Supporting Information

Multicatalytic Dearomatization of Phenols into Epoxyquinols via a Photooxygenation Process

Louis Péault, Pierrick Nun, Erwan Le Grognec and Vincent Coeffard*

Univ. Nantes, CNRS, CEISAM UMR 6230, F-44000, Nantes - France. E-mail: vincent.coeffard@univ-nantes.fr

Table of contents	
1. General	S2 S2
2. Preparation of 10-q	
3. Influence of experimental parameters on the photooxygenation	S3
4. Photooxygenation procedure and characterization data	S 4
4.1 General experimental procedure for the photooxygenation	S4
4.2 Characterization data of 2a-q , 2'q	S5
4.3 Substrate limitations	S10
5. Control experiments	S11
6. ¹ H and ¹³ C NMR spectra	S13
7. Full characterization (2D NMR spectra) of 2a	S34
8. References	S36

1. General

¹H NMR and ¹³C spectra were recorded on a BRUKER AC300 (300 MHz for ¹H and 75 MHz for ¹³C) at room temperature on samples dissolved in CDCl₃. Chemical shifts (δ) are given in parts per million and coupling constants are given as absolute values expressed in Hertz. High-resolution mass spectrometry (HRMS) analyses were recorded on a XEVO G2-XS QTOF (Waters). Infrared spectra were recorded with a Bruker Tensor 27 FT ATR spectrometer. Melting points were determined on a Stuart melting point SMP3 apparatus. Thin-layer chromatography (TLC) was carried out on aluminium sheets precoated with silica gel 60 F₂₅₄ (Merck). Column chromatography separations were performed using Merck Kieselgel 60 (0.040-0.060 mm). The phenols **1a-n** were prepared according to literature procedure.^[S1] Compound **3** has been characterized in our previous work.^[S1]

2. Preparation of 10-q

methyl 2-hydroxy-5-methylbenzoate, 10

The ester **10** was prepared according to the procedure reported by the group of A. M. Harned.^[S2] Colourless oil; ¹H NMR (300 MHz, CDCl₃) δ 10.56 (s, 1H), 7.63 (d, J = 2.0 Hz, 1H), 7.26 (dd, J = 8.5, 2.0 Hz, 1H), 6.88 (d, J = 8.5 Hz, 1H), 3.94 (s, 3H), 2.28 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 170.7, 159.6, 136.8, 129.7, 128.5, 117.5, 112.1, 52.3, 20.5; IR (ATR, cm⁻¹) 3169, 2953,

1674, 1489, 1439, 1389, 1331, 1291, 1089, 826, 794; 537; HRMS (ESI) Calcd for C₉H₉O₃ [M-H]⁻: 165.0552, Found: 165.0547.

***** 5-methyl-[1,1'-biphenyl]-2-ol, *1p*

The phenol **1p** was prepared according to a modified procedure reported by X. Zhang, X. Fan and coll.^[S3] The reaction mixture was stirred for 4h under our experimental conditions. White solid; m.p. 68°C; ¹H NMR (300 MHz, CDCl₃) δ 7.49-7.37 (m, 5H), 7.08-7.06 (m, 2H), 6.89 (d, J = 8.8 Hz, 1H), 5.04 (s, 1H), 2.33 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 150.3, 137.4, 130.8, 130.1, 129.8,

129.4 (2C), 129.2 (2C), 128.0, 127.9, 115.8, 20.6; IR (ATR, cm⁻¹) 3503, 1508, 1487, 1444, 1397, 1330, 1245, 1127, 817, 757, 698, 581, 537; HRMS (ESI) Calcd for $C_{13}H_{11}O$ [M-H]⁻: 183.0810, Found: 183.0804.

***** 4-methyl-2-phenethylphenol, *1q*

To a suspension of $Pd(OH)_2$ (40 mg) in ethyl acetate (27 mL) was added phenol **1a** (210 mg, 1 mmol). The reaction mixture was stirred for 5h under H₂ atmosphere. The reaction mixture was then filtered over a pad of celite and concentrated under reduced pressure. No further purification was required (yield = 96%). Colourless oil; ¹H NMR (300 MHz, CDCl₃) δ 7.33-7.19 (m, 5H), 6.93-6.88 (m, 2H), 6.68 (d, J = 8.0 Hz, 1H), 4.42 (s, 1H), 2.93-2.88 (m; 4H), 2.27 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 151.4, 142.2, 131.0, 130.2, 128.6 (2C), 128.5 (2C), 127.8 (2C), 126.1, 115.4, 36.5, 32.6, 20.6; IR (ATR, cm⁻¹) 3398, 2921, 2859, 1503, 1258, 1104, 810, 749, 699; HRMS (ESI) Calcd for C₁₅H₁₅O [M-H]⁻: 211.1123, Found: 211.1116.

