Cationic Axial Ligands on Sulfur Substituted Silicon(IV)

Phthalocyanines: Improved Hydrophilicity and Exceptionally

Red-shifted Absorption into the NIR Region

Taniyuki Furuyama^{*,1,2}, Takashi Ishii¹, Naoya Ieda³, Hajime Maeda¹, Masahito Segi¹,

Masanobu Uchiyama^{4,5} and Hidehiko Nakagawa³

¹Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa,

920-1192, Japan (tfuruyama@se.kanazawa-u.ac.jp)

²Japan Science and Technology Agency (JST)-PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012,

Japan

³Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi, 467-8603, Japan

⁴Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan

⁵Cluster of Pioneering Research (CPR), Advanced Elements Chemistry Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan

Supporting information

Table of Contents

General Comments	S–2
Additional Experimental and Computational Results	S–5
Full Experimental Procedures	S-10
Copies of the NMR Spectra of Studied Compounds	S–17
Full Computational Details	S–25
References	S–36

General Comments

NMR spectra were obtained on a JEOL ECA-500 spectrometer. Chemical shifts are expressed in δ (ppm) values, and coupling constants are expressed in hertz (Hz). ¹H and ²⁹Si {¹H} NMR spectra were referenced to the tetramethylsilane (TMS) or the residual solvent as an internal standard. The following abbreviations are used: s = singlet, d = doublet, m = multiplet, and brs = broad singlet. High-resolution mass spectra (HRMS) were recorded on a Bruker Daltonics solariX spectrometer (MALDI). Electronic absorption spectra were recorded on a JASCO V-570 spectrophotometer. CV measurements were recorded with a Hokuto Denko HZ5000 potentiostat under nitrogen atmosphere in *o*-dichlorobenzene (*o*-DCB) solutions with 0.1 M of tetrabutylammonium perchlorate (TBAP) as a supporting electrolyte. Measurements were made with a glassy carbon electrode (area = 0.07 cm²), an Ag/AgCl reference electrode, and a Pt wire counter electrode. The concentration of the solution was fixed at 0.5 mM and the sweep rates were set to 100 mV/s. The ferrocenium/ferrocene (Fc⁺/Fc) couple was used as an internal standard.

Crystallographic data collection

Data collection for $\alpha\alpha$ -(SPh)₈PcSi(OMe)₂ was carried out on a Bruker APEXIII CCD diffractometer with Bruker Helios multilayered confocal mirror monochromatized CuK α radiation (λ = 1.54178 Å) at -183°C. The structures were solved by a direct method (SIR2004)ⁱ and refined using a full-matrix least square technique (SHELXL-2014).ⁱⁱ Yadokari-XG 2009 software was used as a GUI for SHELXL-2014.ⁱⁱⁱ All non-hydrogen atoms were refined anisotropically. Positions of all hydrogen atoms were calculated geometrically, and refined by applying riding models. CCDC-1905332 contains the supplementary crystallographic data. Their data can be obtained free of charge from Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

Measurement of ¹O₂ generation efficiency

Singlet oxygen quantum yields (Φ_{Δ}) were determined in DMSO using a steady-state method^{iv} with methylene blue ($\Phi_{\Delta} = 0.52$ in DMSO^v) as reference. 1,3-diphenylisobenzofuran (DPBF) was used as the chemical quencher for single oxygen in CHCl₃. Irradiation was carried out with a halogen lamp

(ALA-100, Asahi Spectra). A band path filter (680 nm, band width at 0.5 peak = 12.00 nm, Asahi Spectra) was placed in the light beam path of the lamp. The light intensity was measured with an illuminometer (T-10A, KONICA MINOLTA) and adjusted to 1.5 lx at 680 nm. Equation (1) was employed for the calculations:

$$\boldsymbol{\Phi}_{\Delta} = \boldsymbol{\Phi}_{\Delta}^{\text{Std}} \frac{R \cdot I_{\text{abs}}^{\text{Std}}}{R^{\text{Std}} \cdot I_{\text{abs}}} \tag{1}$$

where $\mathcal{O}^{\text{Std}_{\Delta}}$ is the singlet oxygen quantum yield for the standard ($\mathcal{O}^{\text{Std}_{\Delta}} = 0.52$ in DMSO). *R* and *R*_{Std} are the DPBF photobleaching rates in the presence of the samples and standard, respectively. *I*_{abs} and *I*^{Std}_{abs} are the rates of light absorption at 680 nm by the samples and standard, respectively.

Evaluation of photocytotoxicity

HEK293T cells were plated at initial densities of 5,000 cells/well (100 μ L/well) in 96-well plates (2 plates) in Dulbecco's modified Eagle's medium containing Ma²⁺ and Ca²⁺ (DMEM) in the presence of 5Q (10 μ M) and allowed to attach overnight. The cells were exposed to 810 nm light irradiation (CL-H1-810-9-1, Asahi Spectra). WST-8 (10 μ L/well, CK-04, Dojindo, Japan) was added to one of the plates and incubated with the cells for 3 hrs before absorbance values of control wells and test wells were measured at 450 nm to determine the cell viability. The other plate was further incubated for 48 hr at 37°C in 5% CO₂ incubator, and the cell viability was determined by WST-8 as same as above.

Empirical formula	C82H54N8O2S8Si	
Formula weight	1467.90	
Temperature	90(2) K	
Wavelength	1.54178 Å	
Crystal system	Monoclinic	
Space group	$P2_{1}/n$	
Unit cell dimensions	a = 12.3066(4) Å	$\alpha = 90^{\circ}$
	<i>b</i> = 17.3214(6) Å	$\beta = 99.5940(10)^{\circ}$
	c = 15.9077(5) Å	$\gamma = 90^{\circ}$
Volume	3343.58(19) Å ³	
Ζ	2	
Density (Calcd.)	1.458 Mg/m ³	
Absorption coefficient	3.118 mm ⁻¹	
<i>F</i> (000)	1520	
Crystal size	0.400 x 0.100 x 0.100 mm ³	
Theta range for data collection	4.218 to 66.500°	
Index ranges	-14<= <i>h</i> <=14, -20<= <i>k</i> <=20, -1	8<= <i>l</i> <=18
Reflections collected	22981	
Independent reflections	5856 [<i>R</i> (int) = 0.0303]	
Completeness to theta = 66.500°	99.3%	
Refinement method	Full-matrix least-squares on F	72
Data / restraints /parameters	5856 / 0 / 458	
Goodness-of-fit on F^2	1.080	
Final <i>R</i> indices $[I > 2 \operatorname{sigma}(I)]$	$R_1 = 0.0734, wR_2 = 0.1884$	
R indices (all data)	$R_1 = 0.0791, wR_2 = 0.1950$	
Largest diff. peak and hole	1.170 and -0.663 e.Å ⁻³	
CCDC No.	1905332	

Table S1. Crystal data and structure refinement for $\alpha\alpha$ -(SPh)₈PcSi(OMe)₂.

Additional Experimental and Computational Results

Fig. S1 Molecular structure of $\alpha\alpha$ -(SPh)₈PcSi(OMe)₂ with thermal ellipsoids at 50% probability: (a) Top view; (b) side view (peripheral substituents have been omitted for clarity). Hydrogen atoms have been omitted for clarity and only selected atoms have been labeled. Single crystals were obtained by diffusion of methanol into a chloroform solution of 4. During the recrystallization, the axial ligands of 4 were replaced by methoxy groups from methanol.

Fig. S2 Photographs of DMSO/PBS buffer = 1:1 (v/v) solutions of **3**, **4**, **4Q**, and **5Q** ($\sim 1.0 \times 10^{-5}$ M). Compounds **4** and **5** are insoluble in this medium.

Fig. S3 UV-vis-NIR absorption spectra of 3 (red), 4 (purple), 4Q (blue), 5 (pink), and 5Q (light blue) in (a) acetone, (b) DMSO, (c) *o*-DCB, (d) CH₂Cl₂, and (e) CHCl₃ ($\sim 1.0 \times 10^{-5}$ M).

