Supporting Information

Palladium Catalyzed Regioselective Elimination-
 Hydrocarbonylation of Propargylic Alcohols

Yuan Yuan, ${ }^{\dagger}$ Minqiang Jia, ${ }^{\dagger}$ Wanli Zhang, ${ }^{* \dagger}$ and Shengming Ma ${ }^{* \dagger}{ }^{\dagger}$
${ }^{\dagger}$ Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220 Handan Lu, Shanghai 200433, P. R. China.
${ }^{\text { }}$ State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, P. R. China.
Email: masm@sioc.ac.cn

General information	S 2
Screening of phosphoric acids	S 3
Experimental details and analytical data	S 4
Reaction monitoring using substrate 1a	S 20
Control experiments	S 21
Synthetic applications	S 25
References	S 31
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of the products	$\mathrm{S} 32-\mathrm{S} 102$

General Information. NMR spectra were taken with an Agilent-400 spectrometer (400 MHz for ${ }^{1} \mathrm{H}$ NMR, 100 MHz for ${ }^{13} \mathrm{C}$ NMR) in CDCl_{3}, DMSO- $d_{6}, \mathrm{C}_{6} \mathrm{D}_{6}$ or $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}$. All ${ }^{1} \mathrm{H}$ NMR experiments were measured with tetramethylsilane (0 ppm) in CDCl_{3} or the signal of residual $\mathrm{C}_{6} \mathrm{H}_{6}(7.16 \mathrm{ppm})$ in $\mathrm{C}_{6} \mathrm{D}_{6}$ or the signal of residual DMSO (2.50 ppm) in DMSO- d_{6} as the internal reference; ${ }^{13} \mathrm{C}$ NMR experiments were measured in relative to the signal of $\mathrm{CDCl}_{3}(77.0 \mathrm{ppm})$ or the signal of DMSO- d_{6} (39.52 ppm) or the signal of $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}(29.84 \mathrm{ppm})$. All reactions were carried out in flame-dried Schlenk tubes. [(π-allyl) PdCl$]_{2}$ was purchased from J\&K Chemicals; BINAP was purchased from Shanghai 9 dingchem Co., Ltd.; $(\mathrm{PhO})_{2} \mathrm{POOH}$ was purchased from Energy Chemical and purified through stirring with 1 M HCl , extracting with dichloromethane, and removing solvents under vacuum or purchased from Shanghai aladdin Biochemical Technology Co., Ltd. without purification; ${ }^{n} \mathrm{BuLi}$ was purchased from Energy Chemical and Infinity Scientific (Beijing) Co. Ltd.. Toluene was dried over sodium wire with benzophenone as the indicator and distilled freshly before use. The reaction should be conducted in a hood working efficiently due to the toxicity of CO gas. All the temperatures are referred to the oil baths used. Recoveries of substrates were determined by ${ }^{1} \mathrm{H}$ NMR analysis of the crude product using dibromomethane or $1,3,5$-trimethylbenzene as the internal standard. Column chromatography was conducted on 300-400 mesh silica gel purchased from Huanghai chemicals or Biotage Isolera One flash chromatography purification system using flash silica gel column (12 g) purchased from Santai Tech. Inc.. Petroleum ether (b.p. $60-90{ }^{\circ} \mathrm{C}$) purchased from Shanghai Titan Scientific Co., Ltd. was used for chromatography. The starting propargylic alcohols were synthesized according to the reported procedures. ${ }^{1}$

Table S1 Screening of Brønsted acids ${ }^{a}$

Entry	Brønsted acid	NMR yield ${ }^{\text {b }}$ (\%)			$\begin{gathered} \text { Recovery }^{b} \text { of } \\ \mathbf{1 a}(\%) \end{gathered}$
		2a	(E)-3a	(E)-4a	
1	$(\mathrm{PhO})_{2} \mathrm{POOH}$	0	79	1	1
2	$(n-\mathrm{BuO})_{2} \mathrm{POOH}$	3	0	9	13
3	$\mathrm{Ph}_{2} \mathrm{POOH}$	1	2	5	0
4	Acid 1	21	26	7	5
5	$\mathrm{H}_{3} \mathrm{PO}_{3}$	55	0	0	0
6	HPO_{3}	1	0	0	99
7	$\mathrm{CH}_{3} \mathrm{COOH}$	0	0	0	37
8	$\mathrm{CF}_{3} \mathrm{COOH}$	24	0	0	0

Acid 1

${ }^{a}$ Reaction conditions: 1a (1.0 mmol), $[\mathrm{Pd}(\pi-\mathrm{allyl}) \mathrm{Cl}]_{2}(2 \mathrm{~mol} \%)$, BINAP ($6 \mathrm{~mol} \%$), and Brønsted acid (1.0 equiv.) in toluene (5 mL) at $80^{\circ} \mathrm{C}$ under 1 atm . of CO unless otherwise noted. ${ }^{\boldsymbol{b}}$ Determined by ${ }^{1} \mathrm{H}$ NMR analysis of the crude product using dibromomethane as the internal standard.

Experimental details and analytical data

1. Synthesis of propargylic alcohols

(1) Preparation of 4-(3-Methylphenyl)-2-phenylbut-3-yn-2-ol (1g) (Yy-2-078)

1g, 86% yield
Typical Procedure I: ${ }^{1}$ To an oven-dried flask (100 mL) were added (3-methylphenyl)acetylene ($2.65 \mathrm{~mL}, \mathrm{~d}=0.900 \mathrm{~g} / \mathrm{mL}, 2.3850 \mathrm{~g}, 20 \mathrm{mmol}$) and THF $(50 \mathrm{~mL})$ under argon. Then a solution of ${ }^{n} \mathrm{BuLi}(2.5 \mathrm{M}$ in hexane, $8 \mathrm{~mL}, 20 \mathrm{mmol})$ was added dropwise at $-78^{\circ} \mathrm{C}$ within 3 min under argon. Then the cooling bath was removed and the mixture was stirred at room temperature for 2 h . Acetophenone (1.90 $\mathrm{mL}, \mathrm{d}=1.03 \mathrm{~g} / \mathrm{mL}, 1.9570 \mathrm{~g}, 16 \mathrm{mmol}$) was then added dropwise at $-78{ }^{\circ} \mathrm{C}$ within 3 min . The resulting mixture was warmed up to room temperature, stirred for 19 h , and quenched with a saturated aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}(20 \mathrm{~mL})$. After extraction with ethyl acetate ($20 \mathrm{~mL} \times 3$), the organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After filtration and concentration under reduced pressure, the crude product was purified by column chromatography on silica gel to afford $\mathbf{1 g}(3.2544 \mathrm{~g}, 86 \%)$ (eluent: petroleum ether /dichloromethane/ethyl ether $=60 / 1 / 1$) as a yellow solid: m.p. $47.5-48.0^{\circ} \mathrm{C}$ (petroleum ether/ethyl acetate); ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.78-7.67(\mathrm{~m}, 2 \mathrm{H}$, Ar-H), 7.43-7.34 (m, 2 H, Ar-H), 7.34-7.25 (m, $3 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.20$ (t, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}$, Ar-H), 7.13 (d, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), 2.53 (s, $1 \mathrm{H}, \mathrm{OH}$), 2.32 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}$), 1.86 (s , $\left.3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathbf{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta=145.7,138.0,132.3,129.3,128.8,128.3$, 128.2, 127.7, 125.0, 122.3, 92.1, 85.1, 70.4, 33.3, 21.2; IR (neat): $v=3292$ (br), 2986, 2926, 1599, 1580, 1484, 1365, 1221, 1087, $1051 \mathrm{~cm}^{-1}$; MS (70 eV, EI) $m / z(\%): 237$ $\left(\mathrm{M}^{+}+1,2.28\right) 236\left(\mathrm{M}^{+}, 14.21\right), 221$ (100); Anal. calcd for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{O}: \mathrm{C} 86.40, \mathrm{H} 6.82$; Found: C 86.44, H 6.73.

The following compounds were prepared according to Typical Procedure I.
(2) Preparation of 2-(3-methoxyphenyl)dec-3-yn-2-ol (1n) (Yy-2-070)

The reaction of 1-octyne ($3.0 \mathrm{~mL}, \mathrm{~d}=0.746 \mathrm{~g} / \mathrm{mL}, 2.2380 \mathrm{~g}, 20 \mathrm{mmol}$)/THF (50 mL), ${ }^{n} \mathrm{BuLi}(2.5 \mathrm{M}$ in hexane, $8 \mathrm{~mL}, 20 \mathrm{mmol}$), and 3-methoxyacetophenone (2.1 mL , $\mathrm{d}=1.094 \mathrm{~g} / \mathrm{mL}, 2.2974 \mathrm{~g}, 15 \mathrm{mmol})$ afforded $1 \mathrm{n}(1.6462 \mathrm{~g}, 42 \%)$ (eluent: petroleum ether/ethyl ether $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}=20 / 1 / 1$) as a colorless oil: ${ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=$ 7.31-7.17 (m, $3 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), $6.82\left(\mathrm{dt}, J_{1}=7.2 \mathrm{~Hz}, J_{2}=2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}\right), 3.82(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{OCH}_{3}\right), 2.40-2.30(\mathrm{~m}, 1 \mathrm{H}, \mathrm{OH}), 2.27\left(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.73\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, 1.60-1.48 (m, $2 \mathrm{H}, \mathrm{CH}_{2}$), 1.46-1.36 (m, $2 \mathrm{H}, \mathrm{CH}_{2}$), 1.35-1.24 (m, $4 \mathrm{H}, \mathrm{CH}_{2} \times 2$), 0.89 $\left(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathbf{C} \mathbf{~ N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=159.4,148.0,129.2$, 117.4, $112.9,110.8,85.7,83.6,70.0,55.2,33.5,31.3,28.57,28.55,22.5,18.7,14.0$; IR (neat): $v=3425$ (br), 2929, 2858, 2242, 1600, 1485, 1432, 1257, 1159, $1043 \mathrm{~cm}^{-1}$; MS (70 eV, EI) $m / z(\%): 261\left(\mathrm{M}^{+}+1,3.89\right), 260\left(\mathrm{M}^{+}, 21.47\right), 245(100) ;$ HRMS calcd for $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{O}_{2}\left[\mathrm{M}^{+}\right]:$260.1776; Found: 260.1778 .
(3) Preparation of 2-(2-naphthyl)dec-3-yn-2-ol (10) (Yy-2-050)

The reaction of 1-octyne ($3.0 \mathrm{~mL}, \mathrm{~d}=0.746 \mathrm{~g} / \mathrm{mL}, 2.2380 \mathrm{~g}, 20.0 \mathrm{mmol}$)/THF $(50 \mathrm{~mL}),{ }^{n} \mathrm{BuLi}(2.5 \mathrm{M}$ in hexane, $8 \mathrm{~mL}, 20.0 \mathrm{mmol})$, and 2-acetonaphthone (3.1263 g , $18 \mathrm{mmol}) /$ THF $(20 \mathrm{~mL})$ afforded $\mathbf{1 0}(0.9534 \mathrm{~g}, 19 \%)$ (eluent: petroleum ether/ethyl
acetate $=100 / 1)$ as a yellow oil: ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=8.11(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H})$, 7.90-7.77 (m, $3 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), $7.74\left(\mathrm{dd}, J_{1}=8.4 \mathrm{~Hz}, J_{2}=1.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}\right), 7.53-7.38(\mathrm{~m}$, $2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), 2.48 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{OH}$), 2.29 (t, $J=7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}$), $1.82\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, 1.65-1.50 (m, $2 \mathrm{H}, \mathrm{CH}_{2}$), 1.50-1.38 (m, $2 \mathrm{H}, \mathrm{CH}_{2}$), $1.38-1.24\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \times 2\right), 0.89$ $\left(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=143.5,133.0,132.8,128.3$, 128.0, 127.5, 126.1, 125.9, 123.7, 123.3, 85.9, 83.8, 70.1, 33.4, 31.3, 28.59, 28.56, 22.5, 18.8, 14.0; IR (neat): $v=3378$ (br), 3055, 2926, 2858, 2240, 1457, 1359, 1196, $1084 \mathrm{~cm}^{-1}$; MS (70 eV, EI) $m / z(\%): 280\left(\mathrm{M}^{+}, 1.46\right), 105$ (100); HRMS calcd for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{O}\left[\mathrm{M}^{+}\right]: 280.1827$; Found: 280.1830 .

