Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2019

Supporting Information

Rhodium(III)-Catalysed Carboxylate-Directed C-H Functionalizations of Isoxazoles with Alkynes

Somaraju Yugandar a and Hiroyuki Nakamura *

Laboratory for Chemistry and Life Sciece, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Japan

Corresponding E-mail: hiro@res.titech.ac.jp

Contents

1.	General Information	S2
2.	Table S1. Optimization of reaction conditions for the formation of 3aa and 4aa	S3
3.	Table S2. [Cp*RhCl2]2 catalyst (acidic conditions)	S4
4.	Table S3. Ru, Co, Ir catalysts	S5
5.	Table S4. [Cp*Rh(CH ₃ CN) ₃][SbF ₆] ₂ catalyst	S 6
6.	Scheme S1 Plausible mechanism for the formation of 3 and 5	S 7
7.	Structures of alkynes	S 8
8.	Preparation of 3-substituted-isoxazolyl-4-carboxylic acids 1a-1d	S8-S11
9.	General procedures and characterization data of 3, 4, and 5	S11-S25
10.	Mechanistic studies and Synthesis of rhodacycle 7	S25-S26
11.	Crystal data and ORTEP diagram of compounds 3aa, 3ai, 4aa, 5aa, 5ae and 7	S27-S30
11.	NOESY spectra of compounds 4ai, 4aj, 4al and 4bk	S30-S35
12.	References	S36
13.	¹ H and ¹³ C NMR spectra	S37-S85

General Information

NMR spectra were recorded on a Bruker biospin AVANCE II (400 MHz for ¹H, 100 MHz for ¹³C) or a Bruker biospin AVANCE III (500 MHz for ¹H, 125 MHz for ¹³C) instrument in the indicated solvent. Chemical shifts are reported in parts per million (ppm) relative to the signal (0.00 ppm) for internal tetramethylsilane for solutions in CDCl₃ (7.26 ppm for ¹H, 77.16 ppm for ¹³C) or DMSO- d_6 (2.50 ppm for ¹H, 39.52 ppm for ¹³C). Multiplicities are reported using the following abbreviations: s (singlet), d (doublet), dd (doublet of doublets), t (triplet), g (guartet), guin (guintet), sex (sextet), m (multiplet), br (broad) J; coupling constants in Hertz. IR spectra were recorded on a JASCO FT/IR-4200 spectrometer. Only the strongest and/or structurally important peaks are reported as IR data given in cm⁻¹. Mass spectra were measured using a JMS-700 Mstation and Bruker microTOF II. HRMS (EI, 70 eV) was calibrated as perfluorokerosene and HRMS (ESI-TOF) was calibrated as sodium formate. All reactions were monitored by thin-layer chromatography carried out on 0.2 mm E. Merck silica gel plates (60F-254) with UV light (254 nm) and were visualized using an aqueous alkaline KMnO₄ solution. Column chromatography was performed on Silica Gel 60 N, purchased from Kanto Co. All the reagents were purchased from commercial suppliers and used without further purification. The required 3-substituted-isoxazolyl-4carboxylic acids $1a^{1}$ $1b-d^{2}$ and 6^{3} are prepared according to reported literature, alkynes 2a, 2f-m are purchased from Aldrich and TCI and $2b-e^4$ are prepared according to the reported procedures.

	N-O Ph [Cp [*] RhCl ₂]		N-O // Ph	+	∕le N
ů, Ç	O OH Ph DMF, 100 1a 2a	°C	O PI 3aa	h Cl ^r F 4	Ph Ph aa
Entry	Oxidant	Additive	Time (h)	3aa (%) ^b	4aa (%) ^b
1^c	Ag ₂ CO ₃	-	16	27	-
2	Ag ₂ CO ₃	-	2	72	-
3	$K_2S_2O_8$	-	12]	N.R
4	AgNTf ₂	-	12]	N.R
5	AgOAc	-	4	53	
6^d	Ag ₂ CO ₃	-	15	6	-
7^e	Ag ₂ CO ₃	-	15	9	-
8	Ag_2CO_3	AgSbF ₆	20	25	-
9	Ag_2CO_3	NaOPiv	2	60	-
10	Ag ₂ CO ₃	NaOAc	2	32	-
11	Ag ₂ CO ₃	K ₂ CO ₃	8	38	-
12^{f}	Ag ₂ CO ₃	-	2	76	-
13	-	-	24	8	-
14	$Cu(OAc)_2 \bullet H_2O$	-	2	-	60
15^{e}	Cu(OAc) ₂ •H ₂ O	-	2	-	52
16	Cu(OAc) ₂ •H ₂ O	-	4	-	55
17	CuO	-	14	-	-
18^g	$Cu(OAc)_2 \bullet H_2O$	-	20	-	-

