Supporting information for

Direct Oxidative Dearomatization of Indoles: Access to Structurally Diverse 2,2-Disubstituted Indolin-3-ones

Xigong Liu, Xue Yan, Yingde Tang, Cheng-Shi Jiang, Jin-Hai Yu, Kaiming Wang, and Hua Zhang*

School of Biological Science and Technology, University of Jinan, Jinan 250022, P. R China

Table of Contents

General information	S3	
General procedures		
The analytical and spectral characterization data of the products	S4	
Mechanism studies	S23	
¹ H and ¹³ C NMR spectra data	S25	

General information

EtOAc was freshly distilled over CaSO₄ and THF was freshly distilled over Na. CH₂Cl₂ and CH₃CN were freshly distilled over CaH₂. Other reagents and solvents were used as commercially available products without further purification unless specified. Proton (¹H) and carbon (¹³C) nuclear magnetic resonance (NMR) spectra were recorded at on an Bruker AVANCE DRX600 NMR spectrometer. The chemical shifts were given in parts per million (ppm) on the delta (δ) scale, and the residuel solvent peaks were used as references as follows: CDCl₃ $\delta_{\rm H}$ 7.26, $\delta_{\rm C}$ 77.16 ppm; acetone-*d*₆ $\delta_{\rm H}$ 2.05, $\delta_{\rm C}$ 29.84 ppm. Analytical TLC was performed on precoated silica gel GF254 plates. Column chromatography was carried out on silica gel (200–300 mesh). ESIMS analyses were performed on an Agilent 1260-6460 Triple Quad LC-MS spectrometer. HR-ESIMS were carried out on an Agilent 6520 Q-TOF MS spectrometer.

Genenral procedures for synthesis of starting materials.

The C2 substituted indoles were synthesized according to the protocols in previous reports.¹⁻³

General procedures for synthesis of TEMPO oxoammonium salts⁴

TEMPO (10 g, 64 mmol) was dissolved in water (16.4 mL) and the corresponding acid (64 mmol) was slowly added dropwise over 1 h at room temperature. Then NaOCl (23 mL, 32 mmol) was added over 1 h at 0 °C and stirred for an additional 1 h at 0 °C. The reaction mixture was filtered and the yellow crystalline precipitate was washed with ice-cold 5% NaHCO₃ (20 mL), water (40 mL), and ice-cold Et₂O (400 mL). The solid was dried over 24 h at 50 °C *in vacuo* to afford the desired product.

Genenral procedures for oxidative dearomative difunctionalization of indoles

General procedure: To a solution of **1** (0.1 mmol) and **2** (0.15 mmol) in EtOAc was added TEMPO⁺ClO₄⁻ (0.105 mmol) at room temperature. After 6 h, the solvent was removed and the residue was purified by flash chromatography using acetone-petroleum ether as eluent to afford the desired product.

The analytical and spectral characterization data of the products

2-Phenyl-2-(phenylethynyl)indolin-3-one (3a)

According to general procedure, **3a** was obtained in 93% yield (28.7 mg). ¹H NMR (600 MHz, CDCl₃) δ 7.73-7.69 (m, 2H), 7.69-7.65 (m, 1H), 7.58-7.53 (m, 1H), 7.50 (d, *J* = 7.2 Hz, 2H), 7.43-

7.29 (m, 6H), 7.02 (d, J = 7.6 Hz, 1H), 6.98-6.89 (m, 1H), 5.31 (s, 1H); ¹³C NMR (151 MHz, CDCl₃) δ 196.3, 160.6, 138.0, 137.9, 132.1, 128.9, 128.9, 128.6, 128.4, 126.4, 126.2, 122.1, 120.4, 118.1, 112.8, 86.4, 84.3, 67.1; HR-ESIMS *m/z* calcd for C₂₂H₁₆NO [M+H]⁺ 310.1226, found 310.1225.

2-((4-Methoxyphenyl)ethynyl)-2-phenylindolin-3-one (3b)

According to general procedure, **3b** was obtained in 94% yield (31.9 mg). ¹H NMR (600 MHz, CDCl₃) δ 7.73-7.67 (m, 2H), 7.66 (d, *J* = 7.2 Hz, 1H), 7.57-7.51 (m, 1H), 7.46-7.31 (m, 5H), 7.00 (d, *J* = 8.5 Hz, 1H), 6.96-6.90 (m, 1H), 6.83 (d,

J = 8.1 Hz, 2H), 5.31 (s, 1H), 3.81 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 196.5, 160.7, 160.0, 138.1, 137.9, 133.6, 128.8, 128.5, 126.4, 126.2, 120.3, 118.2, 114.2, 114.0, 112.8, 85.0, 84.3, 67.2, 55.4; HR-ESIMS *m*/*z* calcd for C₂₃H₁₈NO₂ [M+H]⁺ 340.1332, found 340.1336.

2-Phenyl-2-(*p*-tolylethynyl)indolin-3-one (3c)

According to general procedure, **3c** was obtained in 88% yield (28.4 mg). ¹H NMR (600 MHz, CDCl₃) δ 7.73-7.68 (m, 2H), 7.66 (dd, J = 7.8, 1.2 Hz, 1H), 7.55 (ddd, J = 8.3, 7.1, 1.3 Hz, 1H), 7.42-7.32 (m, 5H), 7.12 (d, J = 7.9 Hz, 2H), 7.01 (d, J =

8.2 Hz, 1H), 6.93 (t, *J* = 7.4 Hz, 1H), 5.30 (s, 1H), 2.35 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 196.4, 160.7, 139.1, 138.0, 137.9, 132.0, 129.2, 128.8, 128.6, 126.4, 126.2, 120.4, 119.0, 118.2, 112.8, 85.7, 84.5, 67.2, 21.6; HR-ESIMS *m/z* calcd for C₂₃H₁₈NO [M+H]⁺ 324.1383, found 324.1381.

2-Phenyl-2-(*m*-tolylethynyl)indolin-3-one (3d)

According to general procedure, **3d** was obtained in 90% yield (28.8 mg). ¹H NMR (600 MHz, CDCl₃) δ 7.74-7.69 (m, 2H), 7.67 (dd, *J* = 7.8, 1.3 Hz, 1H), 7.55 (ddd, *J* = 8.4, 7.1, 1.3 Hz,

1H), 7.42-7.32 (m, 4H), 7.30 (brd, J = 7.6 Hz, 1H), 7.20 (t, J = 7.6 Hz, 1H), 7.15 (brd, J = 7.6 Hz, 1H), 7.01 (d, J = 8.2 Hz, 1H), 6.95-6.91 (m, 1H), 5.31 (s, 1H), 2.32 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 196.3, 160.6, 138.1, 137.9, 137.9, 132.7, 129.7, 129.1, 128.8, 128.5, 128.3, 126.4, 126.2, 121.9, 120.3, 118.1, 112.8, 86.0, 84.4, 67.1, 21.3; HR-ESIMS *m/z* calcd for C₂₃H₁₈NO [M+H]⁺ 324.1383, found 324.1384.

2-((4-Fluorophenyl)ethynyl)-2-phenylindolin-3-one (3e)

According to general procedure, **3e** was obtained in 91% yield (29.8 mg). ¹H NMR (600 MHz, CDCl₃) δ 7.72-7.61 (m, 3H), 7.60-7.52 (m, 1H), 7.50-7.44 (m, 2H), 7.42-7.32 (m, 3H), 7.04-6.97 (m, 3H), 6.97-6.90 (m, 1H), 5.32 (s, 1H); ¹³C NMR

(151 MHz, CDCl₃) δ 196.2, 163.7, 162.0, 160.6, 138.1, 137.8, 134.1, 134.1, 128.9, 128.6, 126.4, 126.1, 120.4, 118.2, 118.2, 118.1, 115.8, 115.7, 112.8, 86.2, 83.2, 67.1; HR-ESIMS *m/z* calcd for C₂₂H₁₅FNO [M+H]⁺ 328.1132, found 328.1333.

2-((2-Fluorophenyl)ethynyl)-2-phenylindolin-3-one (3f)

According to general procedure, **3f** was obtained in 92% yield (30.0 mg). ¹H NMR (600 MHz, CDCl₃) δ 7.73-7.69 (m, 2H), 7.66] (dd, *J* = 8.3, 2.6 Hz, 1H), 7.56 (t, *J* = 8.2 Hz, 1H), 7.50-7.45 (m, 1H), 7.42-7.30 (m, 4H), 7.11-7.05 (m, 2H), 7.02 (dd, *J* = 8.6, 2.7

Hz, 1H), 6.96-6.91 (m, 1H), 5.36 (s, 1H); ¹³C NMR (151 MHz, CDCl₃) δ 196.0, 164.0, 162.4, 160.6, 138.0, 137.6, 133.9, 130.7, 130.6, 128.9, 128.6, 126.4, 126.2, 124.0, 124.0, 120.4, 118.0, 115.7, 115.5, 112.8, 110.8, 110.7, 91.5, 91.5, 77.9, 67.2; HR-ESIMS *m*/*z* calcd for C₂₂H₁₅FNO [M+H]⁺ 328.1132, found 328.1335.