2. Preparation of 2-phenyloct-3-yn-2-yl methyl ether (5) (Yy-2-121)

To a flame-dried Schlenk tube were added $\mathrm{NaH}(400 \mathrm{mg}, 10 \mathrm{mmol})$ in a glove box, followed by the addition of 2 mL of DMF. Then $\mathbf{1 a}(1.0074 \mathrm{~g}, 5 \mathrm{mmol})$ in DMF (3 mL) was added slowly within 5 min . After being stirred at room temperature for 30 min, the Schlenk tube was cooled to $0^{\circ} \mathrm{C}$ with a water/ice bath for 5 min before MeI $(0.37 \mathrm{~mL}, \mathrm{~d}=2.28 \mathrm{~g} / \mathrm{mL}, 843.6 \mathrm{mg}, 6 \mathrm{mmol})$ was added. The resulting mixture was stirred at room temperature for 14 h and then the reaction was cooled to $0^{\circ} \mathrm{C}$ with a water/ice bath for 5 min before quenched with a saturated aqueous solution of NaCl $(10 \mathrm{~mL})$. After extraction with $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL} \times 3)$, the organic layer was combined and washed with $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL} \times 6)$ to remove DMF. The organic layer was dried over anhydrous MgSO_{4}. After filtration and concentration under reduced pressure, the crude product was purified by column chromatography on silica gel to afford $\mathbf{5}$ $(1.0165 \mathrm{~g}, 94 \%)$ (eluent: petroleum ether/ethyl ether $=50 / 1)$ as a colorless oil: ${ }^{1} \mathbf{H}$ NMR (400 MHz, CDCl_{3}) $\delta=7.64-7.55$ (m, $2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), 7.38-7.30 (m, $2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), 7.30-7.22 (m, $1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), 3.19 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{OCH}_{3}$), $2.34\left(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right.$), 1.69 (s, $\left.3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.64-1.42\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{x} 2\right), 0.94\left(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathbf{C}$ NMR
$\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=143.2,128.1,127.5,126.0,88.1,79.9,76.5,52.1,32.9,30.8$, 21.9, 18.4, 13.5; IR (neat): $v=3455,2924,2854,2232,1489,1449,1329,1140,1002$ cm^{-1}; MS (ESI) $m / z(\%): 217(M+H)^{+}, 185(\mathrm{M}-\mathrm{OMe})^{+}$; HRMS calcd for $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{O}^{+}$ $(\mathrm{M}+\mathrm{H})^{+}: 217.1587$; Found: 217.1586.

3. Synthesis of 1,3-dien-3-yl carboxylic acids

(1) Preparation of (E)-2-(1-phenylvinyl)hept-2-enoic acid [(E)-3a] (Yy-2-009, Yy-1-183)

Typical Procedure II: To a flame-dried Schlenk tube were added $[\mathrm{Pd}(\pi \text {-allyl }) \mathrm{Cl}]_{2}$ ($7.5 \mathrm{mg}, 0.02 \mathrm{mmol}$), BINAP ($39.3 \mathrm{mg}, 0.06 \mathrm{mmol}$), and (PhO$)_{2} \mathrm{POOH}(387.1 \mathrm{mg}$, 1.5 mmol) sequentially under argon. After addition of each chemical, the flask was degassed and refilled with Ar. Then 1a ($202.1 \mathrm{mg}, 1 \mathrm{mmol}$)/toluene (5 mL) was added under argon. The resulting mixture was subsequently frozen with a liquid nitrogen bath, degassed to remove the argon inside completely, and refilled with CO by a balloon of CO for three times. Then the resulting mixture was stirred at $80^{\circ} \mathrm{C}$ with a balloon of CO for 12 h . After that, the resulting mixture was diluted with 5 mL of ethyl acetate, filtered through a short column of silica gel $(2 \mathrm{~cm})$ eluted with ethyl acetate (10 mL x 3), and concentrated. The residue was purified by column chromatography on silica gel to afford impure $(E) \mathbf{- 3 a}(200.5 \mathrm{mg})$ [eluent: petroleum ether/dichloromethane/ethyl ether $=20 / 1 / 1$], which was recrystallized (petroleum ether/dichloromethane) to afford pure $(E) \mathbf{- 3 a}(189.5 \mathrm{mg}, 82 \%)$ as a yellow solid: m.p. 72.6-73.2 ${ }^{\circ} \mathrm{C}$ (petroleum ether/dichloromethane); ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=$ 7.40-7.22 (m, 5 H, Ar-H), $7.19(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H},=\mathrm{CH}), 5.78(\mathrm{~s}, 1 \mathrm{H}$, one proton of $\left.=\mathrm{CH}_{2}\right), 5.11\left(\mathrm{~s}, 1 \mathrm{H}\right.$, one proton of $\left.=\mathrm{CH}_{2}\right), 2.22(\mathrm{q}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.48-1.36(\mathrm{~m}, 2$ $\left.\mathrm{H}, \mathrm{CH}_{2}\right), 1.36-1.22\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 0.85\left(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathbf{C}$ NMR (100
$\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=172.3,148.9,142.1,139.0,132.9,128.4,127.8,125.7,116.5,30.8$, 29.5, 22.4, 13.8; IR (neat): $v=2954,2926,2854,2651,2525,1679,1621,1493$, 1418, $1274 \mathrm{~cm}^{-1}$; MS (70 eV, EI) $m / z(\%): 231\left(\mathrm{M}^{+}+1,4.17\right), 230\left(\mathrm{M}^{+}, 25.77\right), 143$ (100); Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}_{2}$: C 78.23, H 7.88; Found: C 78.26, H 8.11.

Figure S1
(E)-3a: $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}_{2}$, MW $=230.29$, monoclinic, space group $I 2 / a$, final R indexes $[I>$ $2 \sigma(I)], R_{1}=0.0719, w R_{2}=0.2203 ; R$ indexes (all data), $R_{1}=0.0759, w R_{2}=0.2259, a$ $=8.7690(2) \AA, b=17.0752(4) \AA, c=18.1342(3) \AA, \alpha=90^{\circ}, \beta=89.897(2)^{\circ}, \gamma=90^{\circ}$, $V=2715.27(10) \AA^{3}, T=293(2) \mathrm{K}, Z=8$, reflections collected/unique 29293/2375 [Rint $=0.0773]$, no. of observations [>2 $>(I)] 2120$, parameters: 156 . Supplementary crystallographic data have been deposited at the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data request/cif. CCDC-1582245.
(2) Preparation of (E)-7-chloro-2-(1-phenylvinyl)hept-2-enoic acid [(E)-3b] (Yy-2-086)

Following Typical Procedure II, the reaction of $[\operatorname{PdCl}(\pi-\mathrm{ally})]_{2}(7.5 \mathrm{mg}, 0.02$ mmol), BINAP ($39.3 \mathrm{mg}, 0.06 \mathrm{mmol}$), (PhO$)_{2} \mathrm{POOH}(386.2 \mathrm{mg}, 1.5 \mathrm{mmol}$), and $\mathbf{1 b}$ ($236.7 \mathrm{mg}, 1 \mathrm{mmol}$)/toluene (5 mL) afforded (E)-3b ($224.9 \mathrm{mg}, 85 \%$) [using Biotage

Isorela One purification system on flash silica gel column (Santai Tech. Inc., 12 g), eluent: petroleum ether/ethyl acetate $=2 \%(2 \mathrm{CV}), 2 \%-17 \%(14 \mathrm{CV}), 17 \%(6 \mathrm{CV})]$ as a yellow oil: ${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta=12.3$ (brs, $1 \mathrm{H}, \mathrm{COOH}$), 7.45-7.24 $(\mathrm{m}, 5 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 6.96(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H},=\mathrm{CH}), 5.83\left(\mathrm{~s}, 1 \mathrm{H}\right.$, one proton of $\left.=\mathrm{CH}_{2}\right)$, $5.06\left(\mathrm{~s}, 1 \mathrm{H}\right.$, one proton of $\left.=\mathrm{CH}_{2}\right), 3.58\left(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Cl}\right), 2.17(\mathrm{q}, J=7.3$ $\left.\mathrm{Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.78-1.61\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.58-1.46\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right) ;{ }^{13} \mathbf{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=171.9,147.6,141.9,138.8,133.5,128.5,127.9,125.7,116.7,44.5$, 32.1, 28.9, 25.9; IR (neat): $v=2952,2934,2861,2640,2518,1679,1618,1493,1411$, $1267 \mathrm{~cm}^{-1}$; MS (70 eV, EI) $\left.\left.m / z(\%): 267\left[\mathrm{M}^{+}\left({ }^{37} \mathrm{Cl}\right)+1,1.43\right)\right], 266\left[\mathrm{M}^{+}\left({ }^{37} \mathrm{Cl}\right), 9.00\right)\right]$, $265\left[\mathrm{M}^{+}\left({ }^{35} \mathrm{Cl}\right)+1,5.11\right], 264\left[\mathrm{M}^{+}\left({ }^{35} \mathrm{Cl}\right), 26.17\right], 143$ (100); HRMS Calcd for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{O}_{2}{ }^{35} \mathrm{Cl}\left(\mathrm{M}^{+}\right)$: 264.0917; Found: 264.0921.
(3) Preparation of (E)-5-phenyl-2-(1-phenylvinyl)pent-2-enoic acid [(E)-3c] (Yy-2-075)

Following Typical Procedure II, the reaction of $[\mathrm{PdCl}(\pi \text {-allyl })]_{2}(7.5 \mathrm{mg}, 0.02$ mmol), BINAP ($39.3 \mathrm{mg}, 0.06 \mathrm{mmol}$), (PhO$)_{2} \mathrm{POOH}(386.9 \mathrm{mg}, 1.5 \mathrm{mmol})$, and $\mathbf{1 c}$ $(250.3 \mathrm{mg}, 1 \mathrm{mmol}) /$ toluene $(5 \mathrm{~mL})$ afforded $(E) \mathbf{- 3 c}(210.8 \mathrm{mg}, 76 \%)$ (eluent: petroleum ether/ethyl acetate $=20 / 1$) as a yellow solid: m.p. 98.1-98.5 ${ }^{\circ} \mathrm{C}$ (petroleum ether/dichloromethane); ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=11.7$ (brs, $1 \mathrm{H}, \mathrm{COOH}$), 7.31-7.13 (m, $9 \mathrm{H}, 8$ protons of Ar-H and one proton of $=\mathrm{CH}$), 7.12-7.04 (m, 2 H , Ar-H), $5.72\left(\mathrm{~s}, 1 \mathrm{H}\right.$, one proton of $\left.=\mathrm{CH}_{2}\right), 4.95\left(\mathrm{~s}, 1 \mathrm{H}\right.$, one proton of $\left.=\mathrm{CH}_{2}\right), 2.74(\mathrm{t}, J$ $\left.=7.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.54\left(\mathrm{q}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=$ $171.9,147.3,142.0,140.7,138.9,133.6,128.5,128.4,127.8,126.2,125.7,116.7$, 34.9, 31.7; IR (neat): $v=3025,2929,2862,2639,2534,1677,1635,1616,1493$, 1424, $1277 \mathrm{~cm}^{-1}$; MS (70 eV, EI) $m / z(\%): 279\left(\mathrm{M}^{+}+1,1.36\right), 278\left(\mathrm{M}^{+}, 6.03\right), 91$ (100); Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{O}_{2}$: C 81.99, H 6.52; Found: C 81.68, H 6.51.
(4) Preparation of (E)-4-methyl-2-(1-phenylvinyl)pent-2-enoic acid [(E)-3d] (cfsy-1-200, Yy-2-109)
$[\mathrm{PdCl}(\pi-\mathrm{ally})]_{2}(2 \mathrm{~mol} \%)$
BINAP ($6 \mathrm{~mol} \%$)

