Supporting Information

Design and Construction of Reconfigurable DNA Nanocage to Encapsulate TMV Disk

Tianran Zhangª, Xiangzhi Zengª, Shuwen Guan^b, Xiumei Liª, Zhiyu Quª, Luyao Qinª, Chunxi Houª* & Junqiu Liuª*

- a. State Key laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China, Fax:(+86)85168452
- b. College of Life Science, Jilin University, 2699 Qianjin Street, Changchun 130012, China

*Email:junqiuliu@jlu.edu.cn chunxihou@jlu.edu.cn

Contents

Cor	ntents	Page
1.	Design of DNA nanocage	S 1
2.	Synthesis of DNA nanocage and TMV disk-nanocage complex	S 8
3.	Characterization methods of DNA nanocage and TMV disk-nanocage complex	S 10
4.	characterizations of DNA nanocage and TMV disk-nanocage complex	S 11

1. Design of DNA nanocage

Figure S1 Design of DNA nanocage in caDNAno

Start	End	Sequence				
32[146]	34[133]	CTTTGAAAGAGGACTAATAGTAAAATGTAATATTCATTGAAT				
31[112]	35[118]	GGCTGACTTAAACAAAGAAGT				
15[161]	12[161]	AAAAAGGCTCCAATTTTTTCACGTTGACAAAGACAAAGG				
		GAATAAGTTTATTTT				
20[146]	22[133]	AAACTCCAACAGGTTCATATATTTTAAAGGTGAGAAAGGCCG				
35[161]	30[161]	GTCCAGAAGCCCGAGATTAAGAGATACTCCAAATCAAGAAC				
		GAGCCGCGTAACAAA				
27[119]	29[132]	GACTTTTTCATGAGATTTAAATTGTAAAACCTAAAACGAAAG				
27[77]	24[77]	CGGCTACAGGGAGTAACCGTGTCATCAA				
8[62]	10[49]	CCTTATTACGCAGTGACTCTAGAGGATCCGGCCAGTGCCAAG				
30[76]	32[63]	GATGGTTTAATTTCAAAGATTCATCAGTACGGAACAACATTA				
28[167]	20[168]	AAAGCCCCTTTGACCCCCAGCTTTTTGAGCTTC				
24[41]	27[34]	TCCGTGGGAACAAACGAGGCAAAACCGCGGATTGATCGAGG				
		TGAATTTCGCCTTTAATTGTAT				
6[41]	11[34]	AAAGTAAGCACGCAAAGACACCATATAAAAGAAAGTTGGGA				
		AGGGCGATTTCGCCATTCAGGC				
3[133]	1[146]	GAGGTTTTGAAGCCCCAGTCATGTAATTCAACGCCAATTGGA				
23[77]	18[77]	AGCCTTTCAAGGCATATTTTCCAATTCT				
31[63]	35[76]	GGACGTTGGGAAGATAATGCAGATACATGATAAAAACCAAAA				
18[76]	20[63]	GCGAACGAGTAGATGTAGTAGCATTAACAAGGTGGCATCAAT				
31[147]	35[160]	CGGATATTCATTACGCGGAATCGTCATATTAGACTGGATAGC				
20[83]	9[118]	AGCTGAAATCCAATGGAGACATAACGCGTAACAATCGCGAAA				
		ACGCGTAACAATCGCGAAAACGCGTAACAATCGCGAAAACGC				
		GTAACAATCGCGAAAAACGCGTAACAATCGCGAAGACATGCGC				
23[119]	21[132]	AATTTTTAGAACCCCAGGATTAGAGAGTTAGCTGATAAATTA				
12[41]	15[34]	CCGCCACCCTCAGAGCCACCACTTTTCATAATCAAATTTTGCT				
		CAGTACCGGGGTTTTCAGGG				
2[167]	8[168]	AAAACCGGTTGCTATTTTGCATTTTTAAATAGC				
27[161]	24[161]	GACCTGCTCCATGTCGCGAAACAAAGTATGTCAATCATATGTA				
		GAATCGATGAACG				
13[63]	15[76]	ACCGCCACCGTAATACCGCCACCCTCAGCGTAACACTGAGTT				
21[133]	19[146]	ATGCCGGAGAGGGTCTAAAGTACGGTGTATGGCTTAGAGCTT				
4[132]	0[119]	CTTATCCGGTATTCATCGCCATATTTAATAGGCAGAGGCATT				
9[133]	7[146]	CCGGAAGCATAAAGGATAACCCACAAGAGAGCGCTAATATCA				
11[161]	6[161]	CGGTTTGCGTATTGTAATTGCGTTGCGCGATTTTTTGTTTAAAA				
	4 4 5 4 6 9 7	ACAGCCATATTA				
7[147]	11[160]	GACAAATAAGAAACTCACTGCCCGCTTTCGCGCGGGGGAGAGG				
11[119]	9[132]	GTTTCAGCTGCATTGCGCATTAGACGGGACACAACATACGAG				
35[35]	33[48]	CTATCATAACCCTCGGAACCTATTATTCCGTATAAACAGTTA				
32[167]	28[168]	TAAGGGAAGAAGCAAAGCGGATTTTTAATCAGA				
2[27]	16[28]	TGAATTTTTTTTGCCGTCGAGAGGGATAGCCC				
30[125]	30[112]	GAAACACCAGAACG				

