Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2019

Supporting Information

A chiral switch: balancing between equilibrium and non-equilibrium states

Iaroslav Baglai,^a Michel Leeman,^b Bernard Kaptein,^c Richard M. Kellogg,^b and Willem L. Noorduin^{*, a}

^a AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands

^b Syncom BV, Kadijk 3, 9747 AT Groningen, The Netherlands

^c InnoSyn BV, PO Box 1090, 6160 BB Geleen, The Netherlands

Content

General remarks	S1
Experimental section	S1
Chiral HPLC chromatograms	S2
References	S5

General remarks:

Chiral HPLC analyses were performed using an Agilent Technologies Infinity 1260 HPLC system equipped with a Chiralpak IA (250 x 4.6 mm, 5 μ m) column; eluent: *n*-heptane/isopropanol: 95/5 (*v*/*v*); flow rate: 0.7 mL/min; UV-light detector: 220 nm). Glass beads (borosilicate, diam. 2 mm) were purchased from Sigma-Aldrich. 20 mL vials used (WHEATON[®] 180 low potassium borosilicate glass) were purchased from VWR International. Compounds **1**, **2** and **3** were obtained in course of the previous research.^{1,2}

Experimental Section:

Note, the procedure below is representative for all Chiral Switches performed.

A screw cap 20 mL vial was charged with 2 mm glass beads (10 g), racemic conglomerate, pure enantiomer (either *R* or *S*) and solvent (12 mL). The vial was placed in an ultrasonic bath, equipped with a thermostat, and sonicated for 2 hours at 20 °C. Then, the slurry was rapidly (within *ca.* 30 seconds) filtered through a P4 filter providing an enantiomerically enriched liquid phase. The isolated liquid phase (10 mL) was added into a 20 mL vial charged with the corresponding racemate (1.0 g) and glass beads (10 g). The resulting mixture was sonicated at 20 °C for 1 hour followed by addition of the racemization catalyst (1,8-diazabicyclo[5.4.0]undec-7-ene (DBU)). The resulting slurry was sonicated at 20 °C for 24 hours. The suspension was replaced into a P4 filter, using a Pasteur's pipet to separate the suspension and glass beads, and filtered. The isolated solid was rinsed with the corresponding solvent (2 x 3.0 mL) and dried to afford the desired material.

Starting solid material		Solvent non-equilibrium		DBU	Chiral Switch		
Racemate	Enantiomer	ee*, %	used	solid phase ee,	liquid phase ee,	added,	outcome
(m, g)	(m, g)			%	%	μL	(ee, %); (m, g)
(<i>RS</i>)-1	(S)-1	(S)-1	MeCN	<mark>(S)-1</mark> (50.6%)	(R)-1 (3.1%)	180µL	(R)-1 (99.8%)
(0.65 g)	(0.5 g)	(43.5%)					0.87 g
(<i>RS</i>)-1	(R)-1	(<i>R</i>)-1	MeCN	(R)-1 (50.0%)	(S)-1 (3.4%)	180µL	<mark>(S)-1</mark> (99.9%)
(0.65 g)	(0.5 g)	(43.5%)					0.85 g
(<i>RS</i>)-2	(<i>S</i>)-2	(<i>S</i>)-2	MeOH	<mark>(S)-2</mark> (61.7%)	(R)-2 (0.2%)	180µL	(R)-2 (99.3%)
(0.6 g)	(0.6 g)	(50.0%)					0.81 g
(<i>RS</i>)-2	(<i>R</i>)-2	(R)-2	MeOH	(R)-2 (60.9%)	(S)-2 (0.8%)	180µL	<mark>(S)-2</mark> (98.7%)
(0.6 g)	(0.6 g)	(50.0%)					0.79 g
(<i>RS</i>)-3	(<i>S</i>)-3	(<i>S</i>)-3	MeCN	<mark>(S)-3</mark> (52.6%)	(R)-3 (2.3%)	150µL	(R)-3 (99.5%)
(0.6 g)	(0.6 g)	(50.0%)					0.86 g
(<i>RS</i>)-3	(<i>R</i>)-3	(<i>R</i>)-3	MeCN	(R)-3 (51.9%)	(S)-3 (1.9%)	150µL	(S)-3 (99.1%)
(0.6 g)	(0.6 g)	(50.0%)					0.82 g

Table S1. Summary of the Chiral Switch experiments

* calculated based on the weighed amounts of racemates and enantiomerically pure materials used.

Chiral HPLC analyses:

References:

- 1 M. van der Meijden, M. Leeman, E. Gelens, W. L. Noorduin, H. Meekes, W. J. P. van Enckevort, B. Kaptein, E. Vlieg and R. M. Kellogg, *Org. Process Res. Dev.*, 2009, **13**, 1195–1198.
- I. Baglai, M. Leeman, K. Wurst, B. Kaptein, R. M. Kellogg and W. L. Noorduin, *Chem. Commun.*, 2018, 54, 10832–10834.