Following Typical Procedure II, the reaction of $[\mathrm{PdCl}(\pi \text {-allyl })]_{2}(7.7 \mathrm{mg}, 0.02$ mmol), BINAP ($39.3 \mathrm{mg}, 0.06 \mathrm{mmol}$), (PhO$)_{2} \mathrm{POOH}(379.8 \mathrm{mg}, 1.5 \mathrm{mmol})$, and $\mathbf{1 d}$ $(188.5 \mathrm{mg}, 1 \mathrm{mmol}) /$ toluene $(5 \mathrm{~mL})$ afforded $(E) \mathbf{- 3 d}(174.0 \mathrm{mg}, 80 \%)(10 \%$ of $\mathbf{2 d}$ was also detected through ${ }^{1} \mathrm{H}$ NMR analysis of the crude product using dibromomethane as the internal standard) [eluent: petroleum ether/ethyl acetate $=400 / 20$ to $800 / 160$ to 100/25 (v/v)] as a yellow solid: m.p. 100.3-100.6 ${ }^{\circ} \mathrm{C}$ (petroleum ether/dichloromethane); ${ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.40-7.20(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ar}-\mathrm{H})$, $6.96(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H},=\mathrm{CH}), 5.77\left(\mathrm{~s}, 1 \mathrm{H}\right.$, one proton of $\left.=\mathrm{CH}_{2}\right), 5.11(\mathrm{~s}, 1 \mathrm{H}$, one proton of $=\mathrm{CH}_{2}$), $2.72-2.58(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 1.01\left(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CH}_{3} \times 2\right) ;{ }^{13} \mathbf{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=172.5,154.6,142.2,138.9,130.6,128.4,127.8,125.7$, 116.2, 29.0, 22.1; IR (neat): $v=2962,2869,2644,2514,1682,1633,1612,1493$, 1412, $1267 \mathrm{~cm}^{-1}$; MS (70 eV, EI) $m / z(\%): 217\left(\mathrm{M}^{+}+1,4.18\right), 216\left(\mathrm{M}^{+}, 26.88\right), 157$
(100); Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{O}_{2}$: C 77.75, H 7.46; Found: C 77.62, H 7.40.
(5) Preparation of 2-(1-phenylvinyl)prop-2-enoic acid (3e) (Yy-2-182)

$$
[\mathrm{PdCl}(\pi \text {-allyl })]_{2}(2 \mathrm{~mol} \%)
$$ BINAP (6 mol\%)

Following Typical Procedure II, the reaction of $[\operatorname{PdCl}(\pi-\mathrm{ally})]_{2}(7.5 \mathrm{mg}, 0.02$ mmol), BINAP ($39.4 \mathrm{mg}, 0.06 \mathrm{mmol}$), (PhO$)_{2} \mathrm{POOH}(379.1 \mathrm{mg}, 1.5 \mathrm{mmol})$, and $\mathbf{1 e}$ $(146.2 \mathrm{mg}, 1 \mathrm{mmol}) /$ toluene (5 mL) afforded $3 \mathrm{e}^{2}(81.3 \mathrm{mg}, 47 \%)$ via double chromatography on silica gel (first round: using Biotage Isorela One purification
system on flash silica gel column (Santai Tech. Inc., 12 g), eluent: petroleum ether/ethyl acetate $=2 \%(2 \mathrm{CV}), 2 \%-17 \%(14 \mathrm{CV}), 17 \%(6 \mathrm{CV})$; Then all the product was collected for the second round chromatopraphy on silica gel, eluent: petroleum ether/ethyl acetate $=200 / 10$ to $250 / 50$ to 200/50 to 200/100) (v/v) as a yellow solid, m.p. $101.6-102.3^{\circ} \mathrm{C}$ (petroleum ether/dichloromethane) (reported: ${ }^{2} 106-107{ }^{\circ} \mathrm{C}$): ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=10.85$ (brs, $\left.1 \mathrm{H}, \mathrm{COOH}\right), 7.40-7.18$ (m, $\left.5 \mathrm{H}, \mathrm{Ar}-\mathrm{H}\right), 6.45$ ($\mathrm{s}, 1 \mathrm{H}$, one proton of $=\mathrm{CH}_{2}$), $5.89\left(\mathrm{~s}, 1 \mathrm{H}\right.$, one proton of $\left.=\mathrm{CH}_{2}\right), 5.53(\mathrm{~s}, 1 \mathrm{H}$, one proton of $\left.=\mathrm{CH}_{2}\right), 5.37\left(\mathrm{~s}, 1 \mathrm{H}\right.$, one proton of $\left.=\mathrm{CH}_{2}\right) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=$ $172.0,145.3,141.2,139.2,130.4,128.3,127.9,126.4,116.8$; IR (neat): $v=3023$, 2921, 2854, 2637, 2563, 1679, 1612, 1490, 1426, 1260, $1154 \mathrm{~cm}^{-1}$; MS (70 eV, EI) $m / z(\%): 175\left(\mathrm{M}^{+}+1,4.17\right), 174\left(\mathrm{M}^{+}, 33.00\right), 129(100)$.
(6) Preparation of (E)-3-phenyl-2-(1-phenylvinyl)prop-2-enoic acid [(E)-3f] (Yy-2-029)

Following Typical Procedure II, the reaction of $[\mathrm{PdCl}(\pi-\mathrm{allyl})]_{2}(7.5 \mathrm{mg}, 0.02$ mmol), BINAP ($39.3 \mathrm{mg}, 0.06 \mathrm{mmol}$), (PhO$)_{2} \mathrm{POOH}(386.9 \mathrm{mg}, 1.5 \mathrm{mmol})$, and $\mathbf{1 f}$ ($222.1 \mathrm{mg}, 1 \mathrm{mmol}$)/toluene (5 mL) afforded (E) -3f ($145.2 \mathrm{mg}, 58 \%$) (eluent: petroleum ether/ethyl acetate $=10 / 1$) as a yellow solid: m.p. 141.3-141.8 ${ }^{\circ} \mathrm{C}$ (petroleum ether/dichloromethane); ${ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.96(\mathrm{~s}, 1 \mathrm{H}$, $=\mathrm{CH}$), 7.64-7.54 (m, $2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.54-7.45$ (m, $2 \mathrm{H}, \mathrm{Ar}-\mathrm{H})$, , 7.37-7.21 (m, $6 \mathrm{H}, \mathrm{Ar}-\mathrm{H})$, $5.86\left(\mathrm{~s}, 1 \mathrm{H}\right.$, one proton of $\left.=\mathrm{CH}_{2}\right), 5.28\left(\mathrm{~s}, 1 \mathrm{H}\right.$, one proton of $\left.=\mathrm{CH}_{2}\right) ;{ }^{13} \mathbf{C}$ NMR $(100$ $\left.\mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right) \delta=168.5,143.6,141.4,138.4,135.4,134.0,133.5,131.0,130.2$, 129.4, 129.3, 128.3, 117.3; IR (neat): $v=3051,2922,2852,2622,2509,1676,1602$, 1494, 1420, 1270, $1204 \mathrm{~cm}^{-1}$; MS (70 eV, EI) $m / z(\%): 251\left(\mathrm{M}^{+}+1,3.57\right), 250\left(\mathrm{M}^{+}\right.$, 19.39), 205 (100); Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{O}_{2}$: C 81.58, H 5.64; Found: C 81.42, H
(7) Preparation of (E)-3-(3-methylphenyl)-2-(1-phenylvinyl)prop-2-enoic acid $[(E)-\mathbf{3 g}](\mathbf{Y y} \mathbf{2 - 0 8 5})$

Following Typical Procedure II, the reaction of $[\mathrm{PdCl}(\pi-\mathrm{allyl})]_{2}(7.5 \mathrm{mg}, 0.02$ mmol), BINAP ($39.3 \mathrm{mg}, 0.06 \mathrm{mmol}$), (PhO$)_{2} \mathrm{POOH}(386.9 \mathrm{mg}, 1.5 \mathrm{mmol})$, and $\mathbf{1 g}$ $(236.4 \mathrm{mg}, 1 \mathrm{mmol}) /$ toluene $(5 \mathrm{~mL})$ afforded (E) $\mathbf{- 3 g}(106.4 \mathrm{mg}, 40 \%)(29 \% \mathbf{2 g}$ was also detected through ${ }^{1} \mathrm{H}$ NMR analysis of the crude product using dibromomethane as the internal standard) [using Biotage Isorela One purification system on flash silica gel column (Santai Tech. Inc., 12 g), eluent: petroleum ether/ethyl acetate $=2 \%(2$ CV), $2 \%-17 \%$ (14 CV), 17% (6 CV)] as a yellow solid: m.p. $118.3-118.8^{\circ} \mathrm{C}$ (petroleum ether/dichloromethane); ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.93(\mathrm{~s}, 1 \mathrm{H}$, $=\mathrm{CH})$, 7.53-7.45 (m, $2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.42(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.36(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H})$, 7.35-7.26 (m, $3 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), 7.16-7.06 (m, $2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), $5.85\left(\mathrm{~s}, 1 \mathrm{H}\right.$, one proton of $=\mathrm{CH}_{2}$), $5.27\left(\mathrm{~s}, 1 \mathrm{H}\right.$, one proton of $\left.=\mathrm{CH}_{2}\right), 2.26\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathbf{C} \mathbf{~ N M R ~}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $=172.9,143.3,142.9,138.2,138.0,134.0,131.7,131.1,130.6,128.6,128.3,128.1$, 127.4, 125.8, 116.8, 21.3; IR (neat): $v=3049,2919,2852,2629,2514,1678,1603$, 1492, 1421, 1279, $1242 \mathrm{~cm}^{-1}$; MS (70 eV, EI) $m / z(\%): 265\left(\mathrm{M}^{+}+1,4.94\right), 264\left(\mathrm{M}^{+}\right.$, 24.31), 219 (100); Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{O}_{2}$: C 81.79, H 6.10; Found: C 81.68, H 6.18 .
(8) Preparation of (E)-3-(4-chlorophenyl)-2-(1-phenylvinyl)prop-2-enoic acid [$(E)-\mathbf{3 h}](\mathbf{Y y}-2-102)$