10[48]	6[42]	CTTGCATGCAACTGATAGCCGAACAAAGTTTAAGA		
14[132]	12[126]	CCAGACGTTAGTAAAATTAGAGCCAGCATTACCAT		
8[83]	9[83]	AGAACTGGTAACGC		
13[147]	15[160]	TGGTTTACCAGCGCAAATCCGATCTAAATTAGCGTAATCCAA		
34[48]	30[42]	TTACGAGGCATAGTTTTAAGAACTGGCTTGAATTA		
18[125]	23[118]	TTTCATTCCATATAGATAAGAACCATCAGGATAAA		
9[49]	7[62]	GGGATGTGCTGCAATTACCGAAGCCCTTTTACCAGAAGGAAA		
27[35]	29[48]	CGGTTTATCCAGCGCGCACTCCAGCCAGGCCGACAATGACAA		
1[147]	5[160]	ACAAGAGTCCACTATACCAACGCTAACGTCTTTCCAGAGCCT		
2[62]	4[49]	CCATCCTAATTTACCCGCCGCCAGCATCCATTGACAGGAGGT		
0[118]	5[118]	TTCGAGCATTGAGATAAGAACGGAATCA		
8[118]	2[112]	AGAATTATCAGACATAACCCCTAACAATGGGGAAAACCCCTA		
		ACAATGGGGAAAACCCCTAACAATGGGGAAAACCCCTAACA		
		ATGGGGAAAACCCCTAACAATGGGGAAGACATGGCTAGCGA		
		ACCGCTCAA		
5[119]	3[132]	TTACCGCGCCCAATCAGTATAAAGCCAACTCCCGACTTGCGG		
21[49]	19[62]	TGGCCCTGATAATATTAGTTTGACCATTCGCAAATGGTCAAT		
20[167]	32[168]	AAAGCGAGATCTACAAAGGCTTTTTTTCAATCA		
6[76]	8[63]	TAGCAATAGCTATCGGCGATTAAGTTGGGCATGATTAAGACT		
33[112]	29[118]	AGAATGACAGACCAGGAGACATAACGCGTAACAATCGCGAA		
		AACGCGTAACAATCGCGAAAAACGCGTAACAATCGCGAAAAC		
		GCGTAACAATCGCGAAAAACGCGTAACAATCGCGAAGACATG		
		CGCGGCACCA		
12[76]	16[63]	CGATAGCAGCTCCCTATCACCGTACTCATTAGCGTCAGACTG		
28[118]	20[112]	CGTTAATTCAGACATAACCCCTAACAATGGGGAAAACCCCTA		
		ACAATGGGGAAAACCCCTAACAATGGGGAAAACCCCTAACA		
		ATGGGGAAAACCCCTAACAATGGGGAAGACATGGCTACCGT		
1051473	0051 (01			
19[147]	23[160]	AATIGCIGAATATATAAAGATICAAAAGIGCAATGCCIGAGI		
12[125]	15[118]	TAGCAAGGCCGGAAATTTGGGATGAATTCAACGCC		
23[161]	18[161]	AATGTCTGGAGCAACCTGAGAGTGTAGGATGCTGTAGATATC		
0.451.601	0051473			
24[160]	28[147]			
10[132]	6[119]			
	16[112]			
16[146]	14[133]	GGAAATTATTCATTGACAGCCCTCATAGGTTTTGTCGTCTTT		
1[03]	2[/0]			
35[119]	33[132]			
29[133]	25[146]			
20[132]	24[126]			
32[27]	2[28]			
28[83]	29[83]			
[11[35]	8[35]	TGCGCCTGCAGGTCATGTTAGCAAACGT		