2-((4-Chlorophenyl)ethynyl)-2-phenylindolin-3-one (3g)

According to general procedure, **3g** was obtained in 90% yield (30.8 mg). ¹H NMR (600 MHz, CDCl₃) δ 7.70-7.64 (m, 3H),

7.56 (ddd, J = 8.4, 7.1, 1.3 Hz, 1H), 7.44-7.34 (m, 5H), 7.31-7.27 (m, 2H), 7.02 (d, J =8.2 Hz, 1H), 6.94 (t, J = 7.4 Hz, 1H), 5.31 (s, 1H); ¹³C NMR (151 MHz, CDCl₃) δ 196.1, 160.6, 138.1, 137.7, 135.0, 133.4, 128.9, 128.8, 128.7, 126.5, 126.1, 120.6, 120.5, 118.1, 112.8, 87.4, 83.2, 67.1; HR-ESIMS *m/z* calcd for C₂₂H₁₅CINO [M+H]⁺ 344.0837, found 344.0835.

2-(Oct-1-yn-1-yl)-2-phenylindolin-3-one (3h)

According to general procedure, 3h was obtained in 87% yield (27.6 mg). ¹H NMR (600 MHz, CDCl₃) δ 7.62 (d, J = 7.8 Hz, 3H), 7.53 (t, J = 8.2 Hz, 1H), 7.38-7.28 (m, 3H), 6.97 (d, J = 8.2

Hz, 1H), 6.91 (t, J = 7.4 Hz, 1H), 5.15 (s, 1H), 2.27 (td, J = 7.2, 2.1 Hz, 2H), 1.55 (p, J= 7.3 Hz, 2H), 1.43-1.35 (m, 2H), 1.34-1.26 (m, 4H), 0.89 (t, J = 6.9 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 197.0, 160.7, 138.3, 137.8, 128.7, 128.4, 126.3, 126.2, 120.2, 118.2, 112.8, 85.6, 77.3, 66.9, 31.4, 28.7, 28.6, 22.6, 19.0, 14.2; HR-ESIMS m/z calcd for C₂₂H₂₄NO [M+H]⁺ 318.1852, found 318.1854.

2-(4-(Benzyloxy)but-1-yn-1-yl)-2-phenylindolin-3-one (3i)

According to general procedure, 3i was obtained in 86% yield (31.5 mg). ¹H NMR (600 MHz, CDCl₃) δ 7.63-7.57 (m, 3H), 7.51 (t, J = 7.0 Hz, 1H), 7.35-7.25 (m, 8H), 6.94 (d, J =

5.9 Hz, 1H), 6.89 (t, J = 6.5 Hz, 1H), 5.16 (s,1H), 4.53 (s, 2H), 3.61 (t, J = 6.6 Hz, 2H), 2.59 (t, J = 6.6 Hz, 2H); ¹³C NMR (151 MHz, CDCl₃) δ 196.7, 160.6, 138.0, 137.9, 137.8, 128.7, 128.5, 128.4, 127.7, 127.7, 126.2, 126.1, 120.2, 118.0, 112.7, 81.9, 78.4, 73.0, 68.2, 66.7, 20.4; HR-ESIMS *m/z* calcd for C₂₅H₂₂NO₂ [M+H]⁺ 368.1645, found 368.1644.

2-Phenyl-2-((trimethylsilyl)ethynyl)indolin-3-one (3j)

According to general procedure, **3** was obtained in 84% yield (25.6 mg). ¹H NMR (600 MHz, CDCl₃) δ 7.66-7.60 (m, 3H), 7.55 (t, J = 7.0 Hz, 1H), 7.42-7.30 (m, 3H), 7.00 (brd, J = 7.9 Hz, 1H), 6.93 (t, J = 7.2 Hz, 1H), 5.18 (s, 1H), 0.22 (s, 9H); ¹³C NMR (151 MHz, CDCl₃) δ 195.8, 160.4,

S6

137.7, 137.6, 128.6, 128.4, 126.3, 125.9, 120.2, 117.9, 112.7, 101.8, 89.5, 67.1, -0.2; HR-ESIMS m/z calcd for C₁₉H₂₀NOSi [M+H]⁺ 306.1309, found 306.1312.

(E)-2-Phenyl-2-styrylindolin-3-one (3k)

(28.6 mg). ¹H NMR (600 MHz, CDCl₃) δ 7.68-7.64 (m, 1H), 7.56-7.49 (m, 3H), 7.43-7.23 (m, 8H), 6.99 (d, J = 8.2 Hz, 1H), 6.88 (t, J = 7.4 Hz, 1H), 6.83 (d, J = 15.9 Hz, 1H), 6.64 (d, J = 15.9 Hz, 1H), 5.16 (s, 1H); ¹³C NMR (151 MHz, CDCl₃) δ 200.2, 160.2, 139.7, 137.7, 136.3, 130.5, 128.9, 128.7, 128.5, 128.2, 128.1, 126.8, 126.6, 125.7, 119.7, 119.5, 112.5, 73.4; HR-ESIMS m/z calcd for C₂₂H₁₈NO [M+H]⁺ 312.1383, found 312.1386.

(E)-2-(Oct-1-en-1-yl)-2-phenylindolin-3-one (3l)

According to general procedure, 31 was obtained in 86% yield (27.4 mg). ¹H NMR (600 MHz, CDCl₃) δ 7.63-7.57 (m, 1H), 7.50-7.45 (m, 3H), 7.36-7.24 (m, 3H), 6.93 (d, J = 8.1 Hz, 1H), 6.84 (t,

According to general procedure, 3k was obtained in 92% yield

J = 7.1 Hz, 1H), 5.97-5.77 (m, 2H), 4.99 (s, 1H), 2.10-2.05 (m, 2H), 1.42-1.16 (m, 8H), 0.86 (t, J = 6.0 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 200.6, 160.2, 140.0, 137.5, 132.3, 128.8, 128.6, 127.9, 126.5, 125.7, 119.5, 119.4, 112.4, 73.1, 32.5, 31.8, 29.1, 29.0, 22.7, 14.2; HR-ESIMS m/z calcd for C₂₂H₂₆NO [M+H]⁺ 320.2009, found 320.2013.

2-Allyl-2-phenylindolin-3-one (3m)

According to general procedure, 3m was obtained in 86% yield (21.4 mg). ¹H NMR (600 MHz, CDCl₃) δ 7.65-7.61 (m, 2H), 7.58 (d, J = 7.7 Hz, 1H), 7.49 (ddd, J = 8.4, 7.1, 1.4 Hz, 1H), 7.35 (t, J = 7.7 Hz, 2H),

7.31-7.26 (m, 1H), 6.97 (d, J = 8.2 Hz, 1H), 6.84 (t, J = 7.4 Hz, 1H), 5.63-5.56 (m, 1H), 5.17 (dd, J = 17.1, 1.6 Hz, 1H), 5.13 (s, 1H), 5.11-5.06 (m, 1H), 3.06 (dd, J = 14.0, 5.9 Hz, 1H), 2.65 (dd, J = 14.0, 8.4 Hz, 1H); ¹³C NMR (151 MHz, CDCl₃) δ 201.3, 160.4, 138.6, 137.5, 132.7, 128.7, 127.8, 126.0, 125.5, 119.9, 119.6, 119.4, 112.4, 70.8, 42.9; HR-ESIMS m/z calcd for C₁₇H₁₆NO [M+H]⁺ 250.1226, found 250.1230.

2-(4-Methoxyphenyl)-2-phenylindolin-3-one (3n)

According to general procedure with 1.2 eq oxidant, **3n** was obtained in 85% yield (26.8 mg). ¹H NMR (600 MHz, CDCl₃) δ 7.65 (d, J = 7.8 Hz, 1H), 7.49 (t, J = 7.6 Hz, 1H), 7.43-7.40 (m,

2H), 7.36-7.27 (m, 5H), 6.92 (d, J = 8.2 Hz, 1H), 6.89-6.83 (m, 3H), 5.26 (s, 1H), 3.78 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 201.2, 160.2, 159.3, 141.4, 137.7, 133.3, 128.7, 128.6, 127.9, 127.5, 125.6, 120.0, 119.7, 114.0, 112.6, 74.7, 55.4; HR-ESIMS *m/z* calcd for C₂₁H₁₈NO₂ [M+H]⁺ 316.1332, found 316.1334.