Table S1. Optimization of reaction conditions for the formation of 3aa and 4aa^a

^{*a*}Reaction conditions: **1a** (0.2 mmol), **2a** (0.24 mmol), $[Cp*RhCl_2]_2$ (5 mol %), oxidant (1 equiv.), additive (20 mol %), solvent (1 mL) under Ar atmosphere at 100 °C. ^{*b*} Isolated yield. ^{*c*} Ag₂CO₃ (0.5 equiv.).^{*d*} In dichloroethane. ^{*e*} In *o*-xylene ^{*f*} Under open air. ^{*g*} Absence of Rh-catalyst. N.R = no reaction.

4	AcOH	DCE	14 h	15	trace	32
5	AcOH (3.0)	DCE	10 h	21	trace	24
6	AcOH AcShE (0,1)	DCE	8h	trace	0	30
7	Agoon ₆ (0.1) AcOH	MeCN	20 h	11	0	24
8	AcOH	DMF	20 h	34	0	12
^{<i>a</i>} Reaction conditions: 1a (0.1 mmol), 2a (0.12 mmol),						

catslyst (5 mol %), oxidant (1 equiv.), additive (10 mol %), solvent (0.5 mL) at 100 °C. ^bIsolated yield.

CI		N = 0 + H OH Ph Ca oxidan solve	atalyst ts/additives nts, 100 °C	N-O Ph	Ph ⁺ CI∽		N-O Pr
		1a 2a		5aa			3aa
	entry	Catalyst	oxidant/additive	solvent	time h	yield (%) ^b
		(2.5 mol %)	(1.0 equiv)			5aa	3aa
	1	[Ru(p-cymene)Cl ₂] ₂	NaOAc	Dioxane	16 h	trace	12
	2	[Ru(p-cymene)Cl ₂] ₂	NaOAc	MeOH:H ₂ O	16 h	trace	0
	3	[Ru(p-cymene)Cl ₂] ₂	AcOH	toluene	20 h	8	0
	4	[Ru(<i>p</i> -cymene)Cl ₂] ₂	K ₂ CO ₃	DMF	8 h	decom	posed
	5	[Ru(<i>p</i> -cymene)Cl ₂] ₂	PivOH	CH ₃ CN	12 h	16	trace
	6	[Ru(p-cymene)Cl ₂] ₂	AgSbF ₆	DCM	12 h	N.	R
	7	[Ru(p-cymene)Cl ₂] ₂	K ₂ CO ₃	DMSO	8 h	decorr	nposed
	8	[Ru(p-cymene)Cl ₂] ₂	КОАс	THF	8 h	N.	R
	9	Cp*Co(CO)I ₂	AcOH	DMF	24 h	N.	R
	10	Cp*Co(CO)l ₂	TFA	DMF	24 h	decom	nposed
	11	Cp*Co(CO)l ₂	Ag ₂ CO ₃	DMF	12 h	decom	posed
	12	Cp*Co(CO)I ₂	$AdCO_2H/AgSbF_6$ (0.2)	DCE	20 h	N.	R
	13	Cp*Co(CO)l ₂	AdCO ₂ H/NaOPiv (0.2)	DCE	15 h	N.	R
	14	Cp*Co(CO)I ₂	AcOH/KOAc (0.2)	DCE	15 h	N.	R
	15	[Cp*lrCl ₂] ₂	Ag ₂ CO ₃	DMF	8 h	N.	R

Table S3. Ru, Co, Ir catalysts^a

^{*a*}Reaction conditions: **1a** (0.1 mmol), **2a** (0.12 mmol), catalyst (2,5 mol %), oxidant (1 equiv.), additive (20 mol %), solvent (0.5 mL) at 100 °C. ^{*b*} Isolated yield. N.R = no reaction.

