Selective Targeting of DC-SIGN by Controlling the Oligomannose Pattern on a

Polyproline Tetra-Helix Macrocycle Scaffold

Electronic Supplementary Information

Hsin-Chuan Wen, ${ }^{1,+}$ Cin-Hao Lin, ${ }^{1,+}$ Jen-Sheng Huang, ${ }^{1}$ Chia-Lung Tsai, ${ }^{1}$ Ting-Feng Chen, ${ }^{1}$ and Sheng-Kai Wang ${ }^{*}$,1,2

Affiliation
${ }^{1}$ Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan.
${ }^{2}$ Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 30013, Taiwan.
$\left[^{\dagger}\right]$ These authors contributed equally to this work.
* Corresponding Author
E-mail: skwang@mx.nthu.edu.tw

Table of Contents:

1. General Methods for Synthesis and Characterization S-3
2. Synthesis of Glycodendrons S-4
3. Synthesis of Peptide and Glycoconjugates S-13
General methods for peptide synthesis and analysis S-13
Synthesis of peptide monomers: peptide acids S-17
Synthesis of peptide monomers: peptide alkynes S-19
Synthesis of peptide oligomers: peptide acids S-21
Synthesis of peptide oligomers: peptide alkynes S-24
Synthesis of peptide oligomers: cyclic peptides S-27
Synthesis of peptide oligomers: deprotected cyclic peptide S-30
Synthesis of peptide oligomers: alkynyl cyclic peptide S-31
Synthesis of peptide oligomers: glycoconjugates S-32
${ }^{1}$ H NMR spectra of $\mathbf{8 b}$ S-34
Circular dichroism spectra of $\mathbf{7}$ and $\mathbf{8}$ S-35
4. Expression and Purification of Target Lectins S-36
5. Surface Plasmon Resonance Assay S-40
References S-45
NMR Spectra S-46

1. General Methods for Synthesis and Characterization

All reagents and solvents were purchased from Merck, Sigma-Aldrich and Acros. N-Fmoc-trans-($2 S, 4 R$)-4-(N-allyloxycarbonyl)amino-L-proline was synthesized according to the literature. ${ }^{1}$ The composition of mixed solvents was given by volume ratio. Thin-layer chromatography was performed on Merck Glass Plate TLC Silica gel 60 F254. The spots were visualized by UV light, cerium ammonium molybdate, ninhydrin, KMnO_{4}, bromophenol blue and p-anisaldehyde staining. Column chromatography was performed on by Merck Geduran Si 60 Silica gel (40-63 um). ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$ - NMR spectra were recorded on Varian Mercury 400, Bruker AV-400 or Varian VNMRS-600 spectrometers. The signals are presented in parts per million (ppm, δ scale) unit. For ${ }^{1} \mathrm{H}$ NMR spectra, chemical shifts are expressed in ppm with residual proton signals in $\mathrm{CDCl}_{3}(7.24 \mathrm{ppm}), \mathrm{D}_{2} \mathrm{O}(4.80 \mathrm{ppm})$ or $\mathrm{CD}_{3} \mathrm{OD}(3.31 \mathrm{ppm})$ as standards. For
${ }^{13} \mathrm{C}$ NMR spectra, chemical shifts are expressed in ppm with carbon signals in $\mathrm{CDCl}_{3}(77.0 \mathrm{ppm})$ or $\mathrm{CD}_{3} \mathrm{OD}(49.15 \mathrm{ppm})$ as standards. Data are represented as follows: chemical shift, multiplicity ($\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{dd}=$ doublet of doublets, $\mathrm{dt}=$ doublet of triplets, $\mathrm{m}=$ multiplet, $\mathrm{br}=$ broad $)$, coupling constant (J) in Hertz (Hz), and integration. A Bruker Impact HD instrument was used for electrospray ionization (ESI) mass spectrometry measurements. The products were confirmed by MALDI-TOF mass spectrometry (Bruker Daltonics, Autoflex III smartbeam LRF200-CID) by using 2,5-dihydroxybenzoic acid as matrix.

2. Synthesis of Glycodendrons

Scheme S1. Synthesis of S7.

Tris[(2-cyanoethoxy)methyl]aminomethane (S1) ${ }^{2}$

To a flask containing $\mathrm{KOH}(0.250 \mathrm{~g}, 4.46 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}(1.25 \mathrm{~mL})$ and dioxane $(5 \mathrm{~mL})$ was added tris(hydroxymethyl)aminomethane $(5.0 \mathrm{~g}, 41 \mathrm{mmol})$ with stirring. Then acrylonitrile was dropwise added and the solution was stirred vigorously for 24 h . The dioxane was removed by reduced pressure and the residue was added $\mathrm{DCM}(70 \mathrm{~mL})$, wash with $\mathrm{H}_{2} \mathrm{O}(50 \mathrm{~mL} \times 3)$ and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under vacuum to give $\mathbf{S 1}(6.75 \mathrm{~g}, 58 \%)$ without further purification. ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 3.59(\mathrm{t}, J=5.8 \mathrm{~Hz}, 6 \mathrm{H}), 3.34(\mathrm{~s}, 6 \mathrm{H}), 2.53(\mathrm{t}, J=5.8 \mathrm{~Hz}, 6 \mathrm{H}) ;$ ESI-MS $(\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{Na}]^{+}$calcd. for $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{NaO}_{3}: 303.1428$, found: 303.1429. Proton NMR was consistent with literature data. ${ }^{2}$

Tris[(2-ethylcarboxylethoxy)methyl]aminomethane (S2) ${ }^{3}$

To a flask containing $\mathbf{S 1}(5.0 \mathrm{~g}, 17.84 \mathrm{mmol})$ in $\mathrm{EtOH}(6.4 \mathrm{~mL})$ was added p-Toluenesulfonic acid monohydrate ($20.0 \mathrm{~g}, 105.1 \mathrm{mmol}$) and toluene (5 mL), and the reaction was refluxed for 1 d . Then precipitate was removed by filtration. The filtrate was added $\mathrm{DCM}(80 \mathrm{~mL})$, washed by $\mathrm{NaHCO}_{3}(100$ $\mathrm{mL} \times 3)$ and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under vacuum to give $\mathbf{S 2}(4.148 \mathrm{~g}, 55 \%)$ without further purification. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.11(\mathrm{q}, J=7.1 \mathrm{~Hz}, 6 \mathrm{H}), 3.66(\mathrm{t}, J=6.4 \mathrm{~Hz}, 6 \mathrm{H}), 3.30$ $(\mathrm{s}, 6 \mathrm{H}), 2.51(\mathrm{t}, J=6.4 \mathrm{~Hz}, 6 \mathrm{H}), 1.23(\mathrm{t}, J=7.1 \mathrm{~Hz}, 9 \mathrm{H})$; ESI-MS $(\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{19} \mathrm{H}_{36} \mathrm{NO} 9$: 422.2385, found: 422.2391 . Proton NMR was consistent with literature data. ${ }^{3}$

tert-butoxycarbonyl-3-\{ N-\{tris[3-(ethylcarboxyl-ethoxy)methyl]\}methylamide\}-3- β-alanine (S4) ${ }^{\mathbf{3}}$