17[49]	13[62]	GCCCGGAATAGGTGTCAGAGCCGCCACCGAGCCACCGGA			
12[160]	16[147]	GTCACAATCAATAGGAGAATAGAAAGGAAGGTAAATATTGAC			
29[49]	25[62]	CAACCATCGCCCACGAGTAACAACCCGTGTCACGTTGGTGTA			
28[146]	26[133]	TTGTATAAGCAAATGAAGTTGATAAATTATCATCGCCTTCCA			
15[77]	12[77]	TCGTCACCCTCAGACAGTAGCAAACCAT			
16[62]	14[49]	TAGCGCGTTTTCATAGGAACCCATGTACAACCGCCACCCTCA			
16[167]	28[28]	GGAGGGAACAACTAAAGGAATTTTTTATACCGATAGTTGCCTT			
		TCCG			
0[76]	2[63]	AGTACCGACAAAAGTCGGCTGTCTTTCCAGAAAAATAATATC			
2[83]	16[77]	CTGAACATTATCATGGAGACATAACGCGTAACAATCGCGAAA			
		ACGCGTAACAATCGCGAAAACGCGTAACAATCGCGAAAACG			
		CGTAACAATCGCGAAAACGCGTAACAATCGCGAAGACATGC			
		GCTTTGCCT			
25[63]	27[76]	GATGGGCGCATCGTTAAAGGCCGCTTTTAACGAGGGTAGCAA			
33[133]	31[146]	TCAGGTCTTTACCCGAATAAGGCTTGCCATCTTGACAAGAAC			
34[132]	30[126]	CCCCCTCAAATGCTCTTCATCAAGAGTACTGACGA			
3[49]	1[62]	AAACCAATCAATAAGTAAAGTAATTCTGTGTTCAGCTAATGC			
16[27]	32[28]	CCTTATTTTTTTGAGTAACAGTGCCTGAAACA			
25[147]	27[160]	TAACCAAACTAGCACAACGGAGATTTGTGTGTCGAAATCCGC			
26[48]	24[42]	CTCAGAGCTTGCTTCCGTAATGGGATAGCGGATTC			
18[160]	20[147]	TTTTAAATATGCAAAGCTATTTTTGAGAACCAGACCGGAAGC			
20[27]	2[168]	TGCCCCATTTTTAGGGCGA			
0[160]	2[147]	GGTTGAGTGTTGTTTTAAATCAAGATTATCTATCAATGCGTT			
15[119]	17[132]	TGTAGCATTCCACAAAAGGTGAATTATCAAACAACTTTCAAC			
6[160]	8[147]	TTTATCCCAATCGATGTAAAGCCTGGGGACAGAGAGAATAAC			
8[167]	20[28]	AGCCTTTTGCCTAATGAGTGATTTTTGGGCAACAGCTGATGC			
		TGGTT			
28[27]	9[48]	GCACCGCTTTTTCTTCGCTATTACGCCAGCTGGCGAAAGG			
15[35]	17[48]	ATAGCAAGCCCAATCGGCATTTTCGGTCTTGATATAAGTATA			
32[62]	34[49]	TTACAGCCTATTTCGTTTACCAGACGACAACGCCAAAAGGAA			
14[48]	12[42]	GAGCCACCACCCTCAATCACCGGAACCACTCAGAA			
8[146]	10[133]	ATAAAAACAGGGAAAATGAATCGGCCAACCAGTCGGGAAACC			
17[77]	33[83]	GGAGGTTTCAGACATAACCCCTAACAATGGGGAAAACCCCTAA			
		CAATGGGGAAAACCCCTAACAATGGGGAAAACCCCTAACAAT			
		G			
		GGGAAAACCCCTAACAATGGGGAAGACATGGCTCGAACTATG			
		A			
05411	7 5413	GATT			
0[41]	5[41]	GACGATTIGATGATACAGGAGAGCGTCATACATGGCGATTGGC			
20[160]	27[1/7]				
24[76]	32[14/] 20[62]				
8[34]	10[108]	AGAAAATACATACATITITGATTGAG			

