_2S_2O_8(2.5)$        | 25:2                   | 12    | 110   | 83/10                  |
| 18    | $K_2S_2O_8(2.5)$        | 25:2                   | 12    | 100   | 72/4                   |
| 19    | $K_{2}S_{2}O_{8}(2.5)$  | 25:2                   | 6     | 100   | 12/0                   |
| 20    | $K_2S_2O_8(2.5)$        | 50:1                   | 12    | 100   | 43/1                   |
|       |                         |                        |       |       |                        |

<sup>[a]</sup>GC yields.

*Table S3.* Screening of the methylene  $C(sp^3)$ -H acetoxylation conditions



| Entry | [Pd]<br>(10 mol%)    | Oxidant<br>(equiv.) | AcOH/Ac <sub>2</sub> O | Time<br>(h) | Temp.<br>(°C) | Yield of 4x <sup>[a]</sup> |
|-------|----------------------|---------------------|------------------------|-------------|---------------|----------------------------|
| 1     | $Pd(OAc)_2$          | $K_2S_2O_8(3.0)$    | 25:2                   | 24          | 110           | 52                         |
| 2     | Pd(OAc) <sub>2</sub> | $K_2S_2O_8(3.0)$    | 50:1                   | 24          | 100           | 77                         |
| 3     | Pd(OAc) <sub>2</sub> | $K_2S_2O_8$ (3.0)   | 50:1                   | 24          | 110           | 83                         |
| 4     | Pd(dba) <sub>2</sub> | $K_2S_2O_8(3.0)$    | 50:1                   | 24          | 110           | 57                         |
| 5     | Pd(TFA) <sub>2</sub> | $K_2S_2O_8(3.0)$    | 50:1                   | 24          | 110           | 56                         |
| 6     | Pd(OAc) <sub>2</sub> | $K_2S_2O_8(3.0)$    | 25:1                   | 24          | 110           | 46                         |
| 7     | Pd(OAc) <sub>2</sub> | $K_2S_2O_8(2.5)$    | 50:1                   | 24          | 110           | 46                         |

<sup>[a]</sup>GC yields.

# **IV. General procedures**

#### a) Typical procedure for the arylation of alcohols

In a 10 mL test tube equipped with a stir bar, alkyl alcohol derivatives **1** (0.3 mmol),  $Pd(OAc)_2$  (6.6 mg, 0.03 mmol),  $Ag_3PO_4$  (188.4 mg, 0.45 mmol), PhI (244.8 mg, 1.2 mmol), NaHCO<sub>3</sub> (25.2 mg, 0.3 mmol) and PhCl (0.3 mL) were added successively. Then the tube was heated at 110 °C for 24 h under stirring. Upon completion, the resulting mixture was allowed to cool to room temperature and diluted with EtOAc. The solvent was then removed in *vacuo* and the residue was purified through silica gel chromatography (petroleum ether/EtOAc = 50:1) to give the corresponding products **3a-3q**.

#### b) Typical procedure for the arylation with diverse aromatic iodides

In a 10 mL test tube equipped with a stir bar, (E)-N-methyl-2-((pentan-2-yloxy)imino)-N-(perfluorophenyl)propanamide (101.4 mg, 0.3 mmol),  $Pd(OAc)_2$  (6.6 mg, 0.03 mmol),  $Ag_3PO_4$  (188.4 mg, 0.45 mmol), ArI (1.2 mmol), NaHCO<sub>3</sub> (25.2 mg, 0.3 mmol) and PhCl (0.3 mL) were added successively. Then the tube was sealed and stirred at the indicated temperature for 24 h. Upon completion, the resulting mixture was cooled to room temperature, diluted with EtOAc and concentrated under reduced pressure. Then the residue was purified by silica gel chromatography (petroleum ether/EtOAc = 50:1-10:1) to afford the desired products **3r-3ai**.

# c) Typical procedure for the acetoxylation of methyl C(sp<sup>3</sup>)-H bond

In a 10 mL test tube equipped with a stir bar, alkyl alcohol derivatives 1 (0.3 mmol), Pd(OAc)<sub>2</sub> (6.6mg,

0.03 mmol),  $K_2S_2O_8$  (202.8 mg, 0.75 mmol), AcOH/Ac<sub>2</sub>O (75:6, v/v, 1.5 mL) were added successively. Then the tube was sealed and stirred at 110 °C for 12-48 h. Upon completion, the resulting mixture was allowed to cool to room temperature, diluted with EtOAc. The solvent was then removed in *vacuo* and the residue was purified through silica gel chromatography (petroleum ether/EtOAc = 10:1-5:1) to give the corresponding products **4'**, **4b**-4g.

#### d) Typical procedure for the acetoxylation of methylene $C(sp^3)$ -H bond

In a 10 mL test tube equipped with a stir bar, phenethanol derivatives **1** (0.3 mmol),  $Pd(OAc)_2$  (6.6mg, 0.03 mmol),  $K_2S_2O_8$  (243.9 mg, 0.9 mmol),  $AcOH/Ac_2O$  (150:3, v/v, 3 mL) were added successively. Then the tube was sealed and stirred at 100-110 °C for 24 h. Upon completion, the resulting mixture was allowed to cool to room temperature, diluted with EtOAc. The solvent was then removed in *vacuo* and the residue was purified through silica gel chromatography (petroleum ether/EtOAc = 10:1-5:1) to afford the desired products **4h-4x**.

#### V. Removal of the directing groups



Following the literature procedure<sup>3, 5</sup>: A 25 mL Schlenk tube was charged with arylated product **3v** (58 mg, 0.12 mmol, 1.0 equiv.),  $Mo(CO)_6$  (38 mg, 0.144 mmol, 1.2 equiv.),  $CH_3CN$  (2.0 mL),  $H_2O$  (5 drops). The tube was sealed with a Teflon-lined screw cap, refrigerated with liquid nitrogen, evacuated the air and filled with nitrogen by the schlenk line for 3 times. Then the tube was heated at 90 °C for 12 h under stirring. Then the tube was allowed to cool to room temperature. The solvent was then removed in vacuo and the residue was purified through flash column chromatography on silica gel (eluent: petroleum ether/EtOAc = 5:1) to give the corresponding product **5** as a white soild (20 mg, 83% yield).

A 25 mL Schlenk tube was charged with acetoxylated product **4m** (84 mg, 0.18 mmol, 1.0 equiv.),  $Mo(CO)_6$  (57 mg, 0.216 mmol, 1.2 equiv.),  $CH_3CN$  (3.0 mL),  $H_2O$  (7 drops). The tube was sealed with a Teflon-lined screw cap, refrigerated with liquid nitrogen, evacuated the air and filled with nitrogen by the schlenk line for 3 times. Then the tube was heated at 90 °C for 12 h under stirring. Then the tube was allowed to cool to room temperature. The solvent was then removed in vacuo and the residue was purified through flash column chromatography on silica gel (petroleum ether/EtOAc = 5:1) to give the corresponding product **6** as a white soild (25 mg, 72% yield).

# VI. Hydrolysis of 4i



In a 10 mL test tube equipped with a stir bar, acetoxylated product **4i** (0.06 mmol),  $K_2CO_3$  (20.7 mg, 0.15 mmol), MeOH (1 mL) were added successively. Then the solution was allowed to stir at room temperature. After 24 h, the resulting solution was diluted with MeOH. The solvent was then removed in *vacuo* and the residue was purified through silica gel chromatography (petroleum ether/EtOAc = 5:1) to give the corresponding products **7** as a colorless oil (18 mg, 75% yield).

# **VII.** Competing experiments

Intermolecular competing experiment:



In a 10 mL test tube equipped with a stir bar, 2-(4-methoxyphenyl)ethan-1-ol derivatives (20.1 mg, 0.05 mmol), pentan-1-ol derivatives (16.9 mg, 0.05 mmol),  $Pd(OAc)_2$  (2.2 mg, 0.01 mmol),  $K_2S_2O_8$  (81.3 mg, 0.3 mmol), AcOH/Ac<sub>2</sub>O (50:1, v/v, 1 mL) were added successively. Then the tube was sealed and stirred at 110 °C for 4 h. Upon completion, the resulting mixture was allowed to cool to room temperature, diluted with EtOAc. The ratio of the mixture [4j (62%) + 4u (25%)] was determined by GC-MS.

Intramolecular competing experiment:



In a 10 mL test tube equipped with a stir bar, alkyl alcohol derivatives **3r** (0.05 mmol),  $Pd(OAc)_2$  (1.1 mg, 0.005 mmol),  $K_2S_2O_8$  (40.7 mg, 0.15 mmol),  $AcOH/Ac_2O$  (50:1, v/v, 0.5 mL) were added successively. Then the tube was sealed and stirred at 110 °C for 24 h. Upon completion, the resulting mixture was allowed to cool to room temperature, diluted with EtOAc. The solvent was then removed in *vacuo* and the residue was purified through silica gel chromatography (petroleum ether/EtOAc = 5:1) to give the

corresponding benzylic C-H bond acetoxylated product **8** as the major product (10 mg,  $\sim$  42% yield). The minor regioisomer could not be isolated due to its low content.

(1S)-2-((((E)-1-oxo-1-((perfluorophenyl)amino)propan-2-ylidene)amino)oxy)-1-(*p*-tolyl)pentyl acetate (8): Colourless oil;  $R_f = 0.38$  (petroleum ether- EtOAc = 5:1); d.r. = 1.4 / 1; (major): <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta = 8.02$  (s, 1H), 7.27-7.23 (m, 4H), 6.08-6.01 (m, 1H), 4.65-4.56 (m, 1H), 2.35 (s, 3H), 2.12 (s, 3H), 2.10 (s, 3H), 1.64-1.43 (m, 4H), 0.92-0.88 (m, 3H) ppm; <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>):  $\delta = 170.0$ , 161.3, 149.6, 144.2-144.0 (m), 142.2-142.0 (m), 141.0-140.9 (m), 139.1-139.0 (m), 138.3, 137.0-136.9 (m), 134.0, 129.2 (2C), 127.3 (2C), 111.7-111.6 (m), 86.6, 76.1, 32.2, 31.5, 21.1, 18.6, 13.8, 9.9 ppm; (minor): <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta = 7.90$  (s, 1H), 7.22-7.10 (m, 4H), 6.01-5.95 (m, 1H), 4.71-4.53 (m, 1H), 2.35 (s, 3H), 2.14 (s, 3H), 2.07 (s, 3H), 1.41-1.24 (m, 4H), 0.99-0.92 (m, 3H) ppm; <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>):  $\delta = 169.9$ , 161.2, 149.5, 144.2-144.0 (m), 142.2-142.0 (m), 141.0-140.9 (m), 139.1-139.0 (m), 139.1-139.0 (m), 138.0, 137.0-136.9 (m), 133.9, 129.0 (2C), 127.2 (2C), 111.7-111.6 (m), 86.8, 76.1, 32.2, 31.5, 21.1, 18.9, 13.9, 10.0 ppm.







In a 25 mL test tube equipped with a stir bar, ethanol derivatives (59.2 mg, 0.2 mmol), ethan- $d_5$ -1-ol derivatives (60.2 mg, 0.2 mmol), Pd(OAc)<sub>2</sub> (8.8 mg, 0.04 mmol), K<sub>2</sub>S<sub>2</sub>O<sub>8</sub> (325.2 mg, 1.2 mmol), AcOH/Ac<sub>2</sub>O (200:4, v/v, 4 mL) were added successively. Then the tube was sealed and stirred at 110 °C for 6 h. Upon completion, the resulting mixture was allowed to cool to room temperature, diluted with EtOAc. The solvent was then removed in *vacuo* and the residue was purified through silica gel chromatography (petroleum ether/EtOAc = 3:1) to give a mixture of **4a** and **4a-d<sub>4</sub>** (50 mg, ~36% yield).

May07-2019



# **IX. References**

- 1. Z. Ren, F. Mo and G. Dong, J. Am. Chem. Soc. 2012, 134, 16991.
- 2. Y. Xu, G. Yan, Z. Ren and G. Dong, Nat. Chem. 2015, 7, 829.
- 3. K. Guo, X. Chen, M. Guan and Y. Zhao, Org. Lett. 2015, 17, 1802.
- 4. Y.Dong and G. Liu, J. Org. Chem. 2017, 82, 3864.
- 5. Y.-J. Mao, S.-J. Lou, H.-Y. Hao, and D.-Q. Xu, Angew. Chem. Int. Ed., 2018, 57, 14085.