3. Influence of experimental parameters on the photooxygenation

Control experiments

^[a] Determined by ¹H NMR on the crude using methyl phenyl sulfone (0.125 mmol, 19.5 mg) as an internal standard. n.r. : no reaction.

♦ Base screening

^{*a*} Reaction conditions unless otherwise noted: **1a** (0.25 mmol), RB (0.01 mmol), base, O₂, green LED, MeOH (5 mL), 3h, rt; n.r.: no reaction. ^{*b*} Yields were determined by ¹H NMR using an internal standard. ^{*c*} Complex reaction mixture was obtained. ^{*d*} 12% of **3** was also observed. ^{*e*} compound **2a** was not detected. ^{*f*} 16% of **3** was also observed.

4. Photooxygenation procedure and characterization data

4.1 General experimental procedure for the photooxygenation

To a Schlenk flask was added 2-alkenylphenol 1 (0.25 mmol), cesium carbonate (12.2 mg, 37.5 μ mol, 15 mol%), Rose Bengal (2.5 mg, 2.5 μ mol, 1 mol%) and MeOH (5 mL) to give a purple solution. The reaction medium was gently bubbled with dioxygen throughout the reaction time and the homogeneous solution was irradiated with two green LED (2 x 1 W). The distance from the light source to the irradiation Schlenk vessel was 5 cm without the use of any filters. The reaction was stirred for 3 hours at which point methanol was removed under reduced pressure. The crude was quickly purified by chromatography on silica gel to give the desired product (dichloromethane/diethyl ether). [In the case of 1q, the photooxygenation step was followed by addition of PPh₃ (65.5 mg, 0.25 mmol). The reaction mixture was stirred for 1 h at room temperature and the solvent was then removed under reduced pressure prior to purification]

4.2 Characterization data of 2a-q, 2'q

5-hydroxy-5-methyl-1-[(E)-2-phenylethenyl]-7-oxabicyclo[4.1.0]hept-3en-2-one, *2a*

Colourless oil; ¹H NMR (300 MHz, CDCl₃) δ 7.34-7.30 (m, 2H), 7.25-7.13 (m, 3H), 6.61 (app. s, 2H), 6.37 (dd, J = 10.5, 2.8 Hz, 1H), 5.79 (d, J = 10.5 Hz, 1H), 3.53 (d, J = 2.8 Hz, 1H), 2.76 (bs, 1H), 1.40 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 193.3, 149.3, 135.8, 133.1, 128.8 (2C), 128.5, 126.9 (2C), 5 68.8 68.6 60.6 25.4; IR (ATR cm⁻¹) 3405 2979 1679 1148 966 693 520;

124.3, 119.5, 68.8, 68.6, 60.6, 25.4; IR (ATR, cm⁻¹) 3405, 2979, 1679, 1148, 966, 693, 520; HRMS (ESI) Calcd for $C_{15}H_{15}O_3$ [M+H]⁺: 243.1021, Found: 243.1014.

5-hydroxy-5-methyl-1-[(E)-2-(2-methylphenyl)ethenyl]-7oxabicyclo[4.1.0]hept-3-en-2-one, *2b*

White solid; m.p. 88-90°C; ¹H NMR (300 MHz, CDCl₃) δ 7.55-7.46 (m, 1H), 7.22-7.13 (m, 3H), 6.97 (d, J = 16.0 Hz, 1H), 6.59 (d, J = 16.0 Hz, 1H), 6.49 (dd, J = 10.5, 2.8 Hz, 1H), 5.90 (d, J = 10.5 Hz, 1H), 3.62 (d, J = 2.8 Hz, 1H), 2.82 (bs, 1H), 2.35 (s, 3H), 1.52 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 193.4,

149.2, 135.9, 134.9, 130.8, 130.5, 128.4, 126.3, 125.9, 124.3, 120.8, 69.0, 68.8, 60.8, 25.4, 19.9; IR (ATR, cm⁻¹) 3401, 2986, 2935, 1667, 1151, 971, 860, 745, 539; HRMS (ESI) Calcd for $C_{16}H_{15}O_3$ [M-H]⁻: 255.1021, Found: 255.1033.

