Supporting Information

Cobalt Iron phosphide Nanoparticles Embedded within Carbon Matrix as Highly Efficient and Durable Electrocatalyst for Oxygen Evolution Reaction

Jiang Han, †^a Gen Chen, †^a Xiaohe Liu,*^a Ning Zhang,^a Shuquan Liang,^a Renzhi Ma*^c and Guanzhou Oiu^b

^a State Key Laboratory of Powder Metallurgy and School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083, P. R. China. Email: <u>liuxh@csu.edu.cn</u>

^b School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, P. R. China

^c International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Namiki
1-1, Tsukuba, Ibaraki 305-0044, Japan. Email: <u>MA.Renzhi@nims.go.jp</u>

Experimental Section

Synthesis of Co₃Fe layered double hydroxides. Co₃Fe LDHs were synthesized through our previously reported topochemical oxidation method²⁴. Briefly, 2.5 mmol of CoCl₂·6H₂O and FeCl₂·4H₂O with the Co:Fe ratio at 3:1, anthraquinone-2-sulfonic acid sodium salt monohydrate (AQS2, 5/3 mmol) and hexamethylenetetramine (HMT, 20 mmol) were dissolved in 300 mL of deionized water. The solution was refluxed under continuous magnetic stirring and nitrogen gas protection for 6 h.

Synthesis of Co_3Ni hydroxides. Layered CoNi hydroxides were synthesized through the same method as the above except replacing a quarter of FeCl₂·4H₂O with NiCl₂·6H₂O. Briefly, 2.5 mmol of CoCl₂·6H₂O and NiCl₂·6H₂O with the ratio of Co and Ni ratio at 3:1, anthraquinone-2-sulfonic acid sodium salt monohydrate (AQS2, 5/3 mmol) and hexamethylenetetramine (HMT, 20 mmol) were dissolved in 300 mL of deionized water. The solution was refluxed under continuous magnetic stirring and nitrogen gas protection for 6 h.

Synthesis of layered Co hydroxides. Layered Co hydroxides were synthesized through the same method as the above except replacing a quarter of $FeCl_2 \cdot 4H_2O$ with $CoCl_2 \cdot 6H_2O$.

Synthesis of layered CoFe hydroxides without intercalating AQS. The sample was synthesized via the same method as the fabricating intercalated Co_3Fe layered double hydroxides except not adding AQS2.

Synthesis of Co_3Fe phosphide, Co_3Ni phosphide, Co phosphide and Co_3Fe phosphide without carbon matrix. To prepara cobalt iorn phosphide, the obtained Co_3Fe LDH powder was placed into two separate positions in a quartz tube with a corundum boat loading of 0.6 g of NaH₂PO₂ at the upstream side of the furnace. The mass ratio of LDH and NaH₂PO₂ is 1:8. Subsequently, the samples were heated at 360 °C for 120 min in a static Ar atmosphere, and then naturally cooled to ambient temperature under Ar. The methods of fabricating Co₃Ni phosphide, Co phosphide and Co₃Fe phosphide without carbon matrix are similar with the above mentioned.

Characterizations. The morphology of as-obtained products was investigated by scanning electron microscope (SEM, Hitachi, S-4800) and transmission electron microscope (TEM, FEI Tecnai F20). SEAD, EELS, STEM, TEM and HRTEM images were all recorded on a FEI Tecnai F20. The crystal structures of the products were characterized using powder X-ray diffraction (XRD, Bruker D8 Advance diffractometer, Cu K α 1). The X-ray photoelectron spectroscopy (XPS) analysis was performed on an ESCALAB250Xi X-ray photoelectron spectrometer using Mg as the excitation source. The element content was tested by ICP-AES (Optima 5300).

Electrochemical Measurements.

To prepare the working electrode, a 5 mg portion of catalyst powder was dispersed in a mixed water and ethanol (1:1, v/v) solution (1 mL), and then 5 μ L of Nafion solution (5 wt %) was added. The suspension was treated in an ultrasonic bath for 30 min and stirred for 8 h to prepare a homogeneous ink. The working electrode was prepared by dripping the catalyst ink onto a glassy carbon electrode with a diameter of 3 mm (catalyst loading 0.27 mg cm⁻²), and subsequent drying at 80 °C for 6 h. Electrochemical characterizations were performed on a CHI760E (CH Instrument, Shanghai, China) electrochemical workstation using 1 M KOH as an electrolyte. A platinum wire was used as the counter electrode, while a saturated calomel electrode (SCE) acted as the reference electrode. The catalyst film coated rotating disk electrode (RDE, diameter: 3 mm) were used as the working electrode. During the measurements, the working electrode was constantly rotated at 1600 rpm to remove generated O₂. To evaluate the stability of CFP/C-2 electrode during OER process, galvanostatic measurements were performed at a current density of 10 mA cm⁻².