2-Phenyl-2-(p-tolyl)indolin-3-one (30)

According to general procedure with 1.2 eq oxidant for 12 h, **30** was obtained in 72% yield (21.5 mg). ¹H NMR (600 MHz, CDCl₃) δ 7.66 (dd, J = 7.8, 1.3 Hz, 1H), 7.50 (ddd, J = 8.3, 7.0, 1.3 Hz,

1H), 7.44-7.39 (m, 2H), 7.35-7.27 (m, 5H), 7.14 (d, J = 8.0 Hz, 2H), 6.93 (d, J = 8.2 Hz, 1H), 6.88 (t, J = 7.4 Hz, 1H), 5.19 (s, 1H), 2.34 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 200.9, 160.0, 141.1, 138.2, 137.6, 137.5, 129.3, 128.5, 127.8, 127.4, 127.3, 125.5, 120.0, 119.6, 112.5, 74.8, 21.1; HR-ESIMS *m*/*z* calcd for C₂₁H₁₈NO [M+H]⁺ 300.1383, found 300.1382.

2-(3,4-Dimethoxyphenyl)-2-phenylindolin-3-one (3p)

According to general procedure with 1.2 eq oxidant, **3p** was obtained in 82% yield (28.3 mg). ¹H NMR (600 MHz, CDCl₃) δ 7.65 (d, *J* = 7.6 Hz, 1H), 7.49 (t, *J* = 7.5 Hz, 1H), 7.40-7.36 (m,

2H), 7.34-7.27 (m, 3H), 6.99 (d, J = 8.3 Hz, 1H), 6.97-6.91 (m, 2H), 6.87 (t, J = 7.1 Hz, 1H), 6.80 (d, J = 8.2 Hz, 1H), 5.25 (s, 1H), 3.85 (s, 3H), 3.78 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 201.2, 160.2, 149.0, 148.9, 141.5, 137.7, 133.4, 128.7, 128.0, 127.4, 125.6, 120.1, 119.8, 119.8, 112.6, 111.0, 110.9, 74.8, 56.0, 56.0; HR-ESIMS *m/z* calcd for C₂₂H₂₀NO₃ [M+H]⁺ 346.1438, found 346.1439.

2-Phenyl-2-(thiophen-2-yl)indolin-3-one (3s)

According to general procedure, **3s** was obtained in 71% yield (20.7 mg). ¹H NMR (600 MHz, CDCl₃) δ 7.67 (d, *J* = 7.7 Hz, 1H), 7.57-7.44

(m, 3H), 7.37-7.29 (m, 3H), 7.25 (d, J = 5.2 Hz, 1H), 7.12 (dd, J = 3.7, 1.2 Hz, 1H), 7.00 (dd, J = 5.1, 3.6 Hz, 1H), 6.96 (d, J = 8.2 Hz, 1H), 6.91 (t, J = 7.4 Hz, 1H), 5.35 (s, 1H); ¹³C NMR (151 MHz, CDCl₃) δ 199.4, 160.0, 144.6, 140.5, 137.9, 128.7, 128.4, 127.3, 126.9, 126.4, 125.9, 125.4, 120.2, 119.4, 112.8, 72.4; HR-ESIMS *m/z* calcd for C₁₈H₁₄NOS [M+H]⁺ 292.0791, found 292.0795.

4-Fluoro-2-phenyl-2-(phenylethynyl)indolin-3-one (4a)

According to general procedure, **4a** was obtained in 86% yield (28.1 mg). ¹H NMR (600 MHz, CDCl₃) δ 7.73-7.67 (m, 2H), 7.52-7.47 (m, 3H), 7.43-7.28 (m, 6H), 6.76 (d, *J* = 8.2 Hz, 1H), 6.52 (t, *J* = 8.5 Hz, 1H), 5.46 (s, 1H); ¹³C NMR (151 MHz,

CDCl₃) δ 192.2, 161.3, 139.7, 139.7, 137.4, 132.2, 129.0, 128.9, 128.8, 128.4, 126.2, 122.0, 108.3, 108.3, 106.3, 106.2, 85.9, 84.7, 67.5; HR-ESIMS *m/z* calcd for C₂₂H₁₅FNO [M+H]⁺ 328.1132, found 328.1133.

5-Chloro-2-phenyl-2-(phenylethynyl)indolin-3-one (4b)

According to general procedure, **4b** was obtained in 90% yield (30.8 mg). ¹H NMR (600 MHz, CDCl₃) δ 7.70-7.64 (m, 2H), 7.61 (s, 1H), 7.51-7.47 (m, 3H), 7.41-7.31 (m, 6H), 6.97 (d, J = 8.5 Hz, 1H), 5.34 (s, 1H); ¹³C NMR (151 MHz,

CDCl₃) δ 195.1, 158.9, 137.9, 137.3, 132.1, 129.0, 128.9, 128.8, 128.4, 126.1, 125.6, 121.9, 119.2, 114.0, 85.8, 84.7, 67.8; HR-ESIMS *m*/*z* calcd for C₂₂H₁₅ClNO [M+H]⁺ 344.0837, found 344.0841.

5-Methyl-2-phenyl-2-(phenylethynyl)indolin-3-one (4c)

According to general procedure, **4c** was obtained in 95% yield (30.8 mg). ¹H NMR (600 MHz, CDCl₃) δ 7.73-7.67 (m, 2H), 7.51-7.44 (m, 3H), 7.42-7.29 (m, 7H), 6.95 (d, *J* = 8.2 Hz, 1H), 5.16 (s, 1H), 2.33 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ

196.4, 159.1, 139.4, 138.1, 132.1, 130.1, 128.8, 128.8, 128.5, 128.4, 126.2, 125.7, 122.2, 118.4, 112.9, 86.6, 84.2, 67.5, 20.7; HR-ESIMS *m/z* calcd for C₂₃H₁₈NO [M+H]⁺ 324.1383, found 324.1388.

5-Methoxy-2-phenyl-2-(phenylethynyl)indolin-3-one (4d)

5.09 (s, 1H), 3.79 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 196.7, 156.4, 154.4, 138.0, 132.1, 128.8, 128.8, 128.5, 128.4, 126.2, 122.1, 118.6, 114.6, 105.9, 86.6, 84.2, 68.0, 55.9; HR-ESIMS *m/z* calcd for C₂₃H₁₈NO₂ [M+H]⁺ 340.1332, found 340.1333.

6-Methyl-2-phenyl-2-(phenylethynyl)indolin-3-one (4e)

According to general procedure, **4e** was obtained in 91% yield (29.4 mg). ¹H NMR (600 MHz, CDCl₃) δ 7.72-7.66 (m, 2H), 7.55 (d, *J* = 7.8 Hz, 1H), 7.49 (d, *J* = 6.6 Hz, 2H), 7.42-7.28 (m, 6H), 6.82 (s, 1H), 6.76 (d, *J* = 7.8 Hz, 1H), 5.23 (s, 1H),

2.42 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 195.6, 161.2, 149.8, 138.1, 132.1, 128.8, 128.8, 128.5, 128.4, 126.2, 126.1, 122.2, 122.2, 115.9, 112.9, 86.6, 84.3, 67.4, 22.7; HR-ESIMS *m/z* calcd for C₂₃H₁₈NO [M+H]⁺ 324.1383, found 324.1386.

7-Methyl-2-phenyl-2-(phenylethynyl)indolin-3-one (4f)

According to general procedure, 4f was obtained in 90% yield (29.1 mg). ¹H NMR (600 MHz, CDCl₃) δ 7.73-7.67 (m, 2H), 7.54
[(brd, J = 7.6 Hz, 1H), 7.50 (brd, J = 7.4 Hz, 2H), 7.43-7.29 (m, 7H), 6.89 (t, J = 7.2 Hz, 1H), 5.13 (s, 1H), 2.34 (s, 3H); ¹³C NMR

(151 MHz, CDCl₃) δ 196.7, 159.8, 138.0, 138.0, 132.1, 128.9, 128.8, 128.6, 128.4, 126.2, 123.7, 122.2, 122.0, 120.5, 117.7, 86.6, 84.3, 67.2, 15.9; HR-ESIMS *m/z* calcd for C₂₃H₁₈NO [M+H]⁺ 324.1383, found 324.1385.

2-(4-Fluorophenyl)-2-(phenylethynyl)indolin-3-one (4g)

According to general procedure, **4g** was obtained in 92% yield (30.1 mg). ¹H NMR (600 MHz, CDCl₃) δ 7.72-7.64 (m, 3H), 7.56 (t, *J* = 7.5 Hz, 1H), 7.48 (d, *J* = 7.1 Hz, 2H), 7.36-7.30 (m, 3H), 7.07 (t, *J* = 8.1 Hz, 2H), 7.02 (d, *J* = 8.1 Hz, 1H), 6.95 (t, *J* = 7.2

Hz, 1H), 5.31 (s, 1H); ¹³C NMR (151 MHz, CDCl₃) δ 196.1, 163.8, 162.2, 160.6, 138.1, 133.7, 133.7, 132.1, 129.0, 128.4, 128.2, 128.1, 126.5, 121.9, 120.6, 118.0, 115.8, 115.6, 113.0, 86.2, 84.3, 66.6; HR-ESIMS *m/z* calcd for C₂₂H₁₅FNO [M+H]⁺ 328.1132, found 328.1130.