Fig. S4 Beer-Lambert plots of 3 (red), 4 (purple), 4Q (blue), 5 (pink), and 5Q (light blue) in (a) DMSO and (b) CH_2Cl_2 . Absorbances were measured at the peaks of Q bands (820-900 nm region). All correlation coefficients were over 0.99 in these concentrations.

Table S2. Calculated excited wavelengths (λ) and oscillator strengths (*f*) for components of selected transition energies. Calculations were performed at the B3LYP/6-31G* level.

Compd.	λ / nm	f	Composition
4'	738	0.30	HOMO→LUMO (71.9%), HOMO→LUMO+1 (24.2%)
	733	0.34	HOMO→LUMO (24.6%), HOMO→LUMO+1 (72.1%)
[4Q'] ²⁺	858	0.21	HOMO-1→LUMO (2.5%), HOMO→LUMO (74.5%),
			HOMO→LUMO+1 (19.0%)
	819	0.33	HOMO-1→LUMO (2.2%), HOMO→LUMO (20.5%),
			HOMO→LUMO+1 (74.9%)
7	603	0.36	HOMO-5→LUMO+1 (5.1%), HOMO→LUMO (93.2%)
	599	0.36	HOMO-5→LUMO+1 (5.8%), HOMO→LUMO+1 (93.1%)
[7Q] ²⁺	644	0.33	HOMO-8→LUMO+1 (2.3%), HOMO-4→LUMO+1 (2.1%),
			HOMO→LUMO (95.9%)
	635	0.32	HOMO-8→LUMO+1 (2.3%), HOMO-4→LUMO (2.4%),
			HOMO→LUMO+1 (95.2%)

 Table S3. Calculated charges of central silicon of SiPcs. Calculations were performed at the

 B3LYP/6-31G* level.

	4'	[4Q'] ²⁺	7	[7Q] ²⁺
Mulliken charge	1.48	1.44	1.44	1.44
NPA charge	2.38	2.36	2.38	2.36

Fig. S5 ²⁹Si NMR spectra of 4 and 4Q in CDCl₃.

Fig. S6 Comparison of the rate of decay of 1,3-diphenylisobenzofuran (DPBF) sensitized by SiPcs in DMSO (ca. 2.0 x 10^{-5} M) as shown by the decrease in the absorbance at 418 nm. The absorption coefficient was normalized by the rates of the light absorption at 680 nm. The singlet oxygen quantum yields were determined by using methylene blue (**MB**) as the reference. Inset: Singlet oxygen quantum yields (Φ_{Δ}) of compounds.

Fig. S7 Photocytotoxicity evaluation of SiPc 3 and 5Q (10 μ M, 0.1% DMSO) on HEK293T cells after 15 min of irradiation ($\lambda_{ex} = 810$ nm, 100 mW/cm²); the CCK array was measured soon after irradiation (blue) and after 2 days of incubation (red). Data are presented as the mean value \pm SD (n = 3).

Fig. S8 The change of absorption spectra of DMSO/PBS buffer = 10:1 (v/v) solution of 5Q for 2 days.

Full Experimental Procedures

Materials

Unless otherwise noted, materials were purchased from Tokyo Kasei Co., Aldrich Inc., and other commercial suppliers and were used after appropriate purification (distillation or recrystallization).

3,6-Bis(phenylthio)phthalonitrile was synthesized according to published procedures. ^{vi} Dichloro(phthalocyaninato)silicon was purchased from Alfa Inorganics Inc.

4,7-bis(phenylthio) isoindoline-1,3-diimine (1)

Sodium metal (85 mg) was dissolved in ethylene glycol (25 mL) and 3,6-bis(phenylthio) phthalonitrile (1.01 g, 2.9 mmol) was added to the mixture. After stirred at 115°C for 2 h with passing ammonia gas, the reaction mixture was added to ice water. The precipitate was collected on a Büchner funnel and washed with copious amounts of ice water. The solid was left to dry for 1 h under vacuum. The title compound was obtained (908 mg, 86%) as a yellow powder. The compound contains some impurities, but used for the next reaction without further purification.

500 MHz ¹H NMR (CDCl₃) δ (ppm): 9.01 (br, 1H) 7.60 (br, 2H), 7.46 (br, 4H), 7.30 (br, 4H), 7.19 (br, 3H), 6.72 (br, 1H).

HRMS-ESI Calcd for C₂₀H₁₆N₃S₂ [M+H]⁺: 362.0781. Found: 362.0780.

SiCl₄ (2.2 mL, 20 mmol) was added to a solution of **1** (492.1 mg, 1.36 mmol) in quinoline (5 mL). After the mixture was refluxed for 24 h under Ar atmosphere, the solution was diluted successively with water (4 mL) and CHCl₃ while stirring. The mixture was filtered through a celite pad to remove a purple impurity. The organic layer was washed with water and brine, and dried over Na₂SO₄ and concentrated under reduced pressure. The residue was dissolved in methanol again, and filtered to afford **2** (411.2 mg, 84%) as a dark purple powder.

500 MHz ¹H NMR (CDCl₃) δ (ppm): 7.79-7.77 (m, 16H, PhH), 7.46-7.44 (m, 24H, PhH), 7.21 (s, 8H, βH), -1.10 (s, 2H, OH).

HRMS-MALDI Calcd for C₈₀H₄₉N₈OS₈Si [M-OH]⁺: 1421.1559. Found: 1421.1561.

UV-vis (CH₂Cl₂) λ_{max} nm (ε x 10⁻⁴): 297 (6.86), 363 (4.54), 533 (0.94), 733 (2.90), 824 (10.74).

SiPc 3

A mixture of compound **2** (18.0 mg, 13 μ mol) and diethylene glycol monoethyl ether (0.30 mL, 2.2 mmol) in dry toluene (1 mL) was refluxed for 12 h under Ar atmosphere. The concentrated organic layer was washed with water and brine, and dried over Na₂SO₄ and concentrated under reduced pressure. The residue was dissolved in methanol again, and filtered to afford **3** (15.9 mg, 74%) as a dark purple powder.

500 MHz ¹H NMR (CDCl₃) δ (ppm): 7.81-7.79 (m, 16H, PhH), 7.47-7.43 (m, 24H, PhH), 7.21 (s, 8H, βH), 3.06 (q, 4H, J = 7.1 Hz, CH₂), 2.75 (t, 4H, J = 5.2 Hz, CH₂), 2.03 (t, 4H, J = 5.2 Hz, CH₂), 0.89 (m, 10H, CH₂, CH₃), -1.21 (t, 4H, J = 5.7 Hz, CH₂). 100 MHz ²⁹Si {¹H} NMR (CDCl₃) δ (ppm): -202.8. HRMS-MALDI Calcd for C₉₂H₇₄N₈O₆S₈Si [M]⁺: 1670.3261. Found: 1670.3268.

UV-vis (CH₂Cl₂) λ_{max} nm (ε x 10⁻⁴): 294 (8.04), 361 (5.72), 541 (1.11), 733 (3.85), 824 (13.81).

UV-vis (DMSO) λ_{max} nm (ε x 10⁻⁴): 296 (8.31), 363 (5.10), 543 (1.07), 741 (3.39), 831 (11.82).

SiPc 4

A mixture of compound **2** (209.1 mg, 145 μ mol) and 2-(dimethylamino)ethanol (1.0 mL, 6.2 mmol) in dry toluene (5 mL) was refluxed for 12 h under Ar atmosphere. The residue was dissolved in methanol again, and filtered to afford **4** (209.9 mg, 91%) as a dark violet powder.

500 MHz ¹H NMR (CDCl₃) δ (ppm): 7.80-7.78 (m, 16H, PhH), 7.47-7.43 (m, 24H, PhH), 7.19 (s, 8H,

 β H), 0.83 (s, 12H, CH₃), -0.32 (brs, 4H, CH₂), -1.25 (t, 4H, J = 6.3 Hz, OCH₂).

100 MHz 29 Si{ 1 H} NMR (CDCl₃) δ (ppm): -202.9.

HRMS-MALDI Calcd for C₈₄H₅₈N₉OS₈Si [M-R]⁺: 1492.2294. Found: 1492.2288.