Following Typical Procedure II, the reaction of $[\mathrm{PdCl}(\pi-\mathrm{allyl})]_{2}(7.5 \mathrm{mg}, 0.02$ mmol), BINAP ($39.3 \mathrm{mg}, 0.06 \mathrm{mmol}$), (PhO$)_{2} \mathrm{POOH}(379.3 \mathrm{mg}, 1.5 \mathrm{mmol})$, and $\mathbf{1 h}$ ($256.1 \mathrm{mg}, 1 \mathrm{mmol}$)/toluene (5 mL) afforded $(E)-\mathbf{3 h}(138.0 \mathrm{mg}, 48 \%) \quad$ [eluent: pure dichloromethane $(400 \mathrm{~mL})$ to dichloromethane $/ \mathrm{MeOH}=150 / 1]$ as a yellow solid: m.p. 145.3-146.0 ${ }^{\circ} \mathrm{C}$ (petroleum ether/dichloromethane); ${ }^{1} \mathbf{H}$ NMR (400 MHz , DMSO- d_{6}) δ $=12.67(\mathrm{~s}, 1 \mathrm{H}, \mathrm{COOH}), 7.79(\mathrm{~s}, 1 \mathrm{H},=\mathrm{CH}), 7.58(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.47$ (d, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.41-7.28(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 5.91\left(\mathrm{~s}, 1 \mathrm{H}\right.$, one proton of $\left.=\mathrm{CH}_{2}\right)$, $5.17\left(\mathrm{~s}, 1 \mathrm{H}\right.$, one proton of $\left.=\mathrm{CH}_{2}\right) ;{ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=172.8,142.5$, $141.8,137.7,135.8,132.4,131.80,131.77,128.75,128.74,128.3,125.7,116.9$; IR (neat): $v=2795,2622,2510,1676,1601,1589,1490,1418,1281 \mathrm{~cm}^{-1} ; \mathbf{M S}(70 \mathrm{eV}$, EI) $m / z(\%): 287\left[\mathrm{M}^{+}\left({ }^{37} \mathrm{Cl}\right)+1,1.55\right], 286\left[\mathrm{M}^{+}\left({ }^{37} \mathrm{Cl}\right), 8.69\right], 285\left[\mathrm{M}^{+}\left({ }^{35} \mathrm{Cl}\right)+1,5.43\right]$, $284\left[\mathrm{M}^{+}\left({ }^{35} \mathrm{Cl}\right), 27.39\right], 203$ (100); Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{ClO}_{2}$: C 71.71, H 4.60; Found: C 71.60, H 4.80.
(9) Preparation of (E)-3-phenyl-2-(1-(4-chlorophenyl)vinyl)prop-2-enoic acid [(E)-3i] (Yy-2-033)

$1 i$

(E)-3i, 51\% yield

Following Typical Procedure II, the reaction of $[\operatorname{PdCl}(\pi-a l l y)]_{2}(7.5 \mathrm{mg}, 0.02$ $\mathrm{mmol})$, $\operatorname{BINAP}(39.3 \mathrm{mg}, 0.06 \mathrm{mmol}),(\mathrm{PhO})_{2} \mathrm{POOH}(386.6 \mathrm{mg}, 1.5 \mathrm{mmol})$, and $\mathbf{1 i}$ ($256.1 \mathrm{mg}, 1 \mathrm{mmol}$)/toluene (5 mL) afforded impure (E)-3i (eluent: petroleum S13
ether/ethyl acetate $=10 / 1$) as yellow solid, which was recrystallized from petroleum ether/dichloromethane to give $(E)-3 i$ as a white solid ($146.1 \mathrm{mg}, 51 \%$): m.p. 139.2-140.5 ${ }^{\circ} \mathrm{C}$ (petroleum ether/dichloromethane); ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=$ 7.96 ($\mathrm{s}, 1 \mathrm{H},=\mathrm{CH}$), 7.62-7.50 (m, $2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), ~ 7.49-7.38$ (m, $2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.36-7.22$ (m, $5 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 5.85\left(\mathrm{~s}, 1 \mathrm{H}\right.$, one proton of $\left.=\mathrm{CH}_{2}\right), 5.30\left(\mathrm{~s}, 1 \mathrm{H}\right.$, one proton of $\left.=\mathrm{CH}_{2}\right)$; ${ }^{13} \mathbf{C}$ NMR (100 MHz, DMSO- d_{6}) $\delta=167.9,142.0,140.0,137.0,134.2,132.62,132.56$, 129.98, 129.50, 128.7, 128.6, 127.4, 116.8; IR (neat): $v=3029,2805,2635,2513$, 1670, 1600, 1488, 1416, 1270, $1206 \mathrm{~cm}^{-1}$; MS (70 eV, EI) $m / z(\%): 287\left[\mathrm{M}^{+}\left({ }^{37} \mathrm{Cl}\right)+1\right.$, 1.65], $286\left[\mathrm{M}^{+}\left({ }^{37} \mathrm{Cl}\right), 9.22\right], 285\left[\mathrm{M}^{+}\left({ }^{35} \mathrm{Cl}\right)+1,5.73\right], 284\left[\mathrm{M}^{+}\left({ }^{35} \mathrm{Cl}\right), 27.61\right], 204$ (100); HRMS Calcd for $\mathrm{C}_{17} \mathrm{H}_{13}{ }^{35} \mathrm{ClO}_{2}$: 284.0604; Found: 284.0601.
(10) Preparation of (E)-2-(1-(4-chlorophenyl)vinyl)hept-2-enoic acid [(E)-3j] (Yy-2-103)

1j

(E)-3j, 69\% yield

Following Typical Procedure II, the reaction of $[\operatorname{PdCl}(\pi-\mathrm{ally})]_{2}(7.5 \mathrm{mg}, 0.02$ mmol), BINAP ($39.4 \mathrm{mg}, 0.06 \mathrm{mmol}$), (PhO$)_{2} \mathrm{POOH}(379.2 \mathrm{mg}, 1.5 \mathrm{mmol})$, $\mathbf{1 h}$ (236.2 $\mathrm{mg}, 1 \mathrm{mmol}) /$ toluene $(5 \mathrm{~mL})$ afforded $(E) \mathbf{- 3 j}$ ($182.0 \mathrm{mg}, 69 \%$) [using Biotage Isorela One purification system on flash silica gel column (Santai Tech. Inc., 12 g), eluent: petroleum ether/ethyl acetate $=2 \%(2 \mathrm{CV}), 2 \%-17 \%(14 \mathrm{CV}), 17 \%(6 \mathrm{CV})]$ as a white solid: m.p. 68.8-69.8 ${ }^{\circ} \mathrm{C}$ (petroleum ether/dichloromethane); ${ }^{1} \mathbf{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta=7.32-7.23(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.20(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H},=\mathrm{CH}), 5.77(\mathrm{~s}, 1 \mathrm{H}$, one proton of $\left.=\mathrm{CH}_{2}\right)$, $5.13\left(\mathrm{~s}, 1 \mathrm{H}\right.$, one proton of $\left.=\mathrm{CH}_{2}\right), 2.21\left(\mathrm{q}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$, 1.48-1.24 (m, $4 \mathrm{H}, \mathrm{CH}_{2} \times 2$), $0.86\left(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathbf{C}$ NMR $(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta=172.0,149.3,141.1,137.6,133.7,132.5,128.6,127.1,117.1,30.8,29.5$, 22.4, 13.8; IR (neat): $v=2966,2931,2872,2638,2538,1673,1620,1488,1432$,
$1287 \mathrm{~cm}^{-1}$; MS (70 eV, EI) $\left.\left.m / z(\%): 267\left[\mathrm{M}^{+}\left({ }^{37} \mathrm{Cl}\right)+1,2.82\right)\right], 266\left[\mathrm{M}^{+}\left({ }^{37} \mathrm{Cl}\right), 13.47\right)\right]$, $265\left[\mathrm{M}^{+}\left({ }^{35} \mathrm{Cl}\right)+1,6.86\right], 264 \quad\left[\mathrm{M}^{+}\left({ }^{35} \mathrm{Cl}\right), 40.59\right], 177$ (100); Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{ClO}_{2}$: C 68.05, H 6.47; Found: C 68.04, H 6.41.
(11) Preparation of (E)-2-(1-(p-tolyl)vinyl)hept-2-enoic acid [(E)-3k] (Yy-2-105)

1k

(E)-3k, 40\% yield

Following Typical Procedure II, the reaction of $[\mathrm{PdCl}(\pi-\mathrm{allyl})]_{2}(7.5 \mathrm{mg}, 0.02$ mmol), BINAP ($39.3 \mathrm{mg}, 0.06 \mathrm{mmol}$), (PhO$)_{2} \mathrm{POOH}(379.1 \mathrm{mg}, 1.5 \mathrm{mmol})$, and $\mathbf{1 k}$ $(216.9 \mathrm{mg}, 1 \mathrm{mmol}) /$ toluene $(5 \mathrm{~mL})$ afforded $(E)-3 \mathbf{k}(105.2 \mathrm{mg}, 94 \%$ purity, 40%) [using Biotage Isorela One purification system on flash silica gel column (Santai Tech. Inc., 12 g), eluent: petroleum ether/ethyl acetate $=2 \%(2 \mathrm{CV}), 2 \%-17 \%(14 \mathrm{CV}), 17 \%$ (6 CV)] as a yellow oil: ${ }^{1} \mathbf{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta=12.21$ (s, $1 \mathrm{H}, \mathrm{COOH}$), 7.23 (d, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.13$ (d, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 6.93(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1$ $\mathrm{H},=\mathrm{CH}), 5.76\left(\mathrm{~s}, 1 \mathrm{H}\right.$, one proton of $\left.=\mathrm{CH}_{2}\right), 4.98\left(\mathrm{~s}, 1 \mathrm{H}\right.$, one proton of $\left.=\mathrm{CH}_{2}\right), 2.28$ (s, $3 \mathrm{H}, \mathrm{CH}_{3}$), $2.11\left(\mathrm{q}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.43-1.15\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \times 2\right), 0.81(\mathrm{t}, J=$ $\left.7.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=172.0,148.8,141.8,137.7$, 136.1, 132.9, 129.1, 125.6, 115.6, 30.9, 29.5, 22.5, 21.1, 13.8; IR (neat): $v=2956$, 2925, 2859, 2644, 2522, 1683, 1632, 1512, 1412, $1274 \mathrm{~cm}^{-1}$; MS (70 eV, EI) $m / z(\%):$ $245\left(\mathrm{M}^{+}+1,5.60\right), 244\left(\mathrm{M}^{+}, 30.89\right), 157(100)$; HRMS Calcd for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{O}_{2}\left(\mathrm{M}^{+}\right)$: 244.1463; Found: 244.1467.
(12) Preparation of (E)-2-(1-(4-bromophenyl)vinyl)non-2-enoic acid [(E)-31] (Yy-2-022)