5-hydroxy-5-methyl-1-[(E)-2-(3-methylphenyl)ethenyl]-7oxabicyclo[4.1.0]hept-3-en-2-one, *2c*

Viscous oil; ¹H NMR (300 MHz, CDCl₃) δ 7.26-7.20 (m, 3H), 7.12-7.08 (m, 1H), 6.70 (app. s, 2H), 6.49 (dd, J = 10.5, 2.8 Hz, 1H), 5.90 (d, J = 10.5 Hz, 1H), 3.64 (d, J = 2.8 Hz, 1H), 2.77 (bs, 1H), 2.35 (s, 3H), 1.51 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 193.3, 149.2, 138.3, 135.7, 133.2, 129.3, 128.7, 127.6, 124.3, 124.2, 119.3, 68.8, 68.6, 60.6, 25.4, 21.5; IR (ATR, cm⁻¹) 3407,

2978, 2925, 1679, 1635, 1148, 967, 821, 693, 557; HRMS (ESI) Calcd for C₁₆H₁₅O₃ [M-H]⁻: 255.1021, Found: 255.1027.

5-hydroxy-5-methyl-1-[(E)-2-(4-methylphenyl)ethenyl]-7oxabicyclo[4.1.0]hept-3-en-2-one, *2d*

Viscous oil; ¹H NMR (300 MHz, CDCl₃) δ 7.32 (d, J = 8.0 Hz, 2H), 7.14 (d, J = 8.0 Hz, 2H), 6.70 (d, J = 16.2 Hz, 1H), 6.64 (d, J = 16.2 Hz, 1H), 6.48 (dd, J = 10.5, 2.8 Hz, 1H), 5.89 (d, J = 10.5 Hz, 1H), 3.64 (d, J = 2.8 Hz, 1H), 2.76 (bs, 1H), 2.34 (s, 3H), 1.50 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 193.4, 149.2, 138.5, 133.0 (2C), 129.5 (2C), 126.9 (2C), 124.3, 118.3, 68.8, 68.6,

60.7, 25.4, 21.4; IR (ATR, cm⁻¹) 3365, 2977, 2923, 1702, 1682, 1152, 966, 890, 584, 542; HRMS (ESI) Calcd for C₁₆H₁₅O₃ [M-H]^{-:} 255.1021, Found: 255.1026.

1-[(E)-2-(4-fluorophenyl)ethenyl]-5-hydroxy-5-methyl-7oxabicyclo[4.1.0]hept-3-en-2-one, *2e*

Viscous oil; ¹H NMR (300 MHz, CDCl₃) δ 7.41-7.37 (m, 2H), 7.04-6.95 (m, 2H), 6.69 (d, J = 16.2 Hz, 1H), 6.61 (d, J = 16.2 Hz, 1H), 6.48 (dd, J = 10.5, 2.8 Hz, 1H), 5.90 (d, J = 10.5 Hz, 1H), 3.62 (d, J = 2.8 Hz, 1H), 2.69 (bs, 1H), 1.50 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 193.2, 162.9 (d, J = 248 Hz), 149.3, 132.0 (d, J = 3 Hz), 131.9, 128.6 (d, J = 8 Hz, 2C), 124.3, 119.3 (d, J = 248 Hz), 149.3 (d, J = 3 Hz), 131.9 (d, J = 248 Hz), 128.6 (d, J = 8 Hz, 2C), 124.3, 119.3 (d, J = 248 Hz), 149.3 (d, J = 3 Hz), 131.9 (d, J = 248 Hz), 149.3 (d, J = 248 Hz), 149.3 (d, J = 3 Hz), 131.9 (d, J = 8 Hz, 2C), 124.3 (d, J = 248 Hz), 149.3 (d, J = 248 Hz), 149.3 (d, J = 3 Hz), 131.9 (d, J = 248 Hz), 149.3 (d, J = 248 Hz), 149.3 (d, J = 3 Hz), 131.9 (d, J = 8 Hz), 149.3 (d, J = 8 Hz), 149.3 (d, J = 3 Hz), 149.3 (d, J = 8 Hz), 149.3 (d, J = 140.5 Hz), 149.3 (d, J = 140.5 Hz), 140.5 Hz), 140.5 (d, J = 140.5 Hz), 14