To a flask containing $\mathbf{S 2}(1.50 \mathrm{~g}, 3.56 \mathrm{mmol})$ and $\mathbf{S 3}^{4}(0.81 \mathrm{~g}, 4.27 \mathrm{mmol})$ in DMF (12 mL) was added HOBt $(0.72 \mathrm{~g}, 5.34 \mathrm{mmol})$ and DIEA $(930 \mu \mathrm{~L}, 5.34 \mathrm{mmol})$ under argon protection in ice bath. Then EDC ($1.23 \mathrm{~g}, 6.41 \mathrm{mmol}$) was added, and the reaction was stirred at room temperature for 14 h . The reaction solution was added ethyl acetate $(200 \mathrm{~mL})$, washed by $\mathrm{H}_{2} \mathrm{O}(50 \mathrm{~mL} \times 3)$ and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated under vacuum and further purified by column chromatography $\left(\mathrm{MeOH} / \mathrm{CHCl}_{3}=1: 100\right.$ to $\left.1: 50\right)$ to give $\mathbf{S 4}(0.7894 \mathrm{~g}, 37 \%) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 4.12(\mathrm{q}, J=$ $7.1 \mathrm{~Hz}, 6 \mathrm{H}), 3.67(\mathrm{~s}, 6 \mathrm{H}), 3.67(\mathrm{t}, J=6.2 \mathrm{~Hz}, 6 \mathrm{H}), 3.71-3.68(\mathrm{~m}, 12 \mathrm{H}), 3.34(\mathrm{dt}, J=5.8,5.8 \mathrm{~Hz}, 2 \mathrm{H})$, $3.51(\mathrm{t}, J=6.2 \mathrm{~Hz}, 6 \mathrm{H}), 2.32(\mathrm{t}, J=5.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.40(\mathrm{~s}, 9 \mathrm{H}), 1.24(\mathrm{t}, J=7.1 \mathrm{~Hz}, 6 \mathrm{H})$. ESI-MS (m/z):
$[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{27} \mathrm{H}_{48} \mathrm{~N}_{2} \mathrm{NaO}_{12}$: 615.3099, found: 615.3110. Proton NMR was consistent with literature data. ${ }^{3}$
tert-butoxycarbonyl-3-\{ N-\{tris[3-(carboxyl-ethoxy)methyl]\}methylamide\}-3- β-alanine (S5)

To a flask containing $\mathbf{S 4}(0.4726 \mathrm{mg}, 0.797 \mathrm{mmol})$ in $\mathrm{EtOH}(5 \mathrm{~mL})$ was added $2 \mathrm{~N} \mathrm{NaOH}(\mathrm{aq})(5$ $\mathrm{mL}, 10 \mathrm{mmol}$) and stirred at room temperature for 2 h . The reaction solution was neutralized by adding $\mathrm{AG}^{\circledR} 50 \mathrm{WX} 8$ hydrogen form ion exchange resin, then filtered and concentrated under vacuum to give $\mathbf{S 5}$ $\left(0.4597 \mathrm{~g}\right.$, quanti.) without further purification. ${ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right): \delta 3.71(\mathrm{~s}, 6 \mathrm{H}), 3.68(\mathrm{t}, J$ $=6.6 \mathrm{~Hz}, 6 \mathrm{H}), 3.28(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.41(\mathrm{t}, J=6.6 \mathrm{~Hz}, 6 \mathrm{H}), 2.39(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.43(\mathrm{~s}, 9 \mathrm{H}) ;$ ${ }^{13} \mathrm{C}$ NMR (100.7 MHz, $\left.\mathrm{CD}_{3} \mathrm{OD}\right): ~ \delta 180.41$ (3C), 174.22, 158.41, 80.18, 70.84, 70.28, 61.49, 39.40, 38.18, 37.95, 28.96. ESI-MS (m/z): $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{21} \mathrm{H}_{37} \mathrm{~N}_{2} \mathrm{O}_{12}$: 509.2341 found: 509.2342.

tert-Butoxycarbonyl-3-\{ N-\{tris[3-[propargyl-methyl]\}methylamide\}-3- β-alanine (S6) ${ }^{5}$

To a flask containing $\mathbf{S 5}(180 \mathrm{mg}, 0.354 \mathrm{mmol})$ and propargylamine $(68 \mathrm{mg}, 1.24 \mathrm{mmol})$ in DMF (3 mL) was added HOBt ($220 \mathrm{mg}, 1.42 \mathrm{mmol}$) and DIEA ($250 \mu \mathrm{~L}, 1.42 \mathrm{mmol}$) under argon protection in ice bath. Then EDC ($340 \mathrm{mg}, 1.77 \mathrm{mmol}$) was added, and the reaction was stirred at room temperature for 14 h . The reaction solution was added ethyl acetate (50 mL), washed by $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL} \times 2)$ and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated under vacuum and further purified by column chromatography to give S6 (128.1 mg, 58.4\%). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 4.04(\mathrm{dd}, J=4.8,2.5 \mathrm{~Hz}, 6 \mathrm{H}), 3.71(\mathrm{t}, J=5.6 \mathrm{~Hz}$, $6 \mathrm{H}), 3.67(\mathrm{~s}, 6 \mathrm{H}), 3.37(\mathrm{dt}, J=6.0,6.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.45-2.43(\mathrm{~m}, 8 \mathrm{H}), 2.24(\mathrm{t}, J=2.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.42(\mathrm{~s}, 9 \mathrm{H})$.

ESI-MS $(\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{30} \mathrm{H}_{46} \mathrm{~N}_{5} \mathrm{O}_{9}: 620.3290$, found: 620.3302. Proton NMR was consistent with literature data. ${ }^{5}$

3-\{ N-\{tris[3-[propargyl-methyl]\}methylamide\}-3- β-alanine (S7) ${ }^{6}$

To a flask containing $\mathbf{S 6}(42.7 \mathrm{mg}, 68.9 \mu \mathrm{~mol})$ in DCM (2 mL) was added 50% TFA/DCM $(2 \mathrm{~mL})$ with stirring in ice bath, then reacted for 2 h . TFA and DCM was removed by reduced pressure to give S7 (43.9 mg, quanti.) without further purification. ${ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right): \delta 3.98(\mathrm{~d}, J=2.5 \mathrm{~Hz}$, $6 \mathrm{H}), 3.68(\mathrm{t}, J=5.8 \mathrm{~Hz}, 6 \mathrm{H}), 3.68(\mathrm{~s}, 6 \mathrm{H}), 3.17(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.63(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.62(\mathrm{t}, J=$ $2.5 \mathrm{~Hz}, 3 \mathrm{H}), 2.43(\mathrm{t}, J=5.8 \mathrm{~Hz}, 6 \mathrm{H}) . \mathrm{ESI}-\mathrm{MS}(\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{25} \mathrm{H}_{37} \mathrm{~N}_{5} \mathrm{NaO}_{7}: 542.2585$, found:
542.2604.

$9 R=$ Man
$10 \mathrm{R}=\mathrm{Man}_{4}$

Scheme S2. Synthesis of 9 and $\mathbf{1 0}$.
N-(tris[(2-ethylcarboxylethoxy)methyl]methyl)-8-tert-butyloxycarbonylamino-3,6-

dioxaoctanamide (S9)

To a flask containing $\mathbf{S 2}(0.599 \mathrm{~g}, 1.42 \mathrm{mmol})$ and $\mathbf{S 8}^{7}(0.412 \mathrm{~g}, 1.56 \mathrm{mmol})$ in DMF $(5 \mathrm{~mL})$ was added HOBt $(0.326 \mathrm{~g}, 2.13 \mathrm{mmol})$ and DIEA $(0.371 \mathrm{~mL}, 2.13 \mathrm{mmol})$ under argon protection in ice bath.

Then EDC ($0.490 \mathrm{~g}, 2.56 \mathrm{mmol}$) was added, and the reaction was stirred at room temperature for 14 h .

The reaction solution was added ethyl acetate $(100 \mathrm{~mL})$, washed by $\mathrm{H}_{2} \mathrm{O}(30 \mathrm{~mL} \times 3)$ and brine, dried
over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated under vacuum and further purified by column chromatography $\left(\mathrm{MeOH} / \mathrm{CHCl}_{3}=1: 50\right)$ to give $\mathbf{S 9}(0.4754 \mathrm{~g}, 50 \%) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.05(\mathrm{q}, J=7.1 \mathrm{~Hz}$, $6 \mathrm{H}), 3.80(\mathrm{~s}, 2 \mathrm{H}), 3.63(\mathrm{~s}, 6 \mathrm{H}), 3.61(\mathrm{t}, J=6.4 \mathrm{~Hz}, 6 \mathrm{H}), 3.57-3.54(\mathrm{~m}, 4 \mathrm{H}), 3.46(\mathrm{t}, J=5.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.23$ $(\mathrm{m}, 2 \mathrm{H}), 2.44(\mathrm{t}, J=6.4 \mathrm{~Hz}, 6 \mathrm{H}), 1.35(\mathrm{~s}, 9 \mathrm{H}), 1.17(\mathrm{t}, J=7.1 \mathrm{~Hz}, 9 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (100.7 MHz, CDCl $\left.{ }^{2}\right)$ $\delta 171.2(3 \mathrm{C}), 169.4,155.8,79.0,70.8,70.6,70.2,69.9,68.9,66.6,60.3,59.3,40.2,34.9,28.2,14.1$; ESIMS (m/z): $[\mathrm{M}+\mathrm{Na}]^{+}$calcd. for $\mathrm{C}_{30} \mathrm{H}_{54} \mathrm{~N}_{2} \mathrm{NaO}_{14}: 689.3467$, found: 689.3474 .