UV-vis (CH₂Cl₂) λ_{max} nm (ε x 10⁻⁴): 295 (7.02), 361 (4.83), 547 (0.96), 736 (3.17), 823 (11.39).

UV-vis (DMSO) λ_{max} nm (ε x 10⁻⁴): 295 (7.78), 363 (4.92), 552 (1.01), 741 (3.37), 829 (11.28).

A mixture of compound 4 (117.7 mg, 74.4 μ mol) and iodomethane (1.0 mL, 16 mmol) in CH₂Cl₂ (6 mL) was stirred at room temperature for 12 h under Ar atmosphere. The residue was dissolved in ethyl acetate again, and filtered to afford 4Q (120.9 mg, 87%) as a dark navy powder.

500 MHz ¹H NMR (CDCl₃) δ (ppm): 7.79-7.77 (m, 16H, PhH), 7.49-7.47 (m, 24H, PhH), 7.24 (s, 8H,

 $\beta H),\,1.72$ (s, 18H, CH_3), 1.27 (brs, 4H, CH_2), -0.61 (brs, 4H, OCH_2).

100 MHz ²⁹Si{¹H} NMR (CDCl₃) δ (ppm): -206.1.

HRMS-MALDI Calcd for C₉₀H₇₄N₁₀O₂S₈Si [M-2I]⁺: 1610.3526. Found: 1610.3524.

UV-vis (CH₂Cl₂) λ_{max} nm (ε x 10⁻⁴): 300 (5.79), 346 (4.11), 589 (0.88), 782 (2.84), 878 (9.13).

UV-vis (DMSO) λ_{max} nm (ε x 10⁻⁴): 297 (8.80), 362 (5.63), 570 (1.20), 851 (10.90).

SiPc 5

2-[[2-(dimethylamino)ethyl]methylamino]ethanol (0.50 mL, 3.1 mmol) in dry toluene (3 mL) was refluxed for 12 h under Ar atmosphere. The residue was dissolved in methanol again, and filtered to afford **5** (70.1 mg, 76%) as dark violet powder.

500 MHz ¹H NMR (CDCl₃) δ (ppm): 7.79-7.78 (m, 16H, PhH), 7.46-7.43 (m, 24H, PhH), 7.20 (s, 8H,

βH), 1.74 (s, 12H, CH₃), 1.37 (t, 4H, J = 7.5 Hz, CH₂), 1.06 (t, 4H, J = 6.9 Hz, CH₂), 0.77 (s, 6H, CH₃),
-0.25 (t, 4H, J = 6.9 Hz, CH₂), -1.28 (t, 4H, J = 5.8 Hz, OCH₂).
100 MHz ²⁹Si {¹H} NMR (CDCl₃) δ (ppm): -201.5.

HRMS-MALDI Calcd for C₈₇H₆₅N₁₀OS₈Si [M-R]⁺: 1549.2872. Found: 1549.2868.

UV-vis (CH₂Cl₂) λ_{max} nm (ε x 10⁻⁴): 295 (6.64), 359 (4.48), 539 (0.80), 734 (3.00), 823 (10.79).

UV-vis (DMSO) λ_{max} nm (ε x 10⁻⁴): 297 (7.90), 363 (4.80), 550 (0.95), 741 (3.30), 828 (11.23).

SiPc 5Q

A mixture of compound **5** (50.7 mg, 30 μ mol) and iodomethane (2.0 mL, 32 mmol) in CH₂Cl₂ (4 mL) was stirred at room temperature for 4 d under Ar atmosphere. After concentrated under reduced pressure, the residue was diluted with methanol and filtered to remove insoluble impurities, and the filtrate was concentrated under reduced pressure again. Title compound was obtained (27.0 mg, 40%) as a dark navy powder, after the residue was washed with ethyl acetate.

500 MHz ¹H NMR (DMSO-*d*₆) δ (ppm): 7.78-7.76 (m, 16H, PhH), 7.61-7.59 (m, 24H, PhH), 7.35 (s, 8H, βH), 2.90 (t, 4H, *J* = 6.9 Hz, CH₂), 2.69 (s, 18H, CH₃), 2.44 (t, 4H, *J* = 6.9 Hz, CH₂), 1.25 (s, 12H, CH₃), 1.13 (brs, 4H, CH₂), -0.87 (brs, 4H, OCH₂).

100 MHz ²⁹Si{¹H} NMR (DMSO- d_6) δ (ppm): -204.4.

HRMS-MALDI Calcd for C₉₈H₉₄I₂N₁₂O₂S₈Si [M-21]⁺: 2008.3242. Found: 2008.3248.

UV-vis (CH₂Cl₂) λ_{max} nm (ε x 10⁻⁴): 303 (7.57), 347 (5.06), 599 (1.23), 793 (3.52), 896 (11.20).

UV-vis (DMSO) λ_{max} nm (ε x 10⁻⁴): 298 (8.85), 349 (5.57), 577 (1.23), 863 (10.65).

A mixture of dichloro(phthalocyaninato)silicon (42.0 mg, 69 μ mol), 2-[[2-(dimethylamino)ethyl]methylamino]ethanol (0.40 mL, 2.5 mmol), and pyridine (0.6 mL) in dry toluene (9 mL) was refluxed for 36 h under Ar atmosphere, then the mixture was concentrated. The residue was dissolved in CHCl₃ and washed with water and brine. The organic layer was dried over Na₂SO₄ and concentrated under reduced pressure. The title compound was obtained (46.5 mg, 81%) as dark blue powder.

500 MHz ¹H NMR (CDCl₃) δ (ppm): 9.65-9.63 (m, 8H, αH), 8.34-8.32 (m, 8H, βH), 1.58 (s, 12H, CH₃), 1.09 (t, 4H, *J* = 7.5 Hz, CH₂), 0.71 (t, 4H, *J* = 7.5 Hz, CH₂), 0.47 (s, 6H, CH₃), -0.77 (t, 4H, *J* = 6.9 Hz, CH₂), -1.94 (t, 4H, *J* = 6.3 Hz, OCH₂).

HRMS-MALDI Calcd for C₃₉H₃₃N₁₀OSi [M-R]⁺: 685.2603. Found: 685.2600.

UV-vis (DMSO) λ_{max} nm (ε x 10⁻⁴): 356 (5.86), 609 (3.10), 677 (18.42).

SiPc 6Qvii

A mixture of compound **6** (19.2 mg, 23μ mol) and iodomethane (0.50 mL, 8.0 mmol) in DMF (2.5 mL) was stirred at room temperature for 5 h under Ar atmosphere, then diethyl ether was added. The green precipitate was formed and filtered to afford **6Q** (29.9 mg, 93%) as a dark green powder.

500 MHz ¹H NMR (DMSO-*d*₆) δ (ppm): 9.75-9.73 (m, 8H, αH), 8.60-8.58 (m, 8H, βH), 2.59 (t, 4H, *J* = 8.1 Hz, CH₂), 2.44 (s, 18H, CH₃), 2.05 (t, 4H, *J* = 7.5 Hz, CH₂), 0.75 (s, 12H, CH₃), -0.55 (brs, 4H, CH₂), -1.73 (brs, 4H, OCH₂).

100 MHz ²⁹Si{¹H} NMR (DMSO-*d*₆) δ (ppm): -206.4.

HRMS-MALDI Calcd for $C_{50}H_{62}I_2N_{12}O_2Si$ [M-2I]⁺: 1144.2972. Found: 1144.2973.

UV-vis (DMSO) λ_{max} nm (ε x 10⁻⁴): 356 (5.95), 612 (2.93), 681 (16.74).

Copies of the NMR Spectra of Studied Compounds

Figure. S9 ¹H NMR spectra of 4,7-bis(phenylthio) isoindoline-1,3-diimine (1) in CDCl₃.

Figure. S10 ¹H NMR spectra of SiPc 2 in CDCl₃.