2 Hz), 115.8 (d, J = 22 Hz, 2C), 68.8, 68.7, 60.6, 25.4; IR (ATR, cm⁻¹) 3454, 2971, 1685, 1385, 1153, 941, 804, 536; HRMS (ESI) Calcd for $C_{15}H_{14}O_3F$ [M+H]⁺: 261.0927, Found: 261.0936.

1-[(E)-2-(4-chlorophenyl)ethenyl]-5-hydroxy-5-methyl-7oxabicyclo[4.1.0]hept-3-en-2-one, *2f*

Yellow solid; m.p. 114-116°C; ¹H NMR (300 MHz, CDCl₃) δ 7.35 (d, J = 8.8 Hz, 2H), 7.30 (d, J = 8.8 Hz, 2H), 6.68 (app. s, 2H), 6.49 (dd, J = 10.5, 2.8 Hz, 1H), 5.90 (d, J = 10.5 Hz, 1H), 3.63 (d, J = 2.8 Hz, 1H), 2.81 (bs, 1H), 1.51 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 193.1, 149.3, 134.3, 134.2, 131.9, 129.0 (2C), 128.1 (2C), 124.2, 120.3, 68.8, 68.7, 60.5, 25.4; IR (ATR, cm⁻¹) 3451,

2972, 1686, 1153, 1084, 806, 731, 499; HRMS (ESI) Calcd for C₁₅H₁₄O₃Cl [M+H]⁺: 277.0631, Found: 277.0643.

1-[(E)-2-(4-bromophenyl)ethenyl]-5-hydroxy-5-methyl-7oxabicyclo[4.1.0]hept-3-en-2-one, 2g

Me⁻¹OH 2g

2h

Yellow solid; m.p. 128-130°C; ¹H NMR (300 MHz, CDCl₃) δ 7.45 (d, J = 8.5 Hz, 2H), 7. 28 (d, J = 8.5 Hz, 2H), 6.71 (d, J = 16.2 Hz, 1H), 6.64 (d, J = 16.2 Hz, 1H), 6.50 (dd, J = 10.5, 2.8 Hz, 1H), 5.90 (d, J = 10.5 Hz, 1H), 3.63 (d, J = 2.8 Hz, 1H), 2.87 (bs, 1H), 1.51 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 193.1, 149.4, 134.7, 131.9 (2C), 131.8, 128.4 (2C), 124.2, 122.4, 120.5, 68.7, 68.6,

 $60.5, 25.4; \text{ IR (ATR, cm^{-1}) 3453, 2970, 1685, 1153, 804, 727, 537; HRMS (ESI) Calcd for C₁₅H₁₄O₃Br [M+H]⁺: 321.0126, Found: 321.0121.$

5-hydroxy-5-methyl-1-[(E)-2-(4-nitrophenyl)ethenyl]-7oxabicyclo[4.1.0]hept-3-en-2-one, *2h*

Yellow solid; m.p. 149-151°C; ¹H NMR (300 MHz, CDCl₃) δ 8.24-8.12 (m, 2H), 7.63-7.48 (m, 2H), 6.88 (d, J = 16.2 Hz, 1H), 6.77 (d, J = 16.2 Hz, 1H), 6.52 (dd, J = 10.5, 2.8 Hz, 1H), 5.91 (d, J = 10.5 Hz, 1H), 3.63 (d, J = 2.8 Hz, 1H), 5.91 (d, J = 10.5 Hz, 1H), 3.63 (d, J = 2.8 Hz, 1H), 5.91 (d, J = 10.5 Hz, 1H), 3.63 (d, J = 2.8 Hz, 1H), 5.91 (d, J = 10.5 Hz, 1H)

1H), 2.79 (bs, 1H), 1.51 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 192.8, 149.6, 147.5, 142.1, 130.7, 127.5 (2C), 125.0, 124.2 (2C), 124.1, 69.0, 68.7, 60.4, 25.4; IR (ATR, cm⁻¹) 3472, 2978, 2933, 1683, 1595, 1508, 1338, 1153, 972, 863, 688, 541; HRMS (ESI) Calcd for C₁₅H₁₂O₅N [M-H]⁻: 286.0715, Found: 286.0722.