2-(Phenylethynyl)-2-(4-(trifluoromethoxy)phenyl)indolin-3-one (4h)

According to general procedure, **4h** was obtained in 90% yield (35.3 mg). ¹H NMR (600 MHz, CDCl₃) δ 7.75 (d, J = 8.0 Hz, 2H), 7.67 (d, J = 7.6 Hz, 1H), 7.57 (t, J = 7.4 Hz, 1H), 7.48 (d, J = 7.0 Hz, 2H), 7.36-7.30 (m, 3H), 7.23 (d, J = 8.0 Hz, 2H), 7.04 (d, J =

8.1 Hz, 1H), 6.96 (t, J = 7.2 Hz, 1H), 5.33 (s, 1H); ¹³C NMR (151 MHz, CDCl₃)) δ 195.8, 160.6, 149.4, 138.3, 136.6, 132.1, 129.1, 128.4, 127.9, 126.4, 121.8, 121.3, 121.2, 120.7, 119.6, 117.9, 113.0, 86.0, 84.4, 66.5; HR-ESIMS *m/z* calcd for C₂₃H₁₅F₃NO₂ [M+H]⁺ 394.1049, found 394.1051.

2-(Phenylethynyl)-2-(p-tolyl)indolin-3-one (4i)

According to general procedure, **4i** was obtained in 93% yield (30.0 mg). ¹H NMR (600 MHz, CDCl₃) δ 7.63 (d, *J* = 7.7 Hz, 1H), 7.55 (d, *J* = 7.8 Hz, 2H), 7.51 (t, *J* = 7.5 Hz, 1H), 7.46 (d, *J* = 6.8 Hz, 2H), 7.34-7.25 (m, 3H), 7.17 (d, *J* = 7.7 Hz, 2H), 6.97

(d, J = 8.2 Hz, 1H), 6.89 (t, J = 7.3 Hz, 1H), 5.28 (s, 1H), 2.33 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 196.5, 160.6, 138.4, 137.9, 134.9, 132.1, 129.6, 128.8, 128.4, 126.4, 126.1, 122.2, 120.3, 118.2, 112.8, 86.6, 84.2, 67.0, 21.2; HR-ESIMS *m/z* calcd for C₂₃H₁₈NO [M+H]⁺ 324.1383, found 324.1384.

2-(3-Methoxyphenyl)-2-(phenylethynyl)indolin-3-one (4j)

According to general procedure, **4j** was obtained in 95% yield (32.2 mg). ¹H NMR (600 MHz, CDCl₃) δ 7.63 (d, *J* = 7.6 Hz, 1H), 7.51 (t, *J* = 7.5 Hz, 1H), 7.46 (d, *J* = 6.8 Hz, 2H), 7.34-7.25 (m, 6H), 6.97 (d, *J* = 7.2 Hz, 1H), 6.93-6.84 (m, 2H), 5.30 (s, 1H),

3.79 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 196.1, 160.6, 156.0, 139.4, 138.0, 132.1,

129.9, 128.9, 128.4, 126.4, 122.1, 120.4, 118.4, 118.1, 113.8, 112.8, 112.2, 86.3, 84.2, 67.0, 55.4; HR-ESIMS *m/z* calcd for C₂₃H₁₈NO₂ [M+H]⁺ 340.1332, found 340.1335.

2-(Phenylethynyl)-2-(*o*-tolyl)indolin-3-one (4k)

According to general procedure, **4k** was obtained in 94% yield (30.4 mg). ¹H NMR (600 MHz, CDCl₃) δ 8.03 (d, *J* = 6.6 Hz, 1H), 7.73 (d, *J* = 7.5 Hz, 1H), 7.53 (t, *J* = 7.5 Hz, 1H), 7.47-7.43 (m, 2H), 7.35-7.22 (m, 5H), 7.17-7013 (m, 1H), 6.97-6.94 (m,

2H), 5.17 (s, 1H), 2.17 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 196.8, 159.6, 137.7, 137.2, 135.1, 132.1, 132.1, 129.7, 128.9, 128.9, 128.4, 126.0, 125.7, 122.1, 120.4, 120.0, 113.3, 86.67, 84.7, 68.6, 20.4; HR-ESIMS *m/z* calcd for C₂₃H₁₈NO [M+H]⁺ 324.1383, found 324.1386.

2-(2-Methoxyphenyl)-2-(phenylethynyl)indolin-3-one (41)

According to general procedure, **41** was obtained in 93% yield (31.5 mg). ¹H NMR (600 MHz, CDCl₃) δ 7.95 (dd, J = 7.7, 1.7 Hz, 1H), 7.76 (d, J = 7.7 Hz, 1H), 7.52-7.47 (m, 3H), 7.36-7.27 (m, 4H), 7.04 (td, J = 7.6, 1.1 Hz, 1H), 6.96-6.86 (m, 3H), 5.15

(s, 1H), 3.55 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 197.6, 159.2, 157.2, 137.0, 132.1, 130.3, 130.2, 128.8, 128.3, 127.0, 125.3, 122.2, 121.0, 120.8, 119.8, 113.0, 112.3, 86.0, 85.0, 66.0, 55.8; HR-ESIMS *m*/*z* calcd for C₂₃H₁₈NO₂ [M+H]⁺ 340.1332, found 340.1337.

2-Methyl-2-(phenylethynyl)indolin-3-one (4m)

According to general procedure, **4m** was obtained in 92% yield (22.7 mg). ¹H NMR (600 MHz, CDCl₃) δ 7.68 (d, J = 7.7 Hz, 1H), 7.50 (ddd, J = 8.4, 7.1, 1.4 Hz, 1H), 7.41 (dd, J = 8.0, 1.7 Hz, 2H),

7.32-7.25 (m, 3H), 6.93-6.88 (m, 2H), 4.98 (s, 1H), 1.72 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 198.6, 159.8, 137.8, 132.0, 128.6, 128.3, 125.8, 122.2, 120.0, 119.1, 113.1, 87.1, 82.8, 60.8, 25.5; HR-ESIMS *m*/*z* calcd for C₁₇H₁₄NO [M+H]⁺ 248.1070, found 248.1073.

5-Fluoro-2-methyl-2-(phenylethynyl)indolin-3-one (4n)

According to general procedure, **4n** was obtained in 90% yield (23.8 mg). ¹H NMR (600 MHz, CDCl₃) δ 7.42-7.37 (m, 2H), 7.34-7.24 (m, 5H), 6.88 (dd, J = 8.8, 3.7 Hz, 1H), 4.87 (s, 1H),

1.71 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 198.4, 157.9, 156.4, 156.3, 132.0, 128.8, 128.3, 126.0, 125.8, 122.0, 119.7, 119.6, 114.5, 114.4, 110.6, 110.5, 86.8, 83.1, 61.9, 25.5; HR-ESIMS *m/z* calcd for C₁₇H₁₃FNO [M+H]⁺ 266.0976, found 266.0979.

2-Ethyl-2-(phenylethynyl)indolin-3-one (40)

According to general procedure, **40** was obtained in 90% yield (24.5 mg). ¹H NMR (600 MHz, CDCl₃) δ 7.67 (d, *J* = 7.7 Hz, 1H), 7.52-7.46 (m, 1H), 7.43-7.38 (m, 2H), 7.34-7.22 (m, 3H), 6.97-6.81 (m, 2H), 4.94 (s, 1H), 2.15-2.07 (m, 1H), 1.95-1.89 (m,

1H), 1.11 (t, J = 7.4 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 198.6, 160.3, 137.7, 132.0, 128.6, 128.3, 125.6, 122.3, 119.9, 119.9, 113.1, 86.3, 83.6, 65.0, 31.9, 8.7; HR-ESIMS *m/z* calcd for C₁₈H₁₆NO [M+H]⁺ 262.1226, found 262.1224.

Ethyl 5-(3-oxo-2-(phenylethynyl)indolin-2-yl)pentanoate (4p)

According to general procedure, 4p was obtained in 91% yield (32.8 mg). ¹H NMR (600 MHz, CDCl₃) δ 7.66 (d, J = 7.7 Hz, 1H), 7.50 (ddd, J = 8.3, 7.1, 1.4 Hz, 1H), 7.39 (dd, J = 8.0, 1.7)

Hz, 2H), 7.30-7.25 (m, 3H), 6.93-6.87 (m, 2H), 4.91 (s, 1H), 4.11 (q, J = 7.1 Hz, 2H), 2.32 (t, J = 7.2 Hz, 2H), 2.07 (ddd, J = 13.4, 11.9, 3.9 Hz, 1H), 1.87 (ddd, J = 13.4, 10.9, 4.6 Hz, 1H), 1.75-1.67 (m, 3H), 1.51-1.43 (m, 1H), 1.23 (t, J = 7.1 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 198.4, 173.7, 160.3, 137.8, 132.1, 128.7, 128.3, 125.7, 122.2, 120.0, 119.8, 113.2, 86.3, 83.7, 64.4, 60.4, 38.2, 34.2, 24.5, 23.9, 14.4; HR-ESIMS *m/z* calcd for C₂₃H₂₄NO₃ [M+H]⁺ 362.1751, found 362.1753.

