Supporting Information

Synthesis of metallophophaalkenes by reaction of organometallic

nucleophiles with a phosphaethynolato-borane

Daniel W. N. Wilson and Jose M. Goicoechea*

Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road,

Oxford, OX1 3TA, U.K.

E-mail: jose.goicoechea@chem.ox.ac.uk

Contents

- **1. Experimental section**
- 2. Single crystal X-ray diffraction data
- 3. References

1. Experimental section

1.1. General synthetic methods

All reactions and product manipulations were carried out under an inert atmosphere of argon or dinitrogen using standard Schlenk-line or glovebox techniques (MBraun UNIIab glovebox maintained at <0.1 ppm H₂O and <0.1 ppm O₂). [B]OCP and NaFp* were synthesized according to previously reported synthetic procedures.^{1,2} Chlorotrimethylsilane and chloro(triphenylphosphine)gold(I) were purchased from Sigma Aldrich and used as received. Hexane (hex; Sigma Aldrich HPLC grade), and toluene (tol; Sigma Aldrich HPLC grade) were purified using an MBraun SPS-800 solvent system. C₆D₆ (Aldrich, 99.5%), was degassed prior to use. All dry solvents were stored under argon in gas-tight ampoules. Additionally chlorotrimethylsilane, C₆D₆, hexane, and toluene were stored over activated 3 Å molecular sieves.

Additional characterization techniques: NMR spectra were acquired on a Bruker AVIII 500 MHz NMR spectrometer (¹H 500 MHz, ¹³C 126 MHz) and Bruker AVIII 400 MHz NMR spectrometer (³¹P 162 MHz, ¹¹B 128 MHz). ¹H and ¹³C NMR spectra were referenced to the most downfield solvent resonance (¹H NMR C_6D_6 : $\delta = 7.16$ ppm; ¹³C NMR C_6D_6 : $\delta = 188.06$ ppm). ³¹P{¹H} and ¹¹B{¹H} spectra were externally referenced to an 85% solution of H₃PO₄ in H₂O, and BF₃·Et₂O in C₆D₆, respectively. Elemental analyses were carried out by Elemental Microanalyses Ltd. (Devon, U.K.). Samples (approx. 5 mg) were submitted in sealed Pyrex ampoules.

1.2.1. Synthesis of {[B](NaO)C=PFp*}₂ {Na[1]}₂

[B]OCP (150 mg, 0.34 mmol) was added to a suspension of NaFp* (92 mg, 0.34 mmol) in toluene (2 mL). The solution darkened from light to dark orange. The solution was filtered to remove any excess NaFp*, concentrated to approximately 50% of the original volume and cooled overnight to yield $\{Na[1]\}_2$ as red crystals (195 mg, 80.6%) suitable for single crystal X-ray diffraction.

CHN Anal. Calcd. for C₃₉H₅₁BFeN₂NaO₃P: C, 65.38%; H, 7.18%; N, 3.91%. Found: C, 66.25%; H, 7.63%; N, 4.17%.

¹**H NMR** (500 MHz, C₆D₆): δ (ppm) 7.31 (br s, 6H; Ar*H*), 6.22 (s, 2H; (NC*H*)₂), 3.72 (br s, 4H; {C*H*(CH₃)₂}), 1.56 (br s, 26H; Cp* C*H*₃ and {CH(C*H*₃)₂}), 1.31 (d, ³*J*_{H-H} = 7 Hz, 12H; {CH(C*H*₃)₂}).

¹³C{¹H} NMR (126 MHz, C_6D_6): δ (ppm) 222.05 (s, br; CO), 146.58 (ArC), 140.82 (ArC), 126.63 (ArC), 123.27 (ArC), 118.44 ((NCH)₂), 94.93 (Cp**C*), 28.20 (CH(CH₃)₂), 25.85 (Cp**C*H₃), 23.52 (CH(CH₃)₂), 9.32 (CH(CH₃)₂), 9.27 (CH(CH₃)₂). Note: [B]*C*(O)PFp* not found, a small resonance at 145.79 ppm could be one half of the doublet with the other half obscured by the peak at 146.58 ppm.