Me methyl 4-{(E)-2-[5-hydroxy-5-methyl-2-oxo-7-oxabicyclo[4.1.0]hept-3-en-1-yl]ethenyl}benzoate, *2i*

Yellow solid; m.p. 148-150°C; ¹H NMR (300 MHz, CDCl₃) 8.02-7.94 (m, 2H), 7.50-7.43 (m, 2H), 6.82 (d, J = 16.2 Hz, 1H), 6.73 (d, J = 16.2 Hz, 1H), 6.49 (dd, J = 10.5, 2.8 Hz, 1H), 5.89 (d, J = 10.5 Hz, 1H), 3.90 (s, 3H), 3.62 (d, J = 2.8 Hz, 1H), 2.91 (bs, 1H), 1.50 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 193.1, 166.9, 149.5, 140.2, 132.0, 130.1 (2C), 129.8, 126.8 (2C), 124.2, 122.5,

68.8, 68.7, 60.4, 52.3, 25.5; IR (ATR, cm⁻¹) 3449, 2973, 2950, 1707, 1683, 1606, 1274, 1150, 1110, 1082, 966, 855, 694, 537; HRMS (ESI) Calcd for C₁₇H₁₇O₅ [M+H]⁺: 301.1076, Found: 301.1079.

о I-I(E oxab Vello Hz, 1 16.1 Me OH (d. J

2j

2i

1-[(E)-2-(2,4-dichlorophenyl)ethenyl]-5-hydroxy-5-methyl-7oxabicyclo[4.1.0]hept-3-en-2-one, *2j*

Yellow solid; m.p. 120-122°C; ¹H NMR (300 MHz, CDCl₃) δ 7.52 (d, J = 8.5 Hz, 1H), 7.36 (d, J = 2.1 Hz, 1H), 7.21 (dd, J = 8.5, 2.1 Hz, 1H), 7.03 (d, J = 16.1 Hz, 1H), 6.70 (d, J = 16.1 Hz, 1H), 6.50 (dd, J = 10.5, 2.8 Hz, 1H), 5.90 (d, J = 10.5 Hz, 1H), 3.64 (d, J = 2.8 Hz, 1H), 2.83 (bs, 1H), 1.51 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 193.0, 149.5, 134.5, 134.1, 132.6, 129.7, 128.2,

128.0, 127.5, 124.2, 123.1, 69.0, 68.8, 60.5, 25.4; IR (ATR, cm⁻¹) 3388, 2974, 2931, 1683, 1665, 1137, 964, 861, 542; HRMS (ESI) Calcd for $C_{15}H_{11}O_3Cl_2$ [M-H]^{-:} 309.0085, Found: 309.0090.

co2Et ethyl (3E)-4-[5-hydroxy-5-methyl-2-oxo-7-oxabicyclo[4.1.0]hept-3-en-1yl]but-3-enoate, 2k

White solid; m.p. 113-115°C; ¹H NMR (300 MHz, CDCl₃) 7.32 (d, J = 15.8 Hz, 1H), 6.50 (dd, J = 10.5, 2.8 Hz, 1H), 6.16 (d, J = 15.8 Hz, 1H), 5.88 (d, J = 10.5 Hz, 1H), 4.22 (q, J = 7.1 Hz, 2H), 3.53 (d, J = 2.8 Hz, 1H), 2.92 (bs, 1H),

1.48 (s, 3H), 1.30 (t, J = 7.1 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 191.8, 165.6, 149.7, 138.1, 124.5, 124.0, 68.9, 68.6, 61.0, 59.7, 25.4, 14.3; IR (ATR, cm⁻¹) 3443, 2971, 1678, 1255, 1190, 1155, 975, 825, 691, 585; HRMS (ESI) Calcd for C₁₂H₁₄O₅Na [M+Na]⁺: 261.0739, Found: 261.0749.