1-Methyl-2-phenyl-2-(phenylethynyl)indolin-3-one (4q)

According to general procedure, **4q** was obtained in 92% yield (29.7 mg). ¹H NMR (600 MHz, CDCl₃) δ 7.67-7.63 (m, 1H), 7.60-7.50 (m, 5H), 7.44-7.29 (m, 6H), 6.92 (d, *J* = 8.3 Hz, 1H), 6.83 (t,

J = 7.3 Hz, 1H), 3.07 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 195.8, 161.3, 138.2, 135.9, 132.2, 129.0, 128.9, 128.7, 128.4, 126.7, 126.5, 122.1, 118.3, 117.8, 108.9, 86.0, 84.1, 72.4, 29.4; HR-ESIMS m/z calcd for C₂₃H₁₈NO [M+H]⁺ 324.1383, found 324.1387.

1-Benzyl-2-phenyl-2-(phenylethynyl)indolin-3-one (4r)

(37.5 mg). ¹H NMR (600 MHz, CDCl₃) δ 7.70 (d, J = 7.7 Hz, 1H), 7.57 (d, J = 7.3 Hz, 2H), 7.45 (t, J = 7.7 Hz, 1H), 7.42-7.22 (m, 13H), 6.84 (t, J = 7.4 Hz, 1H), 6.67 (d, J = 8.3 Hz, 1H), 4.68 (d, J = 16.6 Hz, 1H), 4.56 $(d, J = 16.6 \text{ Hz}, 1\text{H}); {}^{13}\text{C} \text{ NMR} (151 \text{ MHz}, \text{CDCl}_3) \delta 195.9, 160.8, 138.1, 137.4, 136.2,$ 132.0, 129.0, 128.8, 128.8, 128.6, 128.3, 127.3, 127.2, 126.9, 126.4, 122.0, 118.6, 118.2, 109.8, 86.9, 84.3, 72.8, 48.7; HR-ESIMS m/z calcd for $C_{29}H_{22}NO$ [M+H]⁺ 400.1696, found 400.1701.

2-Allyl-5-chloro-2-phenylindolin-3-one (6b)

According to general procedure, 6b was obtained in 92% yield (26.0 mg).¹H NMR (600 MHz, CDCl₃) & 7.62-7.56 (m, 2H), 7.53 (d, J = 2.2 Hz, 1H), 7.43 (dd, J = 8.7, 2.2 Hz, 1H), 7.38-7.34 (m,

According to general procedure, 4r was obtained in 94% yield

2H), 7.32-7.28 (m, 1H), 6.93 (d, J = 8.6 Hz, 1H), 5.61-5.52 (m, 1H), 5.18 (dd, J = 17.0, 1.1 Hz, 1H), 5.11-5.07 (m, 2H), 3.04 (dd, J = 14.0, 5.9 Hz, 1H), 2.66 (dd, J = 14.0, 8.4Hz, 1H). ¹³C NMR (151 MHz, CDCl₃) δ 200.1, 158.6, 138.2, 137.4, 132.4, 128.9, 128.0, 125.9, 124.8, 124.6, 120.8, 120.2, 113.6, 71.7, 43.0; HR-ESIMS m/z calcd for C₁₇H₁₅ClNO [M+H]⁺ 284.0837, found 284.0838.

2-Allyl-5-methyl-2-phenylindolin-3-one (6c)

According to general procedure, 6c was obtained in 85% yield (22.4 mg). ¹H NMR (600 MHz, CDCl₃) δ 7.64-7.60 (m, 2H), 7.40-7.30 (m, 4H), 7.29-7.26 (m, 1H), 6.90 (d, J = 8.3 Hz, 1H), 5.63-

5.54 (m, 1H), 5.19-5.14 (m, 1H), 5.10-5.05 (m, 1H), 4.94 (s, 1H), 3.07-3.02 (m, 1H), 2.66 (dd, J = 14.0, 8.3 Hz, 1H), 2.29 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 201.4, 158.9, 138.9, 132.8, 129.0, 128.7, 127.7, 126.0, 124.8, 119.9, 119.8, 112.4, 71.1, 43.0, 20.7; HR-ESIMS *m/z* calcd for C₁₈H₁₈NO [M+H]⁺ 264.1383, found 264.1381.

2-Allyl-5-methoxy-2-phenylindolin-3-one (6d)

According to general procedure, **6d** was obtained in 90% yield (25.1 mg). ¹H NMR (600 MHz, CDCl₃) δ 7.66-7.61 (m, 2H), 7.37-7.33 (m, 2H), 7.29-7.26 (m, 1H), 7.18 (dd, *J* = 8.8, 2.7 Hz,

1H), 7.01 (d, J = 2.7 Hz, 1H), 6.94 (d, J = 8.8 Hz, 1H), 5.63-5.54 (m, 1H), 5.17 (dd, J = 17.0, 1.2 Hz, 1H), 5.10-5.06 (m, 1H), 4.83 (s, 1H), 3.76 (s, 3H), 3.04 (dd, J = 14.0, 6.0 Hz, 1H), 2.67 (dd, J = 14.0, 8.3 Hz, 1H). ¹³C NMR (151 MHz, CDCl₃) δ 201.7, 156.2, 153.8, 139.0, 132.8, 128.7, 128.1, 127.1, 126.1, 120.1, 119.8, 114.1, 105.2, 71.7, 55.9, 43.1; HR-ESIMS *m*/*z* calcd for C₁₈H₁₈NO₂ [M+H]⁺ 280.1332, found 280.1333.

2-Allyl-6-methyl-2-phenylindolin-3-one (6e)

According to general procedure, **6e** was obtained in 87% yield (22.9 mg). ¹H NMR (600 MHz, CDCl₃) δ 7.60 (d, *J* = 7.6 Hz, 2H), 7.45 (d, *J* = 7.9 Hz, 1H), 7.36-7.31 (m, 2H), 7.26 (dd, *J* = 8.4, 6.2 Hz, 1H), 6.76 (s, 1H), 6.65 (d, *J* = 7.9 Hz, 1H), 5.62-5.53 (m, 1H), 5.15 (d, *J* = 17.0 Hz, 1H), 5.06 (d, *J* = 10.1 Hz, 1H), 5.01 (s, 1H), 3.03 (dd, *J* = 14.0, 5.9 Hz, 1H), 2.64 (dd, *J* = 14.0, 8.4 Hz, 1H), 2.38 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 200.5, 160.9, 149.2, 138.9, 132.8, 128.7, 127.7, 126.0, 125.3, 121.2, 119.8, 117.4, 112.4, 71.0, 42.9, 22.6; HR-ESIMS *m/z* calcd for C₁₈H₁₈NO [M+H]⁺ 264.1383, found 264.1381.

2-Allyl-7-methyl-2-phenylindolin-3-one (6f)

According to general procedure, **6f** was obtained in 90% yield (23.7 mg). ¹H NMR (600 MHz, CDCl₃) δ 7.66-7.62 (m, 2H), 7.45 (d, *J* = 7.8 Hz, 1H), 7.38-7.34 (m, 2H), 7.33 (d, *J* = 7.1 Hz, 1H), 7.30-7.27 (m, 1H), 6.80 (t, *J* = 7.4 Hz, 1H), 5.64-5.56 (m, 1H), 5.17 (dd, *J* = 17.0, 1.2 Hz, 1H), 5.11-5.07 (m, 1H), 4.85 (s, 1H), 3.10-3.06 (m, 1H), 2.65 (dd, *J* = 14.0, 8.4 Hz, 1H), 2.32 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 201.6, 159.6, 138.8, 137.4, 132.9, 128.7, 127.8, 126.0, 122.9, 121.5, 119.8, 119.6, 119.2, 70.8, 43.0, 15.9; HR-ESIMS *m/z* calcd for C₁₈H₁₈NO [M+H]⁺ 264.1383, found 264.1381.

2-Allyl-2-methylindolin-3-one (6g)

According to general procedure, **6g** was obtained in 91% yield (17.0 mg). ¹H NMR (600 MHz, CDCl₃) δ 7.61 (d, *J* = 7.6 Hz, 1H), 7.45 (t, *J* = 7.3 Hz, 1H), 6.92-6.76 (m, 2H), 5.77-5.70 (m, 1H), 5.15-5.08 (m,

2H), 4.66 (s, 1H), 2.45-2.39 (m, 1H), 2.39-2.32 (m, 1H), 1.32 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 204.6, 160.0, 137.4, 132.5, 125.0, 120.4, 119.5, 119.0, 112.6, 66.4, 42.1, 22.5; HR-ESIMS *m*/*z* calcd for C₁₂H₁₄NO [M+H]⁺ 188.1070, found 188.1071.