N-(tris[(2-carboxylethoxy)methyl]methyl)-8-tert-butyloxycarbonylamino-3,6-dioxaoctanamide

(S10)

To a flask containing S9 $(22.6 \mathrm{mg}, 33.9 \mu \mathrm{~mol})$ in $\mathrm{EtOH}(0.3 \mathrm{~mL})$ was added $2 \mathrm{~N} \mathrm{NaOH}(\mathrm{aq})(0.3$ $\mathrm{mL}, 0.6 \mathrm{mmol}$) and stirred at room temperature for 2 h . The reaction solution was neutralized by adding $\mathrm{AG}^{\circledR} 50 \mathrm{WX} 8$ hydrogen form ion exchange resin, then filtered and concentrated under vacuum to give $\mathbf{S 1 0}(19.45 \mathrm{mg}, 99 \%)$ without further purification. ${ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 3.90(\mathrm{~s}, 2 \mathrm{H}), 3.73(\mathrm{~s}$, $6 \mathrm{H}), 3.70(\mathrm{t}, J=6.1 \mathrm{~Hz}, 6 \mathrm{H}), 3.66-3.63(\mathrm{~m}, 4 \mathrm{H}), 3.54(\mathrm{t}, J=5.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.24(\mathrm{t}, J=5.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.53$ $(\mathrm{t}, J=6.1 \mathrm{~Hz}, 6 \mathrm{H}), 1.44(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100.7 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 178.4(3 \mathrm{C}), 172.3,158.7,80.2,71.9$, 71.6, 71.3, 71.2, 70.4, 69.4, 61.3, 41.2, 38.0, 29.0; ESI-MS (m/z): $[\mathrm{M}+\mathrm{Na}]^{+}$calcd. for $\mathrm{C}_{24} \mathrm{H}_{42} \mathrm{~N}_{2} \mathrm{NaO}_{14}$: 605.2528 , found: 605.2541 .

Boc-G2-alkyne (S11)

To a flask containing $\mathbf{S 1 0}(9.6 \mathrm{mg}, 16.5 \mu \mathrm{~mol})$ and $\mathbf{S} 7(43.9 \mathrm{mg}, 84.5 \mu \mathrm{~mol})$ in DMF $(0.5 \mathrm{~mL})$ was added $\mathrm{HOBt}(10 \mathrm{mg}, 65.3 \mu \mathrm{~mol})$ and DIEA $(15 \mu \mathrm{~L}, 86.1 \mathrm{mmol})$ under argon protection in ice bath. Then EDC ($19.2 \mathrm{mg}, 10.0 \mu \mathrm{~mol}$) was added, and the reaction was stirred at room temperature for 18 h . The reaction solution was added ethyl acetate (30 mL), washed by $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL} \times 2)$ and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated under vacuum and further purified by column chromatography to give $\mathbf{S 1 1}$ (25.1 $\mathrm{mg}, 73 \%) .{ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right): \delta 3.99(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 18 \mathrm{H}), 3.93(\mathrm{~s}, 2 \mathrm{H}), 3.72-3.68(\mathrm{~m}, 54 \mathrm{H})$, $3.54(\mathrm{t}, J=5.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.42(\mathrm{t}, J=7.0 \mathrm{~Hz}, 6 \mathrm{H}), 3.25(\mathrm{t}, J=5.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.63(\mathrm{t}, J=2.5 \mathrm{~Hz}, 9 \mathrm{H}), 2.46-$ $2.41(\mathrm{~m}, 30 \mathrm{H}), 1.45(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100.7 MHz, CD $\left.{ }_{3} \mathrm{OD}\right): \delta 173.88(3 \mathrm{C}), 173.82(3 \mathrm{C}), 173.76(9 \mathrm{C})$, $172.28,158.56,81.05,80.31,72.60,72.16,71.69,71.42,71.33,71.30,70.37,70.18,68.88,68.62,61.66$, 61.64, 61.32, 41.38, 37.78, 37.46, 37.39, 29.77, 29.64, 29.01. MALDI-TOF-MS (m/z): $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{100} \mathrm{H}_{149} \mathrm{~N}_{16} \mathrm{O}_{32}$: 2086.052 , found: 2087.647 .

$\mathrm{H}_{2} \mathrm{~N}$-G2-alkyne (S12)

To a flask containing S11 (26.4 mg, $12.6 \mu \mathrm{~mol})$ in DCM (0.5 mL) was added 50% TFA/DCM $(0.5$ mL) with stirring in ice bath, then reacted for 2 h . TFA and DCM was removed by reduced pressure to give $\mathbf{S 1 2}$ (20.14 mg, 80\%). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta 3.99(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 18 \mathrm{H}), 3.96(\mathrm{~s}, 2 \mathrm{H}), 3.72-$ $3.68(\mathrm{~m}, 56 \mathrm{H}), 3.42(\mathrm{t}, J=7.0 \mathrm{~Hz}, 6 \mathrm{H}), 3.20(\mathrm{t}, J=5.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.63(\mathrm{t}, J=2.5 \mathrm{~Hz}, 9 \mathrm{H}), 2.46-2.42(\mathrm{~m}$, $30 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): 173.95 (3C), 173.86 (3C), 173.81 (9C), 172.24, 81.04, 72.58, 72.02,
$71.42,70.37,70.18,68.85,68.63,68.17,61.76,61.67,61.39,55.29,40.83,37.70,37.44,37.40,29.78$, 29.65. ESI-MS (m/z): $[\mathrm{M}+2 \mathrm{Na}]^{2+}$ calcd for $\mathrm{C}_{94} \mathrm{H}_{139} \mathrm{~N}_{17} \mathrm{Na}_{2} \mathrm{O}_{30}$: 1015.9829, found: 1015.9729.

$\mathrm{H}_{2} \mathrm{~N}-\mathrm{G} 2-\mathrm{Man}$ (9)

The solution of alkynyl dendrimer $\mathbf{S 1 2}(2.5 \mathrm{mM})$ was added $\mathrm{CuSO}_{4}(\mathrm{aq})$ (30 equiv., 40 mM), tris(triazoly)amine ligand 5 (30 equiv., 40 mM in DMSO), sodium ascorbate (aq) (600 equiv., 800 mM), and $10 \mu \mathrm{~L}$ PBS buffer, and the glycan ligand Man (3 equiv./per alkyne, 25 mM) to react at room temperature for 1 h . The product was puridfied from crude reaction mixture by Microcon ${ }^{\circledR} 0.5 \mathrm{~mL} 3 \mathrm{kDa}$ centrifugal filter. MS(MALDI): $[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{166} \mathrm{H}_{275} \mathrm{~N}_{44} \mathrm{O}_{84}$: 4228.859, found: 4230.162 .