CI	N-C	O Ph [Cp [*] Rł +	n(CH ₃ CN) ₃][SbF ₆] ₂ (2.5mol %) additives sitylene, 100 °C	N-O Ph	Ph + CI	N-C	Ph O Ph
	1a	2a		5aa		3	aa
	entry	additive	base	time h	yield	(%) ^b	
-		(1.0 equiv)	(1.0 equiv)		5aa	3aa	
	1	AcOH	-	20 h	22	39	
	2	PivOH	-	20 h	18	31	
	3	AdCO ₂ H	-	20 h	30	22	
	4	-	K ₂ CO ₃	20 h	38	16	
	5	-	KOAc	20 h	14	36	
	6	-	NaOAc	20 h	19	25	
	7	-	NaOPiv	20 h	24	21	
	8	-	K ₃ PO ₄	20 h	10	32	
	9	-	K ₂ HPO ₄	20 h	15	10	
	10	-	Et ₃ N	20 h	12	14	
	11	-	DABCO	20 h	7	18	
	12	AcOH	K ₂ CO ₃	18 h	52	18	
	13	PivOH	K ₂ CO ₃	18 h	49	23	
	14	AdCO ₂ H	K ₂ CO ₃	16 h	68	12	
	15 ^c	AdCO ₂ H	K ₂ CO ₃	8 h	73	8	
	16 ^c	AdCO ₂ H	K ₂ CO ₃ (0.5)	8 h	75	10	
	17 ^c	AdCO ₂ H	K ₂ CO ₃ (0.3)	8 h	78	6	
	18 ^[c]	AdCO ₂ H	K ₂ CO ₃ (0.2)	8 h	67	14	

Table S4. [Cp*Rh(CH₃CN)₃][SbF₆]₂ catalyst^a

^{*a*} Reaction conditions: **1a** (0.1 mmol), **2a** (0.15 mmol), catalyst (2,5 mol %), additive (1 equiv.), base (1 equiv.), solvent (0.5 mL) at 100 °C. ^{*b*} Isolated yield. ^{*c*} Reaction at 120 °C.

Scheme S1 Plausible mechanism for the formation of 3 and 5

At first, isoxazolyl-4-carboxylic acid **1** coordinates with active Rh(III) catalyst to provide fivemembered rhodacyle **A** through C-H activation at C-5 position. Subsequently, rhodacycle **A** coordinates with alkyne **2** followed by insertion gives the seven-membered rhodacycle **B**. In *pathway a*, rhodacyle **B** undergoes reductive elimination to give pyranoisoxazolone **3** and Rh(I) complex, which is reoxdized by Ag(I) to regenerates the Rh(III) catalyst.⁵ At high temperatures and in non-polar solvents, *pathway b* favours the decarboxylation to give rhodacycle **C**, which on protonation/protodemetalation provides hydroarylation product **5** with regeneratin of Rh(III) catalyst.^{6,7}

Structures of alkynes

Preparation of 3-substituted-isoxazolyl-4-carboxylic acids 1a-d

3-(4-Chlorophenyl)isoxazole-4-carboxylic acid (1a)

To a stirred solution of 4-chloro-*N*-hydroxybenzimidoyl chloride⁸ (1.89 g, 0.01 mol) and trimethylsilylacetylene (1.56 mL, 0.011 mol) in CHCl₃ (20.0 mL), Et₃N (3.48 mL, 0.025 mol, 2.50 eq.) was added at 0 °C under an argon atmosphere. After being stirred for 1 h at 50 °C, the reaction mixture was diluted with CH₂Cl₂. The organic phase was washed with water and brine and dried over MgSO₄ and concentrated *in vacuo*. The residue was dissolved in ethanol (25.0 ml) and CsF (3.03 g, 0.02 mol, 2.00 eq.) was added under an argon atmosphere. After being stirred for 1 h at room temperature, the reaction mixture was poured into water. The aqueous layer was extracted with two portions of CH₂Cl₂. The combined extract was washed with brine, dried over MgSO₄ and concentrated *in vacuo*. The residue was field over MgSO₄ and concentrated *in vacuo*. The residue was field over MgSO₄ and concentrated *in vacuo*. The residue was purified by column chromatography on silica gel with hexane : ethyl acetate = 95 : 5 to afford 3-(4-chlorophenyl)isoxazole (**S-1**) as a white solid (1.16 g, 65%). Spectral properties were identical to those previously reported:⁹ mp 74-76 °C; R_f 0.6 (1:19 EtOAc/hexane); FT-IR (neat, cm⁻¹) 3151, 3128, 1546, 1504, 1429, 1274, 1121, 781; ¹H NMR (400 MHz, CDCl₃) δ 8.47 (d, *J* = 1.2 Hz, 1H), 7.77 (d, *J* = 8.4 Hz,