5-hydroxy-5-methyl-1-[(1E)-4-oxopent-1-en-1-yl]-7-oxabicyclo[4.1.0]hept-3-en-2-one, 21

Colourless oil; ¹H NMR (300 MHz, CDCl₃) 7.19 (d, J = 16.1 Hz, 1H), 6.51 (dd, J = 10.5, 2.8 Hz, 1H), 6.35 (d, J = 16.1 Hz, 1H), 5.90 (d, J = 10.5 Hz, 1H), 3.55 (d, J = 2.8 Hz, 1H), 2.75 (bs, 1H), 2.33 (s, 3H), 1.49 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) & 197.7, 191.9, 149.8, 136.7, 132.1, 124.0, 69.0, 68.7, 59.7, 27.6, 25.4; IR

(ATR, cm⁻¹) 3385, 2977, 2928, 1679, 1634, 1151, 976, 822, 570; HRMS (ESI) Calcd for C₁₁H₁₂O₄Na [M+Na]⁺: 231.0633, Found: 231.0641.

1-[(1E)-3-(4-chlorophenyl)prop-1-en-1-yl]-5-ethyl-5-hydroxy-7oxabicyclo[4.1.0]hept-3-en-2-onene, 2m

Colourless oil; ¹H NMR (300 MHz, CDCl₃) 7.39-7.25 (m, 4H), 6.68 (app. s, 2H), 6.40 (dd, J = 10.5, 2.8 Hz, 1H), 6.00 (d, J = 10.5 Hz, 1H), 3.55 (d, J = 2.8 Hz, 1H), 2.85 (bs, 1H), 1.86 (q, J = 7.6 Hz, 2H), 0.90 (t, J = 7.6 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 193.4, 147.9, 134.3, 134.2, 131.9, 128.9 (2C), 128.1 (2C), 125.7, 120.2, 71.9, 68.1, 60.4, 31.4, 7.7; IR (ATR, cm⁻¹) 3408,

2971, 2937, 1683, 1090, 1013, 971, 810, 734, 541; HRMS (ESI) Calcd for C₁₆H₁₄O₃Cl [M-H]⁻: 289.0631, Found: 289.0638.

он Me

2n

5-hydroxy-4,5-dimethyl-1-[(1E)-3-phenylprop-1-en-1-yl]-7oxabicyclo[4.1.0]hept-3-en-2-one, 2n

Yellow solid; m.p. 49-51°C; ¹H NMR (300 MHz, CDCl₃) 7.45-7.41 (m, 2H), 7.36-7.24 (m, 3H), 6.73 (app. s, 2H), 5.81 (q, J = 1.4 Hz, 1H), 3.66 (s, 1H), 2.59 (bs, 1H), 2.03 (d, J = 1.4 Hz, 3H), 1.50 (s, 3H); 13 C NMR (75 MHz, CDCl₃) § 192.8, 159.8, 135.9, 132.9, 128.8 (2C), 128.5, 127.0 (2C), 122.6,

119.6, 70.8, 69.4, 61.3, 25.0, 18.2; IR (ATR, cm⁻¹) 3405, 2980, 2925, 1669, 1629, 1152, 965, 866, 693, 534; HRMS (ESI) Calcd for C₁₆H₁₇O₃ [M+H]⁺: 257.1178, Found: 257.1177.

methyl 5-hydroxy-5-methyl-2-oxo-7-oxabicyclo[4.1.0]hept-3-ene-1carboxylate, 20

Colourless oil; ¹H NMR (300 MHz, CDCl₃) 6.51 (dd, J = 10.6, 2.7 Hz, 1H), 5.89 (d, J = 10.6 Hz, 1H), 3.86 (s, 3H), 3.74 (d, J = 2.7 Hz, 1H), 2.68 (s, 1H),

1.53 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 187.8, 165.1, 149.9, 123.9, 67.8, 63.2, 59.0, 53.3, 25.4; IR (ATR, cm⁻¹) 3473, 2960, 1748, 1665, 1443, 1238, 1027, 944, 823, 779, 590; HRMS (ESI) Calcd for C₉H₁₀O₅Na [M+Na]⁺: 221.0426, Found: 221.0417.