$\mathrm{H}_{2} \mathrm{~N}-\mathrm{G} 2-\mathrm{Man}_{4}(10)$

The solution of alkynyl dendrimer $\mathbf{S 1 2}\left(2.5 \mathrm{mM}\right.$) was added $\mathrm{CuSO}_{4}(\mathrm{aq})$ (30 equiv., 40 mM), tris(triazoly)amine ligand 5 (30 equiv., 40 mM in DMSO), sodium ascorbate (aq) (600 equiv., 800 mM), and $10 \mu \mathrm{~L}$ PBS buffer, and the glycan ligand Man (3 equiv./per alkyne, 25 mM) to react at room temperature for 1 h . The product was puridfied from crude reaction mixture by Microcon ${ }^{\circledR} 0.5 \mathrm{~mL} 3 \mathrm{kDa}$ centrifugal filter. MS(MALDI): $[\mathrm{M}+\mathrm{Cu}]^{+}$calcd. for $\mathrm{C}_{355} \mathrm{H}_{598} \mathrm{~N}_{44} \mathrm{CuO}_{219}$: 9044.630, found: 9046.337. 2-azidoethyl 3,6-di- \boldsymbol{O}-(α-D-mannopyranosyl)- α-D-mannopyranoside ($\mathbf{M a n}_{3}$)

$\operatorname{Man}_{3}{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$): $\delta 5.10(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-1), 4.90\left(\mathrm{~d}, J_{1^{\prime}, 2^{\prime}}=1.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1^{\prime}\right), 4.88(\mathrm{~d}$, $\left.J_{1^{\prime}, 2^{\prime \prime}}=1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1 "\right), 4.12(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-2), 4.06\left(\mathrm{dd}, J_{2^{\prime}, 1^{\prime}}=1.4 \mathrm{~Hz}, J_{2^{\prime}, 3^{\prime}}=3.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}\right), 3.98(\mathrm{~d}$, $\left.J_{2 ",}{ }^{\prime \prime}=1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2^{\prime \prime}\right), 3.90-3.80\left(\mathrm{~m}, 9 \mathrm{H}, \mathrm{H}-3, \mathrm{H}-3^{\prime}, \mathrm{H}-3^{\prime \prime}, \mathrm{H}-4^{*}, \mathrm{H}-4^{*}\right.$, H-5, H-6a, * H-6b*, H-6b'*), 3.77-3.70 (m , 5H, H-5', H-5", H-6a'*, H-6"*, OCH2 $\mathrm{CH}_{2} \mathrm{~N}_{3}$), 3.68-3.62 (m, 3H, H-4"*, H-6b"*), 3.56$3.48\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{~N}_{3}\right)$. Assignments indexed with $*$ are interchangeable. Proton NMR was consistent with literature data. ${ }^{8}$ ESI-MS(m/z): $[\mathrm{M}+\mathrm{Na}]^{+}$calcd. for $\mathrm{C}_{20} \mathrm{H}_{35} \mathrm{~N}_{3} \mathrm{NaO}_{16}$: 596.1910, found: 596.1923.

5-azidopentyl α-D-mannopyranosyl-(1 $\rightarrow 2$)- α-D-mannopyranosyl-(1 $\rightarrow 2$)- α-D-mannopyranosyl-(1

$\rightarrow 3$)- α-D-mannopyranoside (Man4)

$\operatorname{Man}_{4}{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$): $\delta 5.36(\mathrm{~s}, 1 \mathrm{H}), 5.31(\mathrm{~s}, 1 \mathrm{H}), 5.05(\mathrm{~s}, 1 \mathrm{H}), 4.84(\mathrm{~s}, 1 \mathrm{H}), 4.11(\mathrm{~s}$, $1 \mathrm{H}), 4.08(\mathrm{~s}, 3 \mathrm{H}), 4.01-3.95(\mathrm{~m}, 2 \mathrm{H}), 3.89-3.85(\mathrm{~m}, 6 \mathrm{H}), 3.78-3.64(\mathrm{~m}, 13 \mathrm{H}), 3.58-3.53(\mathrm{~m}, 1 \mathrm{H}), 3.35$ $(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.68-1.63(\mathrm{~m}, 4 \mathrm{H}), 1.48-1.43(\mathrm{~m}, 2 \mathrm{H})$. Proton NMR was consistent with literature data. ${ }^{9}$

3. Synthesis of Peptide and Glycoconjugates

General methods for peptide synthesis and analysis:

Peptide analysis:

${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra were recorded on Varian VNMRS-600. The peptide products were confirmed by MALDI-TOF mass spectrometry (Bruker Daltonics, Autoflex III smartbeam LRF200-CID) by using 2,5dihydroxybenzoic acid as matrix. Analytical HPLC (Agilent Technology, 1260 Infinity) was performed with a Vydac C18 column (218TP54 $4.6 \mathrm{~mm} \times 250 \mathrm{~mm}$). 0.1% TFA in water (solvent A), Acetonitrile (solvent B) served as the mobile phase for compound purifications. Aviv Model 410 spectropolarimeter (Aviv Associates, Lakewood, NJ) was used for CD measurements. The solutions were measured in a quartz cell with a pathlength of 1.0 mm (Hellma 110-QS).

Solid phase peptide synthesis:

The peptides were prepared by manual solid phase peptide synthesis on 2-chlorotrityl chloride resin from Merck (Product No. 855017). A solution of Fmoc-Pro-OH (4.0 equiv.) and $\mathrm{iPr}_{2} \mathrm{NEt}$ (6.0 equiv.) in $1: 1 \mathrm{v} / \mathrm{v}$ DMF/DCM (final concentration 0.4 M) was added to the resins. The mixture was gently shaken for overnight and washed with DMF $(3 \times 3 \mathrm{~mL})$, DCM $(3 \times 3 \mathrm{~mL})$, and DMF $(3 \times 3 \mathrm{~mL})$. A solution of $\mathrm{DCM} / \mathrm{MeOH} / \mathrm{iPr}_{2} \mathrm{NEt}(17: 2: 1,8 \mathrm{~mL})$ was added and shaken for 1 h to block the unreacted sites on the resins. After washed with DMF $(3 \times 3 \mathrm{~mL})$, DCM $(3 \times 3 \mathrm{~mL})$, and DMF $(3 \times 3 \mathrm{~mL})$, the amino acid loading was determined with a quantitative Fmoc test. The resins were further used in iterative peptide
synthesis. 10% piperidine in DMF (3 mL) was added to the resins to deprotect the Fmoc group. The vessel was shaken for 10 min and washed with $\mathrm{DMF}(3 \times 3 \mathrm{~mL}), \mathrm{DCM}(3 \times 3 \mathrm{~mL})$, and DMF ($3 \times 3 \mathrm{~mL}$). The mixture of amino acids (4 equiv., Fmoc-Pro-OH or N-Fmoc-trans- $(2 S, 4 R)-4-(N-$ allyloxycarbonyl)amino-L-proline based on the designed sequence), PyBOP (4 equiv., for Fmoc-Pro-OH) or HATU (4 equiv., for N-Fmoc-trans-($2 S, 4 R$)-4-(N-allyloxycarbonyl)amino-L-proline) were dissolved in DMF, added NMM (4 equiv.) and react with the deprotect resins (final concentration 0.2 M). The mixture was gently shaken for 1 h then washed with DMF $(3 \times 3 \mathrm{~mL})$, $\mathrm{DCM}(3 \times 3 \mathrm{~mL})$, and DMF $(3 \times$ $3 \mathrm{~mL})$. After each coupling step, the resins were treated with $\mathrm{Ac}_{2} \mathrm{O} / \mathrm{py} .(1: 9,3 \mathrm{~mL})$ and shaken for 10 min to cap the unreacted amino groups. The resins were washed with DMF $(3 \times 3 \mathrm{~mL}), \mathrm{DCM}(3 \times 3 \mathrm{~mL})$, and DMF $(3 \times 3 \mathrm{~mL})$, and continued for the next round of synthesis. To cleave the peptide, the resins were washed with DCM $(3 \times 3 \mathrm{~mL})$, then treated with DCM/TFA/TIS (90:5:5, 3 mL) and shaken for 1 h and repeated for a second time with shaking for 30 min . The filtrate was collected and all of the volatiles were removed under reduced pressure. Water $(1-2 \mathrm{~mL})$ was added to the resulting syrup-like residue and centrifuged before the supernatant was further purified by HPLC (Agilent Technology, 1260 Infinity) with a Vydac C18 column (218TP510 $10 \mathrm{~mm} \times 250 \mathrm{~mm}$).

Polyproline \mathbf{N}-terminus azido modification:

To a solution of azido connector $\mathbf{2}$ (4 equiv.) dissolved in DMF and $\mathrm{iPr}_{2} \mathrm{NEt}$ (8 equiv.) was added to the resins carrying N -terminus deprotected peptide in DMF (final concentration of $\mathbf{2}$ at 0.2 M) and gently
shaken for 1 h . The resins were washed with DMF $(3 \times 3 \mathrm{~mL})$, $\mathrm{DCM}(3 \times 3 \mathrm{~mL})$, and DMF $(3 \times 3 \mathrm{~mL})$.