Figure. S11 ¹H (top) and ²⁹Si{¹H} (bottom) NMR spectra of SiPc 3 in CDCl₃.

Figure. S12 ¹H (top) and ²⁹Si{¹H} (bottom) NMR spectra of SiPc 4 in CDCl₃.

Figure. S13 ¹H (top) and ²⁹Si {¹H} (bottom) NMR spectra of SiPc 4Q in CDCl₃.

Figure. S14 ¹H (top) and ²⁹Si{¹H} (bottom) NMR spectra of SiPc 5 in CDCl₃.

Figure. S15 ¹H (top) and ²⁹Si{¹H} (bottom) NMR spectra of SiPc 5Q in DMSO-d₆.

Figure. S16 ¹H (top) and ²⁹Si{¹H} (bottom) NMR spectra of SiPc 6 in CDCl₃.

Figure. S17¹H (top) and ²⁹Si{¹H} (bottom) NMR spectra of SiPc 6Q in DMSO-d₆.

Full Computational Details

Computational Details

Geometry optimization for all molecules was performed at the DFT level, by means of the hybrid Becke3LYP^{viii} (B3LYP) functional as implemented in Gaussian 2009.^{ix} The 6-31G(d) basis set was used for the all atoms. After the geometry optimization, the time-dependent (TD) DFT calculations^x were performed to evaluate the stick absorption spectrum employing the same level and basis set. All stationary points were optimized without any symmetry assumptions and characterized by normal coordinate analysis at the same level of the theory (the number of imaginary frequency, Nimag, 0).

Cartesian Coordinates and Total Electron Energies

4'

SCF	Done:	E(RB3LYP)) =	-6033,48130377	A.U.
DCI	Done.		,	-0033.401303//	11.0.

Center Number	Atomic Number	Atomic Type	Coc X	ordinates (A Y	ngstroms) Z	
1	6	0	-3.614761	2.052191	-0.479227	
2	6	0	-4.112374	0.744640	-0.285953	
3	6	0	-2.962676	-0.086515	0.043806	
4	7	0	-1.821737	0.677923	0.014601	
5	6	0	-2.182670	1.982929	-0.222321	
6	6	0	2.085795	3.543796	0.487625	
7	6	0	0.769536	4.054941	0.434828	
8	6	0	-0.087333	2.938849	0.062630	
9	7	0	0.669374	1.800193	-0.077756	
10	6	0	1.992681	2.141165	0.110808	
11	7	0	-1.394856	3.044419	-0.127410	
12	6	0	3.490349	-2.095367	-0.919493	
13	6	0	4.002527	-0.775814	-0.846723	
14	6	0	2.916497	0.064768	-0.372184	
15	7	0	1.788637	-0.696807	-0.191111	
16	6	0	2.107096	-2.013695	-0.455049	
17	7	0	3.039270	1.362187	-0.109703	
18	6	0	-2.061150	-3.587953	0.786942	
19	6	0	-0.758940	-4.106411	0.550852	
20	6	0	0.064099	-2.968898	0.144026	
21	7	0	-0.699171	-1.827181	0.150608	
22	6	0	-1.995456	-2.164990	0.460411	
23	7	0	-3.051871	-1.371405	0.350387	
24	7	0	1.333313	-3.061070	-0.227777	
25	6	0	4.291420	-3.159186	-1.384408	
26	6	0	5.615002	-2.841475	-1.712638	
27	6	0	6.125607	-1.544760	-1.627075	
28	6	0	5.329121	-0.466629	-1.219316	
29	6	Ō	3.174704	4.338585	0.898678	
30	6	0	2.875766	5.673404	1.203430	
31	6	0	1.576461	6.182348	1.139576	
32	6	Õ	0.478156	5.392423	0.772826	
33	6	0	-3.111043	-4.427915	1.214835	
34	6	0	-2.830338	-5.797819	1,297379	
35	Ğ	õ	-1.559529	-6.309225	1.036478	
36	6	õ	-0.481741	-5.481814	0.697146	
37	6	Õ	-4.449492	3.109087	-0.892437	

38 39	6 6	0	-5.805646 -6.300279	2.789767	-1.051108 -0.843743
40	6	Ő	-5.473444	0.430836	-0.470984
41	14	0	-0.029358	-0.021109	-0.022440
42	16	0	4.798758	3.645865	1.058604
43	6	0	5.722543	4.990225	1.878787
44	16	0	-1.189132	5.990284	0./55458
46	16	0	-3.784047	4.717112	-1.229932
47	16	Ő	-6.050554	-1.232060	-0.264289
48	16	0	-4.772262	-3.958180	1.652666
49	16	0	1.083670	-6.298539	0.438690
50	16	0	3.824160	-4.870805	-1.561444
51	16	0	5.906930	1.206771	-1.191329
52	6	0		1.063543	-1.918342
55	6	0	2.412/51	-4.003080	1 691238
55	6	Ő	-4.533761	-2.637105	2.895063
56	6	Ő	-7.816945	-1.094268	-0.705139
57	6	0	-5.196123	5.573224	-2.008522
58	8	0	-0.006478	0.102381	1.697244
59	8	0	-0.190960	-0.206645	-1.732061
60	6	0	0.888858	-0.497974	2.604416
61 62	6 7	0	0.3/5026	-0.224064	4.021233
63	6	0	2.458724	-0.052203 -0.156273	5.271815
64	6	õ	0.467556	-0.989267	6.310395
65	6	0	0.351720	0.603635	-2.751669
66	6	0	0.287308	-0.083641	-4.118459
67	7	0	-1.034632	-0.093335	-4.743011
68	6	0	-1.955390	-1.043472	-4.125818
69 70	6	0	-0.942935	-0.328897	-6.176684
70	1	0	-1.3/94/3	-/.3/3182	1.104102
72	1	0	3.662990	6.350008	1.513521
73	1	Õ	1.434495	7.223727	1.401827
74	1	0	6.260779	-3.635391	-2.075390
75	1	0	7.156577	-1.385077	-1.917727
76	1	0	-7.360702	1.340122	-0.997370
77	1	0	-6.511619	3.553185	-1.355278
78 79	1	0	5 266245	4.5/1051 5.277997	2.070700
80	1	0	5.838905	5.868449	1.237108
81	1	Ő	-0.421267	8.326740	0.738437
82	1	0	-0.579916	7.698960	2.410799
83	1	0	-2.027566	8.078798	1.453302
84	1	0	3.096792	-6.089191	1.670225
85	1	0	2.3/3962	-4.481/55	1.426115
00 87	1	0		-5.591020 -1.716995	2.004/90
88	1	0	-3.841725	-2.964677	3.675040
89	1	Ö	-5.519981	-2.471069	3.337227
90	1	0	-8.367788	-0.445585	-0.017764
91	1	0	-8.208422	-2.111034	-0.614137
92	1	0	-7.957950	-0.756022	-1.735809
93	1	0		6.544031 5.041300	-2.319424
94 95	1 1	0	-5.557124 -6.020131	5 742069	-2.093434 -1.309130
96	1	0	0.952550	-1.588041	2.462698
97	1	Ő	1.904103	-0.094369	2.476062
98	1	0	0.279295	0.869999	4.164931
99	1	0	-0.636914	-0.639412	4.085380
100	1	0	1.088314	-1.521746	7.040342
101	1	0	0.176075	-0.017969	6./59101
102	1 1	0	-0.444211	-1.5/4039	0.149443
104	1	õ	2.322819	0.881654	5.638240