2-Allyl-2-(4-fluorophenyl)indolin-3-one (6h)

According to general procedure, **6h** was obtained in 92% yield (24.5 mg).¹H NMR (600 MHz, CDCl₃) δ 7.65-7.56 (m, 3H), 7.50 (ddd, *J* = 8.3, 7.1, 1.3 Hz, 1H), 7.06-7.01 (m, 2H), 6.98 (d, *J* = 8.2 Hz, 1H),

6.88-6.84 (m, 1H), 5.60-5.52 (m, 1H), 5.17 (dd, J = 17.0, 1.1 Hz, 1H), 5.12-5.08 (m, 1H), 5.06 (s, 1H), 3.06-2.96 (m, 1H), 2.61 (dd, J = 14.1, 8.5 Hz, 1H). ¹³C NMR (151 MHz, CDCl₃) δ 201.2, 163.3, 161.7, 160.3, 137.6, 134.4, 134.4, 132.4, 127.9, 127.8, 125.6, 120.2, 119.7, 119.6, 115.6, 115.5, 112.6, 70.2, 43.1; HR-ESIMS *m/z* calcd for C₁₇H₁₅FNO [M+H]⁺ 268.1132, found 268.1134.

2-Allyl-2-(*p*-tolyl)indolin-3-one (6i)

According to general procedure, **6i** was obtained in 88% yield (23.1 mg).¹H NMR (600 MHz, CDCl₃) δ 7.57 (d, *J* = 7.7 Hz, 1H), 7.51-7.46 (m, 3H), 7.16 (d, *J* = 8.1 Hz, 2H), 6.96 (d, *J* = 8.2 Hz,

1H), 6.83 (t, J = 7.4 Hz, 1H), 5.64-5.57 (m, 1H), 5.17 (dd, J = 17.0, 1.2 Hz, 1H), 5.10-5.05 (m, 2H), 3.04 (dd, J = 14.0, 5.9 Hz, 1H), 2.63 (dd, J = 14.0, 8.4 Hz, 1H), 2.33 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 201.4, 160.4, 137.5, 137.4, 135.6, 132.8, 129.5, 125.9, 125.6, 119.8, 119.7, 119.3, 112.3, 70.7, 42.7, 21.1; HR-ESIMS *m/z* calcd for C₁₈H₁₈NO [M+H]⁺ 264.1383, found 264.1383.

2-Allyl-2-(4-(trifluoromethoxy)phenyl)indolin-3-one (6j)

According to general procedure, **6j** was obtained in 93% yield (30.9 mg). ¹H NMR (600 MHz, CDCl₃) δ 7.70-7.67 (m, 2H), 7.59 (d, *J* = 7.7 Hz, 1H), 7.51 (ddd, *J* = 8.3, 7.1, 1.3 Hz, 1H), 7.20 (d, J = 8.1 Hz, 2H), 6.99 (d, J = 8.3 Hz, 1H), 6.89-6.85 (m, 1H), 5.60-5.51 (m, 1H), 5.18 (dd, J = 17.0, 1.1 Hz, 1H), 5.13-5.10 (m, 1H), 5.05 (s, 1H), 3.05-3.01 (m, 1H), 2.62 (dd, J = 14.1, 8.5 Hz, 1H). ¹³C NMR (151 MHz, CDCl₃) δ 200.8, 160.3, 148.9, 137.8, 137.4, 132.2, 127.7, 125.6, 121.4, 121.1, 120.4, 119.8, 119.6, 112.7, 70.2, 43.2; HR-ESIMS m/z calcd for C₁₈H₁₅F₃NO₂ [M+H]⁺ 334.1049, found 334.1052.

2-Allyl-2-(3-methoxyphenyl)indolin-3-one (6k)

According to general procedure, **6k** was obtained in 95% yield (26.5 mg). ¹H NMR (600 MHz, CDCl₃) δ 7.57-7.54 (m, 1H), 7.46 (ddd, *J* = 8.3, 7.1, 1.3 Hz, 1H), 7.26-7.24 (m, 1H), 7.21-7.16 (m, 2H), 6.94 (d,

J = 8.2 Hz, 1H), 6.83-6.79 (m, 2H), 5.62-5.54 (m, 1H), 5.15 (dd, J = 17.0, 1.2 Hz, 1H), 5.09-5.03 (m, 2H), 3.79 (s, 3H), 3.05-3.01 (m, 1H), 2.60 (dd, J = 14.0, 8.5 Hz, 1H). ¹³C NMR (151 MHz, CDCl₃) δ 201.0, 160.3, 159.9, 140.3, 137.5, 132.8, 129.8, 125.6, 119.9, 119.7, 119.4, 118.4, 112.8, 112.4, 112.2, 70.7, 55.4, 43.0; HR-ESIMS *m/z* calcd for C₁₈H₁₈NO₂ [M+H]⁺ 280.1332, found 280.1331.

2-Allyl-2-(o-tolyl)indolin-3-one (6l)

According to general procedure, **61** was obtained in 94% yield (24.7 mg). ¹H NMR (600 MHz, CDCl₃) δ 7.66 (d, J = 7.7 Hz, 1H), 7.59 (dd, J = 7.3, 1.9 Hz, 1H), 7.49 (ddd, J = 8.3, 7.2, 1.3 Hz, 1H), 7.25-7.19 (m, 2H), 7.16-7.12 (m, 1H), 6.90-6.86 (m, 2H), 5.81-5.69 (m, 1H), 5.17 (dd, J = 17.0, 1.5 Hz, 1H), 5.11-5.04 (m, 1H), 4.99 (s, 1H), 3.15 (dd, J = 14.0, 6.3 Hz, 1H), 2.78 (dd, J = 14.0, 7.7 Hz, 1H), 2.17 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 202.5, 159.8, 137.8, 137.4, 136.9, 132.5, 132.4, 128.1, 128.0, 126.0, 124.8, 121.3, 120.0, 119.4, 112.5, 71.5, 41.9, 21.4; HR-ESIMS *m/z* calcd for C₁₈H₁₈NO [M+H]⁺ 264.1383, found 264.1385.

5-Chloro-3-oxo-2-phenylindoline-2-carbonitrile (6m)

According to general procedure, **6m** was obtained in 92% yield (24.6 mg). ¹H NMR (600 MHz, CDCl₃) δ 7.61 (d, *J* = 2.1 Hz, 1H), 7.56 (dd, *J* = 8.7, 2.2 Hz, 1H), 7.54-7.50 (m, 2H), 7.45-7.41 (m,

3H), 7.02 (d, J = 8.7 Hz, 1H), 5.47 (s, 1H). ¹³C NMR (151 MHz, CDCl₃) δ 189.8, 158.6,

139.0, 132.8, 130.1, 129.6, 127.0, 125.9, 125.4, 118.1, 116.4, 114.1, 66.2; HR-ESIMS *m/z* calcd for C₁₅H₁₀ClN₂O [M+H]⁺ 269.0476, found 269.0477.

5-Methyl-3-oxo-2-phenylindoline-2-carbonitrile (6n)

According to general procedure, **6n** was obtained in 85% yield (21.1 mg). ¹H NMR (600 MHz, CDCl₃) δ 7.58-7.53 (m, 2H), 7.49-7.40 (m, 6H), 6.98 (d, *J* = 8.5 Hz, 1H), 2.35 (s, 3H). ¹³C NMR (151

MHz, CDCl₃) δ 190.9, 158.6, 140.2, 133.4, 131.4, 129.6, 129.3, 125.8, 125.3, 117.1, 116.8, 112.77, 65.9, 20.5; HR-ESIMS *m*/*z* calcd for C₁₆H₁₃N₂O [M+H]⁺ 249.1022, found 249.1024.

5-Methoxy-3-oxo-2-phenylindoline-2-carbonitrile (60)

According to general procedure, **60** was obtained in 90% yield (23.7 mg). ¹H NMR (600 MHz, CDCl₃) δ 7.56-7.53 (m, 2H), 7.45-7.40 (m, 3H), 7.29 (dd, *J* = 8.9, 2.7 Hz, 1H), 7.05 (d, *J* = 2.6

Hz, 1H), 7.02 (d, J = 8.9 Hz, 1H), 5.18 (s, 1H), 3.80 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 191.2, 156.0, 155.2, 133.5, 129.8, 129.6, 129.5, 125.5, 117.6, 117.0, 114.5, 106.1, 66.6, 56.0; HR-ESIMS *m*/*z* calcd for C₁₆H₁₃N₂O₂ [M+H]⁺ 265.0972, found 265.0971.

2-(4-Fluorophenyl)-3-oxoindoline-2-carbonitrile (6p)

According to general procedure, **6p** was obtained in 92% yield (23.1 mg). ¹H NMR (600 MHz, CDCl₃) δ 7.65 (dd, J = 7.8, 0.5 Hz, 1H), 7.62 (ddd, J = 8.4, 7.2, 1.3 Hz, 1H), 7.56-7.52 (m, 2H), 7.13-7.08 (m,

2H), 7.06-7.00 (m, 2H), 5.44 (s, 1H). ¹³C NMR (151 MHz, CDCl₃) δ 190.7, 164.4, 162.8, 160.1, 139.2, 129.1, 129.1, 127.6, 127.6, 126.8, 121.8, 116.9, 116.8, 116.3, 116.5, 113.0, 64.9; HR-ESIMS *m*/*z* calcd for C₁₅H₁₀FN₂O [M+H]⁺ 253.0772, found 253.0771.