2H), 7.44 (d, *J* = 8.4 Hz, 2H), 6.64 (d, *J* = 1.6 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 160.6, 159.2, 136.2, 129.3, 128.2, 127.4, 102.4.

To a stirred solution of 3-(4-chlorophenyl)isoxazole **S-1** (1.00 eq.) in TFA (1.00 mL), *N*iodosuccinimide (2.0 eq.) was added under an argon atmosphere. After being stirred at 70 °C for 1 h, saturated aq. NaHCO₃ was added. The mixture was poured into diethyl ether, the aqueous layer was extracted with two portions of Et₂O. The combined extract was washed with 10% aq. Na₂S₂O₃ and brine, dried over MgSO₄ and concentrated *in vacuo* to get 3-(4-chlorophenyl)-4-iodo-isoxazole (**S-2**)¹ in 74% yield. Now, to this 3-(4-chlorophenyl)-4-iodo-isoxazole (3.75 gm, 0.012 mol) in THF (20 mL), 0.8 M solution of *i*PrMgCl·LiCl¹⁰ in THF (16.25 mL, 0.013 mol, 1.10 e.) was added dropwise at -40 °C under an argon atmosphere. After being stirred at the same temperature for 30 min, the vessel was filled with CO₂ gas that was collected in a balloon by sublimation of dry ice. After being stirred at room temperature for 3 h, the reaction mixture was acidified with 1 M aq. HCl. The aqueous layer was extracted with two portions of chloroform. The combined extract was washed with brine, dried over MgSO₄ and concentrated *in vacuo* to give crude **1a**, which was purified by column chromatography using EtOAc/hexane (1:1) as eluent.

3-(4-Chlorophenyl)isoxazole-4-carboxylic acid (1a). Obtained as a white solid (1.94 g, 71%): mp 180-182 °C; R_f 0.2 (7:3 EtOAc/hexane); FT-IR (neat, cm⁻¹) 3094, 1714, 1602, 1557, 1464, 1309, 778; ¹H NMR (400 MHz, CDCl₃) δ 9.11 (s, 1H), 7.73 (d, *J* = 8.8 Hz, 2H), 7.46 (d, *J* = 8.4 Hz, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 165.9, 165.4, 160.5, 136.9, 130.9, 128.8, 125.4, 112.1; HRMS (ESI) *m/z* calcd for C₁₀H₅ClNO₃ [M-H]⁺ 221.9958 and 223.9928, found 221.9963 and 223.9937.

3-Substituted-isoxazolyl-4-carboxylic acids (1b-d)

To a solution of *N*-hydroxybenzimidoyl chloride (0.01 mol) and (*E*) ethyl-3-(pyrrolidin-1yl)acrylate (1.69 g, 0.01 mol) in diethyl ether, triethylamine (3.48 mL, 0.025 mol) was added at room temperature. The reaction mixture was stirred at room temperature for 1h, and then reaction mixture was poured into saturated NH₄Cl solution, extracted with EtOAc, washed with brine, dried over Na₂SO₄ and the solvent was evaporated under reduced pressure to give crude 3-substituted-isoxazolyl-4-carboxylates. Now, these crude isoxazolyl-4-carboxylates were treated with 6N HCl and AcOH (3:2) and the reaction mixture was refluxed for 6 h (monitored by TLC). The reaction mixture cooled to room temperature, quenched with saturated aq. NaHCO₃, extracted with EtOAc, washed with brine, dried over Na₂SO₄ and the solvent was evaporated under reduced pressure to give crude **1b-d** which were purified by column chromatography using EtOAc/hexane as eluent.