Following Typical Procedure II, the reaction of $[\mathrm{PdCl}(\pi-\mathrm{allyl})]_{2}(7.5 \mathrm{mg}, 0.02$ mmol), BINAP ($39.3 \mathrm{mg}, 0.06 \mathrm{mmol}$), (PhO$)_{2} \mathrm{POOH}(386.9 \mathrm{mg}, 1.5 \mathrm{mmol})$, and 11 (309.2 mg, 1 mmol$) /$ toluene (5 mL) afforded (E) $\mathbf{- 3 1}$ ($247.6 \mathrm{mg}, 73 \%$) (eluent: petroleum ether/ethyl acetate $=20 / 1$) as a yellow solid: m.p. 83.0-83.4 ${ }^{\circ} \mathrm{C}$ (dichloromethane); ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta=12.32(\mathrm{~s}, 1 \mathrm{H}, \mathrm{COOH}), 7.52$ (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}, ~ \mathrm{Ar}-\mathrm{H}), 7.28$ (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 6.96$ (t, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}$, $=\mathrm{CH}), 5.85\left(\mathrm{~s}, 1 \mathrm{H},=\mathrm{CH}_{2}\right), 5.09\left(\mathrm{~s}, 1 \mathrm{H},=\mathrm{CH}_{2}\right), 2.11\left(\mathrm{q}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$, 1.44-1.30 (m, $2 \mathrm{H}, \mathrm{CH}_{2}$), 1.28-1.10 (m, $6 \mathrm{H}, \mathrm{CH}_{2} \times 3$), $0.81\left(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}_{2} \mathrm{CH}_{3}\right.$); ${ }^{13} \mathbf{C}$ NMR (100 MHz, CDCl_{3}): $\delta=172.0,149.4,141.1,138.0,132.4,131.5,127.4$, 121.9, 117.2, 31.5, 29.8, 29.0, 28.6, 22.5, 14.0; IR (neat): $v=2923,2850,2634,2528$, $1679,1603,1482,1419,1283,1204 \mathrm{~cm}^{-1}$; MS (70 eV, EI) $m / z(\%): 339\left[\mathrm{M}^{+}\left({ }^{81} \mathrm{Br}\right)+1\right.$, 3.04], $338\left[\mathrm{M}^{+}\left({ }^{81} \mathrm{Br}\right), 16.30\right], 337\left[\mathrm{M}^{+}\left({ }^{79} \mathrm{Br}\right)+1,3.75\right], 336\left[\mathrm{M}^{+}\left({ }^{79} \mathrm{Br}\right), 16.49\right], 142$ (100); Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{BrO}_{2}$: C 60.54, H 6.28; Found: C 60.36, H 6.36.
(13) Preparation of (E)-2-(1-(m-tolyl)vinyl)non-2-enoic acid [(E)-3m] (Yy-2-037)

Following Typical Procedure II, the reaction of $[\operatorname{PdCl}(\pi-\mathrm{ally})]_{2}(7.5 \mathrm{mg}, 0.02$ mmol), BINAP ($39.3 \mathrm{mg}, 0.06 \mathrm{mmol}$), (PhO$)_{2} \mathrm{POOH}(386.9 \mathrm{mg}, 1.5 \mathrm{mmol}$), and $\mathbf{1 m}$ ($244.6 \mathrm{mg}, 1 \mathrm{mmol}$)/toluene (5 mL) afforded (E) - $\mathbf{3 m}$ ($202.3 \mathrm{mg}, 74 \%$) via double chromatography on silica gel (first round eluent: petroleum ether/ethyl acetate $=20 / 1$;
second round eluent: dichloromethane $/ \mathrm{MeOH}=150 / 1$) as a yellow oil: ${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta=12.23(\mathrm{~s}, 1 \mathrm{H}, \mathrm{COOH}), 7.26-7.06(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 6.94(\mathrm{t}, J=7.6$ $\mathrm{Hz}, 1 \mathrm{H},=\mathrm{CH})$, $5.79\left(\mathrm{~s}, 1 \mathrm{H}\right.$, one proton of $\left.=\mathrm{CH}_{2}\right)$, $5.02\left(\mathrm{~s}, 1 \mathrm{H}\right.$, one proton of $\left.=\mathrm{CH}_{2}\right)$, $2.29\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.13\left(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.46-1.32\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.30-1.11$ ($\mathrm{m}, 6 \mathrm{H}, \mathrm{CH}_{2} \times 3$), $0.81\left(\mathrm{t}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=$ 172.0, 148.9, 142.1, 138.9, 138.0, 132.9, 128.7, 128.3, 126.4, 122.9, 116.4, 31.5, 29.8, 29.1, 28.7, 22.5, 21.5, 14.0; IR (neat): $v=2955,2924,2855,2644,2523,1683,1633$, 1456, 1414, $1277 \mathrm{~cm}^{-1}$; MS (70 eV, EI) $m / z(\%): 273\left(\mathrm{M}^{+}+1,4.33\right), 272\left(\mathrm{M}^{+}, 20.18\right)$, 157 (100); HRMS Calcd for $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{O}_{2}\left(\mathrm{M}^{+}\right)$: 272.1776; Found: 272.1778.
(14) Preparation of (E)-2-(1-(3-methoxyphenyl)vinyl)non-2-enoic acid [(E)-3n] (Yy-2-080)

1n

(E)-3n, 76% yield

Following Typical Procedure II, the reaction of $[\operatorname{PdCl}(\pi-\mathrm{allyl})]_{2}(7.5 \mathrm{mg}, 0.02$ mmol), BINAP ($39.3 \mathrm{mg}, 0.06 \mathrm{mmol}$), (PhO$)_{2} \mathrm{POOH}(387.0 \mathrm{mg}, 1.5 \mathrm{mmol}$), and $\mathbf{1 n}$ ($260.4 \mathrm{mg}, 1 \mathrm{mmol}$)/toluene (5 mL) afforded (E)-3n (219.2 mg, 76\%) [using Biotage Isorela One purification system on flash silica gel column (Santai Tech. Inc., 12 g), eluent: petroleum ether/ethyl acetate $=2 \%(2 \mathrm{CV}), 2 \%-17 \%(14 \mathrm{CV}), 17 \%(6 \mathrm{CV})]$ as a yellow oil: ${ }^{1} \mathbf{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta=12.25(\mathrm{~s}, 1 \mathrm{H}, \mathrm{COOH}), 7.25(\mathrm{t}, J=$ $8.4 \mathrm{~Hz}, 1 \mathrm{H},=\mathrm{CH}$), $7.00-6.81(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 5.84\left(\mathrm{~s}, 1 \mathrm{H}\right.$, one proton of $=\mathrm{CH}_{2}$), 5.05 ($\mathrm{s}, 1 \mathrm{H}$, one proton of $\left.=\mathrm{CH}_{2}\right), 3.75\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.13\left(\mathrm{q}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$, 1.45-1.30 (m, $2 \mathrm{H}, \mathrm{CH}_{2}$), 1.30-1.10 (m, $6 \mathrm{H}, \mathrm{CH}_{2} \times 3$), $0.81\left(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$; ${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=172.1,159.7,148.9,142.0,140.5,132.8,129.4$, $118.4,116.8,113.2,111.5,55.2,31.5,29.8,29.1,28.7,22.5,14.0$; IR (neat): $v=2954$, 2925, 2855, 2649, 2522, 1683, 1576, 1487, 1463, 1417, 1277, $1224 \mathrm{~cm}^{-1}$; MS (70 eV,

EI) m / z (\%): $289\left(\mathrm{M}^{+}+1,10.12\right), 288\left(\mathrm{M}^{+}, 46.37\right), 173$ (100); HRMS Calcd for $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{O}_{3}\left(\mathrm{M}^{+}\right)$: 288.1725 ; Found: 288.1724
(15) Preparation of (E)-2-(1-(2-naphthyl)vinyl)non-2-enoic acid [(E)-3o] (cfsy-2-001, Yy-2-188)

Following Typical Procedure II, the reaction of $[\mathrm{PdCl}(\pi-\mathrm{allyl})]_{2}(7.5 \mathrm{mg}, 0.02$ mmol), BINAP ($39.6 \mathrm{mg}, 0.06 \mathrm{mmol}$), (PhO$)_{2} \mathrm{POOH}(379.3 \mathrm{mg}, 1.5 \mathrm{mmol})$, and $\mathbf{1 o}$ $(280.8 \mathrm{mg}, 1 \mathrm{mmol}) /$ toluene $(5 \mathrm{~mL})$ afforded $(E)-\mathbf{3 o}(231.7 \mathrm{mg}, 75 \%)$ (eluent: petroleum ether/ethyl acetate $=400 / 20$ to $800 / 160$) as a yellow oil: ${ }^{1} \mathbf{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=10.74($ brs, $1 \mathrm{H}, \mathrm{COOH}), 7.83-7.70(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.66(\mathrm{~s}, 1 \mathrm{H}$, Ar-H), 7.62-7.55 (m, 1 H, Ar-H), 7.48-7.38 (m, $2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.24$ (t, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}$, $=\mathrm{CH}), 5.92\left(\mathrm{~s}, 1 \mathrm{H}\right.$, one proton of $\left.=\mathrm{CH}_{2}\right), 5.19\left(\mathrm{~s}, 1 \mathrm{H}\right.$, one proton of $\left.=\mathrm{CH}_{2}\right), 2.22(\mathrm{q}, J$ $\left.=7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.49-1.36\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.32-1.12\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH}_{2} \times 3\right), 0.81(\mathrm{t}, J$ $\left.=6.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=172.3,149.2,142.0,136.2$, $133.3,133.0,132.8,128.3,128.1,127.5,126.1,125.9,124.9,123.7,117.0,31.5,29.8$, 29.1, 28.6, 22.5, 14.0; IR (neat): $v=3054,2923,2855,2645,2521,1681,1625,1456$, 1414, $1273 \mathrm{~cm}^{-1}$; MS (70 eV, EI) $m / z(\%): 309\left(\mathrm{M}^{+}+1,11.08\right), 308\left(\mathrm{M}^{+}, 47.97\right), 179$ (100); HRMS Calcd for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{O}_{2}$: 308.1776; Found: 308.1778.
(16) Preparation of (E)-2-(1-(4-bromophenyl)vinyl)non-2-enoic acid $[(E)$-3I] in Gram scale (Yy-2-111)

Following Typical Procedure II, the reaction of $[\operatorname{PdCl}(\pi \text {-allyl })]_{2}(37.3 \mathrm{mg}, 0.10$ mmol), BINAP ($196.6 \mathrm{mg}, 0.30 \mathrm{mmol}$), (PhO$)_{2} \mathrm{POOH}(1.8954 \mathrm{~g}, 7.5 \mathrm{mmol})$, and 11 $(1.5464 \mathrm{~g}, 5 \mathrm{mmol}) /$ toluene $(25 \mathrm{~mL})$ afforded (E) -31 ($1.3016 \mathrm{~g}, 77 \%$) via double chromatography on silica gel (first round eluent: dichloromethane $/ \mathrm{MeOH}=150 / 1$; Then all the crude product was collected for the second round chromatography, eluent: dichloromethane $/ \mathrm{MeOH}=150 / 1$) as a light yellow solid: ${ }^{1} \mathbf{H}$ NMR (400 MHz , DMSO- d_{6}) $\delta=12.36(\mathrm{~s}, 1 \mathrm{H}, \mathrm{COOH}), 7.53(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.29(\mathrm{~d}, J=8.8$ $\mathrm{Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 6.98(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H},=\mathrm{CH})$, $5.87\left(\mathrm{~s}, 1 \mathrm{H},=\mathrm{CH}_{2}\right), 5.10(\mathrm{~s}, 1 \mathrm{H}$, $\left.=\mathrm{CH}_{2}\right), 2.12\left(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.50-1.30\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.30-1.11(\mathrm{~m}, 6 \mathrm{H}$, $\left.\mathrm{CH}_{2} \times 3\right), 0.81\left(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$.