105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3.037 -0.180 1.411 0.715 0.953 -2.032 -1.631 -2.946 -0.523 -0.313 -1.942 2.686 1.538 2.198 7.947 8.253 7.548	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	112167 564134 326526 102626 481581 846310 096500 936072 322885 436538 264668 251586 365736 342897 090399 478785 548955	$\begin{array}{r} 4.345134\\ -2.820226\\ -2.549573\\ -4.024486\\ -4.783260\\ -3.056978\\ -4.255516\\ -4.581548\\ -6.435486\\ -6.644778\\ -6.622565\\ -3.627121\\ -2.242555\\ -2.984505\\ -1.970186\\ -1.290290\\ -2.930089\end{array}$	
TD-DFT output). 285					
Excited State 1: 284 -> 285	Singlet-A 0.59967	1.6803 eV	737.86 nm	f=0.3031	<s**2>=0.000</s**2>	
284 -> 286 This state for optim Total Energy, E(TD Copying the excited	-0.34776 hization and/or second- -HF/TD-DFT) = -60 d state density for this s	order correcti 33.41955298 state as the 1-	on. particle Rho(CI density.		
Excited State 2: 284 -> 285 284 -> 286	Singlet-A 0.35057 0.60030	1.6905 eV	733.40 nm	f=0.3380	<s**2>=0.000</s**2>	
Excited State 3: 283 -> 285 283 -> 286	Singlet-A 0.61865 0.34128	1.8818 eV	658.84 nm	f=0.0006	<s**2>=0.000</s**2>	
Excited State 4: 283 -> 285 283 -> 286	Singlet-A -0.34146 0.61882	1.9081 eV	649.79 nm	f=0.0009	<s**2>=0.000</s**2>	
Excited State 5: 282 -> 285	Singlet-A 0.69260	2.0464 eV	605.87 nm	f=0.0778	<s**2>=0.000</s**2>	
Excited State 6: 282 -> 286	Singlet-A 0.68538	2.0647 eV	600.49 nm	f=0.0731	<s**2>=0.000</s**2>	
Excited State 7: 281 -> 285 281 -> 286	Singlet-A 0.66501 -0.20387	2.0941 eV	592.06 nm	f=0.0058	<s**2>=0.000</s**2>	
Excited State 8: 279 -> 285 280 -> 285 281 -> 285 281 -> 286	Singlet-A -0.28172 0.23124 0.12794 0.57969	2.1314 eV	581.70 nm	f=0.0064	<s**2>=0.000</s**2>	
Excited State 9: 279 -> 285 280 -> 285 280 -> 286 281 -> 286	Singlet-A 0.17201 0.58931 -0.28162 -0.16174	2.1511 eV	576.39 nm	f=0.0002	<s**2>=0.000</s**2>	
Excited State 10: 279 -> 285 279 -> 286 280 -> 285 280 -> 286	Singlet-A -0.17535 -0.23539 0.25238 0.57293	2.1702 eV	571.31 nm	f=0.0081	<s**2>=0.000</s**2>	

[4Q']²⁺
SCF Done: E(RB3LYP) = -6112.85550012 A.U.

Center Number	Atomic Number	Atomic Type	Coo X	ordinates (A Y	ngstroms) Z	
1	 6	0	3.905727	1.549605	0.316465	
2	6	0	4.192931	0.166399	0.228772	
3	6	0	2.937015	-0.493234	-0.071750	
4	7	0	1.913672	0.436997	-0.085155	
5	6	0	2.483298	1.687635	0.073931	
6	6	0	-1.530489	3.923697	-0.229666	
7	6	0	-0.150973	4.224026	-0.365383	
8	6	Õ	0.555681	2,966023	-0.147490	
9	7	Õ	-0.360121	1.941754	0.030770	
10	6	0	-1.621101	2.505570	0.062899	
11	7	0	1.868005	2.853772	-0.047843	
12	6	Ō	-3.690381	-1.514251	0.918719	
13	6	0	-3.973694	-0.132494	1.052490	
14	6	0	-2.815005	0.572477	0.538308	
15	7	0	-1.842244	-0.336574	0.165526	
16	6	0	-2.367936	-1.605446	0.330972	
17	7	Ō	-2.748035	1.886416	0.382911	
18	6	Ō	1.492639	-3.751410	-0.992753	
19	6	0	0.100730	-4.014595	-0.921773	
20	6	0	-0.522564	-2.817553	-0.394173	
21	7	0	0.431442	-1.832660	-0.219206	
22	6	0	1.664117	-2.380872	-0.523647	
23	7	0	2.831873	-1.782820	-0.355103	
24	7	0	-1.797730	-2.740334	-0.043218	
25	6	0	-4.589868	-2.505535	1.367065	
26	6	0	-5.790427	-2.030907	1.918616	
27	6	0	-6.069427	-0.670553	2.049717	
28	6	0	-5.171282	0.328317	1.640425	
29	6	0	-2.531269	4.910667	-0.378189	
30	6	0	-2.077297	6.218502	-0.606013	
31	6	Ō	-0.720408	6.511606	-0.739551	
32	6	0	0.282890	5.535242	-0.652537	
33	6	0	2.396095	-4.731487	-1.453894	
34	6	0	1.838924	-5.972219	-1.794554	
35	6	0	0.469213	-6.231576	-1.733154	
36	6	0	-0.449142	-5.255194	-1.320618	
37	6	0	4.904502	2.500524	0.621897	
38	6	0	6.195897	1.982280	0.808726	
39	6	0	6.477022	0.616587	0.729175	
40	6	0	5.490078	-0.342384	0.452603	
41	14	0	0.038130	0.054881	-0.027188	
42	16	0	-4.244566	4.481176	-0.324362	
43	6	0	-5.076054	6.058695	-0.720707	
44	16	0	1.952728	6.113840	-0.868888	
45	6	0	2.567388	5.115968	-2.273232	
46	16	0	4.502533	4.213360	0.785966	
47	16	0	5.795783	-2.085705	0.422547	
48	16	0	4.167302	-4.597675	-1.595219	
49	16	0	-2.197426	-5.510655	-1.331798	
50	16	0	-4.182761	-4.222919	1.266372	
51	16	0	-5.471303	2.053807	1.871885	
52	6	0	-7.032957	2.075005	2.818781	
53	6	0	-5.586454	-5.026894	2.114722	
54	6	0	-2.365713	-7.164250	-2.089613	
55	6	0	4.384698	-3.256449	-2.821437	
56	6	0	7.564240	-2.196525	0.866993	
57	6	0	6.095820	4.962070	1.272770	
58	8	0	-0.034443	0.087541	-1.790685	
59	8	0	0.083306	-0.003216	1,734632	

60	6	0	-1 010506	0 689635	-2 576585
61	6	Ő	-0.915237	-0.035945	-3.927824
62	7	õ	-1.843673	0.459894	-5.039450
63	6	õ	-1.519680	1.883242	-5.417653
64	6	0	-1.636344	-0.420090	-6.247508
65	6	0	1.064427	-0.577464	2.534859
66	6	0	0.429604	-0.638096	3.932112
67	7	0	1.330880	-1.128095	5.067859
68	6	0	1.882786	-2.498790	4.765052
69	6	0	0.498540	-1.204523	6.323872
70	1	0	0.124679	-7.211055	-2.040391
71	1	0	2.503129	-6.754408	-2.148663
72	1	0	-2.784183	7.031770	-0.712525
73	1	0	-0.425965	7.534748	-0.951533
74	1	0	-6.537932	-2.729801	2.273266
75	1	0	-7.016180	-0.396638	2.498706
76	1	0	7.501009	0.307059	0.899857
77	1	0	7.019038	2.648777	1.035656
78	1	0	-6.141451	5.815141	-0.741566
79	1	0	-4.784369	6.444905	-1.700990
80	1	0	-4.907942	6.814277	0.050942
81	1	0	1.894037	5.201999	-3.130179
82	1	0	2.710698	4.074259	-1.984146
83	1	0	3.534644	5.551247	-2.537598
84	1	0	-3.443768	-7.329918	-2.161577
85	1	0	-1.936033	-7.202166	-3.094116
86	1	0	-1.935180	-7.948787	-1.462064
87	1	0	4.088423	-2.292657	-2.406053
88	1	0	3.83200/	-3.480/95	-3./3/180
89	1	0	5.454244	-3.23/496	-3.046308
90	1	0	8.204530	-1./23328	0.118045
91	1	0	7.760215	-3.20/55/	0.882822
92	1	0	7.700ZIS 5.074500	-1./01044	1 407142
93	1	0	5.074350	1 550524	2 210075
94	⊥ 1	0	6 853617	4.339334	0 491472
96	1	0	-2 018300	0 569824	-2 154159
97	1	0	-0.827482	1 769286	-2 699017
98	1	õ	0.103343	0.049484	-4.313732
99	1	Õ	-1.143811	-1.094606	-3.784418
100	1	0	-2.280375	-0.070653	-7.056294
101	1	Ō	-0.590116	-0.362013	-6.551072
102	1	0	-1.891263	-1.447425	-5.983721
103	1	0	-2.151895	2.174611	-6.258125
104	1	0	-0.468539	1.939569	-5.704810
105	1	0	-1.710459	2.536449	-4.567324
106	1	0	1.336115	-1.588508	2.197057
107	1	0	1.986144	0.025140	2.553922
108	1	0	-0.433982	-1.307026	3.911283
109	1	0	0.088080	0.360310	4.215020
110	1	0	2.552039	-2.439688	3.907321
111	1	0	1.052163	-3.171684	4.546010
112	1	0	2.4313/1	-2.855085	5.638623
113	1	0	-0.310400	-1.91965/	6.168484
114	1	0	0.0868/3	-0.2164/5	6.534/09
115	1	0	1.132119	-1.530249	1 576271
117	1	0	-0.52/450	-4.00/104	2 150502/1
110	⊥ 1	0		-4.092109	2 112120
110	⊥ 1	0	-7 217221	3 121265	3 027661
120	⊥ 1	0	_7 8731021	1.683342	2.22024
121	1	ñ	-6.943183	1,541552	3,768821
122	6	õ	2.470484	-0.168210	5.303136
123	1	Õ	3.105206	-0.134737	4.418869
124	- 1	Õ	3.048015	-0.515691	6.161424
125	1	Ō	2.059409	0.821937	5.505723
126	6	0	-3.288346	0.369072	-4.615133