5[42]	3[48]	ACCAGAGGAGCATGGAAAGCGAAGCCAGAATGTAG			
2[146]	4[133]	ATACAAATTCTTACAGCAAGCAAATCCGAGAGATATAGAAGG			
5[161]	0[161]	AATTTGCCAGTTACTTTATCCTGAATCTTTAAAGAACGTGGAA			
		TAGCCCGAGATAG			
17[133]	13[146]	AGTTTCAGCGGAGTAAAATGTAGCACCAAAATCACCATCATA			
7[63]	11[76]	CCGAGGAAACGCAAACGTTGTAAAACGACCCGGGTACCGAGC			
20[62]	22[49]	TCTACGAGAGTTGCTATGACCCTGTAATTTAAGCAATAAAGC			
11[77]	6[77]	TCGAATTAGTCACGTAATAACAATGAAA			
18[41]	23[34]	GGCAAAATCCCTTATAAATCACCTGTTTGATGGTGCTAAATTTT			
	CTTTTCAGGGTGGTTCGGT				
5[77]	0[77]	CGTTTTTTATTAAATATCAACAATATAA			
30[41]	35[34]	CCTTATGCGAGAAGGATTAGGAGACTCCTCAAGATAAGAGGTT			
		TTAACGTGGTAATAACAACA			
24[125]	27[118]	GCGTCTGGCCTTCCTTCGCATTACGTAAGACTAAA			
6[118]	11[118]	AATAATAGAACAAATGAAATTCATAGCT			
35[77]	30[77]	TAGCGAGATTCAACAAAATCTGGCTTGA			
22[132]	18[126]	GAGACAGTCAAATCGGTCATTTTTGCGGCTGGAAG			
33[49]	31[62]	ATGCCCCCTGGTAGAACTTTAATCATTGCATTATACCAGTCA			
19[63]	23[76]	AACCTGTTTAGCTAAAGAATTAGCAAAAACTTTTGCGGGAGA			
23[35]	21[48]	TGTACCAAAAACATAGCAAGCGGTCCACTGCCCTTCACCGCC			
22[48]	18[42]	CTCAGAGCATAAAGGTTCCGAAACATTTAGATATC			
28[62]	26[49]	GGCCTCAGGAAGATAAAGACAGCATCGGGGGGGGATCGTCACC			
Table C4 Converses of stable strands					

 Table S1 Sequence of staple strands

start	end	Hairpin sequence			
20[83]	9[118]	AGCTGAAATCCAATGGAGACATAACGCGTAACAATCGCGAAAACG			
		CGTAACAATCGCGAAAACGCGTAACAATCGCGAAAACGCGTAACA			
		ATCGCGAAAACGCGTAACAATCGCGAAGACATGCGCCAATTCC			
8[118]	2[112]	AGAATTATCAGACATAACCCCTAACAATGGGGAAAACCCCTAACA			
		ATGGGGAAAACCCCTAACAATGGGGAAAACCCCTAACAATGGGGA			
		AAACCCCTAACAATGGGGAAGACATGGCTAGCGAACCGCTCAA			
33[112]	29[118]	AGAATGACAGACCAGGAGACATAACGCGTAACAATCGCGAAAAC			
		GCGTAACAATCGCGAAAACGCGTAACAATCGCGAAAACGCGTAAC			
		AATCGCGAAAACGCGTAACAATCGCGAAGACATGCGCGGCACCA			
28[118]	20[112]	CGTTAATTCAGACATAACCCCTAACAATGGGGAAAACCCCTAACA			
		ATGGGGAAAACCCCTAACAATGGGGAAAACCCCTAACAATGGGGA			
		AAACCCCTAACAATGGGGAAGACATGGCTACCGTTCACCTTTA			
2[83]	16[77]	CTGAACATTATCATGGAGACATAACGCGTAACAATCGCGAAAACG			
		CGTAACAATCGCGAAAACGCGTAACAATCGCGAAAACGCGTAACA			
		ATCGCGAAAACGCGTAACAATCGCGAAGACATGCGCTTTGCCT			
17[77]	33[83]	GGAGGTTTCAGACATAACCCCTAACAATGGGGAAAACCCCTAACA			
		ATGGGGAAAACCCCTAACAATGGGGAAAACCCCTAACAATGGGGA			
		AAACCCCTAACAATGGGGAAGACATGGCTCGAACTATGAGATT			