#### X. Characterization data of products



(E)-N-(perfluorophenyl)-2-(((1-phenylpropan-2-yl)oxy)imino)propanamide (3a): Follow the typical process an isolated as colourless oil (66 mg, 57% yield);  $R_f = 0.55$  (petroleum ether-EtOAc = 10:1); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta = 7.93$  (s, 1H), 7.34-7.29 (m, 2H), 7.23 (d, J = 7.3 Hz, 3H), 4.65 (h, J = 6.4 Hz, 1H), 3.06 (dd,  $J_I = 13.9$  Hz,  $J_2 = 7.0$  Hz, 1H), 2.92 (dd,  $J_I = 13.9$  Hz,  $J_2 = 5.8$  Hz, 1H), 2.09 (s, 3H), 1.38 (d, J = 6.4 Hz, 3H) ppm; <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>):  $\delta = 161.4$ , 149.1, 144.2-144.0 (m), 142.2-142.0 (m), 141.1-141.0 (m), 139.0-138.8 (m), 138.0, 136.9-136.7 (m), 129.5 (2C), 128.3 (2C), 126.4, 111.8-111.6 (m), 82.3, 42.4, 19.5, 9.8 ppm; HRMS (ESI-TOF): calcd. [M+Na]<sup>+</sup> 409.0946; found: 409.0955.



(E)-N-(perfluorophenyl)-2-(((1-phenylbutan-2-yl)oxy)imino)propanamide (3b): Follow the typical process an isolated as colourless oil (90 mg, 75% yield);  $R_f = 0.56$  (petroleum ether-EtOAc = 10:1); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta = 7.83$  (s, 1H), 7.32-7.28 (m, 2H), 7.23-7.18 (m, 3H), 4.49-4.43 (m, 1H), 3.07-2.92 (m, 2H), 2.08 (s, 3H), 1.77-1.71 (m, 2H), 1.03 (t, J = 7.4 Hz, 3H) ppm; <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>):  $\delta = 161.4$ , 149.0, 144.2-144.0 (m), 142.2-142.0 (m), 141.1-141.0 (m), 139.0-138.8 (m), 138.3, 136.9-136.7 (m), 129.4 (2C), 128.3 (2C), 126.3, 111.8-111.6 (m), 87.5, 40.4, 26.5, 9.8, 9.8 ppm; HRMS (ESI-TOF): calcd. [M+Na]<sup>+</sup> 423.1102; found: 423.1107.



(E)-N-(perfluorophenyl)-2-(((1-phenylpentan-2-yl)oxy)imino)propanamide (3c): Follow the typical process an isolated as colourless oil (83 mg, 67% yield);  $R_f = 0.61$  (petroleum ether-EtOAc = 10:1); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta = 7.81$  (s, 1H), 7.32-7.28 (m, 2H), 7.21 (d, J = 7.6 Hz, 3H), 4.56-4.51 (m, 1H), 3.05-2.92 (m, 2H), 2.08 (s, 3H), 1.78-1.68 (m, 1H), 1.69-1.59 (m, 1H), 1.59-1.48 (m, 1H), 1.47-1.42 (m, 1H), 0.97 (t, J = 7.3 Hz, 3H) ppm; <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>):  $\delta = 161.4$ , 148.9, 144.2-144.1 (m), 142.0-142.0 (m), 141.2-141.1 (m), 139.0-138.8 (m), 138.3, 137.0-136.7(m), 129.5 (2C), 128.3 (2C), 126.3, 111.8-111.6 (m), 86.2, 41.0, 35.7, 18.8, 14.1, 9.9 ppm; HRMS (ESI-TOF): calcd. [M+Na]<sup>+</sup> 437.1259; found: 437.1261.



(E)-N-(perfluorophenyl)-2-(((1-phenylhexan-2-yl)oxy)imino)propanamide (3d): Follow the typical process an isolated as colourless oil (72 mg, 56% yield);  $R_f = 0.62$  (petroleum ether-EtOAc = 10:1); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta = 7.83$  (s, 1H), 7.33-7.28 (m, 2H), 7.23-7.18 (m, 3H), 4.55-4.50 (m, 1H), 3.04-2.94 (m, 2H), 2.08 (s, 3H), 1.80-1.71 (m, 1H), 1.70-1.62 (m, 1H), 1.52-1.46 (m, 1H), 1.44-1.35 (m, 3H), 0.94 (t, J = 7.2 Hz, 3H) ppm; <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>):  $\delta = 161.4$ , 148.9, 144.1-144.0 (m), 142.1-142.0 (m), 141.0-140.9 (m), 139.0-138.8 (m), 138.3, 136.9-136.7 (m), 129.4 (2C), 128.3 (2C), 126.3, 111.8-111.5 (m), 86.4, 40.9, 33.2, 27.6, 22.6, 14.0, 9.8 ppm; HRMS (ESI-TOF): calcd. [M+Na]+ 451.1415; found: 451.1418.



(E)-2-(((4-methyl-1-phenylpentan-2-yl)oxy)imino)-N-(perfluorophenyl)propanamide (3e): Follow the typical process an isolated as colourless oil (81 mg, 63% yield);  $R_f = 0.61$  (petroleum ether-EtOAc = 10:1); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta = 7.79$  (s, 1H), 7.33-7.28 (m, 2H), 7.23-7.18 (m, 3H), 4.65-4.60 (m, 1H), 3.03-2.93 (m, 2H), 2.08 (s, 3H), 1.85-1.79 (m, 1H), 1.75-1.70 (m, 1H), 1.49-1.41 (m, 1H), 0.96 (dd,  $J_I = 7.5$  Hz,  $J_2 = 6.8$  Hz, 6H) ppm; <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>):  $\delta = 161.4$ , 148.8, 144.1-144.0 (m), 142.2-142.0 (m), 141.1-141.0 (m), 139.0-138.8 (m), 138.3, 137.0-136.8 (m), 129.4 (2C), 128.3 (2C), 126.3, 111.8-111.5 (m), 84.8, 42.6, 41.6, 24.8, 23.2, 22.2, 9.8 ppm; HRMS (ESI-TOF): calcd. [M+Na]+ 451.1415; found: 451.1417.



(E)-2-(((3-methyl-1-phenylbutan-2-yl)oxy)imino)-N-(perfluorophenyl)propanamide (3f): Follow the typical process an isolated as colourless oil (79 mg, 64% yield);  $R_f$ = 0.60 (petroleum ether-EtOAc = 10:1); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta$  = 7.68 (s, 1H), 7.30-7.22 (m, 4H), 7.18 (t, *J* = 7.3 Hz, 1H), 4.35 (dt, *J<sub>I</sub>* = 9.0 Hz, *J<sub>2</sub>* = 4.6 Hz, 1H), 2.99 (dd, *J<sub>I</sub>* = 14.3 Hz, *J<sub>2</sub>* = 4.2 Hz, 1H), 2.93 (dd, *J<sub>I</sub>* = 14.3 Hz, *J<sub>2</sub>* = 8.7 Hz, 1H), 2.07 (s, 3H), 1.08-1.06 (m, 7H) ppm; <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>):  $\delta$  = 161.4, 148.6, 144.2-144.0 (m), 142.2-142.0 (m), 141.1-141.0 (m), 139.0, 138.9-138.8 (m), 136.9-136.8 (m), 129.4 (2C), 128.3 (2C), 126.2, 111.8-111.5 (m), 91.3, 37.7, 31.3, 18.6, 17.9, 9.8 ppm; HRMS (ESI-TOF): calcd. [M+Na]<sup>+</sup> 437.1259; found: 437,1262.



(E)-2-((1-cyclohexyl-2-phenylethoxy)imino)-N-(perfluorophenyl)propanamide (3g): Follow the typical process an isolated as colourless oil (84 mg, 62% yield);  $R_f$ = 0.61 (petroleum ether-EtOAc = 10:1); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta$  = 7.68 (s, 1H), 7.31-7.27 (m, 2H), 7.23-7.16 (m, 3H), 4.38-4.31 (m, 1H), 3.02 (dd,  $J_I$  = 14.3 Hz,  $J_2$  = 4.0 Hz, 1H), 2.93 (dd,  $J_I$  = 14.3 Hz,  $J_2$  = 8.8 Hz, 1H), 2.06 (s, 3H), 1.92 (d, J = 12.4 Hz, 1H), 1.83-1.81 (m, 3H), 1.74 (d, J = 11.2 Hz, 2H), 1.34-1.12 (m, 5H) ppm; <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>):  $\delta$  = 161.4, 148.4, 144.1-144.0 (m), 142.1-142.0 (m), 141.0-140.9 (m), 139.0, 138.8-138.7 (m), 136.9-136.7 (m), 129.4 (2C), 128.3 (2C), 126.1, 111.8-111.6 (m), 90.9, 41.3, 38.0, 29.2, 28.3, 26.5, 26.2, 26.2, 9.7 ppm; HRMS (ESI-TOF): calcd. [M+Na]<sup>+</sup> 477.1572; found: 477.1573.



(E)-2-(((5-chloro-1-phenylpentan-2-yl)oxy)imino)-N-(perfluorophenyl)propanamide (3h): Follow the typical process an isolated as yellow oil (103 mg, 77% yield);  $R_f = 0.40$  (petroleum ether-EtOAc = 10:1); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta = 7.79$  (s, 1H), 7.33-7.29 (m, 2H), 7.25-7.18 (m, 3H), 4.56 (p, J = 6.0 Hz, 1H), 3.59 (t, J = 6.2 Hz, 2H), 3.04 (dd,  $J_I = 14.1$  Hz,  $J_2 = 7.2$  Hz, 1H), 2.97 (dd,  $J_I = 14.1$  Hz,  $J_2 = 5.5$  Hz, 1H), 2.08 (s, 3H), 2.03-1.96 (m, 1H), 1.96-1.84 (m, 3H) ppm; <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>):  $\delta = 161.2$ , 149.5, 144.2-144.0 (m), 142.2-142.1 (m), 141.2-141.0 (m), 139.1-138.9 (m), 137.8, 136.9-136.8 (m), 129.4 (2C), 128.4 (2C), 126.5, 111.6-111.4 (m), 85.5, 44.8, 41.0, 30.8, 28.6, 9.9 ppm; HRMS (ESI-TOF): calcd. [M+Na]<sup>+</sup> 471.0869; found: 471.0870.



(E)-2-(((1,3-diphenylpropan-2-yl)oxy)imino)-N-(perfluorophenyl)propanamide (3i): Follow the typical process an isolated as colourless oil (58 mg, 42% yield);  $R_f = 0.52$  (petroleum ether-EtOAc = 10:1); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta = 7.57$  (s, 1H), 7.36-7.18 (m, 8H), 7.14 (d, J = 8.4 Hz, 2H), 4.74 (p, J = 5.9 Hz, 1H), 3.07-2.95 (m, 4H), 2.04 (s, 3H) ppm; <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>):  $\delta = 161.2$ , 149.1, 144.1-144.0 (m), 142.1-142.0 (m), 141.0-140.8 (m), 138.9-138.8 (m), 138.0 (2C), 136.9-136.8 (m), 129.5 (4C), 128.4 (4C), 126.5 (2C), 111.7-111.4 (m), 86.9, 40.5 (2C), 9.9 ppm; HRMS (ESI-TOF): calcd. [M+Na]<sup>+</sup> 485.1259; found: 485.1265.



(E)-2-(((1-(4-fluorophenyl)-3-phenylpropan-2-yl)oxy)imino)-N-(perfluorophenyl)propanamide (3j): Follow the typical process an isolated as colourless oil (72 mg, 50% yield);  $R_f = 0.51$  (petroleum ether-EtOAc = 10:1); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta = 7.63$  (s, 1H), 7.32 (t, J = 7.5 Hz, 2H), 7.25-7.20 (m, 3H), 7.17 (dd,  $J_I = 8.5$  Hz,  $J_2 = 5.4$  Hz, 2H), 7.00 (t, J = 8.7 Hz, 2H), 4.74 (p, J = 6.4 Hz, 1H), 3.11-2.88 (m, 4H), 2.05 (s, 3H) ppm; <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>):  $\delta = 161.7$  (d, J = 244.3 Hz), 161.2, 149.4, 144.2-144.1 (m), 142.1-142.0 (m), 141.2-141.1 (m), 138.9-138.8 (m), 137.8, 137.0-136.7 (m), 133.5 (d, J = 3.4 Hz), 130.8 (d, J = 7.2 Hz, 2C), 129.4 (2C), 128.4 (2C), 126.5, 115.2 (d, J = 21.3 Hz, 2C), 111.6-111.3 (m), 86.8, 40.4, 39.5, 10.0 ppm; HRMS (ESI-TOF): calcd. [M+Na]<sup>+</sup> 503.1165; found: 503.1166.