3-(4-Methoxyphenyl)isoxazole-4-carboxylic acid (1b). Obtained as a white solid (0.29 g, 67%): mp 195-197 °C; R_f 0.2 (7:3 EtOAc/hexane); FT-IR (neat, cm⁻¹) 2954, 2916, 1712, 1613, 1466, 1253, 827; ¹H NMR (400 MHz, CDCl₃) δ 9.07 (s, 1H), 7.75 (d, *J* = 8.4 Hz, 2H), 7.00 (d, *J* = 8.8 Hz, 2H), 3.86 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 165.6, 164.8, 161.4, 161.0, 131.0, 119.1, 113.9, 111.9, 55.4; HRMS (ESI) *m/z* calcd for C₁₁H₈NO₄ [M-H]⁺ 218.0453 found 218.0447

3-(4-Nitrophenyl)isoxazole-4-carboxylic acid (1c). Obtained as a white solid (0.32 g, 73%): mp 218-220 °C; R_f 0.2 (7:3 EtOAc/hexane); FT-IR (neat, cm⁻¹) 3108, 1714, 1529, 1348, 1162, 851; ¹H NMR (400 MHz, DMSO-*d*₆) δ 9.72 (s, 1H), 8.33 (d, *J* = 8.8 Hz, 2H), 8.01 (d, *J* = 8.8 Hz, 2H); ¹³C NMR (125 MHz, DMSO-*d*₆) δ 166.3, 161.6, 159.5, 148.4, 133.7, 130.8, 123.3, 113.4; HRMS (ESI) *m/z* calcd for C₁₀H₅N₂O₅ [M-H]⁺ 233.0198, found 233.0206.

3-Propylisoxazole-4-carboxylic acid (1d). Obtained as a white solid (0.29 g, 70%): mp 83-85 °C; R_f 0.3 (7:3 EtOAc/hexane); FT-IR (neat, cm⁻¹) 3120, 2963, 1730, 1579, 1427, 1242, 1109; ¹H NMR (400 MHz, CDCl₃) δ 8.95 (s, 1H), 2.91 (t, *J* = 7.6 Hz, 2H), 1.77 (sextet, *J* = 7.2 Hz, 2H), 1.01 (s, *J* = 7.2 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 166.8, 164.5, 162.5, 112.4, 27.1, 21.1, 13.9; HRMS (FAB) *m/z* calcd for C₇H₁₀NO₃ [M + H]⁺ 156.0661, found 156.0659.

General procedure for the synthesis of pyranoisoxazolones 3 from isoxazolyl-4-carboxylic acids 1 and alkynes 2: In an oven dried vial tube, isoxazolyl-4-carboxylic acid 1 (0.2 mmol), alkyne 2 (0.24 mmol), silver carbonate (0.2 mmol) and [Cp*RhCl₂]₂ (5 mol %) were taken in DMF (1 mL). This vial tube was placed in a pre-heated metal block at 100 °C for 2 h in open air (monitored by TLC). After completion of the reaction, the residue was filtered through a pad of celite using EtOAc (3 x 25 mL). To the filtrate saturated NH₄Cl (25 mL) solution added, organic layer was separated, washed with brine (20 mL), dried over Na₂SO₄ and the solvent was evaporated under reduced pressure to give crude products, which were purified by column chromatography using EtOAc/hexane as eluent to give **3**.

3-(4-Chlorophenyl)-6,7-diphenyl-4*H***-pyrano[3,4-***d***]isoxazol-4-one (3aa). Obtained as a white solid (60.6 mg, 76%): mp 194-196 °C; R_f 0.4 (1:19 EtOAc/hexane); FT-IR (neat, cm⁻¹) 2957, 2923, 1752, 1545, 1446, 962; ¹H NMR (400 MHz, CDCl₃) δ 8.25 (d,** *J* **= 8.4 Hz, 2H), 7.51 (d,** *J* **= 8.4 Hz, 2H), 7.46-7.41 (m, 5H), 7.38-7.26 (m, 5H); ¹³C NMR (125 MHz, CDCl₃) δ 174.4, 159.9, 159.3, 156.6, 137.5, 131.0, 130.9, 130.5, 130.4, 129.8, 129.4, 129.2, 129.1, 128.4, 125.0, 108.8, 102.2; HRMS (EI, 70 eV)** *m/z* **calcd for C₂₄H₁₄ClNO₃ [M]⁺ 399.0662, found 399.0662.**