3-Oxo-2-(p-tolyl)indoline-2-carbonitrile (6q)

According to general procedure, **6q** was obtained in 88% yield (21.8 mg). ¹H NMR (600 MHz, CDCl₃) δ 7.66 (d, J = 7.8 Hz, 1H),

7.61 (ddd, J = 8.4, 7.3, 1.3 Hz, 1H), 7.42 (d, J = 8.3 Hz, 2H), 7.22 (d, J = 8.0 Hz, 2H), 7.06-6.98 (m, 2H), 5.36 (s, 1H), 2.36 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 191.2, 160.3, 140.0, 139.0, 130.3, 130.2, 126.8, 125.4, 121.6, 117.1, 116.9, 112.8, 65.5, 21.3; HR-ESIMS *m/z* calcd for C₁₆H₁₃N₂O [M+H]⁺ 249.1022, found 249.1025.

3-Oxo-2-(4-(trifluoromethoxy)phenyl)indoline-2-carbonitrile (6r)

According to general procedure, **6r** was obtained in 93% yield (29.5 mg). ¹H NMR (600 MHz, CDCl₃) δ 7.70-7.60 (m, 4H), 7.28 (d, *J* = 8.8 Hz, 2H), 7.10-7.02 (m, 2H), 5.45 (s, 1H). ¹³C

NMR (151 MHz, CDCl₃) δ 190.3, 160.1, 150.3, 139.3, 131.9, 127.4, 126.9, 122.0, 121.8, 121.3, 116.8, 116.6, 113.0, 64.8; HR-ESIMS *m*/*z* calcd for C₁₆H₁₀F₃N₂O₂ [M+H]⁺ 319.0689, found 319.0688.

2-(1H-Indol-3-yl)-2-(phenylethynyl)indolin-3-one (8a)

According to general procedure, **8a** was obtained in 66% yield (22.9 mg). ¹H NMR (600 MHz, acetone- d_6) δ 10.34 (s, 1H), 7.65-7.57 (m, 3H), 7.51-7.49 (m, 3H), 7.45-7.34 (m, 4H), 7.27 (s, 1H), 7.14-7.06 (m, 2H), 6.97-6.89 (m, 2H); ¹³C NMR (151 MHz,

acetone- d_6) δ 197.4, 161.8, 138.8, 138.5, 132.6, 129.6, 129.5, 126.0, 125.8, 125.4, 123.5, 122.7, 120.9, 120.1, 119.7, 119.1, 114.0, 113.6, 112.6, 88.5, 83.2, 64.0; HR-ESIMS *m/z* calcd for C₂₄H₁₇N₂O [M+H]⁺ 349.1335, found 349.1339.

4-Methyl-2-(4-methyl-1*H*-indol-3-yl)-2-(phenylethynyl)indolin-3-one (8b)

According to general procedure, **8b** was obtained in 60% yield (22.5 mg). ¹H NMR (600 MHz, CDCl₃) δ 8.21 (s, 1H), 7.52 (d, *J* = 2.6 Hz, 1H), 7.45-7.42 (m, 2H), 7.37 (t, *J* = 7.7 Hz, 1H), 7.30-7.26 (t, *J* = 8.3 Hz, 3H), 7.22 (d, *J* = 8.1 Hz, 1H), 7.09 (t, *J* = 7.7 Hz, 1H), 6.91 (d, *J* = 7.1 Hz, 1H), 6.74 (d, *J* = 8.1 Hz, 1H), 6.71 (d, *J* = 7.3

Hz, 1H), 5.20 (s, 1H), 2.67 (s, 3H), 2.65 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 197.6, 160.1, 141.2, 138.1, 137.1, 132.1, 130.4, 128.6, 128.3, 125.7, 124.6, 122.8, 122.6, 122.6, 122.0, 118.5, 113.5, 110.9, 109.5, 89.2, 82.9, 63.6, 22.1, 18.6; HR-ESIMS *m/z* calcd for C₂₆H₂₁N₂O [M+H]⁺ 377.1648, found 377.1645.

5-Methyl-2-(5-methyl-1*H*-indol-3-yl)-2-(phenylethynyl)indolin-3-one (8c)

According to general procedure, **8c** was obtained in 68% yield (25.5 mg). ¹H NMR (600 MHz, CDCl₃) δ 8.08 (s, 1H), 7.55 (s, 1H), 7.49-7.45 (m, 3H), 7.41 (dd, J = 8.3, 1.8 Hz, 1H), 7.31-7.27 (m, 3H), 7.24 (d, J = 8.3 Hz, 1H), 7.22-7.20 (m, 1H), 6.99 (dd, J = 8.3, 1.6 Hz, 1H), 6.91 (d, J = 8.3 Hz, 1H), 5.12 (s, 1H),

2.36 (s, 3H), 2.33 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 197.3, 158.7, 139.5, 135.5, 132.2, 129.9, 129.6, 128.7, 128.4, 125.4, 124.9, 124.4, 124.4, 122.5, 119.6, 119.5, 113.3, 113.2, 111.3, 87.0, 83.3, 63.7, 21.8, 20.8; HR-ESIMS *m*/*z* calcd for C₂₆H₂₁N₂O [M+H]⁺ 377.1648, found 377.1648.

6-Methyl-2-(6-methyl-1*H*-indol-3-yl)-2-(phenylethynyl)indolin-3-one (8d)

According to general procedure, **8d** was obtained in 62% yield (23.3 mg). ¹H NMR (600 MHz, CDCl₃) δ 8.11 (s, 1H), 7.63 (d, J = 7.9 Hz, 1H), 7.48-7.45 (m, 2H), 7.41 (d, J = 2.6 Hz, 1H), 7.33-7.27 (m, 3H), 7.25 (s, 1H), 7.13 (s, 1H), 6.84 (dd, J = 8.2, 1.4 Hz, 1H), 6.78 (d, J = 7.9 Hz, 1H), 6.76 (s, 1H), 5.18 (s, 1H),

2.43 (s, 3H), 2.38 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 196.6, 160.7, 149.9, 137.6, 132.5, 132.2, 128.7, 128.4, 125.8, 124.0, 122.5, 122.4, 122.1, 121.9, 119.4, 117.1, 113.6, 113.1, 111.6, 86.9, 83.4, 63.6, 22.8, 21.8; HR-ESIMS *m*/*z* calcd for C₂₆H₂₁N₂O [M+H]⁺ 377.1648, found 377.1647.

7-Methyl-2-(7-methyl-1*H*-indol-3-yl)-2-(phenylethynyl)indolin-3-one (8e)

According to general procedure, **8e** was obtained in 64% yield (24.1 mg). ¹H NMR (600 MHz, CDCl₃) δ 8.26 (s, 1H), 7.62 (d, *J* = 7.7 Hz, 1H), 7.51 (d, *J* = 2.7 Hz, 1H), 7.49-7.45 (m, 2H), 7.42-7.40 (m, 1H), 7.33-7.26 (m, 3H), 7.18 (d, *J* = 7.7 Hz, 1H), 6.96-6.90 (m, 3H), 5.09 (s, 1H), 2.44 (s, 3H), 2.27 (s, 3H); ¹³C NMR (151 MHz, 14) = 1.00 MK (151 MHz).

CDCl₃) δ 197.7, 159.5, 138.2, 136.8, 132.2, 128.7, 128.4, 124.4, 124.0, 123.4, 123.2, 122.4, 122.2, 120.9, 120.6, 120.3, 118.8, 117.4, 114.1, 86.8, 83.5, 63.5, 16.7, 15.9; HR-ESIMS *m/z* calcd for C₂₆H₂₁N₂O [M+H]⁺ 377.1648, found 377.1649.

5-Chloro-2-(5-chloro-1*H*-indol-3-yl)-2-(phenylethynyl)indolin-3-one (8f)

According to general procedure, **8f** was obtained in 60% yield (24.9 mg). ¹H NMR (600 MHz, CDCl₃) δ 8.37 (s, 1H), 7.70 (d, J = 2.2 Hz, 1H), 7.54 (dd, J = 8.7, 2.2 Hz, 1H), 7.47-7.41 (m, 4H), 7.34-7.27 (m, 3H), 7.24 (s, 1H), 7.09 (dd, J = 8.7, 2.0 Hz, 1H), 6.96 (d, J = 8.6 Hz, 1H), 5.26 (s, 1H); ¹³C NMR (151 MHz,

CDCl₃) δ 195.8, 158.4, 138.3, 135.5, 132.2, 129.1, 128.5, 126.1, 125.8, 125.7, 125.5, 125.5, 123.2, 121.9, 120.0, 119.3, 114.4, 112.9, 112.8, 85.6, 84.0, 63.9; HR-ESIMS *m/z* calcd for C₂₄H₁₅Cl₂N₂O [M+H]⁺ 417.0556, found 417.0556.