#### (E)-2-(((1-(4-methoxyphenyl)-3-phenylpropan-2-yl)oxy)imino)-N-(perfluorophenyl)propanamide (3k), Follow the tunical process on isolated as valley, ail (61 mg, 41% yield); P = 0.40 (perfective at the tunical process) of the tunical process of tunical proces

(3k): Follow the typical process an isolated as yellow oil (61 mg, 41% yield);  $R_f = 0.40$  (petroleum ether-EtOAc = 10:1); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta = 7.61$  (s, 1H), 7.33-7.28 (m, 2H), 7.24-7.19 (m, 3H), 7.13 (d, J = 8.6 Hz, 2H), 6.85 (d, J = 8.6 Hz, 2H), 4.74 (p, J = 6.4 Hz, 1H), 3.78 (s, 3H), 3.00 (d, J = 6.4Hz, 2H), 2.97 (dd,  $J_1 = 6.3$  Hz,  $J_2 = 2.8$  Hz, 2H), 2.05 (s, 3H) ppm; <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>):  $\delta =$ 161.3, 158.3, 149.1, 144.3-144.1 (m), 142.2-142.1 (m), 141.1-140.9 (m), 139.0-138.9 (m), 138.1, 136.9-136.8 (m), 130.4 (2C), 129.9, 129.5 (2C), 128.4 (2C), 126.4, 113.8 (2C), 111.7-111.5 (m), 87.1, 55.2, 40.4, 39.5, 9.9 ppm; HRMS (ESI-TOF): calcd. [M+Na]<sup>+</sup> 515.1365; found: 515.1365.



(E)-2-(((1,4-diphenylbutan-2-yl)oxy)imino)-N-(perfluorophenyl)propanamide (31): Follow the typical process an isolated as yellowish oil (79 mg, 55% yield);  $R_f = 0.54$  (petroleum ether-EtOAc = 10:1); <sup>1</sup>H

NMR (500 MHz, CDCl<sub>3</sub>):  $\delta$  = 7.79 (s, 1H), 7.31 (t, *J* = 7.5 Hz, 4H), 7.21 (q, *J*<sub>1</sub> = 7.6 Hz, *J*<sub>2</sub> = 6.8 Hz, 6H), 4.59-4.54 (m, 1H), 3.03 (qd, *J*<sub>1</sub> = 14.1 Hz, *J*<sub>2</sub> = 6.3 Hz, 2H), 2.86-2.81 (m, 1H), 2.78-2.71 (m, 1H), 2.11-1.99 (m, 5H) ppm; <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>):  $\delta$  = 161.3, 149.2, 144.2-144.0 (m), 142.2-142.0 (m), 141.4, 141.2-141.0 (m), 139.0-138.8 (m), 137.9, 137.0-136.8 (m), 129.4 (2C), 128.5 (2C), 128.4 (2C), 128.4 (2C), 128.4 (2C), 126.4, 126.0, 111.7-111.5 (m), 85.5, 40.9, 35.0, 31.7, 9.9 ppm; HRMS (ESI-TOF): calcd. [M+Na]<sup>+</sup> 499.1415; found: 499.1424.



**(E)-N-(perfluorophenyl)-2-(((1-phenyl-4-(o-tolyl)butan-2-yl)oxy)imino)propanamide (3m):** Follow the typical process an isolated as yellowish oil (96 mg, 65% yield);  $R_f = 0.53$  (petroleum ether-EtOAc = 10:1); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta = 7.81$  (s, 1H), 7.34-7.30 (m, 2H), 7.25-7.20 (m, 3H), 7.18-7.11 (m, 4H), 4.64-4.58 (m, 1H), 3.09 (dd,  $J_I = 14.0$  Hz,  $J_2 = 7.2$  Hz, 1H), 3.01 (dd,  $J_I = 14.1$  Hz,  $J_2 = 5.6$  Hz, 1H), 2.86-2.80 (m, 1H), 2.75-2.67 (m, 1H), 2.31 (s, 3H), 2.12 (s, 3H), 2.04-1.96 (m, 2H) ppm; <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>):  $\delta = 161.3$ , 149.3, 144.2-144.1 (m), 142.2-142.0 (m), 141.2-141.1 (m), 139.7, 138.9-138.8 (m), 137.9, 136.9-136.8 (m), 135.8, 130.3, 129.4 (2C), 128.8, 128.4 (2C), 126.4, 126.2, 126.1, 111.7-111.4 (m), 85.8, 40.9, 33.9, 29.1, 19.2, 9.9 ppm; HRMS (ESI-TOF): calcd. [M+Na]<sup>+</sup> 513.1572; found: 513.1579.



# (E)-N-(perfluorophenyl)-2-(((1-phenyl-4-(4-(trifluoromethyl)phenyl)butan-2-yl)oxy)imino)

**propanamide (3n):** Follow the typical process an isolated as yellowish oil (122 mg, 75% yield);  $R_f = 0.26$  (petroleum ether-EtOAc = 10:1); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta = 7.80$  (s, 1H), 7.56 (d, J = 8.1 Hz, 2H), 7.31 (q, J = 7.6 Hz, 4H), 7.25-7.19 (m, 3H), 4.59-4.54 (m, 1H), 3.08 (dd,  $J_I = 14.0$  Hz,  $J_2 = 7.1$  Hz, 1H), 3.00 (dd,  $J_I = 14.0$  Hz,  $J_2 = 5.7$  Hz, 1H), 2.92-2.87 (m, 1H), 2.83-2.77 (m, 1H), 2.11-2.01 (m, 5H) ppm; <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>):  $\delta = 161.2$ , 149.5, 145.6, 144.2-144.1 (m), 142.2-142.1 (m), 141.2-141.0 (m), 139.1-138.9 (m), 137.7, 137.0-136.8 (m), 129.4 (2C), 128.7 (2C), 128.5 (q, J = 32.3 Hz), 128.4 (2C), 126.5, 125.4 (q, J = 3.8 Hz, 2C), 124.3 (q, J = 272.2 Hz), 111.7-111.4 (m), 85.3, 41.0, 34.6, 31.6, 9.9 ppm; HRMS (ESI-TOF): calcd. [M+Na]<sup>+</sup> 567.1289; found: 567.1297.



(E)-2-(((4-(2-fluorophenyl)-1-phenylbutan-2-yl)oxy)imino)-N-(perfluorophenyl)propanamide (3o): Follow the typical process an isolated as yellow oil (92 mg, 62% yield);  $R_f = 0.52$  (petroleum ether-EtOAc = 10:1); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta = 7.82$  (s, 1H), 7.31 (t, J = 7.6 Hz, 2H), 7.23-7.16 (m, 5H), 7.10-7.00 (m, 2H), 4.56 (ddd,  $J_I = 12.5$  Hz,  $J_2 = 7.4$  Hz,  $J_3 = 5.3$  Hz, 1H), 3.09-2.98 (m, 2H), 2.86 (ddd,  $J_I$ = 14.7 Hz,  $J_2 = 9.1$  Hz,  $J_3 = 6.1$  Hz, 1H), 2.78 (dt,  $J_I = 14.3$  Hz,  $J_2 = 7.9$  Hz, 1H), 2.12-1.99 (m, 5H) ppm; <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>):  $\delta = 161.3$ , 161.1 (d, J = 244.5 Hz), 149.3, 144.1-144.0 (m), 142.2-142.0 (m), 141.2-141.0 (m), 139.0-138.8 (m), 137.9, 136.9-136.7 (m), 130.6 (d, J = 4.8 Hz), 129.4 (2C), 128.3 (2C), 128.2, 127.8 (d, J = 8.1 Hz), 126.4, 124.0 (d, J = 3.5 Hz), 115.3 (d, J = 22.0 Hz), 111.7-111.5(m), 85.5, 40.8, 33.7, 25.1 (d, J = 2.4 Hz), 9.8 ppm; HRMS (ESI-TOF): calcd. [M+Na]<sup>+</sup> 517.1321; found: 517.1323.



(E)-2-(((4-(3-fluorophenyl)-1-phenylbutan-2-yl)oxy)imino)-N-(perfluorophenyl)propanamide (3p): Follow the typical process an isolated as yellow oil (98 mg, 66% yield);  $R_f = 0.51$  (petroleum ether-EtOAc = 10:1); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta = 7.82$  (s, 1H), 7.31 (t, J = 7.4 Hz, 2H), 7.27-7.19 (m, 4H), 6.99-6.86 (m, 3H), 4.59-4.53 (m, 1H), 3.07 (dd,  $J_I = 14.0$  Hz,  $J_2 = 7.1$  Hz, 1H), 3.00 (dd,  $J_I = 14.0$  Hz,  $J_2 = 5.6$  Hz, 1H), 2.87-2.81 (m, 1H), 2.77-2.70 (m, 1H), 2.11-1.98 (m, 5H) ppm; <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>):  $\delta = 162.9$  (d, J = 245.6 Hz), 161.2, 149.3, 144.2-144.1 (m), 144.0 (d, J = 7.4 Hz), 142.2-142.0 (m), 141.1-141.0 (m), 139.0-138.8 (m), 137.7, 136.9-136.7 (m), 129.8 (d, J = 8.5 Hz), 129.4 (2C), 128.4 (2C), 126.5, 124.0 (d, J = 2.7 Hz), 115.2 (d, J = 20.9 Hz), 112.9 (d, J = 20.9 Hz), 111.7-111.4 (m), 85.3, 40.9, 34.6, 31.5 (d, J = 1.7 Hz), 9.9 ppm; HRMS (ESI-TOF): calcd. [M+Na]+ 517.1321; found: 517.1324.



(E)-2-(((4-(4-fluorophenyl)-1-phenylbutan-2-yl)oxy)imino)-N-(perfluorophenyl)propanamide (3q): Follow the typical process an isolated as colourless oil (93 mg, 63% yield);  $R_f = 0.50$  (petroleum ether-EtOAc = 10:1); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta = 7.79$  (s, 1H), 7.31 (t, J = 7.5 Hz, 2H), 7.24-7.18 (m, 3H), 7.13 (dd,  $J_I = 8.4$  Hz,  $J_2 = 5.5$  Hz, 2H), 6.98 (t, J = 8.7 Hz, 2H), 4.57-4.51 (m, 1H), 3.05 (dd,  $J_I = 14.0$  Hz,  $J_2 = 7.1$  Hz, 1H), 2.99 (dd,  $J_I = 14.0$  Hz,  $J_2 = 5.6$  Hz, 1H), 2.80 (ddd,  $J_I = 14.7$  Hz,  $J_2 = 9.5$  Hz,  $J_3 = 5.7$ 

Hz, 1H), 2.74-2.66 (m, 1H), 2.10 (s, 3H), 2.08-1.94 (m, 2H) ppm;  $^{13}$ C NMR (126 MHz, CDCl<sub>3</sub>):  $\delta$  = 161.3 (d, *J* = 243.9 Hz), 161.2, 149.3, 144.2-144.0 (m), 142.2-142.0 (m), 141.2-141.1 (m), 139.0-138.8 (m), 137.8, 137.0 (d, *J* = 3.4 Hz), 136.9-136.7 (m), 129.7 (d, *J* = 8.0 Hz, 2C), 129.4 (2C), 128.4 (2C), 126.4, 115.2 (d, *J* = 21.2 Hz, 2C), 111.6-111.4 (m), 85.3, 41.0, 35.1, 30.9, 9.9 ppm; HRMS (ESI-TOF): calcd. [M+Na]+ 517.1321; found: 517.1323.