Polyproline C-terminus alkyne modification:

To the mixture of peptide acid, propargylamine (3 equiv.), and TEA (5 equiv.) dissolved in DMF/DCM (1:1, peptide concentration 10 mM) in a vial was added HATU (4 equiv.). After overnight stirring, DCM was removed from the reaction mixture under reduced pressure. The product was purified by HPLC with a Vydac C18 column.

Peptide assembly by CuAAC reaction on resins:

The azide-functionalized peptide on resins was treated in the solution of alkynyl peptide 4 (1.5 equiv.), $\mathrm{CuSO}_{4}(\mathrm{aq})$ (0.13 equiv., 40 mM), tris(triazoly)amine ligand 5 (0.13 equiv., 40 mM in DMSO), sodium ascorbate (aq) (2.6 equiv., 800 mM), and $\mathrm{iPr}_{2} \mathrm{NEt}$ (4.0 equiv.) in THF (final copper concentration is 3.6 $\mathrm{mM})$ for 22 h . The resulted resins were washed with sodium diethyldithiocarbamate solution (25 mg in 5 mL DMF with $25 \mu \mathrm{LiPr} 2 \mathrm{NEt} ; 5 \times 1 \mathrm{~mL})$, $\mathrm{DMF}(5 \times 1 \mathrm{~mL}), \mathrm{DCM}(5 \times 1 \mathrm{~mL})$, and $\operatorname{DMF}(5 \times 1 \mathrm{~mL})$.

Peptide cyclization:

The linear peptide tetramer 7 was dissolved in water at 2 mM , and $\mathrm{CuSO}_{4}(\mathrm{aq})(4.2$ equiv., 40 mM), tris(triazoly)amine ligand 5 (4.2 equiv., 40 mM in DMSO), sodium ascorbate (aq) (84 equiv., 800 mM), and $\mathrm{Pr}_{2} \mathrm{NEt}$ (144 equiv.) were added to react at room temperature for 1 h . The product was purified from crude reaction mixture by HPLC.

N-Alloc deprotection:

To the solution of Alloc protected cyclic peptide $8 \mathbf{8 c}$ and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}$ (3 equiv. for each Alloc group) in DCM/DMF (4:1, peptide concentration 40 mM) in a vial was added acetic acid (540 equiv.) and $\mathrm{Bu}_{3} \mathrm{SnH}$ (240 equiv.) and stirred for 2 h before quenched by water. After removing DCM under reduced pressure, the deprotected peptide was purified by HPLC.

Alkyne group installation on scaffold:

To the solution of Alloc-deprotected amino peptide and 4-pentynoic acid OSu ester (30 equiv.) in DMF (peptide concentration 0.5 mM) in a vial was added $\operatorname{iPr}_{2} \mathrm{NEt}$ (60 equiv.) and stirred for 2 h . The alkynyl peptide product was purified from crude reaction mixture by HPLC.

Glycan conjugation to scaffold:

The alkynyl scaffold peptide $\mathbf{1 1}$ dissolved in water at 1 mM was added CuSO_{4} (aq) (30 equiv., 40 mM), tris(triazoly)amine ligand 5 (30 equiv., 40 mM in DMSO), sodium ascorbate (aq) (600 equiv., 800 mM), $\operatorname{iPr}_{2} \operatorname{NEt}$ (200 equiv.), and the glycan ligand $\mathbf{M a n}_{4}$ or Man_{3} (3 equiv. per alkyne) to react at room temperature for 1 h . The product was purified from crude reaction mixture by HPLC.

Synthesis of peptide monomers: peptide acids

Peptides S13 and S14 were prepared according to the method of solid phase peptide synthesis. Yields are based on quantitative Fmoc test and after lyophilization.

Peptide S13

Figure S1. HPLC chromatogram of S13.

Yield: $49.1 \mathrm{mg}, 49 \%$.

Analytical HPLC: 5% to 90% acetonitrile in water $(0.1 \% \mathrm{TFA})$ over $60 \mathrm{~min}, 0.5 \mathrm{~mL} / \mathrm{min} ; \mathrm{t}_{\mathrm{R}}=34.3 \mathrm{~min}$.

MS(MALDI): $[\mathrm{M}+\mathrm{Na}]^{+}$calcd. for $\mathrm{C}_{60} \mathrm{H}_{75} \mathrm{~N}_{9} \mathrm{NaO}_{12}: 1136.543$, found: 1137.007.

Peptide S14

Figure S2. HPLC chromatogram of S14.

Yield: $309.1 \mathrm{mg}, 50 \%$.

Analytical HPLC: 5% to 90% acetonitrile in water $(0.1 \% \mathrm{TFA})$ over $60 \mathrm{~min}, 0.5 \mathrm{~mL} / \mathrm{min}$; $\mathrm{t}_{\mathrm{R}}=35.7 \mathrm{~min}$.

MS(MALDI): $[\mathrm{M}+\mathrm{Na}]^{+}$calcd. for $\mathrm{C}_{64} \mathrm{H}_{80} \mathrm{~N}_{10} \mathrm{NaO}_{14}: 1235.575$, found: 1234.312.

Synthesis of peptide monomers: peptide alkynes

Peptide $\mathbf{4 a}$ and $\mathbf{4 c}$ were prepared according to the method of polyproline C-terminus alkyne modification.

Yields are based on the isolated weight after lyophilization.

Peptide 4a

Figure S3. HPLC chromatogram of 4a.

Yield: $110.5 \mathrm{mg}, 82 \%$.

Analytical HPLC: 5% to 90% acetonitrile in water ($0.1 \% \mathrm{TFA}$) over $60 \mathrm{~min}, 0.5 \mathrm{~mL} / \mathrm{min} ; \mathrm{t}_{\mathrm{R}}=36.3 \mathrm{~min}$.

MS(MALDI): $[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{63} \mathrm{H}_{79} \mathrm{~N}_{10} \mathrm{O}_{11}$: 1151.592, found: 1151.102.

Peptide 4c

Figure S4. HPLC chromatogram of $\mathbf{4 c}$.

Yield: $141.6 \mathrm{mg}, 91 \%$.

Analytical HPLC: 5% to 90% acetonitrile in water $(0.1 \% \mathrm{TFA})$ over $60 \mathrm{~min}, 0.5 \mathrm{~mL} / \mathrm{min}$; $\mathrm{t}_{\mathrm{R}}=37.6 \mathrm{~min}$.

MS(MALDI): $[\mathrm{M}+\mathrm{Na}]^{+}$calcd. for $\mathrm{C}_{67} \mathrm{H}_{83} \mathrm{~N}_{11} \mathrm{NaO}_{13}$: 1272.606, found: 1272.023.

Synthesis of peptide oligomers: peptide acids

Peptide S15-S17 were prepared according to the method of solid phase peptide synthesis, polyproline N -terminus azido modification, peptide assembly by CuAAC reaction on resins. Yields are based on the isolated weight after lyophilization.

Peptide tetramer S15

Figure S5. HPLC chromatogram of S15.

Yield: $4.04 \mathrm{mg}, 34 \%$.

Analytical HPLC: 5% to 90% acetonitrile in water ($0.1 \% \mathrm{TFA}$) over $60 \mathrm{~min}, 0.5 \mathrm{~mL} / \mathrm{min} ; \mathrm{t}_{\mathrm{R}}=29.7 \mathrm{~min}$.

MS(MALDI): $[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{197} \mathrm{H}_{274} \mathrm{~N}_{51} \mathrm{O}_{41}$: 4010.092, found: 4009.046 .

Peptide tetramer S16

Figure S6. HPLC chromatogram of S16.

Yield: $9.03 \mathrm{mg}, 52 \%$.

Analytical HPLC: 5% to 90% acetonitrile in water $(0.1 \% \mathrm{TFA})$ over $60 \mathrm{~min}, 0.5 \mathrm{~mL} / \mathrm{min}$; $\mathrm{t}_{\mathrm{R}}=32.8 \mathrm{~min}$.

MS(MALDI): $[\mathrm{M}+\mathrm{K}]^{+}$calcd. for $\mathrm{C}_{205} \mathrm{H}_{289} \mathrm{~N}_{51} \mathrm{KO}_{41}: 4160.173$, found: 4161.278.