3-(4-Chlorophenyl)-6,7-bis(4-methoxyphenyl)-4*H***-pyrano[3,4**-*d*]isoxazol-4-one (**3ab**). Obtained as a white solid (74.3 mg, 81%): mp 213-215 °C; R_f 0.3 (1:9 EtOAc/hexane); FT-IR (neat, cm⁻¹) 2925, 1747, 1604, 1504, 1256, 835; ¹H NMR (400 MHz, CDCl₃) δ 8.24 (d, *J* = 8.4 Hz, 2H), 7.49 (d, *J* = 8.4 Hz, 2H),

7.43 (d, J = 8.8 Hz, 2H), 7.28 (d, J = 8.4 Hz, 2H), 6.95 (d, J = 8.4 Hz, 2H), 6.79 (d, J = 8.4 Hz, 2H), 3.85 (s, 3H), 3.80 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 174.8, 161.5, 160.0, 159.6, 159.2, 156.8, 137.4, 131.6, 131.5, 130.5, 129.2, 125.2, 123.3, 121.7, 114.8, 113.9, 107.2, 101.6, 55.49, 55.45; HRMS (EI, 70 eV) m/z calcd for C₂₆H₁₈ClNO₅ [M]⁺ 459.0874, found 459.0875.

6,7-Bis(4-bromophenyl)-3-(4-chlorophenyl)-4*H***-pyrano[3,4-***d*]**isoxazol-4-one** (**3ad**). Obtained as a pale yellow solid (68.6 mg, 62%): mp 230-232 °C; R_f 0.3 (1:9 EtOAc/hexane); FT-IR (neat, cm⁻¹) 2956, 1753, 1543, 1487, 1008, 833; ¹H NMR (400 MHz, CDCl₃) δ 8.22 (d, *J* = 8.4 Hz, 2H), 7.58 (d, *J* = 8.4 Hz, 2H), 7.51 (d, *J* = 8.4 Hz, 2H), 7.47 (d, *J* = 8.4 Hz, 2H), 7.32 (d, *J* = 8.4 Hz, 2H), 7.23 (d, *J* = 8.4 Hz, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 173.8, 159.4, 158.8, 156.1, 137.7, 132.8, 131.9, 131.2, 130.5, 129.6, 129.3, 128.0, 126.0, 124.7, 123.8, 108.1, 102.5; HRMS (EI, 70 eV) *m/z* calcd for C₂₄H₁₂Br₂ClNO₃[M]⁺ 554.8872, found 554.8876.

3-(4-chlorophenyl)-6,7-bis(4-(trifluoromethyl)phenyl)-4H-pyrano[3,4-d]isoxazol-4-one (3ae). Obtained as a white solid (8.56 mg, 8%): mp 211-212 °C; R_f 0.4 (1:9 EtOAc/hexane); FT-IR (neat, cm⁻¹) 2917, 1752, 1551, 1322, 1066, 851;¹H NMR (400 MHz, CDCl₃) δ 8.23 (d, J = 8.4 Hz, 2H), 7.72 (d, J = 8.0 Hz, 2H), 7.61-7.55 (m, 4H), 7.53-7.49 (m, 4H); ¹³C NMR (125 MHz, CDCl₃) δ 173.5, 159.5, 158.6, 155.8, 137.9, 133.9, 133.0 (q, J_{C-F} = 32.7 Hz), 132.7, 131.7 (q, J_{C-F} = 32.8 Hz), 130.9, 130.5, 130.2, 129.4, 126.5 (q, J_{C-F} = 3.5 Hz), 125.8 (q, J_{C-F} = 3.6 Hz), 124.6, 123.7 (q, J_{C-F} = 270.5 Hz), 108.8, 102.9; HRMS (EI, 70 eV) m/z calcd for C₂₆H₁₂ClF₆NO₃ [M]⁺ 535.0410, found 535.0408.