**(E)-N-(perfluorophenyl)-2-(((1-(p-tolyl)pentan-2-yl)oxy)imino)propanamide (3r):** Follow the typical process an isolated as colourless oil (77 mg, 60% yield);  $R_f = 0.64$  (petroleum ether-EtOAc = 10:1); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta = 7.84$  (s, 1H), 7.10 (s, 4H), 4.54-4.48 (m, 1H), 3.01-2.88 (m, 2H), 2.29 (s, 3H), 2.08 (s, 3H), 1.76-1.68 (m, 1H), 1.66-1.59 (m, 1H), 1.56-1.50 (m, 1H), 1.48-1.40 (m, 1H), 0.97 (t, J = 7.3 Hz, 3H) ppm; <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>):  $\delta = 161.4$ , 148.8, 144.1-144.0 (m), 142.1-142.0 (m), 141.2-141.1 (m), 139.0-138.8 (m), 136.9-136.7 (m), 135.8, 135.2, 129.3 (2C), 129.0 (2C), 111.8-111.7 (m), 86.3, 40.5, 35.6, 20.9, 18.8, 14.0, 9.8 ppm; HRMS (ESI-TOF): calcd. [M+Na]<sup>+</sup> 451.1415; found: 451.1419.



**(E)-N-(perfluorophenyl)-2-(((1-(m-tolyl)pentan-2-yl)oxy)imino)propanamide (3s):** Follow the typical process an isolated as colourless oil (69 mg, 54% yield);  $R_f = 0.64$  (petroleum ether-EtOAc = 10:1); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta = 7.84$  (s, 1H), 7.19 (t, J = 7.5 Hz, 1H), 7.02 (d, J = 7.9 Hz, 3H), 4.56-4.50 (m, 1H), 3.00-2.89 (m, 2H), 2.34 (s, 3H), 2.09 (s, 3H), 1.76-1.70 (m, 1H), 1.67-1.61 (m, 1H), 1.57-1.51 (m, 1H), 1.48-1.41 (m, 1H), 0.97 (t, J = 7.3 Hz, 3H) ppm; <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>):  $\delta = 161.4$ , 148.8, 144.2-144.0 (m), 142.1-142.0 (m), 141.1-141.0 (m), 139.0-138.8 (m), 138.2, 137.9, 136.9-136.7 (m), 130.2, 128.2, 127.0, 126.4, 111.8-111.5 (m), 86.2, 40.9, 35.7, 21.3, 18.7, 14.0, 9.8 ppm; HRMS (ESI-TOF): calcd. [M+Na]<sup>+</sup> 451.1415; found: 451.1424.



(E)-2-(((1-(3,5-dimethylphenyl)pentan-2-yl)oxy)imino)-N-(perfluorophenyl)propanamide (3t): Follow the typical process an isolated as colourless oil (74 mg, 56% yield);  $R_f = 0.67$  (petroleum ether-EtOAc = 10:1); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta = 7.83$  (s, 1H), 6.83 (s, 3H), 4.51 (ddd,  $J_I = 7.3$  Hz,  $J_2 =$ 5.1 Hz,  $J_3 = 2.2$  Hz, 1H), 2.94 (dd,  $J_I = 14.0$  Hz,  $J_2 = 7.2$  Hz, 1H), 2.86 (dd,  $J_I = 13.9$  Hz,  $J_2 = 5.5$  Hz, 1H), 2.29 (s, 6H), 2.09 (s, 3H), 1.76-1.68 (m, 1H), 1.67-1.59 (m, 1H), 1.57-1.50 (m, 1H), 1.49-1.42 (m, 1H), 0.97 (t, J = 7.3 Hz, 3H) ppm; <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>):  $\delta = 161.5$ , 148.7, 144.1-144.0 (m), 142.2142.0 (m), 141.2-141.0 (m), 139.1-138.8 (m), 138.2, 137.8 (2C), 137.0-136.9 (m), 127.8, 127.3 (2C), 111.7-111.5 (m), 86.3, 40.8, 35.7, 21.2 (2C), 18.8, 14.1, 9.8 ppm; HRMS (ESI-TOF): calcd. [M+Na]<sup>+</sup> 465.1572; found: 465.1581.



(E)-2-(((1-(4-(*tert*-butyl)phenyl)pentan-2-yl)oxy)imino)-N-(perfluorophenyl)propanamide (3u): Follow the typical process an isolated as yellow solid (80 mg, 57% yield);  $R_f = 0.64$  (petroleum ether-EtOAc = 10:1); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta = 7.96$  (s, 1H), 7.32 (d, J = 8.3 Hz, 2H), 7.14 (d, J = 8.2Hz, 2H), 4.54-4.50 (m, 1H), 2.99 (dd,  $J_I = 14.2$  Hz,  $J_2 = 7.0$  Hz, 1H), 2.91 (dd,  $J_I = 14.2$  Hz,  $J_I = 5.5$  Hz, 1H), 2.09 (s, 3H), 1.74-1.69 (m, 1H), 1.66-1.59 (m, 1H), 1.56-1.50 (m, 1H), 1.46-1.42 (m, 1H), 1.30 (s, 9H), 0.96 (t, J = 7.3 Hz, 3H) ppm; <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>):  $\delta = 161.4$ , 149.2, 149.0, 144.3-144.1 (m), 142.2-142.0 (m), 141.1-141.0 (m), 139.0-138.9 (m), 136.9-136.8 (m), 135.1, 129.1 (2C), 125.2 (2C), 111.7-111.6 (m), 86.2, 40.2, 35.7, 34.4, 31.3 (3C), 18.7, 14.1, 9.9 ppm; HRMS (ESI-TOF): calcd. [M+Na]<sup>+</sup> 493.1885; found: 493.1889.



(E)-2-(((1-([1,1'-biphenyl]-4-yl)pentan-2-yl)oxy)imino)-N-(perfluorophenyl)propanamide (3v): Follow the typical process an isolated as white soild (82 mg, 56% yield);  $R_f = 0.33$  (petroleum ether-EtOAc = 10:1); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta = 7.60$  (s, 1H), 7.59-7.50 (m, 4H), 7.44-7.37 (m, 2H), 7.37-7.27 (m, 3H), 4.63-4.57 (m, 1H), 3.07-2.98 (m, 2H), 2.09 (s, 3H), 1.84-1.75 (m, 1H), 1.73-1.66 (m, 1H), 1.60-1.54 (m, 1H), 1.52-1.46 (m, 1H), 1.00 (t, J = 7.3 Hz, 3H) ppm; <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>):  $\delta$ = 161.4, 148.7, 144.0-143.9 (m), 142.0-141.9 (m), 140.9-140.8 (m), 140.3, 139.0-138.8 (m), 138.7, 137.9, 136.9-136.7 (m), 129.9 (2C), 128.7 (2C), 127.2, 126.7 (2C), 126.5 (2C), 111.7-111.4 (m), 86.0, 41.0, 35.8, 18.8, 14.1, 9.7 ppm; HRMS (ESI-TOF): calcd. [M+Na]+ 513.1572; found: 513.1573.



(E)-2-(((1-(4-methoxyphenyl)pentan-2-yl)oxy)imino)-N-(perfluorophenyl)propanamide (3w): Follow the typical process an isolated as colourless oil (61 mg, 46% yield);  $R_f = 0.48$  (petroleum ether-EtOAc = 10:1); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta = 7.87$  (s, 1H), 7.15-7.08 (m, 2H), 6.87-6.80 (m, 2H), 4.51-4.46 (m, 1H), 3.77 (s, 3H), 2.97-2.86 (m, 2H), 2.08 (s, 3H), 1.73-1.67 (m, 1H), 1.66-1.57 (m, 1H), 1.55-1.49 (m, 1H), 1.46-1.40 (m, 1H), 0.96 (t, J = 7.3 Hz, 3H) ppm; <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>):  $\delta = 161.5$ , 158.2, 148.9, 144.2-144.1 (m), 142.2-142.0 (m), 141.1-141.0 (m), 139.0-138.9(m), 136.9-136.8 (m), 130.4 (2C),

130.3, 113.7 (2C), 111.8-111.6 (m), 86.4, 55.2, 40.0, 35.6, 18.8, 14.1, 9.8 ppm; HRMS (ESI-TOF): calcd. [M+Na]<sup>+</sup> 467.1365; found: 467.1373.



(E)-N-(perfluorophenyl)-2-(((1-(4-(trifluoromethoxy)phenyl)pentan-2-yl)oxy)imino)propanamide (3x): Follow the typical process an isolated as yellow oil (81 mg, 54% yield);  $R_f = 0.31$  (petroleum ether-EtOAc = 10:1); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta = 7.91$  (s, 1H), 7.22 (d, J = 8.6 Hz, 2H), 7.15 (d, J = 8.2Hz, 2H), 4.59-4.45 (m, 1H), 3.07-2.90 (m, 2H), 2.08 (s, 3H), 1.78-1.68 (m, 1H), 1.65-1.60 (m, 1H), 1.57-1.49 (m, 1H), 1.48-1.41 (m, 1H), 0.97 (t, J = 7.3 Hz, 3H) ppm; <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>):  $\delta = 161.2$ , 149.4, 147.9, 144.1-144.0 (m), 142.2-141.9 (m), 141.2-140.9 (m), 139.0-138.9 (m), 137.0-136.8 (m), 136.9, 130.7 (2C), 120.8 (2C), 120.5 (q, J = 257.4 Hz), 111.7-111.5 (m), 85.8, 40.0, 35.6, 18.7, 14.0, 9.9 ppm; HRMS (ESI-TOF): calcd. [M+Na]<sup>+</sup> 521.1082; found: 521.1083.



(E)-2-(((1-(4-fluorophenyl)pentan-2-yl)oxy)imino)-N-(perfluorophenyl)propanamide (3y): Follow the typical process an isolated as colourless oil (53 mg, 41% yield);  $R_f = 0.60$  (petroleum ether-EtOAc = 10:1); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta = 7.90$  (s, 1H), 7.18-7.13 (m, 2H), 7.02-6.95 (m, 2H), 4.53-4.45 (m, 1H), 3.02-2.87 (m, 2H), 2.08 (s, 3H), 1.78-1.66 (m, 1H), 1.65-1.57 (m, 1H), 1.56-1.47 (m, 1H), 1.46-1.39 (m, 1H), 0.96 (t, J = 7.3 Hz, 3H) ppm; <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>):  $\delta = 161.6$  (d, J = 245.0 Hz), 161.3, 149.1, 144.2-144.0 (m), 142.3-142.0 (m), 141.1-140.9 (m), 139.1-138.6 (m), 137.0-136.7 (m), 133.8 (d, J = 3.4 Hz), 130.8 (d, J = 7.1 Hz, 2C), 115.1 (d, J = 20.9 Hz, 2C), 111.8-111.4 (m), 86.1, 39.9, 35.6, 18.7, 14.0, 9.8 ppm; HRMS (ESI-TOF): calcd. [M+Na]<sup>+</sup> 455.1165; found: 455.1167.



(E)-2-(((1-(4-chlorophenyl)pentan-2-yl)oxy)imino)-N-(perfluorophenyl)propanamide (3z): Follow the typical process an isolated as colourless oil (56 mg, 42% yield);  $R_f = 0.42$  (petroleum ether-EtOAc = 10:1); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta = 7.83$  (s, 1H), 7.26 (dt,  $J_I = 8.9$  Hz,  $J_2 = 2.2$  Hz, 2H), 7.16-7.11 (m, 2H), 4.59-4.39 (m, 1H), 2.96-2.93 (m, 2H), 2.07 (s, 3H), 1.77-1.66 (m, 1H), 1.65-1.57 (m, 1H), 1.55-1.48 (m, 1H), 1.47-1.40 (m, 1H), 0.96 (t, J = 7.3 Hz, 3H) ppm; <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>):  $\delta = 161.2$ , 149.2, 144.1-144.0 (m), 142.2-142.0 (m), 141.2-141.1 (m), 139.1-138.8 (m), 137.0-136.9 (m), 136.8, 132.2, 130.8 (2C), 128.4 (2C), 111.6-111.5 (m), 85.8, 40.2, 35.6, 18.7, 14.0, 9.8 ppm; HRMS (ESI-TOF): calcd. [M+Na]<sup>+</sup> 471.0869; found: 471.0870.