¹¹B{¹H} NMR (128 MHz, C₆D₆): δ (ppm) 25.5 (s).

³¹**P**{¹**H**} **NMR** (162 MHz, C₆D₆): δ (ppm) 188.6 (s).

IR: $v = 1899.7 \text{ cm}^{-1}$ (v_{asym} , C=O), 1942.6 cm⁻¹ (v_{sym} , C=O).

Figure S1: Room temperature ¹H NMR of Na[1] in C_6D_6 .

Figure S2: Room temperature ${}^{13}C{}^{1}H$ NMR of Na[1] in C₆D₆.

Figure S3: Room temperature ${}^{11}B{}^{1}H$ NMR of Na[1] in C₆D₆.

Figure S4: Room temperature ${}^{31}P{}^{1}H$ NMR of Na[1] in C₆D₆.

Figure S5: IR spectra of Na[1] in Nujol mull.

1.2.2. Synthesis of [B](Me₃SiO)C=PFp* (2)

To a solution of Na[1] (100 mg, 0.14 mmol) in toluene (2 mL) was added trimethylsilyl chloride (18.3 mg, 0.17 mmol; 1.2 equivalents). A precipitate immediately formed and both the ¹H and ³¹P NMR spectra revealed quantitative conversion to $[B](Me_3SiO)C=PFp^*$. The solution was filtered and the solvent removed under reduced pressure, yielding an orange powder (91 mg, 85.0%). Recrystallisation from hexane yielded red crystals of $[B](Me_3SiO)C=PFp^*$ (2) suitable for X-ray diffraction.

CHN Anal. Calcd. for C₄₂H₆₀BFeN₂O₃PSi: C, 65.80%; H, 7.89%; N, 3.65%. Found: C, 65.35%; H, 7.61%; N, 3.99%.

¹**H NMR** (500 MHz, C₆D₆): δ (ppm) 7.27–7.20 (m, 6H; Ar*H*), 6.38 (s, 2H; (NC*H*)₂), 3.69 (sept, ${}^{3}J_{H-H} = 7$ Hz, 4H; {C*H*(CH₃)₂}), 1.45 (d, ${}^{3}J_{H-H} = 7$ Hz, 12H; {CH(CH₃)₂}), 1.40 (s, 15H; Cp* CH₃), 1.25 (d, ${}^{3}J_{H-H} = 7$ Hz, 12H; {CH(CH₃)₂}), 0.15 (s, 9H; SiMe₃).

¹³C{¹H} NMR (126 MHz, C₆D₆): δ (ppm) 217.04 (s, br; CO), 146.19 (d, ¹*J*_{C-P} = 33 Hz; [B]*C*(O)PFp*), 145.92 (Ar*C*), 140.72 (Ar*C*), 127.03 (Ar*C*), 124.00 (Ar*C*), 120.14 ((NCH)₂), 95.92(Cp**C*), 28.67 (*C*H(CH₃)₂), 26.36 (*C*H(CH₃)₂), 23.34 (Cp**C*H₃), 9.33 (CH(*C*H₃)₂), 1.15 (Si*C*H₃).

¹¹B{¹H} NMR (128 MHz, C₆D₆): δ(ppm) 23.3 (s, br).

³¹**P**{¹**H**} **NMR** (162 MHz, C₆D₆): δ(ppm) 350.6 (s).

IR: $v = 1946.7 \text{ cm}^{-1}$ (v_{asym} , C=O), 1993.7 cm⁻¹ (v_{sym} , C=O).

Figure S6: Room temperature ¹H NMR spectrum of 2 in C_6D_6 .

Figure S7: Room temperature ${}^{13}C{}^{1}H$ NMR spectrum of 2 in C₆D₆.

Figure S8: Room temperature ${}^{11}B{}^{1}H$ NMR spectrum of 2 in C₆D₆.

Figure S9: Room temperature ${}^{31}P{}^{1}H$ NMR spectrum of 2 in C₆D₆.