4. Reaction monitoring using substrate $1 a^{a}(\mathbf{Y y - 2 - 1 9 4})$

 1a		(E)-3a
t/h	NMR yield of enyne $\mathbf{2 a}{ }^{\mathbf{b}} / \%$	NMR yield of product 3a ${ }^{\mathbf{b}} / \%$
0.17	83	8
0.33	78	25
0.5	69	35
1	51	48
2	30	57
3	24	75
4	16	76
6	8	86
8	2	92
10	0	94

${ }^{\boldsymbol{a}}$ Following Typical Procedure II, the reaction of $1 \mathbf{1 a}(201.9 \mathrm{mg}, 1 \mathrm{mmol}),[\mathrm{Pd}(\pi \text {-allyl }) \mathrm{Cl}]_{2}(7.5$ $\mathrm{mg}, 0.02 \mathrm{mmol}$), BINAP ($39.3 \mathrm{mg}, 0.06 \mathrm{mmol}$), and (PhO$)_{2} \mathrm{POOH}(379.1 \mathrm{mg}, 1.5$ equiv.) in toluene (5 mL) was conducted at $80^{\circ} \mathrm{C}$ under 1 atm . of CO. ${ }^{\boldsymbol{b}}$ Determined by taking 0.3 mL of the reaction solution followed by ${ }^{1} \mathrm{H}$ NMR analysis using $3.5 \mu \mathrm{~L}$ of dibromomethane as the internal standard.

Figure S2. Reaction monitoring of 2a and (E)-3a

5. Control experiments

(1) Preparation of (E)-2-(1-phenylvinyl)hept-2-enoic acid [(E)-3a] via enyne (2a) (Yy-2-119)

$$
\begin{aligned}
& \begin{array}{l}
{[\mathrm{Pd}(\pi-\mathrm{allyl}) \mathrm{Cl}]_{2}(2 \mathrm{~mol} \%)} \\
\mathrm{BINAP}(6 \mathrm{~mol} \%) \\
(\mathrm{PhO})_{2} \mathrm{POOH}(1.5 \text { equiv. }) \\
\mathrm{H}_{2} \mathrm{O}(8.0 \text { equiv. })
\end{array} \\
& \begin{array}{c}
\text { Toluene, } 80^{\circ} \mathrm{C}, 12 \mathrm{~h} \\
\mathrm{CO} \text { balloon }
\end{array} \\
& \text { (E)-3a, } 80 \% \text { yield }
\end{aligned}
$$

To a flame-dried Schlenk tube were added $\left[\mathrm{Pd}(\pi \text {-allyl) } \mathrm{Cl}]_{2}(7.5 \mathrm{mg}, 0.02 \mathrm{mmol})\right.$, BINAP ($39.3 \mathrm{mg}, 0.06 \mathrm{mmol}$), and (PhO$)_{2} \mathrm{POOH}(379.6 \mathrm{mg}, 1.5 \mathrm{mmol})$ sequentially under argon. After addition of each chemical, the flask was degassed and refilled with Ar. Then $2 \mathbf{a}^{1}(182.2 \mathrm{mg}, 1 \mathrm{mmol}) /$ toluene $(2 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(144.2 \mathrm{mg}, 8$ $\mathrm{mmol}) /$ toluene $(3 \mathrm{~mL})$ were added under argon. The resulting mixture was then frozen with a liquid nitrogen bath, degassed to remove the argon inside completely, and refilled with CO by a balloon of CO for three times. Then the resulting mixture was stirred at $80^{\circ} \mathrm{C}$ with a balloon of CO for 12 h . After that, the resulting mixture was diluted with 5 mL of ethyl acetate, filtered through a short column of silica gel (2 cm) eluted with ethyl acetate ($10 \mathrm{~mL} \times 3$), and concentrated. The residue was purified by column chromatography on silica gel to afford (E)-3a ($182.9 \mathrm{mg}, 80 \%$) (eluent: petroleum ether/ethyl acetate $=20 / 1)$ as a yellow solid: ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta=7.35(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.32-7.24(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.19(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}$, $=\mathrm{CH}), 5.79\left(\mathrm{~s}, 1 \mathrm{H}\right.$, one proton of $\left.=\mathrm{CH}_{2}\right), 5.11\left(\mathrm{~s}, 1 \mathrm{H}\right.$, one proton of $\left.=\mathrm{CH}_{2}\right), 2.22(\mathrm{q}, J$ $\left.=7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.46-1.36\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.36-1.23\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 0.85(\mathrm{t}, J=$ $7.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}$); ${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=172.2,148.9$, 142.1, 139.0, 132.9, 128.4, 127.8, 125.7, 116.6, 30.8, 29.5, 22.5, 13.8.
(2) Preparation of methyl (E)-2-(1-phenylvinyl)hept-2-enoate $[(E)-6]$ via (2-methoxyoct-3-yn-2-yl)benzene (5) (Yy-2-122)

Following Typical Procedure II, the reaction of $[\operatorname{PdCl}(\pi-\mathrm{ally})]_{2}(7.5 \mathrm{mg}, 0.02$ mmol), BINAP ($39.4 \mathrm{mg}, 0.06 \mathrm{mmol}$), (PhO$)_{2} \mathrm{POOH}(379.4 \mathrm{mg}, 1.5 \mathrm{mmol}$), and 5 ($215.6 \mathrm{mg}, 1 \mathrm{mmol}$)/toluene (5 mL) afforded (E)-6 (196.6 mg, 96% purity, 78%) (eluent: petroleum ether/ethyl acetate $=20 / 1$) as a colorless oil: ${ }^{1} \mathbf{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta=7.40-7.20(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.10(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H},=\mathrm{CH}), 5.79(\mathrm{~s}, 1 \mathrm{H}$, one proton of $\left.=\mathrm{CH}_{2}\right)$, $5.12\left(\mathrm{~s}, 1 \mathrm{H}\right.$, one proton of $\left.=\mathrm{CH}_{2}\right), 3.63\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.22(\mathrm{q}, J=$ $\left.7.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.48-1.38\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.38-1.26\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 0.86(\mathrm{t}, J=7.2$ $\left.\mathrm{Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta=167.4,146.4,142.6,139.2,133.3$, 128.4, 127.7, 125.7, 116.2, 51.9, 31.0, 29.3, 22.5, 13.8; IR (neat): $v=2948,2862$, 1714, 1620, 1491, 1439, 1243, 1142, $1048 \mathrm{~cm}^{-1}$; MS (70 eV, EI) m/z (\%): $245\left(\mathrm{M}^{+}+1\right.$, 8.58), $244\left(\mathrm{M}^{+}, 48.44\right), 143$ (100); HRMS Calcd for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{O}_{2}\left(\mathrm{M}^{+}\right): 244.1463$; Found: 244.1464.
(3) Preparation of (E)-4-methyl-2-butylpent-2,4-dienioic acid $[(E)-4 \mathrm{p}]$ via 2-methyloct-3-yn-2-ol (1p) (Yy-2-100)
$[\mathrm{PdCl}(\pi-\mathrm{ally})]_{2}(2 \mathrm{~mol} \%)$ BINAP ($6 \mathrm{~mol} \%$)

To a flame-dried Schlenk tube were added $\left[\mathrm{Pd}(\pi \text {-allyl) } \mathrm{Cl}]_{2}(7.5 \mathrm{mg}, 0.02 \mathrm{mmol})\right.$, BINAP ($39.3 \mathrm{mg}, 0.06 \mathrm{mmol}$), and (PhO$)_{2} \mathrm{POOH}(126.3 \mathrm{mg}, 0.5 \mathrm{mmol})$ sequentially under argon. After addition of each chemical, the flask was degassed and refilled with Ar. Then $\mathbf{1 p}(140.4 \mathrm{mg}, 1 \mathrm{mmol}) /$ toluene (5 mL) was added under argon. The resulting mixture was subsequently frozen with a liquid nitrogen bath, degassed to remove the argon inside completely, and refilled with CO by a balloon of CO for three times. The
resulting mixture was stirred at $80^{\circ} \mathrm{C}$ with a balloon of CO for 12 h . After that, the resulting mixture was diluted with 5 mL of ethyl acetate, filtered through a short column of silica gel (2 cm) eluted with ethyl acetate ($10 \mathrm{~mL} \times 3$), and concentrated. The residue was purified by column chromatography on silica gel for double chromatography on silica gel to afford (E) $-\mathbf{4 p}$ ($79.3 \mathrm{mg}, 90 \%$ purity, 42%) (first round eluent: petroleum ether/ethyl acetate $=20 / 1$; Then all the crude product was collected for the second round chromatography, eluent: dichloromethane $/ \mathrm{MeOH}=150 / 1$) as a yellow oil: ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.23(\mathrm{~s}, 1 \mathrm{H},=\mathrm{CH}), 5.22(\mathrm{~s}, 1 \mathrm{H}$, one proton of $\left.=\mathrm{CH}_{2}\right)$, $5.13\left(\mathrm{~s}, 1 \mathrm{H}\right.$, one proton of $\left.=\mathrm{CH}_{2}\right), 2.46\left(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$, $1.96\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.50-1.30\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \times 2\right), 0.91\left(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathbf{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta=174.4,142.7,140.7,131.8,120.5,32.2,26.9,22.8,22.4$, 13.9; IR (neat): $v=2958,2928,2861,1678,1629,1454,1415,1269,1210,1144$, $1066 \mathrm{~cm}^{-1}$; MS (70 eV, EI) $m / z(\%): 169\left(\mathrm{M}^{+}+1,8.06\right), 168\left(\mathrm{M}^{+}, 71.03\right), 79(100)$; HRMS Calcd for $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{O}_{2}\left(\mathrm{M}^{+}\right)$: 168.1150; Found: 168.1153.
(4) Preparation of (Z)-3-phenyl-2-nonen-4-yne [(Z)-2q] and (E)-2-((Z)-1-phenylprop-1-en-1-yl)hept-2-enoic acid $\{[2 E, 2-(1 Z)]-3 q\} \quad$ via 3-phenylnon-4-yn-3-ol (1q) (Yy-3-090)

Following Typical Procedure II, the reaction of $[\mathrm{PdCl}(\pi-\mathrm{allyl})]_{2}(7.5 \mathrm{mg}, 0.02$ mmol), BINAP ($39.3 \mathrm{mg}, 0.06 \mathrm{mmol}$), (PhO$)_{2} \mathrm{POOH}(379.3 \mathrm{mg}, 1.5 \mathrm{mmol})$, and $\mathbf{1 q}$ $(216.0 \mathrm{mg}, 1 \mathrm{mmol}) /$ toluene $(5 \mathrm{~mL})$ afforded $(Z)-\mathbf{2 q}^{3}$ [(117.3 $\mathrm{mg}, 59 \%$ yield, stabilized with 3.8 mg 2,6-di-tert-butyl-4-methylphenol (BHT)] and [2E,2-(1Z)]-3q $(49.6 \mathrm{mg}, 93 \%$ purity, 19% yield) (eluent: petroleum ether/ethyl acetate $=400 / 20$ to 800/160) (v/v).
$(Z)-\mathbf{2 q}{ }^{\mathbf{3}}:$ yellow oil; ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(Z) \mathbf{- 2 q}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.68-7.50(\mathrm{~m}, 2 \mathrm{H}$,