Peptide tetramer S17

Figure S7. HPLC chromatogram of S17.

Yield: $23.06 \mathrm{mg}, 45 \%$.

Analytical HPLC: 5% to 90% acetonitrile in water $(0.1 \% \mathrm{TFA})$ over $60 \mathrm{~min}, 0.5 \mathrm{~mL} / \mathrm{min} ; \mathrm{t}_{\mathrm{R}}=32.8 \mathrm{~min}$.

MS(MALDI): $[\mathrm{M}+\mathrm{Na}]^{+}$calcd. for $\mathrm{C}_{221} \mathrm{H}_{309} \mathrm{~N}_{55} \mathrm{NaO}_{49}$: 4540.327, found: 4538.916.

Synthesis of peptide oligomers: peptide alkynes

Peptide 7a-7c were prepared according to the method of polyproline C-terminus alkyne modification.

Yields are based on the isolated weight after lyophilization.

Peptide tetramer 7a

Figure S8. HPLC chromatogram of 7a.

Yield: $3.26 \mathrm{mg}, 80 \%$.

Analytical HPLC: 5% to 90% acetonitrile in water $(0.1 \% \mathrm{TFA})$ over $60 \mathrm{~min}, 0.5 \mathrm{~mL} / \mathrm{min} ; \mathrm{t}_{\mathrm{R}}=30.2 \mathrm{~min}$.

MS(MALDI): $[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{200} \mathrm{H}_{277} \mathrm{~N}_{52} \mathrm{O}_{40}$: 4047.123, found: 4046.195 .

Peptide tetramer 7b

Figure S9. HPLC chromatogram of 7b.

Yield: $2.33 \mathrm{mg}, 91 \%$.

Analytical HPLC: 5% to 90% acetonitrile in water ($0.1 \% \mathrm{TFA}$) over $60 \mathrm{~min}, 0.5 \mathrm{~mL} / \mathrm{min} ; \mathrm{t}_{\mathrm{R}}=32.5 \mathrm{~min}$.

MS(MALDI): $[\mathrm{M}+\mathrm{K}]^{+}$calcd. for $\mathrm{C}_{208} \mathrm{H}_{292} \mathrm{~N}_{52} \mathrm{KO}_{40}: 4197.205$, found: 4197.240 .

Peptide tetramer 7c

Figure S10. HPLC chromatogram of 7c.

Yield: $14.26 \mathrm{mg}, 61 \%$.

Analytical HPLC: 5% to 90% acetonitrile in water ($0.1 \% \mathrm{TFA}$) over $60 \mathrm{~min}, 0.5 \mathrm{~mL} / \mathrm{min} ; \mathrm{t}_{\mathrm{R}}=33.0 \mathrm{~min}$.

MS(MALDI): $[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{224} \mathrm{H}_{313} \mathrm{~N}_{56} \mathrm{O}_{48}$: 4555.377, found: 4555.828 .

Synthesis of peptide oligomers: cyclic peptides

Peptide 8a-8c were prepared according to the method of peptide cyclization. Yields are based on the isolated weight after lyophilization.

Cyclic peptide tetramer 8a

8a

Figure S11. HPLC chromatogram of $\mathbf{8 a}$.

Yield: $0.65 \mathrm{mg}, 43 \%$.

Analytical HPLC: 5% to 90% acetonitrile in water $(0.1 \% \mathrm{TFA})$ over $60 \mathrm{~min}, 0.5 \mathrm{~mL} / \mathrm{min}$; $\mathrm{t}_{\mathrm{R}}=33.5 \mathrm{~min}$.

MS(MALDI): $[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{200} \mathrm{H}_{277} \mathrm{~N}_{52} \mathrm{O}_{40}$: 4047.123, found: 4047.898 .

Cyclic peptide tetramer 8b

Figure S12. HPLC chromatogram of $\mathbf{8 b}$.

Yield: $1.25 \mathrm{mg}, 29 \%$.

Analytical HPLC: 5% to 90% acetonitrile in water $(0.1 \% \mathrm{TFA})$ over $60 \mathrm{~min}, 0.5 \mathrm{~mL} / \mathrm{min} ; \mathrm{t}_{\mathrm{R}}=34.2 \mathrm{~min}$.

MS(MALDI): $[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{208} \mathrm{H}_{293} \mathrm{~N}_{52} \mathrm{O}_{40}$: 4159.249, found: 4158.433.

Cyclic peptide tetramer 8c

Figure S13. HPLC chromatogram of $\mathbf{8 c}$.

Yield: $2.44 \mathrm{mg}, 48 \%$.

Analytical HPLC: 5% to 90% acetonitrile in water $(0.1 \% \mathrm{TFA})$ over $60 \mathrm{~min}, 0.5 \mathrm{~mL} / \mathrm{min}$; $\mathrm{t}_{\mathrm{R}}=34.0 \mathrm{~min}$.

MS(MALDI): $[\mathrm{M}+\mathrm{K}]^{+}$calcd. for $\mathrm{C}_{224} \mathrm{H}_{312} \mathrm{~N}_{56} \mathrm{KO}_{48}$: 4593.333, found: 4593.893.

Synthesis of peptide oligomers: deprotected cyclic peptide

Peptide S18 was prepared according to the method of N-Alloc deprotection. Yield is based on the isolated weight after lyophilization.

Deprotected cyclic peptide tetramer S18

Figure S14. HPLC chromatogram of S18.

Yield: $2.01 \mathrm{mg}, 48 \%$.

Analytical HPLC: 5\% to 90% acetonitrile in water ($0.1 \% \mathrm{TFA}$) over $60 \mathrm{~min}, 0.5 \mathrm{~mL} / \mathrm{min} ; \mathrm{t}_{\mathrm{R}}=22.5 \mathrm{~min}$.

MS(MALDI): $[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{208} \mathrm{H}_{297} \mathrm{~N}_{56} \mathrm{O}_{40}$: 4219.292, found: 4219.984 .

Synthesis of peptide oligomers: alkynyl cyclic peptide

Peptide 11 was prepared according to the method of alkyne group installation on scaffold. Yield is based on the isolated weight after lyophilization.

Alkynyl cyclic peptide tetramer 11

Figure S15. HPLC chromatogram of $\mathbf{1 1 .}$

Yield: $1.83 \mathrm{mg}, 85 \%$.

Analytical HPLC: 5% to 90% acetonitrile in water $(0.1 \% \mathrm{TFA})$ over $60 \mathrm{~min}, 0.5 \mathrm{~mL} / \mathrm{min} ; \mathrm{t}_{\mathrm{R}}=30.9 \mathrm{~min}$.

MS(MALDI): $[\mathrm{M}+\mathrm{Na}]^{+}$calcd. for $\mathrm{C}_{228} \mathrm{H}_{312} \mathrm{~N}_{56} \mathrm{NaO}_{44}: 4561.379$, found: 4562.115 .

Synthesis of peptide oligomers: glycoconjugates

Glycoconjugate $\mathbf{1 2}$ and $\mathbf{1 3}$ were prepared according to the method of glycan conjugation to scaffold.

Yields are based on the isolated weight after lyophilization.

Glycoconjugate 12

Figure S16. HPLC chromatogram of $\mathbf{1 2}$.

Yield: $0.66 \mathrm{mg}, 61 \%$.

Analytical HPLC: 5% to 90% acetonitrile in water $(0.1 \% \mathrm{TFA})$ over $60 \mathrm{~min}, 0.5 \mathrm{~mL} / \mathrm{min} ; \mathrm{t}_{\mathrm{R}}=23.9 \mathrm{~min}$.

MS(MALDI): $[\mathrm{M}+\mathrm{K}]^{+}$calcd. for $\mathrm{C}_{344} \mathrm{H}_{516} \mathrm{~N}_{68} \mathrm{KO}_{128}$: 7686.559, found:7686.405.

Glycoconjugate 13

Figure S17. HPLC chromatogram of $\mathbf{1 3}$.

Yield: $0.22 \mathrm{mg}, 50 \%$.