 Table 2 Sequence of hairpins

name	sequence			
Fuel Strand 1	CCCGCGATTGTTACGCGCC			
Antifuel Strand 1	GGCGCGTAACAATCGCGGGGGGGGGGGGGGGGGGGGGGG			
	ACAATCGCGGGGGCGCGTAACAATCGCGGGGGGCGCGTAACAATCGC			
	GGG			
Fuel Strand 2	CCCCCCATTGTTAGGGGCC			
Antifuel Strand 2	GGCCCCTAACAATGGGGGGGGGGGCCCCTAACAATGGGGGGGG			
	А			
	CAATGGGGGGGGCCCCTAACAATGGGGGGGGGCCCCTAACAATGGGG			
	G			
	G			

Table S3 Sequence of fuel strands and antifuel strands

The design of whole DNA nanocage is finished using caDNAno (Figure S1) with honeycomb-pleated pattern. 112 short DNA staples with detail sequence will be autogenerated from caDNAno (Table S1). Two different sequences of hairpin and the corresponding fuel strands and antifuel strands are listed in Table S2 and Table S3 respectively. The hairpins are designed under the theory of persistence length that is a basic mechanical property quantifying the stiffness of a polymer. Generally, a piece of polymer with physical length shorter than its persistence length will behave like a rigid rod, while for a piece of polymer with physical length longer than its persistence length will behave like a flexible rope¹. Since the persistence length of double stranded DNA ranges from 100bps to 160bps² and the length of hairpin in DNA nanocage is 133bps, the opening hairpins are theoretically rigid enough to maintain the open state of DNA nanocage. The extreme flexibility of thymine-rich DNA single strand at joints can reduce the hinder generated during the transformation of DNA nanocage. Thus, the addition of anti-fuel DNA will remove the fuel and leave the hairpins structure forming again to drive the rods close together, which results in the closed state.

2. Synthesis of DNA nanocage and TMV disk-nanocage complex

2.1 Materials

All staple strands, primers, anti-primers and M13mp18 viral DNA for the folding of the DNA nanocage were purchased and commercially synthesized from Changchun Huada Zhongtian Biotechnology Co., Ltd, and were used without further purification.

2.2 Generation and characterization of scaffold

Asymmetric PCR (α PCR) was performed to minimize the excess ssDNA in the final structure. 1 mM sense primer, 20 nM anti-sense primer, 50 ng M13mp18 dsDNA template, 200 mM dNTPs were mixed in a final volume of 50 μ l and 1 unit of Q5TM High-Fidelity DNA Polymerase (NEB) was then added. The aPCR program is set as follows: 95°C, 4 min for the initial denaturation; followed by 35 to 40 cycles of

Name Sequence (5'-3')		
Sense	CGCATAGAATTCTAAACAGGCT	
Anti-sense	CGAAAAACCGTCTATCAAGATCTCT	

95°C, 30 s; 55°C, 30 s; 72°C, 5min; 72°C for final extension, and hold at 4°C.

Table S4 Sequence of sense and anti-sense

2.3 Protocol of DNA nanocage synthesis

Staples, scaffold, TAE and Mg²⁺-containing buffer were mixed together as the Table S4 shows. Then the mixture was heated up to 80°C at first, then slowly cooled down from 80°C to 60°C at 4min/°C, and then

60°C to 24	4℃ at 20min/℃	. The obtained DNA	nanocage was stored at 4° C.