127 128 129	1 1 1	$\begin{array}{ccc} 0 & -3.4 \\ 0 & -3.4 \\ 0 & -3.9 \end{array}$	59860 1. 97383 -0. 19174 0.	060778 653464 631660	-3.793323 -4.296684 -5.466070
TD–DFT output HOMO: 292 LUMO	: 293				
Excited State 1: 291 -> 293 292 -> 293 292 -> 294 This state for optim Total Energy, E(TD Copying the excited	Singlet-A 0.11123 0.61040 -0.30790 ization and/or s -HF/TD-DFT) = state density for	A 1.4443 eV econd-order corre = -6112.802421 or this state as the	√ 858.42 nm ction. 95 1-particle Rho	f=0.2054 CI density.	<s**2>=0.000</s**2>
Excited State 2: 291 -> 293 292 -> 293 292 -> 294	Singlet-A -0.10550 0.32048 0.61204	A 1.5133 eV	√ 819.27 nm	f=0.3262	<s**2>=0.000</s**2>
Excited State 3: 290 -> 293 290 -> 294 291 -> 293 291 -> 294 292 -> 294	Singlet-A 0.18695 -0.13266 0.63762 -0.13269 0.12250	A 1.7189 eV	√ 721.29 nm	f=0.0931	<s**2>=0.000</s**2>
Excited State 4: 290 -> 293 291 -> 293 291 -> 294	Singlet-A -0.28231 0.21692 0.59436	A 1.7622 eV	√ 703.59 nm	f=0.0651	<s**2>=0.000</s**2>
Excited State 5: 290 -> 293 290 -> 294 291 -> 293 291 -> 294	Singlet-A 0.51507 -0.29546 -0.13270 0.32445	A 1.7982 eV	√ 689.51 nm	f=0.0875	<s**2>=0.000</s**2>
Excited State 6: 289 -> 293 289 -> 294 290 -> 293 290 -> 294	Singlet-A 0.57909 0.14488 0.10102 0.36158	A 1.8643 eV	√ 665.06 nm	f=0.0169	<s**2>=0.000</s**2>
Excited State 7: 289 -> 293 289 -> 294 290 -> 293 290 -> 294	Singlet-A 0.10727 0.56652 -0.22785 -0.33466	A 1.8884 eV	√ 656.56 nm	f=0.0152	<s**2>=0.000</s**2>
Excited State 8: 289 -> 293 289 -> 294 290 -> 293 290 -> 294	Singlet-A -0.36809 0.38934 0.23190 0.37632	A 1.9840 eV	√ 624.92 nm	f=0.0021	<s**2>=0.000</s**2>
Excited State 9: 286 -> 293 288 -> 293 288 -> 294	Singlet-A -0.12299 0.65885 -0.17597	A 2.4018 eV	√ 516.22 nm	f=0.0391	<s**2>=0.000</s**2>
Excited State 10: 287 -> 293 288 -> 293 288 -> 294	Singlet-A -0.11425 0.18380 0.65367	A 2.4522 eV	√ 505.60 nm	f=0.0078	<s**2>=0.000</s**2>

_
\neg

'					
SCF	Done:	E(RB3LYP)	=	-2533.54379766	A.U.

Center Number	Atomic Number	Atomic Type	Coc X	ordinates (A Y	ngstroms) Z	
1	6	0	-4.168936	0.225742	0.847418	
2	6	0	-3.996991	-1.165749	0.797562	
3	6	0	-2.592533	-1.39/091	0.492615	
4 5	6	0	-1.943/90	-0.109000	0.505100	
5	0	0	-2.804910 0 147750	4 254130	0.135075	
7	6	0	-1.223240	4.075711	0.377567	
8	6	Õ	-1.467139	2.642984	0.338013	
9	7	0	-0.290292	1.982165	0.066630	
10	6	0	0.709622	2.926787	-0.053011	
11	7	0	-2.659878	2.116676	0.558419	
12	6	0	4.044784	-0.109865	-0.945106	
13	6	0	3.892252	1.279980	-0.807433	
14	6	0	2.494610	1.512576	-0.487234	
15	7	0	1.829442	0.305926	-0.427003	
16	6	0	2.738894	-0.695879	-0.697612	
1 / 1 0		0	1.989450	2./22159	-0.30/096	
10	6	0	-0.255145	-4.141310	-0.139390	
20	6	0	1 338375	-3.902204 -2.528576	-0.409521	
21	0 7	0	0.171871	-1.868836	-0.130768	
22	6	Ő	-0.811200	-2.812643	0.059953	
23	7	Õ	-2.082712	-2.608245	0.360550	
24	7	0	2.520113	-1.999815	-0.722059	
25	6	0	5.283172	-0.675455	-1.258021	
26	6	0	6.361116	0.189912	-1.430364	
27	6	0	6.207807	1.584990	-1.292942	
28	6	0	4.972677	2.148375	-0.980551	
29	6	0	0.719663	5.527534	0.108782	
30	6	0	-0.122056	6.615613	0.332065	
31	6	0	-1.498/64	6.436333 5 164407	0.5/5440	
32	6	0		-5 415581	-0.059854	
34	6	0	0.010707	-6.504505	-0.319414	
35	6	Ő	1.368798	-6.324783	-0.650522	
36	6	Õ	1.930595	-5.051773	-0.729883	
37	6	0	-5.414154	0.793347	1.118925	
38	6	0	-6.482724	-0.075025	1.339993	
39	6	0	-6.309940	-1.472116	1.290739	
40	6	0	-5.064240	-2.036815	1.018512	
41	14	0	-0.059074	0.055068	-0.030812	
42	8	0	0.22/130	0.0//013	1.66/981	
43	8	0	-0.44/289	-0.003280	-1./11981	
44	0	0	1 008388	-0.5/819/	2.428220	
46	7	0	1 936078	-0.876330	4 800230	
47	, 6	0	3,283936	-0.324691	4.742646	
48	6	Õ	1.443760	-0.883877	6.170892	
49	6	0	-0.155532	0.929790	-2.729378	
50	6	0	-0.401225	0.346049	-4.123314	
51	7	0	-1.806557	0.276133	-4.522598	
52	6	0	-2.543889	-0.786393	-3.845528	
53	6	0	-1.942126	0.151034	-5.966892	
54	1	0	1.986258	-7.196981	-0.846741	
55	1	0	-0.393018	-7.511830	-0.266704	
56	1	0	0.287010	7.622093	0.319005	
5/	1	U	-2.124/33	/.308016	U./45159	
28 20	1	U	1.3390/2	-0.213//0	-1.0/521/	
59	1 1	0	_7 164980	2.22910U _2 118672	-1.43400/ 1 267870	
61	1	0	-7.467768	0.330119	1.554559	