Ar-H), 7.38-7.27 (m, 2 H, Ar-H), 7.27-7.18 (m, $1 \mathrm{H}, \operatorname{Ar-H}), 6.38$ (q, $J=6.9 \mathrm{~Hz}, 1 \mathrm{H}$, $=\mathrm{CH}), 2.47\left(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.04\left(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.72-1.45(\mathrm{~m}, 4$ $\left.\mathrm{H}, \mathrm{CH}_{2} \mathrm{x} 2\right), 0.95\left(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=138.9$, 131.5, 128.2, 127.1, 125.8, 124.7, 96.7, 77.6, 31.0, 22.0, 19.3, 16.7, 13.6; IR (neat): v $=2958,2931,2872,2860,1494,1466,1446,1433,1348 \mathrm{~cm}^{-1} ; \mathbf{M S}(70 \mathrm{eV}, \mathrm{EI}) \mathrm{m} / \mathrm{z}$ (\%): $199\left(\mathrm{M}^{+}+1,16.69\right), 198\left(\mathrm{M}^{+}, 100\right)$.
[2E,2-(1Z)]-3q: yellow oil; ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta=7.40-7.32(\mathrm{~m}, 2 \mathrm{H}$, Ar-H), 7.27 (t, $J=7.4 \mathrm{~Hz}, 1 \mathrm{H},=\mathrm{CH}$), 7.14-7.09 (m, 2 H, Ar-H), 7.08-7.00 (m, 1 H , Ar-H), $6.06(\mathrm{q}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H},=\mathrm{CH}), 1.86\left(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.55(\mathrm{~d}, J=6.8$ $\left.\mathrm{Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.16-0.97\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{x} 2\right), 0.68\left(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=172.3,149.2,140.2,135.1,130.1,128.3,126.9,126.4,125.6$, 30.3, 29.5, 22.5, 15.5, 13.8; IR (neat): $v=2958,2929,2872,2858,2645,2537,1683$, 1623, 1494, 1441, 1416, 1274, 1210, 1152, $1032 \mathrm{~cm}^{-1}$; MS (70 eV, EI) $m / z(\%): 245$ $\left(\mathrm{M}^{+}+1,10.39\right), 244\left(\mathrm{M}^{+}, 55.42\right), 129$ (100); HRMS Calcd for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{O}_{2}\left(\mathrm{M}^{+}\right)$: 244.1463; Found: 244.1465.
(5) Preparation of (E)-2-((Z)-1-phenylprop-1-en-1-yl)hept-2-enoic acid $\{[2 E, 2-(1 Z)]-3 q\}$ via (Z)-3-phenyl-2-nonen-4-yne [(Z)-2q] (Yy-3-094)

To a flame-dried Schlenk tube were added $[\mathrm{Pd}(\pi \text {-allyl }) \mathrm{Cl}]_{2}(7.5 \mathrm{mg}, 0.02 \mathrm{mmol})$, BINAP ($39.3 \mathrm{mg}, 0.06 \mathrm{mmol}$), and (PhO$)_{2} \mathrm{POOH}(379.1 \mathrm{mg}, 1.5 \mathrm{mmol})$ sequentially under argon. After addition of each chemical, the flask was degassed and refilled with Ar. Then $(Z)-\mathbf{2 q}(198.3 \mathrm{mg}, 1 \mathrm{mmol}) /$ toluene $(2 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(144.4 \mathrm{mg}, 8$ $\mathrm{mmol}) /$ toluene $(3 \mathrm{~mL})$ were added under argon. The resulting mixture was then frozen with a liquid nitrogen bath, degassed to remove the argon inside completely, and
refilled with CO by a balloon of CO for three times. Then the resulting mixture was stirred at $80^{\circ} \mathrm{C}$ with a balloon of CO for 12 h . After that, the resulting mixture was diluted with 5 mL of ethyl acetate, filtered through a short column of silica gel (1 cm) eluted with ethyl acetate ($10 \mathrm{~mL} \times 3$), and concentrated. The residue was purified by column chromatography on silica gel to afford $[2 E, 2-(1 Z)]-3 q(66.3 \mathrm{mg}, 93 \%$ purity, 25%) and (Z)-2q $\quad[115.0 \quad \mathrm{mg}, \quad 58 \%$ yield, stabilized with 3.8 mg 2,6-di-tert-butyl-4-methylphenol (BHT)] (eluent: petroleum ether/ethyl acetate $=$ 500/0 to $400 / 20$ to $800 / 160$) (v/v).
(Z)-2 $\mathbf{q}^{\mathbf{3}}{ }^{\mathbf{1}}{ }^{\mathbf{H}} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.65-7.50(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.38-7.26(\mathrm{~m}$, 2 H, Ar-H), $7.26-7.16(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 6.38(\mathrm{q}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H},=\mathrm{CH}), 2.47(\mathrm{t}, J=7.0$ $\mathrm{Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}$), $2.04\left(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.69-1.45\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{x} 2\right), 0.95(\mathrm{t}, J$ $\left.=7.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$.
$[2 E, 2-(1 Z)]-\mathbf{3 q}:{ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=7.40-7.15(\mathrm{~m}, 6 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$ and $=\mathrm{CH}), 6.24(\mathrm{q}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H},=\mathrm{CH}), 2.09\left(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.69(\mathrm{~d}, J=6.8$ $\left.\mathrm{Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.48-1.20\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \times 2\right), 0.84\left(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$.

6. Synthetic applications:

(1) Preparation of methyl (E)-2-(1-(4-bromophenyl)vinyl)non-2-enoate (Yy-2-161)

(E)-31-ester, 81\% yield

To a flame-dried flask were added (E) $\mathbf{- 3 1}(790.3 \mathrm{mg}, 2.34 \mathrm{mmol})$ and 20 mL MeOH , then 5 drop of conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$ in 10 mL MeOH was added. The resulting mixture was refluxed for 7 h . After cooling to room temperature, the mixture was quenched with a saturated aqueous solution of $\mathrm{NaHCO}_{3}(20 \mathrm{~mL})$ and extracted with
ethyl acetate ($30 \mathrm{~mL} \times 3$). The organic layer was washed with a saturated aqueous solution of $\mathrm{NaCl}(50 \mathrm{~mL})$ and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After filtration and concentration under reduced pressure, the crude product was purified by column chromatography on silica gel to afford (E)-31-ester ($668.6 \mathrm{mg}, 81 \%$) (eluent: petroleum ether/ethyl acetate $=20 / 1)$ as a colorless oil: ${ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $=7.43(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.25-7.18(\mathrm{~m}, 2 \mathrm{H}, \operatorname{Ar-H}), 7.10(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}$, $=\mathrm{CH}), 5.77\left(\mathrm{~s}, 1 \mathrm{H}\right.$, one proton of $\left.=\mathrm{CH}_{2}\right), 5.13\left(\mathrm{~s}, 1 \mathrm{H}\right.$, one proton of $\left.=\mathrm{CH}_{2}\right), 3.64(\mathrm{~s}, 3$ $\left.\mathrm{H}, \mathrm{OCH}_{3}\right), 2.19\left(\mathrm{q}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.50-1.36\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.34-1.16(\mathrm{~m}, 6 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{x} 3\right), 0.86(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=167.2,146.9$, $141.6,138.3,132.8,131.5,127.4,121.8,116.8,51.9,31.5,29.6,29.0,28.8,22.5,14.0 ;$ IR (neat): $v=2924,2856,1715,1637,1483,1435,1386,1240,1191,1057,1005$ cm^{-1}; MS (70 eV, EI) $m / z(\%): 353\left[\mathrm{M}^{+}\left({ }^{81} \mathrm{Br}\right)+1,8.82\right], 352\left[\mathrm{M}^{+}\left({ }^{81} \mathrm{Br}\right), 45.4\right], 351$ $\left[\mathrm{M}^{+}\left({ }^{79} \mathrm{Br}\right)+1,11.39\right], 350\left[\mathrm{M}^{+}\left({ }^{79} \mathrm{Br}\right), 46.2\right], 141$ (100); HRMS Calcd for $\mathrm{C}_{18} \mathrm{H}_{23}{ }^{79} \mathrm{BrO}_{2}$ $\left(\mathrm{M}^{+}\right): 350.0876$; Found: 350.0878.
(2) Preparation of (E)-2-(1-(4-bromophenyl)vinyl)- N -methoxy- N -methylnon-2enamide [(E)-3I-Weinreb amide] ${ }^{4}$ (Yy-2-180)

To a Schlenk tube equipped with an empty balloon were added $(E) \mathbf{- 3 1}(674.3 \mathrm{mg}$, $2 \mathrm{mmol})$, $\mathrm{MeNHOMe} \cdot \mathrm{HCl}(206.8 \mathrm{mg}, 2.1 \mathrm{mmol})$, and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{~mL})$. The reaction was then stirred at $0{ }^{\circ} \mathrm{C}$ for $5 \mathrm{~min}, \mathrm{Et} 3 \mathrm{~N}(0.56 \mathrm{~mL}, \mathrm{~d}=0.728 \mathrm{~g} / \mathrm{mol}, 407.7 \mathrm{mg}, 4 \mathrm{mmol})$, 4-DMAP ($12.2 \mathrm{mg}, 0.10 \mathrm{mmol}$), DCC (442.3 mg , 2.1 mmol), and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ were then added sequentially. The resulting mixture was stirred at room temperature for 24 h before diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ and quenched with $\mathrm{H}_{2} \mathrm{O}(25 \mathrm{~mL})$. The organic layer was separated and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20$
mL), the organic phase was combined and washed with a saturated solution of $\mathrm{NaHCO}_{3}, \mathrm{H}_{2} \mathrm{O}$, a saturated solution of NaCl (aq.) sequentially, and dried over anhydrous MgSO_{4}. After filtration and concentration under reduced pressure, the crude product was purified by column chromatography on silica gel to afford (E)-3I-Weinreb amide (368.4 mg , 98% purity, 47%) (eluent: petroleum ether/ethyl acetate $=200 / 10$ to $600 / 60$) as a colorless oil: ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.44$ (d, $J=8.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), 7.34 (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), 6.42 (t, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}$, $=\mathrm{CH}), 5.68\left(\mathrm{~s}, 1 \mathrm{H}\right.$, one proton of $\left.=\mathrm{CH}_{2}\right), 5.20\left(\mathrm{~s}, 1 \mathrm{H}\right.$, one proton of $\left.=\mathrm{CH}_{2}\right), 3.46(\mathrm{~s}, 3$ $\mathrm{H}, \mathrm{OCH}_{3}$), $3.14\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 2.04\left(\mathrm{q}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.44-1.32(\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{CH}_{2}\right), 1.32-1.10\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH}_{2} \mathrm{x} 3\right), 0.85\left(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathbf{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=170.7,142.6,140.7,138.3,135.3,131.3,128.1,121.7,115.6,60.4$, 33.4, 31.4, 29.1, 28.9, 28.8, 22.4, 14.0; IR (neat): $v=2924,2856,1648,1455,1363$, 1182, 1110, $1071 \mathrm{~cm}^{-1} ; \mathbf{M S}(70 \mathrm{eV}, \mathrm{EI}) m / z(\%): 382\left[\mathrm{M}^{+}\left(\mathrm{Br}^{81}\right)+1,1.84\right], 381$ $\left[\mathrm{M}^{+}\left(\mathrm{Br}^{81}\right), 8.21\right], 380\left[\mathrm{M}^{+}\left({ }^{79} \mathrm{Br}\right)+1,1.92\right], 379\left[\mathrm{M}^{+}\left({ }^{79} \mathrm{Br}\right), 8.09\right], 142$ (100); HRMS Calcd for $\mathrm{C}_{19} \mathrm{H}_{26}{ }^{79} \mathrm{BrNO}_{2}\left(\mathrm{M}^{+}\right)$: 379.1147 ; Found: 379.1151 .

(3) Coupling ${ }^{5}$ of (E)-31-ester with (3-nitrophenyl)boronic acid (Yy-2-141)

To a flame-dried Schlenk tube were added $\mathrm{Pd}(\mathrm{dppf}) \mathrm{Cl}_{2}(14.6 \mathrm{mg}, 0.02 \mathrm{mmol})$, (3-nitrophenyl)boronic acid ($37.5 \mathrm{mg}, 0.22 \mathrm{mmol}$), and $\mathrm{K}_{2} \mathrm{CO}_{3}$ ($55.4 \mathrm{mg}, 0.4 \mathrm{mmol}$) sequentially. After addition of each chemical, the flask was degassed and refilled with argon. Then (E)-31-ester ($70.2 \mathrm{mg}, 0.2 \mathrm{mmol}$)/DMSO (2 mL) was added under argon. The resulting mixture was stirred at $80^{\circ} \mathrm{C}$ with a balloon of argon for 2 h , diluted with 2 mL of ethyl acetate, cooled to room temperature, and quenched with 10 mL of $\mathrm{H}_{2} \mathrm{O}$.