Analytical HPLC: 5% to 90% acetonitrile in water $(0.1 \% \mathrm{TFA})$ over $60 \mathrm{~min}, 0.5 \mathrm{~mL} / \mathrm{min} ; \mathrm{t}_{\mathrm{R}}=23.0 \mathrm{~min}$.

MS(MALDI): $[\mathrm{M}+\mathrm{K}]^{+}$calcd. for $\mathrm{C}_{308} \mathrm{H}_{452} \mathrm{~N}_{68} \mathrm{KO}_{108}$: 6870.160, found: 6870.227 .
${ }^{1}$ H NMR spectra of $\mathbf{8 b}$

Figure S18. ${ }^{1} \mathrm{H}$ NMR of $\mathbf{8 b}$ in $\mathrm{D}_{2} \mathrm{O}$; the inset shows the triazole proton signal as singlet.

Circular dichroism spectra of 7 and 8

Figure S19. The circular dichroism spectra at far UV range of 7 in water.

Figure S20. The circular dichroism spectra at far UV range of $\mathbf{8}$ in water.

4. Expression and Purification of Target Lectins

Langerin extracellular domain (Lg-ECD) ${ }^{\mathbf{1 0}}$

DNA coding for langerin extracellular domain from residue 68 to 328 was synthesis and clone into NdeI and BamHI restriction sites of vector pET30b by Genomics. The plasmid of Lg-ECD in vector pET30b was transformed into E. coli BL21(DE3) competent cells. A 5 mL overnight culture of E. coli arrying the recombinant plasmid was grown in Luria-Bertani medium containing $50 \mu \mathrm{~g} / \mathrm{mL}$ kanamycin at $37^{\circ} \mathrm{C}$. This culture was diluted into 1 L LB medium containing $100 \mu \mathrm{~g} / \mathrm{mL}$ kanamycin and shake 220 rpm at $37{ }^{\circ} \mathrm{C}$ until the OD_{600} reached 0.7. Protein expression was induced by adding IPTG to a final concentration of 0.3 mM , and shaking vigorously at $37^{\circ} \mathrm{C}$ for 3 h . The E. coli was harvested by centrifugation at $4{ }^{\circ} \mathrm{C}$ and $6000 \times \mathrm{g}$ for 20 min . The cell pellet was incubated in $-20^{\circ} \mathrm{C}$ overnight, then suspended in 15 mL buffer A (25 mM Tris, $150 \mathrm{mM} \mathrm{NaCl}, 4 \mathrm{mM} \mathrm{CaCl}_{2}$, pH 7.8) containing 0.1 mM PMSF and sonicated at 5 s intervals under ice bath for 3 min . The lysate was centrifuged at $4{ }^{\circ} \mathrm{C}$ and $10000 \times \mathrm{g}$ for 20 min and the pellet was collected. The inclusion body dissolved under briefly sonication at $4{ }^{\circ} \mathrm{C}$ in 15 mL buffer $\mathrm{B}(6 \mathrm{~N}$ guanidine, 100 mM Tris, $0.01 \% \beta$-mercaptoethanol, pH 7.0) for 30 min . The solution of denatured protein was centrifuged at $4{ }^{\circ} \mathrm{C}$ and $40000 \times \mathrm{g}$ for 1 h , and the supernatant was diluted 3-fold with buffer A by slow addition with stirring. The mixture was dialysis against buffer A with four buffer changes, and the precipitate was removed by centrifugation at $4^{\circ} \mathrm{C}$ and $40000 \times \mathrm{g}$ for 2 h. The supernatant was loading into 3 mL mannose-Sepharose ${ }^{\circledR}$ column, which had been equilibrium
with buffer A . The column was washed by 20 mL buffer A , and the Lg -ECD was eluted by buffer C (25 mM Tris, $150 \mathrm{mM} \mathrm{NaCl}, 10 \mathrm{mM}$ EDTA, pH 7.8) and analyzed by SDS-PAGE (10\%). The protein was stored at $4{ }^{\circ} \mathrm{C}$. The protein concentration was determined by UV 280 nm .

Figure S21. SDS-PAGE analysis of components during purification of LgECD by affinity column. Every washing and elution fraction is shown.

Figure S22. Analytical ultracentrifuge (AUC) result of trimeric LgECD. The original data (black line)
and fitting data via the nonlinear least-squares fitting (NLSF) utility of Origin (red line) are shown.

DC-SIGN extracellular domain (DC-ECD) ${ }^{11}$

DNA coding for DC-SIGN extracellular domain from residue 62 to 404 was synthesis and clone into BamHI and XhoI restriction sites of vector pT5T by Genomics. The plasmid of DC-ECD in vector pT5T was transformed into E. coli BL21(DE3) competent cells. A 5 mL overnight culture of E. coli carrying the recombinant plasmid was grown in Luria-Bertani medium containing $100 \mu \mathrm{~g} / \mathrm{mL}$ ampicillin at $37^{\circ} \mathrm{C}$. This culture was diluted into 1 L LB medium containing $100 \mu \mathrm{~g} / \mathrm{mL}$ ampicillin and shake 220 rpm at $37{ }^{\circ} \mathrm{C}$ until the OD_{600} reached 0.7 . Protein expression was induced by adding IPTG to a final concentration of 0.3 mM , and shaking vigorously at $37{ }^{\circ} \mathrm{C}$ for 3 h . The E. coli was harvested by centrifugation at $4{ }^{\circ} \mathrm{C}$ and $6000 \times \mathrm{g}$ for 20 min . The cell pellet was incubated in $-20^{\circ} \mathrm{C}$ overnight, then suspended in 15 mL buffer A (25 mM Tris, $150 \mathrm{mM} \mathrm{NaCl}, 4 \mathrm{mM} \mathrm{CaCl}_{2}, \mathrm{pH} 7.8$) containing 0.1 mM PMSF and sonicated at 5 s intervals under ice bath for 3 min . The lysate was centrifuged at $4{ }^{\circ} \mathrm{C}$ and $10000 \times \mathrm{g}$ for 20 min and the pellet was collected. The inclusion body dissolved by briefly sonication at $4^{\circ} \mathrm{C}$ in 15 mL buffer $\mathrm{C}(6 \mathrm{~N}$ guanidine, 100 mM Tris, $0.01 \% \beta$-mercaptoethanol, pH 7.0$)$ for 30 min . The solution of denatured protein was centrifuged at $4{ }^{\circ} \mathrm{C}$ and $40000 \times \mathrm{g}$ for 1 h , and the supernatant was diluted 5-fold with buffer A by slow addition with stirring. The mixture was dialysis against buffer A with four buffer changes, and the precipitate was removed by centrifugation at $4^{\circ} \mathrm{C}$ and $40000 \times \mathrm{g}$ for 2 h. The supernatant was loading into 1 mL mannose-Sepharose ${ }^{\circledR}$ column, which had been equilibrated with buffer A. The column was washed by 10 mL buffer A, and the DC-ECD was eluted by buffer C (25
mM Tris, $150 \mathrm{mM} \mathrm{NaCl}, 10 \mathrm{mM}$ EDTA, pH 7.8) and analyzed by SDS-PAGE (10\%). The protein was stored at $4{ }^{\circ} \mathrm{C}$. The protein concentration was determined by UV 280 nm .

Figure S23. SDS-PAGE analysis of components during purification of DC-ECD by affinity column.

Every washing and elution fraction is shown.

Figure S24. Analytical ultracentrifuge (AUC) result of tetrameric DC-SIGN. The original data (black line) and fitting data via the nonlinear least-squares fitting (NLSF) utility of Origin (red line) are shown.

5. Surface Plasmon Resonance Assay

Material

Sensor chip CM5 (Product Code BR100530) for surface plasmon resonance experiment was purchased from GE Healthcare.