62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89			1.1443 2.2235 1.0586 -0.0120 2.1290 1.3469 0.4606 3.9457 3.3311 3.6826 -0.7672 0.9025 0.1052 0.1052 0.1052 0.1052 0.1014 -2.4515 -2.1774 -3.6029 -1.5062 -1.4529 -3.0042 -1.8660 2.9751 5.3914 4.8450 1.7806 -5.5373 -4.9213	394 - 551 - 567 - 951 - 951 - 951 - 951 - 951 - 951 - 951 - 951 - 953 - 926 - 926 - 926 - 926 - 926 - 926 - 921 - 938 - 938 - 934 - - - 9344 -	$\begin{array}{c} -1.6\\ -0.2\\ 0.9\\ -0.4\\ -1.4\\ 0.1\\ -1.3\\ -0.9\\ 0.7\\ -0.3\\ 1.2\\ -0.6\\ 1.0\\ -0.6\\ -1.7\\ -0.7\\ 0.9\\ 0.1\\ -5.5\\ -4.9\\ -3.1\\ -3.1\\ -3.1\\\end{array}$	72204 89574 06820 89207 58556 29836 65131 05383 35871 86527 38021 33803 37791 14278 72362 798309 725845 795625 67141 50317 20729 55755 15956 70972 11850	2.339767 2.092889 3.994360 4.166764 6.804750 6.609843 6.210560 5.395026 5.063844 3.726063 -2.623883 -2.685133 -4.192433 -4.834589 -2.765681 -4.113972 -4.122822 -6.372174 -6.465533 -6.237398 0.195124 -0.984237 -1.361608 -0.872842 -0.078775 0.789514 1.154834 0.977679	_
HOMO: 188, LU Excited State 187 ->189 This state for op	MO: 189 1: otimization	Singlet-A 0.70453 n and/or second-o	1.9125 eV order correction	648.29 on.	nm	f=0.0005	<s**2>=0.000</s**2>	
Copying the exc	TD-HF/I	D-DFT = -25 density for this s	33.4/351569 tate as the 1-j	particle	RhoC	CI density.		
Excited State 187 ->190	2:	Singlet-A 0.70467	1.9280 eV	643.08	nm	f=0.0003	<s**2>=0.000</s**2>	
Excited State 183 ->190 188 ->189	3:	Singlet-A 0.15951 0.68255	2.0574 eV	602.62	nm	f=0.3575	<s**2>=0.000</s**2>	
Excited State 183 ->189 188 ->190	4:	Singlet-A -0.17031 0.68236	2.0688 eV	599.31	nm	f=0.3593	<s**2>=0.000</s**2>	
Excited State 186 ->189	5:	Singlet-A 0.70639	2.1251 eV	583.42	nm	f=0.0012	<s**2>=0.000</s**2>	
Excited State 186 ->190	6:	Singlet-A 0.70571	2.1377 eV	579.99	nm	f=0.0015	<s**2>=0.000</s**2>	
Excited State 184 ->190 185 ->189 185 ->190	7:	Singlet-A -0.26048 0.63216 -0.16121	2.8190 eV	439.82	nm	f=0.0034	<s**2>=0.000</s**2>	
Excited State 184 ->189 184 ->190 185 ->190	8:	Singlet-A -0.45746 -0.16110 0.49383	2.8689 eV	432.16	nm	f=0.0023	<s**2>=0.000</s**2>	
Excited State 184 ->190	9:	Singlet-A 0.60873	2.9269 eV	423.60	nm	f=0.0127	<s**2>=0.000</s**2>	

185 ->189 185 ->190	0.29691 0.18531				
Excited State 10: 181 ->189 184 ->189 184 ->190 185 ->190	Singlet-A 0.12695 0.50974 -0.17346 0.41915	2.9801 eV	416.04 nm	f=0.0017	<s**2>=0.000</s**2>

[7Q]²⁺ SCF Done: E(RB3LYP) = -2612.88099218 A.U.

Center	Atomic	Atomic	Coc	ordinates (A	ngstroms)	
Number	Number	Туре	Х	Y	Z	
1	6	0	2.510781	3.154475	-1.335891	
2	6	0	3.239741	2.033960	-1.801184	
3	6	0	2.396007	0.876104	-1.577045	
4	7	0	1.237434	1.262455	-0.928061	
5	6	0	1.249782	2.642805	-0.836636	
6	6	0	-2.855461	2.876856	1.235761	
7	6	0	-1.996101	3.742827	0.512383	
8	6	0	-0.842449	2.934/03	0.131028	
9		0	-1.036803	1.624192	0.5364/2	
10	0 7	0	-2.205//9	1.000120	1.2/1090	
12	6	0	1 720003	2 997339	2 265602	
13	6	0	-2 430998	-2.007330 -1.763939	2.203002	
14	6	0	-2.095162	-0.651801	1.899814	
15	7	Ő	-1.180636	-1.062070	0.947487	
16	6	Õ	-0.986638	-2.422087	1.110211	
17	7	0	-2.651001	0.548455	1.973954	
18	6	0	2.135473	-2.729932	-2.269004	
19	6	0	1.218741	-3.571474	-1.588472	
20	6	0	0.533393	-2.741449	-0.618357	
21	7	0	0.952865	-1.430544	-0.746131	
22	6	0	1.955085	-1.399518	-1.698654	
23	7	0	2.689141	-0.342621	-2.005016	
24	1	0	-0.288331	-3.211301	0.308568	
25	6	0	-1./86452	-4.146562	2.901053	
26	6	0	-2.608605	-4.2162/3	4.03684/	
27	0	0	-3.300000	-3.110341	3 031301	
20	6	0	-3.220777	3 316732	1 768299	
30	6	0	-4.384620	4.676975	1.593541	
31	6	Ő	-3.538457	5.526677	0.881568	
32	6	Õ	-2.339046	5.094110	0.296964	
33	6	0	2.980712	-3.239037	-3.276882	
34	6	0	2.881201	-4.614821	-3.528320	
35	6	0	1.974925	-5.443728	-2.865959	
36	6	0	1.095035	-4.947077	-1.893327	
37	6	0	3.044518	4.461503	-1.379356	
38	6	0	4.330067	4.571572	-1.932918	
39	6	0	5.051528	3.464553	-2.385113	
40	6	0	4.544/49	2.15/029	-2.324021	
41	14	0	-0.006019	0.101814	-0.048421	
42	0 0	0	-0.9/4234	0.004425	-1.521272	
43	6	0	-2 359352	0.104291	_1 617847	
45	6	0	-2.685167	-0.606930	-2.955648	
46	7	Õ	-4.157608	-0.628054	-3.374018	
47	6	0	-4.675591	0.770887	-3.594436	
48	6	0	-4.263144	-1.392181	-4.670835	
49	6	0	2.335813	0.121332	1.543017	
50	6	0	2.590373	-0.135682	3.035710	
51	7	0	4.052123	-0.119904	3.488875	
52	6	0	4.867603	-1.124929	2.714270	