5-hydroxy-5-methyl-1-phenyl-7-oxabicyclo[4.1.0]hept-3-en-2-one, 2p Colourless oil; ¹H NMR (400 MHz, CDCl₃) 7.43-7.34 (m, 5H), 6.52 (dd, J = 10.5, 2.8 Hz, 1H), 5.97 (d, J = 10.5 Hz, 1H), 3.58 (d, J = 2.8 Hz, 1H), 2.57 (s, 1H), 1.55 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 192.3, 148.9, 132.6, 128.9,

128.5 (2C), 127.4 (2C), 124.8, 68.5, 67.5, 62.6, 25.6; IR (ATR, cm⁻¹) 3401, 2978, 1682, 1497, 1447, 1087, 939, 817, 761, 592, 556; HRMS (ESI) Calcd for $C_{13}H_{12}O_3Na$ [M+Na]⁺: 239.0684, Found: 239.0690.

OV

5-hydroxy-5-methyl-3-(2-phenylethyl)-7-oxabicyclo[4.1.0]hept-3-en-2one, 2q

Colourless oil; ¹H NMR (300 MHz, CDCl₃) 7.30-7.25 (m, 2H), 7.21-7.11 (m, 3H), 5.97-5.96 (m, 1H), 3.58 (dd, J = 3.9, 2.8 Hz, 1H), 3.52 (d, J = 3.9

Hz, 1H), 2.75-2.69 (m, 2H), 2.60-2.50 (m, 1H), 2.45-2.38 (m, 1H), 2.23 (s, 1H), 1.35 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 193.7, 145.5, 140.9, 133.4, 128.9 (2C), 128.5 (2C), 126.3, 68.6, 58.9, 54.7, 34.4, 31.4, 25.5; IR (ATR, cm⁻¹) 3409, 2925, 1677, 1495, 1452, 1085, 883, 672, 591; HRMS (ESI) Calcd for C₁₅H₁₆O₃Na [M+Na]⁺: 267.0997, Found: 267.0999.

4-hydroxy-4-methyl-2-(2-phenylethyl)cyclohexa-2,5-dien-1-one, 2'q

Colourless oil; ¹H NMR (300 MHz, CDCl₃) 7.29-7.25 (m, 2H), 7.20-7.13 (m, 3H), 6.81 (dd, J = 10.0, 3.1 Hz, 1H), 6.40-6.38 (m, 1H), 6.11 (d, J = 10.0 Hz, 1H), 2.81-2.76 (m, 2H), 2.60-2.54 (m, 2H), 1.83 (s, 1H), 1.35 (s, 1H)

3H); ¹³C NMR (75 MHz, CDCl₃) δ 185.5, 151.6, 147.8, 141.5, 136.5, 128.8 (2C), 128.4 (2C), 127.4, 126.2, 67.5, 34.5, 31.2, 26.9; IR (ATR, cm⁻¹) 3381, 2925, 1665, 1633, 1494, 1451, 1123, 1049, 833, 749, 700; HRMS (ESI) Calcd for C₁₅H₁₆O₂Na [M+Na]⁺: 251.1048, Found: 251.1051.

4.3 Substrate limitations

The general procedure for the photooxygenation process applied to the following phenolic substrates failed to give the desired products.

OH CHO Me	OH Me	OH Me	OH Ph
Complex reaction	Decomposition of the	Decomposition of the	Decomposition of the
<i>mixture was</i>	substrate observed	substrate observed	substrate observed
observed by ¹ H NMR	$by {}^{1}HNMR$ of the	by ¹ H NMR of the	by ${}^{1}HNMR$ of the
of the crude	crude	crude	crude

The photooxygenation of *para*-cresol did not afford the desired epoxyquinol as depicted below:

NMR data are in agreement with those reported in the literature.^[S4]

5. Control experiments

▶ Reaction in the presence of TEMPO

Similar levels of yields were obtained for the photooxygenation of 1a without or with two equivalents of TEMPO. This experiment confirms that a mechanism involving radical intermediates is not the main pathway by which 2a is formed.