Method

Surface plasmon resonance (SPR) experiments were performed on Biacore T100 or T200 at $25^{\circ} \mathrm{C}$ using a functionalized CM5 sensor chip. Protein immobilization was performed according to the build-in wizard software template of the instrument. The CM5 sensor chip was activated with a solution containing N-ethyl- N '-(3-diethyl-aminopropyl)-carbodiimide (EDC) (0.2 M) and N-hydroxysuccinimide (NHS) (0.05 M). Then langerin ECD $(10 \mu \mathrm{~g} / \mathrm{mL})$ in acetate buffer $(\mathrm{pH} 5.5,10 \mathrm{mM})$ or DC-SIGN ECD $(100 \mu \mathrm{~g} / \mathrm{mL})$ in acetate buffer $(\mathrm{pH} 3.5,10 \mathrm{mM})$ was injected over the activated surface at a flow rate of $10 \mu \mathrm{~L} / \mathrm{min}$ for 900 s . Then ethanolamine ($\mathrm{pH} 8.5,1 \mathrm{M}$) was injected to block the remaining activated groups. Binding assays were performed with running buffer (25 mM Tris, $150 \mathrm{mM} \mathrm{NaCl}, 4 \mathrm{mM} \mathrm{CaCl}$, 0.005% Tween $20, \mathrm{pH} 7.8$). Glycodendrimers $\mathbf{9}, \mathbf{1 0}$ or glycoconjugates $\mathbf{1 2}, \mathbf{1 3}$ were injected onto the surface, with several concentrations ranging from 400 nM to 6400 nM for $\mathbf{9}, 100 \mathrm{nM}$ to 1600 nM for $\mathbf{1 0}$, 4000 nM to 64000 nM for $\mathbf{1 2}$, and 400 nM to 6400 nM for $\mathbf{1 3}$ langerin ECD or from 400 nM to 6400 nM for $\mathbf{9}, 0.625 \mathrm{nM}$ to 10 nM for $\mathbf{1 0}, 6.25 \mathrm{nM}$ to 100 nM for $\mathbf{1 2}, 400 \mathrm{nM}$ to 6400 nM for $\mathbf{1 3}, 6.25 \mathrm{nM}$ to 100 nM for $\mathbf{8 b}$, and 62500 nM to 1000000 nM for $\mathbf{M a n}_{4}$ to DC-SIGN ECD at the rate of $10 \mu \mathrm{~L} / \mathrm{min}$ diluted
in the running buffer. The surface was regenerated by 60 s injection of regeneration buffer (25 mM Tris, $150 \mathrm{mM} \mathrm{NaCl}, 10 \mathrm{mM}$ EDTA, pH 7.8). The sensorgrams were reference subtracted, quality controlled and analyzed by Biacore T200 Evaluation Software, and the kinetic parameters were obtained by fitting curves to 1:1 Langmuir model.

Sensorgrams

Figure S25. Sensorgram of 9 binding to a langerin sensorchip $($ Concentration $=400,800,1600,3200$ and 6400 nM$)$.

Figure S26. Sensorgram of 10 binding to a langerin sensorchip (Concentration $=100,200,400,800$ and $1600 \mathrm{nM})$.

Figure S27. Sensorgram of $\mathbf{1 2}$ binding to a langerin sensorchip (Concentration $=4000,8000,16000$, 32000 and 64000 nM$)$.

Figure S28. Sensorgram of $\mathbf{1 3}$ binding to a langerin sensorchip (Concentration $=400,800,1600,3200$ and 6400 nM$)$.

Figure S29. Sensorgram of 9 binding to a DC-SIGN sensorchip (Concentration $=400,800,1600,3200$ and 6400 nM$)$.

Figure S30. Sensorgram of 10 binding to a DC-SIGN sensorchip (Concentration $=0.625,1.25,2.5,5$ and 10 nM$)$.

Figure S31. Sensorgram of $\mathbf{1 2}$ binding to a DC-SIGN sensorchip (Concentration $=6.25,12.5,25,50$ and $100 \mathrm{nM})$.

Figure S32. Sensorgram of $\mathbf{1 3}$ binding to a DC-SIGN sensorchip (Concentration $=400,800,1600,3200$ and 6400 nM$)$.

Figure S33. Sensorgram of $\mathbf{8 b}$ binding to a DC-SIGN sensorchip showing no binding activity at the same concentrations for measurement of $\mathbf{1 2}$ (Concentration $=6.25,12.5,25,50$ and 100 nM$)$.

Figure S34. Sensorgram of Man4 binding to a DC-SIGN sensorchip showing very weak interaction that the K_{D} cannot be determined within instrument limitation $($ Concentration $=62500,125000,250000$, 500000 and 1000000 nM$)$.

References

1. C. H. Lin, H. C. Wen, C. C. Chiang, J. S. Huang, Y. Chen, S. K. Wang, Small, 2019, 15, e1900561.
2. G. J. Miller, J. M. Gardiner, Org. Lett., 2010, 12, 5262-5265.
3. R. Kikkeri, L. H. Hossain, P. H. Seeberger, Chem. Commun., 2008, 2127-2129.
4. C. Voshavar, R. C. Meka, S. Samanta, S. Marepally, A. Chaudhuri, J. Med. Chem., 2017, 60, 1605-1610.
5. R. Kikkeri, X. Liu, A. Adibekian, Y. H. Tsai, P. H. Seeberger, Chem. Commun., 2010, 46, 2197-
6.
7. S. K. Wang, P. H. Liang, R. D. Astronomo, T. L. Hsu, S. L. Hsieh, D. R. Burton, C. H. Wong, Proc. Nat. Acad. Sci. U. S. A., 2008, 105, 3690-3695.
8. M. Adamczyk, J. R. Fishpaugh, M. Thiruvazhi, Org. Prep. Proced. Int., 2002, 34, 326-331.
9. T. K. Lindhorst, K. Bruegge, A. Fuchs, O. Sperling, Beilstein J. Org. Chem., 2010, 6, 801-809.
10. K. J. Doores, Z. Fulton, V. Hong, M. K. Patel, C. N. Scanlan, M. R. Wormald, M. G. Finn, D. R.

Burton, I. A. Wilson, B. G. Davis, Proc. Nat. Acad. Sci. U. S. A., 2010, 107, 17107-17112.
10. M. Thépaut, J. Valladeau, A. Nurisso, R. Kahn, B. Arnou, C. Vivès, S. Saeland, C. Ebel, C.

Monnier, C. Dezutter-Dambuyant, A. Imberty, F. Fieschi, Biochemistry, 2009, 48, 2684-2698.
11. D. A. Mitchell, A. J. Fadden, K. Drickamer, J. Biol. Chem., 2001, 276, 28939-28945.

${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{S 4}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{S 5}\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right)$

${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{S 6}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$$
\begin{array}{lr}
=======\text { CHANNEL } \mathrm{f1}======= \\
\text { NUC1 } & 13 \mathrm{C} \\
\text { P1 } \\
\text { PL1 } & 9.70 \mathrm{usec} \\
\text { SFO1 } & 100.69877200 \mathrm{~dB} \\
\text { SI } & 65536 \mathrm{MHz} \\
\text { SF } & 100.6892517 \mathrm{MHz} \\
\text { WDW } & \text { EM } \\
\text { SSB } & 0 \\
\text { LB } & 1.00 \mathrm{~Hz} \\
\text { GB } & 0 \\
\text { PC } & 1.00
\end{array}
$$

$\begin{array}{llllllllllllllll}10 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60\end{array}$
${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{S 9}\left(100.7 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}^{2}$ NMR spectra of Man $_{3}\left(400 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right)$

NAME
EXPNO
?ROCNO
Jate_
Inme
INSTRUM
?ROBHD
?ULPROG
ID
SOLVENT
3OLV
NS
JS
SSH
3S
3WH
SWH
IDRES
?IDR
AQ
3 G
2 G
2 G
WW
ЈW
כE
ГE
「E
כ1

Man4-N3-20170628

$$
\begin{array}{r}
1 \\
1 \\
20170628 \\
0.00 \\
\text { varian } \\
\text { s2pul } \\
23964 \\
\text { D20 } \\
0
\end{array}
$$

6006.006 H 6006.006 Hz
0.250626 Hz 1.9890620 sec
83.250^{4} usec 115.71 usec 302.0 K
1.00000000

.vUC1	1H	
? 1	17.30	usec
? L1	120.00	dB
3FO1	400.4372679	MHz
3 I	32768	
SF	400.4351887	MHz
NDW	EM	
SSB	0	
LB	0.00	Hz
3B	0	

${ }^{1}{ }^{H}$ NMR spectra of Man $4\left(400 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right)$