Figure S10: IR spectra of 2 in Nujol mull.

1.2.3. Synthesis of $(PPh_3)AuP\{C(O)[B]\}Fp^*(3)$

To a solution of Na[1] (100 mg, 0.14 mmol) in toluene (2 mL) was added chloro(triphenylphosphene)gold(I) (69 mg, 0.14 mmol). The suspension was sonicated for 30 minutes, after which the NMR spectra showed complete consumption of the starting material. The solution was filtered, and the solvent removed under reduced pressure. The resulting orange oil was washing with hexane and recrystallised from toluene yielding analytically pure orange crystals suitable for X-ray diffraction (87 mg, 60.1%).

CHN Anal. Calcd. for C₅₇H₆₆AuBFeN₂O₃P₂: C, 59.39%; H, 5.77%; N, 2.43%. Found: C, 58.91%, H5.34 %; N 2.40 %.

¹**H NMR** (500 MHz, C₆D₆): δ (ppm) 7.65–7.56 (m, 6H; Ar*H*), 7.28–7.18 (m, 6H; Ar*H*), 7.11– 6.99 (m, 9H; Ar*H*), 6.26 (s, 2H; (NCH)₂), 3.57 (sept, ³*J*_{H–H} = 7 Hz, 4H; C*H*(CH₃)₂), 1.47 (s, 15H; Cp* CH₃), 1.39 (d, ³*J*_{H–H} = 7 Hz, 12H, CH(CH₃)₂), 1.19 (d, ³*J*_{H–H} = 7 Hz, 12H, CH(CH₃)₂).

¹³C{¹H} NMR (126 MHz, C₆D₆): δ (ppm) 218.85 (s, br; CO), 146.38 (ArC), 140.68 (ArC), 138.40 (d, ¹*J*_{C-P} = 127.9 Hz; [B]*C*(O)PFp*), 134.75 (d, ²*J*_{C-P} = 14 Hz; P(Ph)₃ ArC), 131.80 (d, ¹*J*_{C-P} = 46 Hz; P(Ph)₃ ArC), 131.21 (ArC), 129.23 (d, ³*J*_{C-P} = 11 Hz; P(Ph)₃ ArC), 127.21(ArC), 123.38 (ArC), 119.55 ((NCH)₂), 94.65 (Cp*C), 30.23 (unknown impurity), 28.98 (CH(CH₃)₂), 26.00 (CH(CH₃)₂), 24.32 (Cp*CH₃), 9.71(CH(CH₃)₂).

¹¹**B**{¹**H**} **NMR** (128 MHz, C₆D₆): δ(ppm) 21.8.

³¹P{¹H} NMR (162 MHz, C₆D₆): δ (ppm) 98.8 (d, ²J_{P-P} = 102 Hz), 43.3 (d, ²J_{P-P} = 102 Hz). IR: v = 1954.8 cm⁻¹ (v_{asym}, C=O), 2003.2 cm⁻¹ (v_{sym}, C=O).

Figure S11: Room temperature ¹H NMR spectrum of 3 in C_6D_6 .

Figure S12: Room temperature ${}^{13}C{}^{1}H$ NMR spectrum of 3 in C₆D₆.

Figure S13: Room temperature ${}^{11}B{}^{1}H$ NMR spectrum of 3 in C₆D₆.

Figure S14: Room temperature ${}^{31}P{}^{1}H$ NMR spectrum of 3 in C₆D₆.

Figure S15: IR spectra of 3 in Nujol mull.

Figure S16: Enhanced view of carbonyl region of Figure S15.