Experimental procedure: To a Schlenk flask was added 2-alkenylphenol **1a** (0.25 mmol), cesium carbonate (12.2 mg, 37.5 μ mol, 15 mol%), Rose Bengal (2.5 mg, 2.5 μ mol, 1 mol%), TEMPO (78 mg, 0.5 mmol) and MeOH (5 mL) to give a purple solution. The reaction medium was gently bubbled with dioxygen throughout the reaction time and the homogeneous solution was irradiated with two green LED (2 x 1 W). The distance from the light source to the irradiation Schlenk vessel was 5 cm without the use of any filters. The reaction was stirred for 3 hours at which point methanol was removed under reduced pressure. The crude was quickly purified by chromatography on silica gel to give the desired product **2a** (pentane/diethyl ether, 95/5) in 40% yield.

▶ Reaction in the presence of sodium azide

No reaction occurred in the presence of 3 equivalents of sodium azide which is a quencher of singlet oxygen. This experiment confirms that a mechanism involving singlet oxygen is the main pathway by which 2a is formed.

Experimental procedure: To a Schlenk flask was added 2-alkenylphenol **1a** (0.25 mmol), cesium carbonate (12.2 mg, 37.5 μ mol, 15 mol%), Rose Bengal (2.5 mg, 2.5 μ mol, 1 mol%), sodium azide (49 mg, 0.75 mmol) and MeOH (5 mL) to give a purple solution. The reaction medium was gently bubbled with dioxygen throughout the reaction time and the homogeneous solution was irradiated with two green LED (2 x 1 W). The distance from the light source to the irradiation Schlenk vessel was 5 cm without the use of any filters. The reaction was stirred for 3 hours at which point methanol was removed under reduced pressure. The crude was analyzed by ¹H NMR and only the starting material **1a** was detected.

≻ Two step reaction

A two-step procedure was performed to confirm the relative stereochemistry of the epoxyquinols **2**. To this aim, the phenol **1k** was transformed into the hydroperoxide **A** through a reported procedure which uses a catalytic amount of a BODIPY photosensitizer.^[S1] Based on a reported procedure known to form *cis*-epoxyquinols,^[S5] the hydroperoxide **A** underwent a base-catalyzed epoxidation reaction to form the compound **2k** which exhibits identical NMR data to those observed for the product obtained by photooxygenation of phenol **1k** using the rose bengal/cesium carbonate multicatalytic system.

Experimental procedure (step 1): To a Schlenk flask was added 2-alkenylphenol **1k** (206 mg, 1 mmol), photosensitizer (2 mol%, 0.02 mmol, 11.2 mg) and CDCl₃ (9.6 mL) to give a pink red solution. The flask was placed into a crystallizing dish with water (10°C). The reaction medium was gently bubbled with dioxygen throughout the reaction time (6h) and the homogeneous solution was irradiated with a Xenon lamp (12 V, 35 W). The distance from the light source to the irradiation Schlenk vessel was 10 cm without the use of any filters. The solvent was removed in vacuo and the crude was quickly purified by chromatography on a pad of silica gel (pentane/EtOAc, 6/4) to give the desired compound **A** in 50% yield which turned out to be rather unstable. NMR data are in agreement with those reported in the literature.^[S1]

Experimental procedure (step 2): To a solution of *para*-peroxyquinol A (50 mg, 0.21 mmol) in chloroform (4.8 mL) was added a 40% solution of Triton B in MeOH (24 μ L, 0.052 mmol, 0.25 equiv.), and the resulting mixture was stirred at room temperature. After 1 hour, the solvent was removed in vacuo and the crude was purified by chromatography on silica gel (pentane/EtOAc, 1/1) to afford **2k** in 40% yield.

6. ¹H and ¹³C NMR spectra

S15

S22

7. Full characterization (2D NMR spectra) of 2a

COSY of 2a

HMBC of 2a

8. References

- [S1] A. Mauger, J. Farjon, P. Nun and V. Coeffard, *Chem. Eur. J.*, 2018, **24**, 4790.
- [S2] N. G. Moon and A. M. Harned, *Org. Lett.*, 2015, **17**, 2218.
- [S3] S. Duan, Y. Xu, X. Zhang and X. Fan, *Chem. Commun.*, 2016, **52**, 10529.
- [S4] R. Sunasee and D. L. J. Clive, Chem. Commun., 2010, 46, 701.
- [S5] S. Barradas, A. Urbano and M. C. Carreño, *Chem. Eur. J.*, 2009, **15**, 9286.