Figure S1. The XRD pattern of AQS2-intercalated Co₃FeLDHs, Co₃Ni LDHsand Co LDHs.

Figure S2. XRD patterns of as-prepared CFP/C, CNP/C and CP/C nanocomposites.

 Co_3FeP_x/C (the samples are labelled as CFP/C) nanocomposites are obtained via a one-step phosphorization of AQS2-intercalated Co_3Fe LDHs using sodium hypophosphite monohydrate as the

phosphorus source. The Co₃Fe LDH transformed into Co₃FeP_x nanoparticles embedded in carbon was derived via phosphorization at 360 °C. The process contributes to the carbonization of intercalated AQS2. Co₃NiPx/C are labelled as CNP/C.

Figure S3. Raman spectra of as-prepared CFP/C nanocomposites.

Figure S4. The SEM of the hierarchical structured (a) Co_3Fe LDHs, (b) Co_3Ni LDHs and (c) CoLDHsmicroflowers assembled from nanoplates.

Figure S5. The XPS spectra of survey scan of as-prepared CNP/C.

On the basis of the results of energy dispersive spectroscopy (EDS) and inductively coupled plasmaatomic emission spectroscopy (ICP-AES) (Table S1, ESI†), the chemical composition of the asprepared Fe incorporated Co2P/C is (anal. calcd: the mole ratio of Co: Fe = 3:1). The EDS image of CNP/C in Fig. S5 (ESI†) shows a mole ratio of Co:Ni = 3:1.

Figure S6. The cyclic voltammogram (CV) curves of(a) Co₃Fe LDHs, (b) CFP/C, (c) CNP/Cand (d)CP/C.

Figure S7. The XRD (a), SEM (b), TEM (c) and HRTEM (d) of CFP/C after OER.

Figure S8. The XRD (a), SEM (b), TEM (c) and HRTEM (d) of CNP/C after OER.

Figure S9. The XRD (a), SEM (b), TEM (c) and HRTEM (d) of CP/C after OER.

Figure S10. Equivalent circuit model used in impedance analysis of as-prepared CFP/C.

Table S1. Mental element content based on ICP-AES

Samples	Co (wt%)	Fe (wt%)
CFP/C	26.57%	9.32%

Table S2. Comparison of phosphide catalysts for oxygen evolution reaction recently reported.

Catalysts	Electrolyte	Substrate	Current density (mA cm ⁻²)	Overpotential (mV) at the corresponding current density	Reference
CFP/C	1 M KOH	Glassy carbon	10	260	This work
NiCoP/C nanoboxes	1 M KOH	Glassy carbon	10	330	Ref. S ¹
CoP	1 M KOH	Glassy carbon	10	320	Ref. S ²
Ni ₂ P	1 M KOH	Glassy carbon	10	320	Ref. S ³
Co/Co ₂ P	1 M KOH	Nickel foam	10	390	Ref. S ⁴
CoP	1 M KOH	arbon cloth	10	281	Ref. S ⁵
Ni–P	1 M KOH	arbon cloth	10	300	Ref. S ⁶
СоР	1 M KOH	Glassy carbon	10	345	Ref. S ⁷

Table S3. Optimum fitting parameters for the impedance spectra shown in Figure 5d (R_s and R_{ct} represents solution resistance and material intrinsic resistance, respectively).

Catalyst	$R_s(\Omega)$	$R_{ct}(\Omega)$
CFP/C	12.09	30.61
Co ₃ FeLDHs	12.16	106.70
CNP/C	16.27	33.07
CP/C	12.96	97.10

Reference

- 1. P. He, X.-Y. Yu and X. W. Lou, Angew. Chem., 2017, 129, 3955-3958.
- 2. J. Chang, Y. Xiao, M. Xiao, J. Ge, C. Liu and W. Xing, ACS Catal., 2015, 5, 6874-6878.
- 3. L.-A. Stern, L. Feng, F. Song and X. Hu, Energy Environ. Sci., 2015, 8, 2347-2351.
- 4. J. Masa, S. Barwe, C. Andronescu, I. Sinev, A. Ruff, K. Jayaramulu, K. Elumeeva, B. Konkena, B. Roldan Cuenya and W. Schuhmann, *ACS Energy Lett.*, 2016, **1**, 1192-1198.
- 5. P. Wang, F. Song, R. Amal, Y. H. Ng and X. Hu, ChemSusChem, 2016, 9, 472-477.
- 6. X.-Y. Yu, Y. Feng, B. Guan, X. W. Lou and U. Paik, *Energy Environ. Sci.*, 2016, 9, 1246-1250.
- R. Wu, D. P. Wang, K. Zhou, N. Srikanth, J. Wei and Z. Chen, J. Mater. Chem. A, 2016, 4, 13742-13745.