2. Single Crystal X-ray diffraction Data

Single-crystal X-ray diffraction data were collected using either an Oxford Diffraction Supernova dual-source diffractometer equipped with a 135 mm Atlas CCD area detector. Crystals were selected under Paratone-N oil, mounted on micromount loops and quenchcooled using an Oxford Cryosystems open flow N₂ cooling device. Data were collected at 150 K using mirror monochromated Cu K_a radiation ($\lambda = 1.5418$ Å; Oxford Diffraction Supernova) and processed using the CrysAlisPro package, including unit cell parameter refinement and inter-frame scaling (which was carried out using SCALE3 ABSPACK within CrysAlisPro).³ Equivalent reflections were merged and diffraction patterns processed with the CrysAlisPro suite. Structures were subsequently solved using direct methods and refined on F^2 using the SHELXL package.⁴

	(Na[1]) ₂	2	3
Formula	$C_{87}H_{123}B_2Fe_2N_4Na_2O_6P_2$	C _{43.5} H _{63.5} BFeN ₂ O ₃ PSi	C ₅₇ H ₆₆ AuBFeN ₂ O ₃ P ₂
CCDC	1911021	1911022	1911023
Fw [g mol ⁻¹]	1562.13	788.18	1152.68
Crystal system	triclinic	triclinic	triclinic
Space group	<i>P</i> -1	<i>P</i> -1	<i>P</i> -1
<i>a</i> (Å)	12.4481(4)	12.6726(7)	12.5793(6)
<i>b</i> (Å)	16.8150(7)	14.4208(6)	12.6322(5)
<i>c</i> (Å)	22.2412(11)	25.6379(10)	17.8449(6)
α (°)	96.817(4)	78.827(4)	86.392(3)
β (°)	94.522(3)	86.973(4)	73.088(4)
γ (°)	107.257(4)	78.977(4)	81.048(4)
$V(Å^3)$	4382.4(3)	4511.1(4)	2679.5(2)
Ζ	2	4	2
Radiation, λ (Å)	Μο Κα, 0.71073	Cu Ka, 1.54184	Cu Ka, 1.54184
Temp (K)	150(2)	150(2)	150(2)
$\rho_{calc} (g \text{ cm}^{-3})$	1.184	1.161	1.429
μ (mm ⁻¹)	0.429	3.556	8.145
Reflections collected	35282	39615	28840
Independent reflections	15427	18631	11081
Parameters	975	963	617
R(int)	0.0424	0.0476	0.0453
$R1/wR2$, ^[a] $I \ge 2\sigma I$ (%)	5.05/10.25	5.38/13.81	3.96/9.55
R1/wR2, ^[a] all data (%)	8.12/11.31	7.17/15.56	4.83/9.93
GOF	1.042	1.039	1.029

Table S1. Selected X-ray data collection and refinement parameters for (Na[1])₂, 2.0.25hex, and 3.

 $R1 = [\Sigma ||F_o| - |F_c||] / \Sigma |F_o|; wR2 = \{ [\Sigma w[(F_o)^2 - (F_c)^2]^2] / [\Sigma w(F_o^2)^2\}^{1/2}; w = [\sigma^2(F_o)^2 + (AP)^2 + BP]^{-1}, where P = [(F_o)^2 + 2(F_c)^2] / 3 and the A and B values are [(F_o)^2 - (F_c)^2] / 3 and (F_o)^2 / 3 and$

0.0412 and 0.36 for (Na[1])₂, 0.0725 and 1.76 for **2**, and 0.0493 and 4.07 for **3**.

3. References

- D. W. N. Wilson, A. Hinz and J. M. Goicoechea, *Angew. Chem. Int. Ed.* 2018, 57, 2188–2193.
- J. R. Green. Sodium Dicarbonylcyclopentadienylferrate in *Encycl. Reagents Org. Synth.*, John Wiley & Sons, Ltd, Chichester, UK, 2001.
- 3 *CrysAlisPro*, Agilent Technologies, Version 1.171.35.8.
- (a) G. M. Sheldrick in SHELXL97, *Programs for Crystal Structure Analysis (Release* 97-2), Institut für Anorganische Chemie der Universität, Tammanstrasse 4, D-3400
 Göttingen, Germany, 1998; (b) G. M. Sheldrick, *Acta Crystallogr. Sect. A* 1990, 46, 467–473; (c) G. M. Sheldrick, *Acta Crystallogr. Sect. A* 2008, 64, 112–122.