5-Methoxy-2-(5-methoxy-1*H*-indol-3-yl)-2-(phenylethynyl)indolin-3-one (8g)

According to general procedure, **8g** was obtained in 67% yield (27.3 mg). ¹H NMR (600 MHz, CDCl₃) δ 8.15 (s, 1H), 7.51-7.44 (m, 3H), 7.33-7.27 (m, 3H), 7.23 (d, *J* = 8.8 Hz, 2H), 7.19 (d, *J* = 2.7 Hz, 1H), 6.96 (d, *J* = 8.8 Hz, 1H), 6.84 (d, *J* = 2.4 Hz, 1H), 6.80 (dd, *J* = 8.8, 2.5 Hz, 1H), 5.04 (s, 1H), 3.82

(s, 3H), 3.62 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 197.6, 156.1, 154.4, 154.3, 132.3, 132.2, 128.8, 128.7, 128.4, 125.1, 124.9, 122.4, 119.9, 114.9, 113.4, 112.9, 112.4, 105.6, 101.6, 86.6, 83.6, 64.3, 56.0, 55.6; HR-ESIMS *m*/*z* calcd for C₂₆H₂₁N₂O₃ [M+H]⁺ 409.1547, found 409.1545.

2-((4-Fluorophenyl)ethynyl)-2-(1*H*-indol-3-yl)indolin-3-one (8h)

According to general procedure, **8h** was obtained in 64% yield (23.4 mg). ¹H NMR (600 MHz, CDCl₃) δ 8.29 (s, 1H), 7.75 (dd, J = 7.9, 1.2 Hz, 1H), 7.58 (ddd, J = 8.4, 7.1, 1.4 Hz, 1H), 7.47-7.43 (m, 3H), 7.40 (d, J = 8.0 Hz, 1H), 7.35 (d, J = 8.2 Hz, 1H), 7.15 (ddd, J = 8.2, 7.0, 1.1 Hz, 1H), 7.03-6.95 (m, 5H), 5.27 (s,

1H); ¹³C NMR (151 MHz, CDCl₃) δ 197.2, 163.7, 162.0, 160.2, 138.3, 137.2, 134.2, 134.1, 126.1, 124.6, 124.5, 122.8, 120.4, 120.3, 119.7, 119.2, 118.4, 118.4, 115.8, 115.6, 113.4, 113.1, 111.8, 86.3, 82.5, 63.3; HR-ESIMS *m*/*z* calcd for C₂₄H₁₆FN₂O [M+H]⁺ 367.1241, found 367.1239.

2-(1*H*-Indol-3-yl)-2-((4-methoxyphenyl)ethynyl)indolin-3-one (8i)

According to general procedure, **8i** was obtained in 62% yield (23.4 mg). ¹H NMR (600 MHz, CDCl₃) δ 8.20 (s, 1H), 7.78-7.73 (m, 1H), 7.60-7.56 (m, 1H), 7.51 (s, 1H), 7.43-7.39 (m, 3H), 7.35 (d, *J* = 8.2 Hz, 1H), 7.15 (t, *J* = 7.5 Hz, 1H), 7.01 (t, *J* = 7.6 Hz, 1H), 6.97 (d, *J* = 7.7 Hz, 2H), 6.82 (d, *J* = 8.7 Hz,

2H), 5.25 (s, 1H), 3.81 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 197.3, 160.2, 159.9, 138.1, 137.1, 133.6, 126.0, 124.6, 124.5, 122.6, 120.2, 120.1, 119.7, 119.2, 114.3, 113.9, 113.8, 113.0, 111.7, 85.0, 83.4, 63.3, 55.4; HR-ESIMS *m/z* calcd for C₂₅H₁₉N₂O₂ [M+H]⁺ 379.1441, found 379.1444.

Mechanism studies

ESI-MS analysis

ESI-MS analysis of the product by adding H₂¹⁸O, and no ¹⁸O labeling product was detected.

ESI-MS analysis of the reaction solution.

The reaction of **1a** with **2a** was performed under standard conditions and then ESI-MS analysis was performed with 2,2,6,6-tetramethylpiperidine (**9**) being detected.

2,2,6,6-Tetramethylpiperidine (9).

The solution of the reaction was filtered and the residue was dissolved in 1.0 mL water. After that, 1 N NaOH was added, and then the mixture was extracted with CHCl₃ (1

mL × 3). The organic solution was evaporated *in vacuum* to give 2,2,6,6-tetramethylpiperidine **9**. ¹H NMR (600 MHz, CDCl₃) δ 1.69-1.64 (m, 2H), 1.40-1.33 (m, 4H), 1.20 (s, 12H); ¹³C NMR (151 MHz, CDCl₃) δ 49.6, 38.2, 31.1, 18.0.

References

- S. D. Yang, C. L. Sun, Z. Fang, B. J. Li, Y. Z. Li, Z. J. Shi, Angew. Chem. Int. Ed. 2008, 47, 1473.
- [2] L. Jiao, T. Bach, J. Am. Chem. Soc. 2011, 133, 12990.
- [3] G. A. Molander, B. W. Katona, F. Machrouhi, J. Org. Chem. 2002, 67, 8416.
- [4] M. Shibuya, M. Tomizawa, Y. Iwabuchi. J. Org. Chem. 2008, 73, 4750.
- [5] a) N. Anderton, P. A. Cockrum, S. M. Colegate, J. A. Edgar, K. Flower, D. Gardner, R. I. Willing, *Phytochemistry*. **1999**, *51*, 153; b) J. D. Trzupek, D. Lee, B. M. Crowley, V. M.

Marathias, S. J. Danishefsky, J. Am. Chem. Soc. 2010, 132, 8506; c) H. Ding, D. Y. K. Chen,

Angew. Chem. Int. Ed. 2011, 50, 676.

¹H NMR and ¹³C NMR spectral data

¹H and ¹³C NMR data of compound 3b

S26

¹H and ¹³C NMR data of compound 3c

-2.35

¹H and ¹³C NMR data of compound 3e

Construction of the second secon

¹H and ¹³C NMR data of compound 3f

¹H and ¹³C NMR data of compound 3g

¹H and ¹³C NMR data of compound 3h

000000000000000000000000000000000000000	15	222222222222222222222222222222222222222
	22	000000000000000000000000000000000000000

¹H and ¹³C NMR data of compound 3i

22222222222222222222222222222222222222	-5.16	4.55 4.55 4.51	3.63 3.61 3.60 3.60	255	
Ph N OBn					

S33

¹H and ¹³C NMR data of compound 3j

¹H and ¹³C NMR data of compound 3k

¹H and ¹³C NMR data of compound 31

Ph N H5

¹H and ¹³C NMR data of compound 3m

160 150 140 130

¹H and ¹³C NMR data of compound 3p

~3.85 ~3.78

¹H and ¹³C NMR data of compound 3s

¹H and ¹³C NMR data of compound 4a

¹H and ¹³C NMR data of compound 4b

¹H and ¹³C NMR data of compound 4c

170 160 150 140 130 120 110 100

¹H and ¹³C NMR data of compound 4g

¹H and ¹³C NMR data of compound 4h

¹H and ¹³C NMR data of compound 4i

-2.33

¹H and ¹³C NMR data of compound 4j

10 200 150 140

¹H and ¹³C NMR data of compound 4k

¹H and ¹³C NMR data of compound 4l

<section-header><equation-block><equation-block><section-header><section-header><section-header>

¹H and ¹³C NMR data of compound 4p

¹H and ¹³C NMR data of compound 4q

¹H and ¹³C NMR data of compound 4r

24.70 4.55 74.55

¹H and ¹³C NMR data of compound 6b

00000077770000CC0000000000000770000000700000000	0000000
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	00000000
	V V

¹H and ¹³C NMR data of compound 6c

¹H and ¹³C NMR data of compound 6e

210 200 160 150 140 130

220 210 140 130

¹H and ¹³C NMR data of compound 6j

¹H and ¹³C NMR data of compound 6k

210 200 150 140 130 120

¹H and ¹³C NMR data of compound 6m

¹H and ¹³C NMR data of compound 6n

140 130 120 110 200 190 160 150

¹H and ¹³C NMR data of compound 6p

¹H and ¹³C NMR data of compound 6q

¹H and ¹³C NMR data of compound 6r

¹H and ¹³C NMR data of compound 8a

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10

¹H and ¹³C NMR data of compound 8b

¹H and ¹³C NMR data of compound 8c

¹H and ¹³C NMR data of compound 8f

¹H and ¹³C NMR data of compound 8g

¹H and ¹³C NMR data of compound 8h

¹H and ¹³C NMR data of compound 9