53	6	0	4.090	729 -0.	485140	4.952197	
54	1	0	1.9493	312 -6.	490171	-3.143050	
55	1	0	3.5190	557 -5.	045254	-4.293487	
56	1	0	-5.303	073 5.	091826	1.989495	
57	1	0	-3.833	430 6.	562434	0.745001	
58	1	0	-2.715	568 -5.	151597	4.572309	
59	1	0	-3.900	886 -3.	254647	5.420718	
60	1	0	6.0410	574 3.	644057	-2.786209	
61	1	0	4.8043	346 5.	542230	-2.011394	
62	1	0	-2.862	159 -0.	450474	-0.793754	
63	1	0	-2.716	052 1.	117899	-1.613807	
64	1	0	-2.141	719 -0.	105267	-3.759842	
65	1	0	-2.360	833 -1.	649432	-2.916011	
66	1	0	-5.305	969 -1.	403938	-4.99238/	
67	1	0	-3.645	b68 -0.	898534	-5.422602	
68	1	0	-3.909	992 -2.	411615	-4.509524	
69 70	1	0	-5.702	288 0.	/104//	-3.959443	
70	1	0	-4.045	303 1.	265996	-4.334/9/	
71	1	0	-4.648	982 I.	319456	-2.003908	
72	1	0	2.775	525 1	065400	1 22710/	
73	1	0	2.0040	197 1	115120	3 310030	
74 75	1	0	$2 \cdot 191$		626197	3 624430	
76	1	0	4 915	LGG _0	825174	1 667857	
70	1	0	4.3943	228 - 2	104179	2.801938	
78	1	Ő	5.873	550 -1.	157610	3,135956	
79	1	Ő	3.6832	284 -1.	489385	5.076396	
80	1	Ő	3.488	584 0.	232866	5.510812	
81	1	Õ	5.1252	238 -0.	455709	5.298483	
82	6	0	4.653	566 1.	253026	3.319285	
83	1	0	4.6710	513 1.	513238	2.261984	
84	1	0	5.6702	291 1.	240101	3.715578	
85	1	0	4.0468	320 1.	972731	3.870918	
86	6	0	-5.003	352 -1.	318962	-2.333472	
87	1	0	-4.999	705 –0.	733320	-1.414893	
88	1	0	-4.589	336 –2.	311067	-2.146376	
89	1	0	-6.022	780 -1.	405161	-2.713375	
90	1	0	-1.212	869 -4.	974964	2.540981	
91	1	0	-3.712	987 -0.	976754	4.329482	
92	1	0	-4.756	565 2.	631073	2.246420	
93	1	0	-1.781	756 5.	838385	-0.232547	
94	1	0	2.493	/17 5.	291256	-0.988167	
95	1	0	5.0990)44 1.	291120	-2.620432	
96	1	0	3./140	-2.	706020	-3.845207	
97	T	0	0.3484	¥70 -5.	549631	-1.419545	
TD_DFT outpu	ut						
HOMO: 196. L	UMO: 197						
Excited State	1: Sin	glet-A	1.9244 eV	644.27 nm	f=0.3268	<s**2>=0.000</s**2>	
188 ->19	8 0.	10720					
192 ->192	8 0.	10332					
196 ->19	7 0.	69235					
This state for o	optimization a	nd/or second-	order correcti	on.			
Total Energy, I	E(TD-HF/TD-	DFT) = -26	12.81027118				
Copying the ex	xcited state de	nsity for this :	state as the 1-	particle Rho	CI density.		
		1	10-10	(A. F. 1.2	0 0 0 0 0 0 0		
Excited State	2: Si	nglet-A	1.9512 eV	635.43 nm	t=0.3198	<s**2>=0.000</s**2>	
188 ->19	7 -0.	10895					
192 ->19	/ -0.	10842					
196 ->19	в 0.	09009					
Excited State	2· C:	nalet A	3 0300 AV	107 00 nm	f-0.0007	~\$**7\-0.000	
	3. SI	13674	5.0390 ev	407.98 IIM	1-0.0007	~3**2/-0.000	
195 ->19	0.	130/4					
195 19	/	66389					
195_>19	/ 0. 8 0	66389 13929					

Excited State 192 ->197 193 ->197 194 ->197 195 ->197 195 ->198	4:	Singlet-A -0.16845 0.28985 0.10968 -0.11531 0.58613	3.0902 eV	401.22 nm	f=0.0026	<s**2>=0.000</s**2>
Excited State 188 ->198 192 ->197 192 ->198 193 ->197 194 ->197	5:	Singlet-A 0.15452 0.13384 -0.11807 -0.12713 0.62693	3.1953 eV	388.02 nm	f=0.0023	<s**2>=0.000</s**2>
Excited State 188 ->197 192 ->197 193 ->197 193 ->198 194 ->198	6:	Singlet-A 0.20949 -0.19316 -0.10414 -0.11674 0.60233	3.2280 eV	384.09 nm	f=0.0009	<s**2>=0.000</s**2>
Excited State 191 ->197 191 ->198 192 ->197 192 ->198 193 ->197 193 ->198 194 ->198 195 ->197 195 ->198	7:	Singlet-A 0.15765 0.10879 0.17325 -0.25556 -0.22790 0.47737 0.12887 -0.16473 0.13940	3.2833 eV	377.62 nm	f=0.0015	<s**2>=0.000</s**2>
Excited State 189 ->197 189 ->198 190 ->197 191 ->198 192 ->197 192 ->198 193 ->197 193 ->198 194 ->197 195 ->198	8:	Singlet-A -0.10618 0.10780 0.21794 -0.15496 -0.23862 -0.16521 0.38313 0.26545 0.12514 -0.25613	3.3140 eV	374.12 nm	f=0.0026	<s**2>=0.000</s**2>
Excited State 189 ->197 190 ->198 191 ->197 193 ->198 196 ->199	9:	Singlet-A -0.22285 0.22094 0.52223 -0.14382 0.26813	3.3379 eV	371.44 nm	f=0.0006	<s**2>=0.000</s**2>
Excited State 189 ->197 190 ->197 190 ->198 191 ->198 196 ->199	10:	Singlet-A -0.13809 0.10733 -0.40425 0.24141 0.44864	3.3764 eV	367.21 nm	f=0.0026	<s**2>=0.000</s**2>

References for Supporting Information

ⁱ Burla, M. C.; Caliandro, R.; Camalli, M.; Carrozzini, B.; Cascarano, G. L.; De Caro, L.; Giacovazzo,

C.; Polidori, G.; Spagna, R. J. Appl. Cryst. 2005, 38, 381.

ⁱⁱ Sheldrick, G. M. Acta Crystallogr. C, Struct. Chem. 2015, 71, 3-8.

ⁱⁱⁱ Yadokari-XG, Software for Crystal Structure Analyses, K. Wakita (2001); Release of Software (Yadokari-XG 2009) for Crystal Structure Analyses, Kabuto, C.; Akine, S.; Nemoto, T.; Kwon, E. J. Cryst. Soc. Jpn. 2009, 51, 218-224.

^{iv} Nyokong, T.; Antunes, E. In *Handbook of Porphyrin Science*; Kadish, K. M., Smith, K. M., Guilard, R., Eds.; World Scientific: Singspore, 2010; Vol. 7, pp 247-357.

^v Adarsh, N.; Shanmugasundaram, M.; Avirah, R. R.; Ramaiah, D. *Chem. Eur. J.* 2012, *18*, 12655-12662.
 ^{vi} Furuyama, T.; Satoh, K.; Kushiya, T.; Kobayashi, N. *J. Am. Chem. Soc.* 2014, *136*, 765-776.

vii Jiang, X.-J.; Lo, P.-C.; Yeung, S.-L.; Fong, W.-P.; Ng, D. K. P. Chem. Commun. 2010, 46, 3188-3190.

viii (a) Becke, A. D. *Phys. Rev.* 1988, *A38*, 3098-3100. (b) Becke, A. D. J. Chem. Phys. 1993, *98*, 1372-1377. (c) Becke, A. D. J. Chem. Phys. 1993, *98*, 5648-5652. (d) Lee, C.; Yang, W.; Parr, R. G. Phys. *Rev.* 1988, *B37*, 785-788.

^{ix} *Gaussian 09*, Revision C.01, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian, Inc., Wallingford CT, 2009.

^x (a) Bauernschmitt, R. d.; Ahlrichs, R. *Chem. Phys. Lett.* **1996**, *256*, 454-464. (b) Dreuw, A.; Head-Gordon, M. *Chem. Rev.* **2005**, *105*, 4009-4037.