(E)-2-(((1-(4-bromophenyl)pentan-2-yl)oxy)imino)-N-(perfluorophenyl)propanamide (3aa): Follow the typical process an isolated as white soild (86 mg, 58% yield);  $R_f = 0.44$  (petroleum ether-EtOAc = 10:1); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta = 7.79$  (s, 1H), 7.41 (d, J = 8.4 Hz, 2H), 7.08 (d, J = 8.3 Hz, 2H), 4.50 (dt,  $J_I = 12.4$  Hz,  $J_2 = 6.2$  Hz, 1H), 2.93 (d, J = 6.2 Hz, 2H), 2.07 (s, 3H), 1.76-1.67 (m, 1H), 1.64-1.57 (m, 1H), 1.55-1.48 (m, 1H), 1.47-1.39 (m, 1H), 0.96 (t, J = 7.3 Hz, 3H) ppm; <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>):  $\delta = 161.2$ , 149.2, 144.1-144.0 (m), 142.2-142.0 (m), 141.2-141.0 (m), 139.1-138.8 (m), 137.0-136.9 (m), 137.3, 131.4 (2C), 131.2 (2C), 120.2, 111.7-111.5 (m), 85.7, 40.3, 35.6, 18.7, 14.0, 9.8 ppm; HRMS (ESI-TOF): calcd. [M+Na]+ 515.0364; found: 515.0369.



(E)-2-(((1-(3-chloro-4-methylphenyl)pentan-2-yl)oxy)imino)-N-(perfluorophenyl)propanamide (3ab): Follow the typical process an isolated as colourless oil (82 mg, 59% yield);  $R_f = 0.60$  (petroleum ether-EtOAc = 10:1); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta = 7.88$  (s, 1H), 7.20 (d, J = 1.6 Hz, 1H), 7.15 (d, J =7.8 Hz, 1H), 6.98 (dd,  $J_I = 7.8$  Hz,  $J_2 = 1.8$  Hz, 1H), 4.49 (ddd,  $J_I = 7.3$  Hz,  $J_2 = 5.2$  Hz,  $J_3 = 2.1$  Hz, 1H), 2.97-2.86 (m, 2H), 2.32 (s, 3H), 2.08 (s, 3H), 1.76-1.67 (m, 1H), 1.63-1.59 (m, 1H), 1.55-1.48 (m, 1H), 1.47-1.40 (m, 1H), 0.96 (t, J = 7.3 Hz, 3H) ppm; <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>):  $\delta = 161.3$ , 149.2, 144.1-144.0 (m), 142.2-142.0 (m), 141.0-140.9 (m), 139.1-138.7 (m), 137.4, 136.8-136.7 (m), 134.1, 133.9, 130.8, 129.9, 127.7, 111.8-111.5 (m), 85.9, 40.0, 35.6, 19.5, 18.7, 14.0, 9.8 ppm; HRMS (ESI-TOF): calcd. [M+Na]<sup>+</sup> 485.1026; found: 485.1026.



(E)-2-(((1-(3-nitrophenyl)pentan-2-yl)oxy)imino)-N-(perfluorophenyl)propanamide (3ac): Follow the typical process an isolated as yellow oil (59 mg, 43% yield);  $R_f = 0.57$  (petroleum ether-EtOAc = 5:1); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta = 8.10$  (d, J = 7.6 Hz, 2H), 7.93 (s, 1H), 7.57-7.43 (m, 2H), 4.56 (p, J = 6.1 Hz, 1H), 3.10 (d, J = 6.3 Hz, 2H), 2.09 (s, 3H), 1.79-1.71 (m, 1H), 1.66-1.58 (m, 1H), 1.56-1.50 (m, 1H), 1.49-1.43 (m, 1H), 0.97 (t, J = 7.3 Hz, 3H) ppm; <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>):  $\delta = 161.0$ , 149.7, 148.3, 144.1-144.0 (m), 142.2-142.0 (m), 141.2-141.0 (m), 140.1, 139.0-138.7 (m), 137.0-136.7 (m), 135.7, 129.2, 124.2, 121.6, 111.5-111.2 (m), 85.4, 40.1, 35.7, 18.7, 14.0, 9.9 ppm; HRMS (ESI-TOF): calcd. [M+Na]<sup>+</sup> 482.1110; found: 482.1113.



(E)-2-(((1-(4-nitrophenyl)pentan-2-yl)oxy)imino)-N-(perfluorophenyl)propanamide (3ad): Follow the typical process an isolated as yellow oil (66 mg, 66% yield);  $R_f = 0.31$  (petroleum ether-EtOAc = 5:1); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta = 8.20$ -8.13 (m, 2H), 7.88 (s, 1H), 7.37 (d, J = 8.7 Hz, 2H), 4.56 (ddd,  $J_I = 12.4$  Hz,  $J_2 = 7.0$  Hz,  $J_3 = 5.4$  Hz, 1H), 3.10 (dd,  $J_I = 6.1$  Hz,  $J_2 = 2.1$  Hz, 2H), 2.08 (s, 3H), 1.79-1.70 (m, 1H), 1.64-1.60 (m, 1H), 1.56-1.49 (m, 1H), 1.47-1.41 (m, 1H), 0.97 (t, J = 7.3 Hz, 3H) ppm; <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>):  $\delta = 161.0$ , 149.8, 146.8, 146.0, 144.2-144.0 (m), 142.1-142.0 (m), 141.1-141.0 (m), 139.2-138.9 (m), 137.0-136.8 (m), 130.2 (2C), 123.5 (2C), 111.5-111.2 (m), 85.3, 40.5, 35.7, 18.7, 14.0, 9.9 ppm; HRMS (ESI-TOF): calcd. [M+Na]<sup>+</sup> 482.1110; found: 482.1110.



(E)-N-(perfluorophenyl)-2-(((1-(4-(trifluoromethyl)phenyl)pentan-2-yl)oxy)imino)propanamide (3ae): Follow the typical process an isolated as colourless oil (80 mg, 55% yield);  $R_f = 0.33$  (petroleum ether-EtOAc = 10:1); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta = 7.80$  (s, 1H), 7.56 (d, J = 8.0 Hz, 2H), 7.33 (d, J = 8.0 Hz, 2H), 4.55 (p,  $J_I = 6.8$  Hz,  $J_2 = 6.2$  Hz, 1H), 3.07-3.02 (m, 2H), 2.08 (s, 3H), 1.80-1.71 (m, 1H), 1.67-1.59 (m, 1H), 1.57-1.51 (m, 1H), 1.49-1.41 (m, 1H), 0.97 (t, J = 7.3 Hz, 3H) ppm; <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>):  $\delta = 161.2$ , 149.3, 144.1-144.0 (m), 142.5, 142.1-142.0 (m), 141.2-141.0 (m), 139.0-138.9 (m), 137.0-136.8 (m), 129.7 (2C), 128.8 (q, J = 32.3 Hz), 125.2 (q, J = 3.9 Hz, 2C), 124.2 (q, J = 272.5 Hz), 111.6-111.4 (m), 85.6, 40.7, 35.7, 18.7, 14.0, 9.9 ppm; HRMS (ESI-TOF): calcd. [M+Na]<sup>+</sup> 505.1133; found: 505.1133.



Methyl(E)-3-(2-(((1-oxo-1-((perfluorophenyl)amino)propan-2-ylidene)amino)oxy)pentyl)benzoate (3af): Follow the typical process an isolated as colourless oil (82 mg, 58% yield);  $R_f = 0.21$  (petroleum ether-EtOAc = 10:1); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>): δ = 7.91 (s, 1H), 7.89-7.83 (m, 2H), 7.41-7.34 (m, 2H), 4.59-4.51 (m, 1H), 3.91 (s, 3H), 3.02 (dd,  $J_I = 6.2$  Hz,  $J_2 = 3.2$  Hz, 2H), 2.07 (s, 3H), 1.77-1.69 (m, 1H), 1.66-1.58 (m, 1H), 1.56-1.48 (m, 1H), 1.48-1.38 (m, 1H), 0.96 (t, J = 7.3 Hz, 3H) ppm; <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>): δ = 167.0, 161.2, 149.2, 144.2-144.1 (m), 142.2-142.0 (m), 141.0-140.9 (m), 139.0-138.8 (m), 138.6, 136.9-136.8 (m), 134.0, 130.5, 130.3, 128.4, 127.6, 111.8-111.5 (m), 85.8, 52.1, 40.6, 35.7, 18.7, 14.0, 9.8 ppm; HRMS (ESI-TOF): calcd. [M+Na]<sup>+</sup> 495.1314; found: 495.1314.



**Methyl(E)-4-(2-(((1-oxo-1-((perfluorophenyl)amino)propan-2-ylidene)amino)oxy)pentyl)benzoate** (**3ag):** Follow the typical process an isolated as colourless oil (57 mg, 40% yield);  $R_f = 0.20$  (petroleum ether-EtOAc = 10:1); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta = 7.98-7.94$  (m, 2H), 7.71 (s, 1H), 7.28 (d, J = 8.3 Hz, 2H), 4.58-4.52 (m, 1H), 3.88 (s, 3H), 3.03 (d, J = 6.3 Hz, 2H), 2.05 (s, 3H), 1.78-1.69 (m, 1H), 1.66-1.58 (m, 1H), 1.56-1.50 (m, 1H), 1.48-1.41 (m, 1H), 0.96 (t, J = 7.3 Hz, 3H) ppm; <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>):  $\delta = 166.8$ , 161.2, 149.1, 144.1-144.0 (m), 143.9, 142.1-141.9 (m), 141.1-140.9 (m), 139.0-138.8 (m), 137.0-136.8 (m), 129.6 (2C), 129.4 (2C), 128.3, 111.8-111.5 (m), 85.7, 52.0, 41.0, 35.7, 18.7, 14.0, 9.8 ppm; HRMS (ESI-TOF): calcd. [M+Na]<sup>+</sup> 495.1314; found: 495.1317.



(E)-2-(((1-(4-(1-((1,3-dioxoisoindo lin-2-yl)oxy)ethyl)phenyl)pentan-2-yl)oxy)imino)-N-

(perfluorophenyl)propanamide (3ah): Follow the typical process an isolated as yellow oil (118 mg, 65% yield);  $R_f = 0.36$  (petroleum ether-EtOAc = 5:1); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta = 7.94$  (d, J = 8.7 Hz, 1H), 7.79-7.73 (m, 2H), 7.70 (dt,  $J_I = 6.0$  Hz,  $J_2 = 3.0$  Hz, 2H), 7.45 (d, J = 8.0 Hz, 2H), 7.18 (d, J = 8.0 Hz, 2H), 5.49-5.14 (m, 1H), 4.50-4.47 (m, 1H), 3.02-2.88 (m, 2H), 2.04 (d, J = 7.6 Hz, 2H), 1.70 (dd,  $J_I = 6.5$  Hz,  $J_2 = 2.2$  Hz, 3H), 1.68-1.63 (m, 2H), 1.61-1.55 (m, 1H), 1.52-1.45 (m, 1H), 1.43-1.38 (m, 1H), 0.93 (t, J = 7.3 Hz, 3H) ppm; <sup>13</sup>C NMR (126 MHz CDCl<sub>3</sub>) (Major):  $\delta = 163.8$  (2C), 161.3, 149.2, 144.1-144.0 (m), 142.1-142.0 (m), 141.2-141.0 (m), 139.1, 139.0-138.7(m), 137.0, 136.9-136.8 (m), 134.3, 129.4 (2C), 128.8 (2C), 127.7 (2C), 123.3 (2C), 111.8-111.5 (m), 85.9, 84.9, 40.4, 35.5, 20.0, 18.6, 14.0, 9.8 ppm; HRMS (ESI-TOF): calcd. [M+Na]<sup>+</sup> 626.1685; found: 626.1690.



(E)-N-(perfluorophenyl)-2-(((1-(thiophen-2-yl)pentan-2-yl)oxy)imino)propanamide (3ai): Follow the typical process an isolated as yellow oil (84 mg, 67% yield);  $R_f = 0.60$  (petroleum ether-EtOAc = 10:1); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta = 7.98$  (s, 1H), 7.17 (dd,  $J_I = 5.1$  Hz,  $J_2 = 1.1$  Hz, 1H), 6.95 (dd,  $J_I = 5.1$  Hz,  $J_2 = 3.4$  Hz, 1H), 6.85 (d, J = 3.5 Hz, 1H), 4.52 (dd,  $J_I = 7.6$  Hz,  $J_2 = 5.4$  Hz, 1H), 3.21 (d, J = 5.9 Hz, 2H), 2.13 (s, 3H), 1.78-1.70 (m, 1H), 1.69-1.63 (m, 1H), 1.57-1.49 (m, 1H), 1.49-1.41 (m, 1H), 0.97 (t, J = 7.3 Hz, 3H) ppm; <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>):  $\delta = 161.3$ , 149.5, 144.1-144.0 (m), 142.2-142.0 (m), 141.2-141.0 (m), 139.9, 139.1-138.8 (m), 137.0-136.9 (m), 126.7, 126.1, 124.1, 111.8-111.7 (m), 85.6, 35.3, 34.7, 18.7, 14.0, 10.0 ppm; HRMS (ESI-TOF): calcd. [M+Na]<sup>+</sup> 443.0823; found: 443.0826.