After extraction with ethyl acetate ($20 \mathrm{~mL} \times 3$) and washed with a saturated solution of $\mathrm{NaCl}(10 \mathrm{~mL} x 3)$, the organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After filtration through a layer of silica gel and concentration under reduced pressure, the residue was purified by column chromatography on silica gel using a pipette column to afford $(E)-7(66.8 \mathrm{mg}, 94 \%$ purity, $80 \%)$ (eluent: petroleum ether/ethyl acetate $=$ $100 / 1$ to $100 / 5)(\mathrm{v} / \mathrm{v})$ as a colorless oil: ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=8.45(\mathrm{t}, J=$ $1.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 8.19\left(\mathrm{dd}, J_{1}=7.8 \mathrm{~Hz}, J_{2}=1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}\right), 7.91(\mathrm{~d}, J=7.6 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.66-7.55$ (m, $3 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), 7.49 (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.15$ (t, $J=7.6$ $\mathrm{Hz}, 1 \mathrm{H},=\mathrm{CH}), 5.88\left(\mathrm{~s}, 1 \mathrm{H}\right.$, one proton of $\left.=\mathrm{CH}_{2}\right), 5.20\left(\mathrm{~s}, 1 \mathrm{H}\right.$, one proton of $\left.=\mathrm{CH}_{2}\right)$, $3.67\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 2.24\left(\mathrm{q}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.54-1.40\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$, 1.38-1.18 (m, $6 \mathrm{H}, \mathrm{CH}_{2} \times 3$), $0.86\left(\mathrm{t}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$; ${ }^{13} \mathbf{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta=167.3,148.7,146.8,142.4,141.9,139.6,137.9,133.0,132.8,129.7,127.2$, $126.5,122.0,121.7,117.0,52.0,31.5,29.6,29.1,28.8,22.5,14.0$; IR (neat): 2925, 2855, 1713, 1529, 1435, 1347, 1242, $1054 \mathrm{~cm}^{-1}$; MS (70 eV, EI) $m / z(\%): 394\left(\mathrm{M}^{+}+1\right.$, 17.36), $393\left(\mathrm{M}^{+}, 66.39\right)$, 264 (100); HRMS Calcd for $\mathrm{C}_{24} \mathrm{H}_{2} \mathrm{NO}_{4}: 393.1940$; Found: 393.1936.
(4) Reduction ${ }^{6}$ of (E)-31-ester with DIBAL-H (Yy-2-146)

(E)-31-ester
(E)-8, 60\% yield

To a flame-dried Schlenk tube was added (E)-31-ester (175.4 mg, 0.5 $\mathrm{mmol}) /$ toluene $(5 \mathrm{~mL})$. After the tube was stirred at $-78^{\circ} \mathrm{C}$ for 10 min , DIBAL-H (1 $\mathrm{mL}, 1.0 \mathrm{M}$ in toluene, 1 mmol) was added dropwise within 5 min . The resulting mixture was stirred at $-78^{\circ} \mathrm{C}$ for 3 hours and stirred at room temperature for 4 h , quenched with a saturated solution of potassium sodium tartrate (Rochelle's salt) (5 mL), extracted with $\mathrm{Et}_{2} \mathrm{O}$ ($5 \mathrm{~mL} \times 3$), dried over anhydrous MgSO_{4}, filtered, and
concentrated in vacuo. The residue was purified by column chromatography on silica gel to afford $(E)-\mathbf{8}(96.4 \mathrm{mg}, 60 \%)$ as a colorless oil (eluent: petroleum ether/ethyl acetate $=200 / 10$ to $200 / 20$) (v/v): ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.44(\mathrm{~d}, J=8.8$ $\mathrm{Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), 7.27 (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 5.76$ (t, $J=7.4 \mathrm{~Hz}, 1 \mathrm{H},=\mathrm{CH}), 5.65$ $\left(\mathrm{d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}\right.$, one proton of $\left.=\mathrm{CH}_{2}\right), 5.14(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}$, one proton of $\left.=\mathrm{CH}_{2}\right), 4.07\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right), 2.01\left(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.53(\mathrm{br}, 1 \mathrm{H}, \mathrm{OH})$, $1.40-1.15\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{CH}_{2} \mathrm{x} 4\right), 0.86\left(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathbf{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta=144.3,139.4,138.1,131.5,130.9,128.0,121.8,115.8,66.6,31.6,29.6$, 29.0, 28.7, 22.6, 14.0; IR (neat): 3315 (br), 2954, 2922, 2853, 1484, 1458, 1387, 1071, $1006 \mathrm{~cm}^{-1}$; MS (70 eV, EI) $m / z(\%): 325\left[\mathrm{M}^{+}\left({ }^{81} \mathrm{Br}\right)+1,2.53\right], 324\left[\mathrm{M}^{+}\left({ }^{81} \mathrm{Br}\right), 10.12\right]$, $323\left[\mathrm{M}^{+}\left({ }^{79} \mathrm{Br}\right)+1,2.02\right], 322\left[\mathrm{M}^{+}\left({ }^{79} \mathrm{Br}\right), 10.56\right], 212$ (100); HRMS Calcd for $\mathrm{C}_{17} \mathrm{H}_{23}{ }^{79} \mathrm{BrO}\left(\mathrm{M}^{+}\right)$: 322.0932; Found: 322.0936.
(5) Reduction of (E)-31-Weinreb amide with $\mathrm{LiAH}_{4}{ }^{7}(\mathrm{Yy}-2-183)$

To a flame-dried Schlenk tube fulfilled with argon were added (E)-31-Weinreb amide ($150.7 \mathrm{mg}, 0.4 \mathrm{mmol}$) and THF (5 mL). The reaction was stirred at $-78{ }^{\circ} \mathrm{C}$ for $10 \mathrm{~min}, \mathrm{LiAlH}_{4}(0.6 \mathrm{~mL}, 1 \mathrm{M}$ in THF, 0.6 mmol$)$ was then added dropwise within 2 \min. The resulting mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for 0.5 h , quenched with ethyl acetate $(5 \mathrm{~mL})$, and poured into $1 \mathrm{M} \mathrm{HCl}(20 \mathrm{~mL})$. After extraction with ethyl acetate $(15 \mathrm{~mL}$ x 3), the organic layer was washed with a saturated solution of NaCl (aq.) and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After filtration and concentration under reduced pressure, the crude product was purified by column chromatography on silica gel to afford (E)-9 $(78.9 \mathrm{mg}, 90 \%$ purity, $56 \%)$ (eluent: petroleum ether/ethyl acetate $=50 / 1$) as a colorless oil: ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=9.54(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CHO}), 7.42(\mathrm{~d}, J=8.0 \mathrm{~Hz}$,
$2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.17$ (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 6.81(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H},=\mathrm{CH}), 5.84(\mathrm{~s}, 1$ H , one proton of $\left.=\mathrm{CH}_{2}\right), 5.12\left(\mathrm{~s}, 1 \mathrm{H}\right.$, one proton of $\left.=\mathrm{CH}_{2}\right), 2.30(\mathrm{q}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}$, CH_{2}), 1.52-1.38 (m, $2 \mathrm{H}, \mathrm{CH}_{2}$), 1.36-1.08 (m, $6 \mathrm{H}, \mathrm{CH}_{2} \times 3$), $0.86(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}$, CH_{3}); ${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=193.2,157.4,144.0,139.7,137.7,131.6$, 127.4, 121.9, 117.6, 31.4, 29.9, 29.0, 28.5, 22.5, 14.0; IR (neat): $v=3442$ (br), 2923, 2856, 1685, 1590, 1483, 1392, 1272, 1217, 1071, $1006 \mathrm{~cm}^{-1}$; MS (70 eV, EI) $m / z(\%):$ $323\left[\mathrm{M}^{+}\left({ }^{81} \mathrm{Br}\right)+1,3.02\right], 322\left[\mathrm{M}^{+}\left({ }^{81} \mathrm{Br}\right), 15.02\right], 321\left[\mathrm{M}^{+}\left({ }^{79} \mathrm{Br}\right)+1,5.44\right], 320\left[\mathrm{M}^{+}\left({ }^{79} \mathrm{Br}\right)\right.$, 14.94], 149 (100); HRMS Calcd for $\mathrm{C}_{17} \mathrm{H}_{21}{ }^{79} \mathrm{BrO}\left(\mathrm{M}^{+}\right)$: 320.0776; Found: 320.0772.

References:

1. Zhang, W.; Huang, C.; Yuan, Y.; Ma, S. Catalytic transient leaving group for atom-economic synthesis of allenes from 2-alkynols. Chem. Commun. 2017, 53, 12430-12433.
2. Ide, J.; Kishida, Y. The formation of some stable sulfoxonium ylides from acetilenic compounds and some further reactions of these stable ylides. Tetrahedron Lett. 1966, 7, 1787-1796.
3. Callingham, M.; Partridge, B. M.; Lewis, W.; Lam, H. W. Enantioselective Rhodium-Catalyzed Coupling of Arylboronic Acids, 1, 3-Enynes, and Imines by Alkenyl-to-Allyl 1, 4-Rhodium (I) Migration. Angew. Chem. Int. Ed. 2017, 129, 16570-16574.
4. (a) Nahm, S.; Weinreb, S. M. N-Methoxy-N-methylamides as effective acylating agents. Tetrahedron Lett. 1981, 22, 3815-3818; (b) Iriarte, I.; Olaizola, O.; Vera, S.; Gamboa, I.; Oiarbide, M.; Palomo, C. Controlling α - vs γ-Reactivity of Vinylogous Ketone Enolates in Organocatalytic Enantioselective Michael Reactions. Angew. Chem. Int. Ed. 2017, 56, 8860-8864.
5. Miyaura, N.; Yanagi, T.; Suzuki, A. The Palladium-catalyzed Cross-coupling Reaction of Phenylboronic Acid with Haloarenes in the Presence of Base. Synth. Соттии. 1981, 11, 513-515.
6. Deng, Y.; Jin, X.; Ma, S. Studies on Highly Stereoselective Addition-Elimination Reactions of 3-(Methoxycarbonyl)-1, 2-allen-4-ols with MX. An Efficient Synthesis of 3-(Methoxycarbonyl)-2-halo-1, 3 (Z)-dienes. J. Org. Chem. 2007, 72, 5901-5904.
7. Conroy, T.; Guo, J. T.; Hunt, N. H.; Payne, R. J. Total synthesis and antimalarial activity of symplostatin 4. Org. Lett. 2010, 12, 5576-5579.

" " on in in

147.955
\qquad 159.440
\qquad

. 4
\qquad

-172.321
-30.805
-29.492
-22.432
-13.787

3 e

145.337
139.249
77.319
$-\quad 77.000$
$-\quad 76.681$

-171.979

\qquad

5.761

N

001

(

$-\quad 30.840$
29.521
22.458
-13.808

131.757
-120.478

\qquad

\qquad

$\begin{array}{r}31.609 \\ \begin{array}{r}29.590 \\ - \\ 28.983 \\ 28.740 \\ 22.554 \\ \hline\end{array} \\ \hline\end{array}$

Wdd

\qquad
157.398
143.993
139.682
137.708
-131.568
-127.408
-121.943
117.609