Name	Concentration	[µl]	Final concentration
Scaffold	10~20 nM	25	5~10 nM
Staple	167~333 nM	15	50~100 nM
10X TAE		5	$1 \times TAE$
10× Mg2+ buffer	100~200 mM	5	10~20 mM

Table S5 concentration and volume of materials for DNA nanocage synthesis

2.4 Conformational alternation

Figure S2 Protocol of DNA nanocage conformational alternation

The conformational alternation of DNA nanocage is carried out as Figure S2 shows: To change DNA nanocage from closed state to open state, 25µl DNA nanocage in closed state solution was mixed with 25µl fuel strands solution. The concentration of fuel strands is 15 times of DNA nanocage. The mixture

was then incubated at 30°C for 30min and cool down to 15°C at 3°C/min. To change DNA nanocage from

open state to closed state, all the protocol was identical with the former, except the closed state being replaced by open state and fuel strands being replaced by antifuel strands.

2.5 Capture of TMV disk

Figure S3 Protocol of (a) TMV disk purification and assembly; (b) capture of TMV disk by DNA nanocage. The TMV CPs purified by DEAE anion exchange chromatography were disaggregated through dialyzing in the PBS buffer (PH 8.0) at 4° C for 48h, the disaggregated proteins were then dialyzed in PBS buffer (PH 7.0) at 4° C for more than 24h. The assembled TMV disks were incubated with the DNA nanocage in open state at 20°C, 12h. Then the mixture was added with antifuel strands and incubated for another 40 min to close the nanocage.

3. Characterization methods of DNA nanocage and TMV disk-nanocage complex

3.1 Electrophoresis imaging

The samples were run through 0.8% low-melting temperature agarose gel (0.2g agarose, 25ml $1 \times TAE$) under a constant voltage of 80V. The products were then extracted and purified by Gel DNA recovery kit.

3.2 AFM imaging

The DNA nanocage sample (5 μ L) was deposited onto a freshly cleaved mica and left to adsorb for 5 min. The sample was washed with ddH2O to remove the excess salt, and then air dried. The sample was scanned in a tapping mode on a Bruker AFM.

3.3 TEM imaging

The TEM sample was prepared by dropping 5µl of the sample solution on carboncoated grid for 5min. The grid was touched with a drop of 2 % uranyl acetate solution and excess solution was wicked away with a filter paper. To evaporate extra solution, the grid was kept at room temperature. TEM studies were conducted by using a JEM-2100F transmission electron microscope, operated at 200 kV in the bright field mode.

3.4 DLS imaging

Measurement were made on ALV/CGS-3 compact goniometer made by ALV. 100µl sample solutions

were measured at a concentration of 10nM in $1 \times$ TAE Buffer. The sample temperature was maintained

at 25℃ during measurement.

4. characterizations of DNA nanocage and TMV disk-nanocage complex

Figure S4 Gel analysis of DNA nanocage assembled in gradient Mg²⁺ concentration.

Figure S5 Gel analysis of DNA nanocage in open state after the addition of fuel strands (F+) and closed state after the addition of antifuel strands (A+).

Figure S6 Representative zoom-out AFM image of DNA nanocage in open state

Figure S7 Representative zoom-out and zoom-in AFM image of DNA nanocage in closed state

Figure S8 Representative zoom-out and zoom-in TEM image of DNA nanocage in open state

Figure S9 Representative zoom-out and zoom-in TEM image of DNA nanocage in closed state.

Figure S10 Representative zoom-out TEM image of TMV and TMV disks.

Figure S11 Representative zoom-out TEM image of TMV disk-nanocage complex in open state

Figure S12 Representative zoom-out TEM image of TMV disk-nanocage complex in closed state

References for Supporting Information

1 Gutjahr, P.; Lipowsky, R.; Kierfeld, J., Persistence length of semiflexible polymers and bending rigidity renormalization. Europhysics Letters (EPL) 2006, 76, 994-1000.

2 Ouldridge, T. E.; Louis, A. A.; Doye, J. P., Structural, mechanical, and thermodynamic properties of a coarse-grained DNA model. The Journal of chemical physics 2011, 134, 085101.