(E)-2-(((1-oxo-1-((perfluorophenyl)amino)propan-2-ylidene)amino)oxy)pentyl acetate (4'): Follow the typical process an isolated as yellowish oil (124 mg, 83% yield);  $R_f = 0.56$  (petroleum ether-EtOAc = 5:1); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta = 8.13$  (s, 1H), 4.49 (m, 1H), 4.28 (d, J = 5.1 Hz, 2H), 2.12 (s, 3H), 2.09 (s, 3H), 1.81-1.69 (m, 1H), 1.67-1.59 (m, 1H), 1.54-1.40 (m, 2H), 0.98 (t, J = 7.3 Hz, 3H) ppm; <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>):  $\delta = 170.9$ , 161.2, 150.0, 144.2-144.0 (m), 142.2-142.0 (m), 141.2-141.0 (m), 139.0-138.8 (m), 137.1-136.8 (m), 111.7-111.4 (m), 82.8, 65.1, 32.7, 20.8, 18.5, 14.0, 9.9 ppm; HRMS (ESI-TOF): calcd. [M+Na]<sup>+</sup> 419.1001; found: 419.1005.



(E)-2-(((1-oxo-1-((perfluorophenyl)amino)propan-2-ylidene)amino)oxy)ethyl acetate (4a): Follow the typical process an isolated as yellow oil (101 mg, 95% yield);  $R_f = 0.40$  (petroleum ether-EtOAc = 5:1); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta = 8.14$  (s, 1H), 4.45 (dd,  $J_I = 5.8$  Hz,  $J_2 = 3.5$  Hz, 2H), 4.38 (dd,  $J_I = 5.8$  Hz,  $J_2 = 3.5$  Hz, 2H), 2.11 (s, 3H), 2.09 (s, 3H) ppm; <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>):  $\delta = 170.9$ , 161.0, 150.6, 144.2-144.1 (m), 142.2-142.1 (m), 141.2-141.0 (m), 139.0-138.7 (m), 136.9-136.7 (m), 111.6-111.3 (m), 73.4, 62.4, 20.8, 9.9 ppm; HRMS (ESI-TOF): calcd. [M+Na]<sup>+</sup> 377.0531; found: 377.0534.



(E)-2-(((1-oxo-1-((perfluorophenyl)amino)propan-2-ylidene)amino)oxy)propyl acetate (4b): Follow the typical process an isolated as yellow oil (65 mg, 59% yield);  $R_f = 0.46$  (petroleum ether-EtOAc = 5:1); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta = 8.14$  (s, 1H), 4.65-4.58 (m, 1H), 4.29-4.21 (m, 2H), 2.10 (d, J = 6.2 Hz, 6H), 1.37 (d, J = 6.6 Hz, 3H) ppm; <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>):  $\delta = 170.8$ , 161.2, 150.1, 144.2-144.0 (m), 142.2-142.0 (m), 141.2-141.0 (m), 139.0-138.8 (m), 137.0-136.7 (m), 111.7-111.4 (m), 79.0, 65.9, 20.7, 16.4, 9.9 ppm; HRMS (ESI-TOF): calcd. [M+Na]<sup>+</sup> 391.0688; found: 391.0688.



(E)-2-(((1-oxo-1-((perfluorophenyl)amino)propan-2-ylidene)amino)oxy)propane-1,3-diyl diacetate (4b'): Follow the typical process an isolated as yellow oil (99 mg, 78% yield);  $R_f$ = 0.28 (petroleum ether-EtOAc = 5:1); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta$  = 8.18 (s, 1H), 4.67 (p, *J* = 5.2 Hz, 1H), 4.35 (d, *J* = 5.2 Hz, 4H), 2.11 (s, 3H), 2.09 (s, 6H) ppm; <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>):  $\delta$  = 170.6 (2C), 160.9, 151.3, 144.2-144.1 (m), 142.2-142.1 (m), 141.2-141.1 (m), 138.9-138.7 (m), 136.9-136.7 (m), 111.5-111.3 (m), 80.3, 62.2 (2C), 20.6 (2C), 10.1 ppm; HRMS (ESI-TOF): calcd. [M+Na]<sup>+</sup> 449.0742; found: 449.0744.



(E)-2-(((1-oxo-1-((perfluorophenyl)amino)propan-2-ylidene)amino)oxy)hexyl acetate (4c): Follow the typical process an isolated as yellow oil (81 mg, 66% yield);  $R_f = 0.21$  (petroleum ether-EtOAc = 10:1); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta = 8.13$  (s, 1H), 4.50-4.45 (m, 1H), 4.28 (d, J = 5.1 Hz, 2H), 2.12 (s, 3H), 2.09 (s, 3H), 1.79-1.72 (m, 1H), 1.69-1.63 (m, 2H), 1.48-1.43 (m, 1H), 1.41-1.36 (m, 2H), 0.94 (t, J = 7.1 Hz, 3H) ppm; <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>):  $\delta = 170.9$ , 161.2, 150.0, 144.2-144.0 (m), 142.2-142.1 (m), 141.1-140.9 (m), 139.1-138.9 (m), 136.9-136.7 (m), 111.7-111.4 (m), 83.0, 65.1, 30.4, 27.4, 22.6, 20.8, 13.9, 9.9 ppm; HRMS (ESI-TOF): calcd. [M+Na]<sup>+</sup> 433.1157; found: 433.1165.



(E)-3-methyl-2-(((1-oxo-1-((perfluorophenyl)amino)propan-2-ylidene)amino)oxy)butyl acetate (4d): Follow the typical process an isolated as yellow oil (114 mg, 96% yield);  $R_f = 0.21$  (petroleum ether-EtOAc = 10:1); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta = 8.18$  (s, 1H), 4.34-4.26 (m, 2H), 4.25-4.21 (m, 1H), 2.12-2.03 (m, 7H), 1.01 (dd,  $J_I = 9.9$  Hz,  $J_2 = 6.9$  Hz, 6H) ppm; <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>):  $\delta = 170.8$ , 161.2, 149.8, 144.2-144.0 (m), 142.2-142.0 (m), 141.1-140.9 (m), 139.1-138.6 (m), 136.9-136.6 (m), 111.8-111.5 (m), 87.7, 63.5, 29.3, 20.6, 18.3, 17.9, 9.7 ppm; HRMS (ESI-TOF): calcd. [M+Na]+ 419.1001; found: 419.1005.



(E)-2-cyclohexyl-2-(((1-oxo-1-((perfluorophenyl)amino)propan-2-ylidene)amino)oxy)ethyl acetate (4e): Follow the typical process an isolated as colourless oil (129 mg, 93% yield);  $R_f = 0.37$  (petroleum ether-EtOAc = 10:1); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta = 8.13$  (s, 1H), 4.38-4.25 (m, 3H), 2.12 (s, 3H), 2.09 (s, 3H), 1.88-1.69 (m, 6H), 1.31-1.26 (m, 2H), 1.23-1.09 (m, 3H) ppm; <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>):  $\delta = 171.0$ , 161.2, 149.7, 144.2-144.0 (m), 142.2-142.0 (m), 141.1-141.0 (m), 139.1-138.8 (m), 137.0-136.8

(m), 111.7-111.5 (m), 87.3, 63.6, 39.1, 28.8, 28.6, 26.3, 26.0, 25.9, 20.9, 9.9 ppm; HRMS (ESI-TOF): calcd. [M+Na]<sup>+</sup> 459.1314; found: 459.1321.



(E)-5-chloro-2-(((1-oxo-1-((perfluorophenyl)amino)propan-2-ylidene)amino)oxy)pentyl acetate (4f): Follow the typical process an isolated as yellow oil (108 mg, 84% yield);  $R_f = 0.42$  (petroleum ether-EtOAc = 5:1); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta = 8.10$  (s, 1H), 4.52 (p, J = 5.2 Hz, 1H), 4.33-4.26 (m, 2H), 3.62 (t, J = 5.6 Hz, 2H), 2.13 (s, 3H), 2.10 (s, 3H), 2.00-1.87 (m, 4H) ppm; <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>):  $\delta = 170.8$ , 161.0, 150.6, 144.2-144.0 (m), 142.2-142.0 (m), 141.2-140.9 (m), 139.1-139.0 (m), 136.8-136.7 (m), 111.5-111.3 (m), 82.1, 64.8, 44.5, 28.3, 28.0, 20.8, 10.0 ppm; HRMS (ESI-TOF): calcd. [M+Na]<sup>+</sup> 453.0611; found: 453.0611.



(E)-2-(((1-oxo-1-((perfluorophenyl)amino)propan-2-ylidene)amino)oxy)propane-1,3-diyl diacetate (4g): Follow the typical process an isolated as yellow oil (112 mg, 88% yield);  $R_f = 0.28$  (petroleum ether-EtOAc = 5:1); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta = 8.18$  (s, 1H), 4.67 (p, J = 5.2 Hz, 1H), 4.35 (d, J = 5.2 Hz, 4H), 2.11 (s, 3H), 2.09 (s, 6H) ppm; <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>):  $\delta = 170.6$  (2C), 160.9, 151.3, 144.2-144.1 (m), 142.2-142.1 (m), 141.2-141.1 (m), 138.9-138.7 (m), 136.9-136.7 (m), 111.5-111.3 (m), 80.3, 62.2 (2C), 20.6 (2C), 10.1 ppm; HRMS (ESI-TOF): calcd. [M+Na]<sup>+</sup> 449.0742; found: 449.0744.



(E)-2-(((1-oxo-1-((perfluorophenyl)amino)propan-2-ylidene)amino)oxy)-1-phenylethyl acetate (4h): Follow the typical process an isolated as yellowish oil (126 mg, 98% yield);  $R_f = 0.51$  (petroleum ether-EtOAc = 5:1); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta = 8.07$  (s, 1H), 7.43-7.32 (m, 5H), 6.17 (dd,  $J_I = 7.8$  Hz,  $J_2 = 4.1$  Hz, 1H), 4.56 (dd,  $J_I = 12.0$  Hz,  $J_2 = 7.9$  Hz, 1H), 4.47 (dd,  $J_I = 11.9$  Hz,  $J_2 = 4.1$  Hz, 1H), 2.14 (s, 3H), 2.09 (s, 3H) ppm; <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>):  $\delta = 170.0$ , 161.0, 150.6, 144.2-144.1 (m), 142.2-142.1 (m), 141.2-141.0 (m), 138.9-138.7 (m), 136.9-136.8 (m), 136.6, 128.6, 128.6 (2C), 126.7 (2C), 111.6-111.4 (m), 77.5, 73.6, 21.0, 9.9 ppm; HRMS (ESI-TOF): calcd. [M+Na]<sup>+</sup> 453.0844; found: 453.0847.



(E)-2-(((1-oxo-1-((perfluorophenyl)amino)propan-2-ylidene)amino)oxy)-1-(*p*-tolyl)ethyl acetate (4i): Follow the typical process an isolated as yellow oil (123 mg, 92% yield);  $R_f = 0.22$  (petroleum ether-EtOAc = 10:1); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta = 8.03$  (s, 1H), 7.31-7.26 (m, 2H), 7.22-7.18 (m, 2H), 6.13 (dd,  $J_I = 8.0$  Hz,  $J_2 = 4.0$  Hz, 1H), 4.55 (dd,  $J_I = 11.9$  Hz,  $J_2 = 8.0$  Hz, 1H), 4.45 (dd,  $J_I = 11.9$  Hz,  $J_2$ = 4.1 Hz, 1H), 2.36 (d, J = 3.6 Hz, 3H), 2.13 (s, 3H), 2.09 (s, 3H) ppm; <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>):  $\delta =$ 170.1, 161.0, 150.5, 144.2-144.0 (m), 142.2-142.0 (m), 141.2-141.1 (m), 139.2-139.1 (m), 138.5, 136.9-136.8 (m), 133.6, 129.3, 129.3, 126.8, 126.7, 111.6-111.3 (m), 77.5, 73.5, 21.1, 21.1, 10.0 ppm; HRMS (ESI-TOF): calcd. [M+Na]<sup>+</sup> 467.1001; found: 467.1001.



(E)-1-(4-methoxyphenyl)-2-(((1-oxo-1-((perfluorophenyl)amino)propan-2-ylidene)amino)oxy)ethyl acetate (4j): Follow the typical process an isolated as yellow oil (132 mg, 96% yield);  $R_f = 0.41$  (petroleum ether-EtOAc = 5:1); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta = 8.04$  (s, 1H), 7.34-7.31 (m, 2H), 6.93-6.90 (m, 2H), 6.12 (dd,  $J_I = 8.0 \text{ Hz}, J_2 = 4.2 \text{ Hz}, 1\text{ H})$ , 4.55 (dd,  $J_I = 11.9 \text{ Hz}, J_2 = 8.0 \text{ Hz}, 1\text{ H})$ , 4.44 (dd,  $J_I = 11.9 \text{ Hz}, J_2 = 4.2 \text{ Hz}, 1\text{ H})$ , 3.81 (s, 3H), 2.12 (s, 3H), 2.09 (s, 3H) ppm; <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>):  $\delta = 170.1$ , 161.0, 159.9, 150.5, 144.2-144.1 (m), 142.2-142.1 (m), 141.2-141.1 (m), 139.2-139.0 (m), 137.0-136.8 (m), 128.6, 128.3 (2C), 114.1 (2C), 111.6-111.3 (m), 77.4, 73.2, 55.3, 21.1, 9.9 ppm; HRMS (ESI-TOF): calcd. [M+Na]<sup>+</sup> 483.0950; found: 483.0953.



(E)-1-(naphthalen-1-yl)-2-(((1-oxo-1-((perfluorophenyl)amino)propan-2-ylidene)amino)oxy)ethyl acetate (4k): Follow the typical process an isolated as red soild (134 mg, 93% yield);  $R_f = 0.46$  (petroleum ether-EtOAc = 5:1); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta = 8.20$  (d, J = 8.5 Hz, 1H), 7.98 (s, 1H), 7.88 (dd,  $J_I = 17.8$  Hz,  $J_2 = 8.1$  Hz, 2H), 7.68-7.46 (m, 4H), 6.99 (dd,  $J_I = 7.8$  Hz,  $J_2 = 3.7$  Hz, 1H), 4.71 (dd,  $J_I = 12.2$  Hz,  $J_2 = 7.8$  Hz, 1H), 4.65 (dd,  $J_I = 12.2$  Hz,  $J_2 = 3.7$  Hz, 1H), 2.21 (s, 3H), 2.09 (s, 3H) ppm; <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>):  $\delta = 170.0$ , 160.9, 150.7, 144.2-143.9 (m), 142.1-142.0 (m), 141.1-141.0 (m), 138.9-138.7 (m), 136.9-136.7 (m), 133.8, 132.4, 130.4, 129.1, 129.0, 126.7, 125.9, 125.3, 124.5, 122.7, 111.6-111.3 (m), 77.4, 71.0, 21.1, 10.0 ppm; HRMS (ESI-TOF): calcd. [M+Na]<sup>+</sup> 503.1001; found: 503.1010.



(E)-1-(4-fluorophenyl)-2-(((1-oxo-1-((perfluorophenyl)amino)propan-2-ylidene)amino)oxy)ethyl acetate (4l): Follow the typical process an isolated as yellow oil (132 mg, 98% yield);  $R_f = 0.25$  (petroleum ether-EtOAc = 10:1); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta = 8.07$  (s, 1H), 7.39-7.36 (m, 2H), 7.10-7.05 (m, 2H), 6.13 (dd,  $J_I = 7.8$  Hz,  $J_2 = 4.2$  Hz, 1H), 4.53 (dd,  $J_I = 11.9$  Hz,  $J_2 = 7.8$  Hz, 1H), 4.44 (dd,  $J_I = 11.9$  Hz,  $J_2 = 4.2$  Hz, 1H), 2.13 (s, 3H), 2.08 (s, 3H) ppm; <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>):  $\delta = 170.0$ , 162.8 (d, J = 247.6 Hz), 160.9, 150.8, 144.3-144.0 (m), 142.2-142.0 (m), 141.2-141.0 (m), 138.8-138.7 (m), 136.9-136.7 (m), 132.5 (d, J = 3.0 Hz), 128.6 (d, J = 8.2 Hz, 2C), 115.7 (d, J = 21.7 Hz, 2C), 111.6-111.3 (m), 77.3, 72.9, 21.0, 9.9 ppm; HRMS (ESI-TOF): calcd. [M+Na]<sup>+</sup> 471.0750; found: 471.0754.



(E)-1-(4-chlorophenyl)-2-(((1-oxo-1-((perfluorophenyl)amino)propan-2-ylidene)amino)oxy)ethyl acetate (4m): Follow the typical process an isolated as yellow solid (135 mg, 97% yield);  $R_f = 0.27$  (petroleum ether-EtOAc = 10:1); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta = 8.02$  (s, 1H), 7.38-7.31 (m, 4H), 6.12 (dd,  $J_I = 7.6$  Hz,  $J_2 = 4.2$  Hz, 1H), 4.52 (dd,  $J_I = 11.9$  Hz,  $J_2 = 7.6$  Hz, 1H), 4.44 (dd,  $J_I = 11.9$  Hz,  $J_2 = 4.2$  Hz, 1H), 2.14 (s, 3H), 2.08 (s, 3H) ppm; <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>):  $\delta = 169.9$ , 160.8, 150.8, 144.2-144.0 (m), 142.2-142.0 (m), 141.2-141.0 (m), 138.9-138.7 (m), 136.9-136.6 (m), 135.2, 134.5, 128.8 (2C), 128.1 (2C), 111.5-111.3 (m), 77.1, 72.9, 20.9, 9.9 ppm; HRMS (ESI-TOF): calcd. [M+Na]<sup>+</sup> 487.0454; found: 487.0454.



(E)-1-(3-chlorophenyl)-2-(((1-oxo-1-((perfluorophenyl)amino)propan-2-ylidene)amino)oxy)ethyl acetate (4n): Follow the typical process an isolated as yellow oil (135 mg, 97% yield);  $R_f = 0.23$  (petroleum ether-EtOAc = 10:1); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta = 8.03$  (s, 1H), 7.39 (s, 1H), 7.35-7.30 (m, 2H), 7.28-7.25 (m, 1H), 6.11 (dd,  $J_I = 7.5$  Hz,  $J_2 = 4.1$  Hz, 1H), 4.53 (dd,  $J_I = 12.0$  Hz,  $J_2 = 7.6$  Hz, 1H), 4.46 (dd,  $J_I = 12.0$  Hz,  $J_2 = 4.2$  Hz, 1H), 2.16 (s, 3H), 2.09 (s, 3H) ppm; <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>):  $\delta = 169.9$ , 160.8, 150.9, 144.2-144.0 (m), 142.2-142.1 (m), 141.2-141.1 (m), 139.2-139.0 (m), 138.6, 136.9-136.7 (m), 134.7, 130.0, 128.8, 126.9, 124.9, 111.5-111.2 (m), 77.2, 72.9, 21.0, 10.0 ppm; HRMS (ESI-TOF): calcd. [M+Na]<sup>+</sup> 487.0454; found: 487.0458.



(E)-1-(4-bromophenyl)-2-(((1-oxo-1-((perfluorophenyl)amino)propan-2-ylidene)amino)oxy)ethyl acetate (40): Follow the typical process an isolated as yellow oil (148 mg, 97% yield);  $R_f = 0.46$  (petroleum ether-EtOAc = 5:1); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta = 8.00$  (s, 1H), 7.54-7.51 (m, 2H), 7.29-7.26 (m, 2H), 6.10 (dd,  $J_1 = 7.5$  Hz,  $J_2 = 4.3$  Hz, 1H), 4.52 (dd,  $J_1 = 11.9$  Hz,  $J_2 = 7.5$  Hz, 1H), 4.44 (dd,  $J_1 = 11.9$  Hz,  $J_2 = 4.3$  Hz, 1H), 2.14 (s, 3H), 2.08 (s, 3H) ppm; <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>):  $\delta = 169.9$ , 160.8, 150.8, 144.2-144.0 (m), 142.2-142.1 (m), 141.2-141.1 (m), 138.9-138.7 (m), 136.9-136.7 (m), 135.7, 131.9 (2C), 128.5 (2C), 122.6, 111.5-111.3 (m), 77.1, 72.9, 21.0, 10.0 ppm; HRMS (ESI-TOF): calcd. [M+Na]<sup>+</sup> 530.9949; found: 530.9954.



(E)-1-(2-bromophenyl)-2-(((1-oxo-1-((perfluorophenyl)amino)propan-2-ylidene)amino)oxy)ethyl acetate (4p): Follow the typical process an isolated as yellow oil (98 mg, 84% yield);  $R_f = 0.50$  (petroleum ether-EtOAc = 5:1); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta = 8.05$  (s, 1H), 7.59 (dd,  $J_I = 8.0$  Hz,  $J_2 = 1.0$  Hz, 1H), 7.46 (dd,  $J_I = 7.8$  Hz,  $J_2 = 1.6$  Hz, 1H), 7.36 (td,  $J_I = 7.5$  Hz,  $J_2 = 1.0$  Hz, 1H), 7.21 (td,  $J_I = 7.8$  Hz,  $J_2 = 1.7$  Hz, 1H), 6.51 (dd,  $J_I = 7.0$  Hz,  $J_2 = 3.5$  Hz, 1H), 4.57-4.47 (m, 2H), 2.17 (s, 3H), 2.09 (s, 3H) ppm; <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>):  $\delta = 169.6$ , 160.8, 150.5, 144.1-143.9 (m), 142.1-141.9 (m), 141.1-141.0 (m), 139.1-138.9 (m), 136.9-136.8 (m), 136.0, 133.0, 129.9, 128.0, 127.7, 122.3, 111.7-111.4 (m), 76.2, 73.0, 20.9, 9.9 ppm; HRMS (ESI-TOF): calcd. [M+Na]<sup>+</sup> 530.9949; found: 530.9954.



(E)-1-(2-iodophenyl)-2-(((1-oxo-1-((perfluorophenyl)amino)propan-2-ylidene)amino)oxy)ethyl acetate (4q): Follow the typical process an isolated as yellow solid (100 mg, 60% yield);  $R_f = 0.50$  (petroleum ether-EtOAc = 5:1); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta = 8.10$  (s, 1H), 7.90-7.84 (m, 1H), 7.44-7.37 (m, 2H), 7.06-7.02 (m, 1H), 6.36 (dd,  $J_I = 7.3$  Hz,  $J_2 = 3.5$  Hz, 1H), 4.52-4.43 (m, 2H), 2.17 (s, 3H), 2.11 (s, 3H) ppm; <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>):  $\delta = 169.7$ , 160.8, 150.6, 144.1-143.9 (m), 142.1-141.9 (m), 141.1-141.0 (m), 139.7, 139.0, 138.9-138.8 (m), 137.0-136.8 (m), 130.2, 128.6, 127.7, 111.6-111.4 (m), 97.5, 77.3, 76.4, 21.0, 10.0 ppm; HRMS (ESI-TOF): calcd. [M+Na]<sup>+</sup> 578.9811; found: 578.9814.



Methyl(E)-3-acetoxy-2-(((1-oxo-1-((perfluorophenyl)amino)propan-2-ylidene)amino)oxy)-3phenylpropanoate (4r): Follow the typical process an isolated as white soild (138 mg, 96% yield);  $R_{f}$ = 0.29 (petroleum ether-EtOAc = 5:1); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>): δ = 7.85 (s, 1H), 7.42-7.34 (m, 5H), 6.36 (d, J = 5.4 Hz, 1H), 5.07 (d, J = 5.4 Hz, 1H), 3.70 (s, 3H), 2.18 (s, 3H), 2.16 (s, 3H) ppm; <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>): δ = 169.6, 168.2, 160.5, 152.1, 144.1-144.0 (m), 142.2-142.0 (m), 141.2-141.1 (m), 139.1-139.0 (m), 136.9-136.7 (m), 135.3, 129.0, 128.6 (2C), 127.1 (2C), 111.3-111.1 (m), 85.1, 73.9, 52.5, 20.9, 10.3 ppm; HRMS (ESI-TOF): calcd. [M+Na]<sup>+</sup> 511.0899; found: 511.0906.



(E)-1-(((1-oxo-1-((perfluorophenyl)amino)propan-2-ylidene)amino)oxy)-3-phenylpropan-2-yl

**acetate (4s):** Follow the typical process an isolated as white soild (109 mg, 82% yield);  $R_f = 0.31$  (petroleum ether-EtOAc = 10:1); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta = 8.09$  (s, 1H), 7.33 (t, J = 7.3 Hz, 2H), 7.26-7.23 (m, 3H), 5.41 (qd,  $J_I = 6.8$  Hz,  $J_2 = 3.7$  Hz, 1H), 4.37 (dd,  $J_I = 11.8$  Hz,  $J_2 = 3.7$  Hz, 1H), 4.30 (dd,  $J_I = 11.8$  Hz,  $J_2 = 6.2$  Hz, 1H), 3.02-2.92 (m, 2H), 2.12 (s, 3H), 2.06 (s, 3H) ppm; <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>):  $\delta = 170.3$ , 161.0, 150.5, 144.2-144.1 (m), 142.2-141.0 (m), 141.2-141.1 (m), 139.0-138.8 (m), 137.0-136.8 (m), 136.3, 129.4 (2C), 128.6 (2C), 126.9, 111.7-111.3 (m), 75.7, 72.5, 37.2, 21.0, 9.9 ppm; HRMS (ESI-TOF): calcd. [M+Na]<sup>+</sup> 467.1001; found: 467.1001.



(E)-1-(((1-oxo-1-((perfluorophenyl)amino)propan-2-ylidene)amino)oxy)-4-phenylbutan-2-yl acetate (4t): Follow the typical process an isolated as yellow oil (96 mg, 70% yield);  $R_f = 0.53$  (petroleum ether-EtOAc = 5:1); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta = 8.09$  (s, 1H), 7.31 (t, J = 7.5 Hz, 2H), 7.21 (t, J = 8.6 Hz, 3H), 5.28-5.23 (m, 1H), 4.35 (qd,  $J_I = 11.8$  Hz,  $J_2 = 5.1$  Hz, 2H), 2.81-2.64 (m, 2H), 2.10 (d, J = 5.7 Hz, 6H), 2.06-1.91 (m, 2H) ppm; <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>):  $\delta = 170.6$ , 161.0, 150.4, 144.2-144.0 (m), 142.3-141.0 (m), 141.3-141.1 (m), 140.9, 139.0-138.8 (m), 137.0-136.8 (m), 128.5 (2C), 128.3 (2C), 126.2, 111.7-111.4 (m), 76.5, 71.4, 32.4, 31.5, 21.0, 9.9 ppm; HRMS (ESI-TOF): calcd. [M+Na]<sup>+</sup> 481.1157; found: 481.1159.


(E)-1-(((1-oxo-1-((perfluorophenyl)amino)propan-2-ylidene)amino)oxy)pentan-2-yl acetate (4u): Follow the typical process an isolated as colourless oil (77 mg, 65% yield);  $R_f = 0.20$  (petroleum ether-EtOAc = 10:1); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta = 8.14$  (s, 1H), 5.27-5.21 (m, 1H), 4.32 (qd,  $J_I = 11.8$  Hz,  $J_2 = 5.2$  Hz, 2H), 2.10 (s, 3H), 2.08 (s, 3H), 1.65-1.58 (m, 2H), 1.46-1.35 (m, 2H), 0.96 (t, J = 7.4 Hz, 3H) ppm; <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>):  $\delta = 170.7$ , 161.1, 150.4, 144.2-144.1 (m), 142.2-141.0 (m), 141.2-141.0 (m), 139.1-139.0 (m), 137.2-137.0 (m), 111.7-111.6 (m), 76.7, 71.7, 32.9, 21.0, 18.5, 13.9, 9.9 ppm; HRMS (ESI-TOF): calcd. [M+Na]<sup>+</sup> 419.1001; found: 419.1004.



(E)-1-cyclohexyl-2-(((1-oxo-1-((perfluorophenyl)amino)propan-2-ylidene)amino)oxy)ethyl acetate (4v): Follow the typical process an isolated as colourless oil (60 mg, 46% yield);  $R_f = 0.42$  (petroleum ether-EtOAc = 10:1); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta = 8.13$  (s, 1H), 5.07 (td,  $J_I = 6.9$  Hz,  $J_2 = 3.3$  Hz, 1H), 4.42 (dd,  $J_I = 11.8$  Hz,  $J_2 = 3.3$  Hz, 1H), 4.34 (dd,  $J_I = 11.8$  Hz,  $J_2 = 7.0$  Hz, 1H), 2.09 (s, 6H), 1.80-1.63 (m, 5H), 1.29-1.06 (m, 6H) ppm; <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>):  $\delta = 170.7$ , 161.1, 150.3, 144.2-143.9 (m), 142.2-141.0 (m), 141.2-141.0 (m), 138.9-138.8 (m), 136.9-136.7 (m), 111.6-111.4 (m), 75.4, 75.3, 38.9, 29.0, 28.3, 26.2, 25.9, 25.8, 21.0, 9.9 ppm; HRMS (ESI-TOF): calcd. [M+Na]<sup>+</sup> 459.1314; found: 459.1317.



(E)-3-isopropyl-6-methyl-2-(((1-oxo-1-((perfluorophenyl)amino)propan-2-ylidene)amino)oxy)
cyclohexyl acetate (4w): Follow the typical process an isolated as yellow solid (71 mg, 51% yield (与正 文不一致)); R<sub>f</sub>= 0.32 (petroleum ether-EtOAc = 10:1); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>): δ = 8.45 (s, 1H),
5.12-5.05 (m, 1H), 4.71-4.68 (m, 1H), 2.21-2.13 (m, 1H), 2.09 (s, 3H), 2.03 (s, 3H), 2.02-1.95 (m, 1H),
1.83-1.76 (m, 1H), 1.68-1.60 (m, 2H), 1.57-1.47 (m, 2H), 1.19 (d, J = 6.3 Hz, 3H), 0.96 (d, J = 6.1 Hz,
3H), 0.92 (d, J = 6.3 Hz, 3H) ppm; <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>): δ = 171.7, 162.0, 150.6, 144.3-144.2
(m), 142.4-142.2 (m), 141.1-141.0 (m), 139.1-138.9 (m), 136.9-136.8 (m), 112.0-111.8 (m), 86.2, 70.6, 52.4, 51.0, 28.9, 27.4, 24.5, 21.8, 21.7, 21.5, 19.3, 10.3 ppm; HRMS (ESI-TOF): calcd.  $[M+Na]^+$ 487.1627; found: 487.1628. Follow the typical process an isolated as yellow solid (52 mg, 37% yield); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta = 8.09$  (s, 1H), 4.92 (s, 1H), 4.42 (dd,  $J_I = 11.3$  Hz,  $J_2 = 2.5$  Hz, 1H), 2.14 (s, 3H), 2.05 (s, 3H), 1.97-1.90 (m, 1H), 1.89-1.83 (m, 1H), 1.76-1.70 (m, 1H), 1.65-1.57 (m, 1H), 1.40-1.29 (m, 1H), 1.27-1.19 (m, 1H), 1.14-1.05 (m, 1H), 0.94 (dd,  $J_I = 8.7$  Hz,  $J_2 = 6.6$  Hz, 9H) ppm; <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>):  $\delta = 171.1$ , 161.4, 148.8, 144.3-144.2 (m), 142.3-142.1 (m), 141.2-141.1 (m), 138.9-138.7 (m), 137.0-136.7 (m), 111.8-111.4 (m), 82.7, 80.1, 47.0, 32.6, 31.1, 29.0, 24.3, 20.9, 20.8, 20.7, 18.0, 9.9 ppm; HRMS (ESI-TOF): calcd. [M+Na]<sup>+</sup> 487.1627; found: 487.1630.



(E)-1-(((1-oxo-1-((perfluorophenyl)amino)propan-2-ylidene)amino)oxy)butan-2-yl acetate (4x): Follow the typical process an isolated as yellowish oil (95 mg, 83% yield);  $R_f = 0.20$  (petroleum ether-EtOAc = 10:1); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta = 8.11$  (s, 1H), 5.18-5.13 (m, 1H), 4.38-4.29 (m, 2H), 2.10 (d, J = 5.2 Hz, 6H), 1.74-1.61 (m, 2H), 0.99 (t, J = 7.5 Hz, 3H) ppm; <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>):  $\delta$ = 170.7, 161.0, 150.4, 144.2-144.0 (m), 142.2-142.0 (m), 141.3-141.1 (m), 138.9-138.7 (m), 137.1-136.8 (m), 111.6-111.4 (m), 76.3, 73.0, 23.9, 21.0, 9.9, 9.5 ppm; HRMS (ESI-TOF): calcd. [M+Na]<sup>+</sup> 405.0844; found: 405.0844.



**1-([1,1'-biphenyl]-4-yl)pentan-2-ol (5):** White soild;  $R_f = 0.49$  (petroleum ether-EtOAc = 5:1); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta = 7.63-7.56$  (m, 4H), 7.48-7.44 (m, 2H), 7.38-7.30 (m, 3H), 3.90 (s, 1H), 2.90 (dd,  $J_I = 13.6$  Hz,  $J_2 = 4.2$  Hz, 1H), 2.72 (dd,  $J_I = 13.6$  Hz,  $J_2 = 8.4$  Hz, 1H), 1.65-1.51 (m, 4H), 1.49-1.39 (m, 1H), 1.02-0.95 (m, 3H) ppm; <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>):  $\delta = 140.9$ , 139.4, 137.8, 129.8 (2C), 128.8 (2C), 127.3 (2C), 127.1 (2C), 127.0, 72.4, 43.7, 39.1, 19.0, 14.1 ppm; HRMS (ESI-TOF): calcd. [M+Na]<sup>+</sup> 263.1406; found: 263.1409.



**1-(4-chlorophenyl)-2-hydroxyethyl acetate (6):** White soild;  $R_f = 0.20$  (petroleum ether-EtOAc = 5:1); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta = 7.37-7.32$  (m, 4H), 4.95 (dd,  $J_I = 8.3$  Hz,  $J_2 = 3.3$  Hz, 1H), 4.27 (dd,  $J_I = 11.6$  Hz,  $J_2 = 3.3$  Hz, 1H), 4.13 (dd,  $J_I = 11.6$  Hz,  $J_2 = 8.3$  Hz, 1H), 2.12 (s, 3H) ppm; <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>):  $\delta = 171.2$ , 138.2, 134.0, 128.8 (2C), 127.5 (2C), 71.8, 69.1, 20.9 ppm; HRMS (ESI-TOF): calcd. [M+Na]<sup>+</sup> 273.0289; found: 273.0289.



(S,E)-2-((2-hydroxy-2-(*p*-tolyl)ethoxy)imino)-N-(perfluorophenyl)propanamide (7): Colourless oil;  $R_f = 0.20$  (petroleum ether-EtOAc = 5:1); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta = 8.03$  (s, 1H), 7.31 (d, J = 8.0Hz, 2H), 7.21 (d, J = 7.9 Hz, 2H), 5.06 (t, J = 5.5 Hz, 1H), 4.41 (d, J = 5.9 Hz, 2H), 2.36 (s, 3H), 2.15 (s, 3H), 1.65 (s, 1H) ppm; <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>):  $\delta = 161.0$ , 150.6, 144.2-144.1 (m), 142.2-142.0 (m), 141.2-141.1 (m), 139.0-138.8 (m), 138.1, 137.1-137.0 (m), 136.9, 129.3 (2C), 126.2 (2C), 111.5-111.3 (m), 80.5, 72.6, 21.1, 10.1 ppm; HRMS (ESI-TOF): calcd. [M+Na]<sup>+</sup> 425.0895; found: 425.0895.

## XI. NMR Spectra













































-0.020

180607.18080732.fid wbx20180607-2 CDCl3 0607









180410.18043421.fid wbx20180410 CDCl3 0410






























ppm 





-0.029


























































































-0.017





















150 145 140 135 130 125 120 115 110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0 ppm