3-(4-Chlorophenyl)-6,7-dipropyl-4*H***-pyrano[3,4-***d***]isoxazol-4-one (3af). Obtained as a pale yellow solid (46.3 mg, 70%): mp 68-70 °C; R_f 0.5 (1:19 EtOAc/hexane); FT-IR (neat, cm⁻¹) 2963, 1748, 1565, 1445, 966, 835; ¹H NMR (400 MHz, CDCl₃) δ 8.21 (d,** *J* **= 8.0 Hz, 2H), 7.47 (d,** *J* **= 8.0 Hz, 2H), 2.65-2.60 (m, 4H), 1.77 (sextet,** *J* **= 7.2 Hz, 2H), 1.65 (sextet,** *J* **= 7.6 Hz, 2H), 1.01 (triplet,** *J* **= 7.2 Hz, 6H);**

¹³C NMR (125 MHz, CDCl₃) δ 175.1, 164.5, 159.1, 157.6, 137.3, 130.5, 129.1, 125.2, 106.8, 101.7, 32.4,
26.4, 22.7, 21.2, 13.9, 13.8; HRMS (EI, 70 eV) *m/z* calcd for C₁₈H₁₈ClNO₃ [M]⁺ 331.0975, found 331.0968.

3-(4-Chlorophenyl)-6,7-diethyl-4*H***-pyrano[3,4-***d***]isoxazol-4-one (3ag). Obtained as a pale yellow solid (44.2 mg, 73%): mp 107-109 °C; R_f 0.4 (1:19 EtOAc/hexane); FT-IR (neat, cm⁻¹) 2957, 2923, 1747, 1566, 1459, 1377, 837; ¹H NMR (400 MHz, CDCl₃) δ 8.22 (d,** *J* **= 8.4 Hz, 2H), 7.48 (d,** *J* **= 8.4 Hz, 2H), 2.72-2.65 (m, 4H), 1.33-1.25 (m, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 175.0, 165.3, 159.2, 157.6, 137.3, 130.5, 129.1, 125.2, 107.7, 101.8, 23.9, 17.9, 14.3, 12.4; HRMS (EI, 70 eV)** *m/z* **calcd for C₁₆H₁₄CINO₃ [M]⁺ 303.0662, found 303.0656.**

3-(4-Chlorophenyl)-6,7-dimethyl-4*H***-pyrano[3,4-***d***]isoxazol-4-one (3ah). Obtained as a pale yellow solid (36.3 mg, 66%): mp 154-156 °C; R_f 0.4 (1:4 EtOAc/hexane); FT-IR (neat, cm⁻¹) 2920, 1753, 1566, 1438, 843, 776; ¹H NMR (400 MHz, CDCl₃) δ 8.21 (d,** *J* **= 8.8 Hz, 2H), 7.47 (d,** *J* **= 8.4 Hz, 2H), 2.36 (s, 3H), 2.24 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 175.1, 161.0, 159.2, 157.4, 137.4, 130.5, 129.1, 125.1, 102.1, 101.3, 17.1, 9.4; HRMS (EI, 70 eV)** *m/z* **calcd for C₁₄H₁₀ClNO₃ [M]⁺ 275.0349, found 275.0350.**

3-(4-Chlorophenyl)-7-methyl-6-phenyl-4*H***-pyrano[3,4-***d***]isoxazol-4-one (3ai). Obtained as a white solid (45.8 mg, 68%): mp 206-208 °C; R_f 0.4 (1:19 EtOAc/hexane); FT-IR (neat, cm⁻¹) 2923, 1751, 1564, 1094, 776; ¹H NMR (400 MHz, CDCl₃) δ 8.26 (d,** *J* **= 8.4 Hz, 2H), 7.68-7.64 (m, 2H), 7.53-7.48 (m, 5H), 2.43 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 175.5, 160.0, 159.4, 157.1, 137.5, 131.1, 130.9, 130.5, 129.24, 129.21, 128.7, 125.1, 102.6, 102.1, 10.8; HRMS (EI, 70 eV)** *m/z* **calcd for C₁₉H₁₂ClNO₃ [M]⁺ 337.0506, found 337.0501.**

3-(4-Chlorophenyl)-7-ethyl-6-phenyl-4*H***-pyrano[3,4-***d***]isoxazol-4-one (3aj). Obtained as a white solid (45.6 mg, 65%): mp 150-152 °C; R_f 0.5 (1:19 EtOAc/hexane); FT-IR (neat, cm⁻¹) 2959, 1747, 1562, 1495, 1093, 770; ¹H NMR (400 MHz, CDCl₃) δ 8.26 (d,** *J* **= 8.4 Hz, 2H), 7.63-7.61 (m, 2H), 7.52-7.49 (m, 5H),**

2. 81 (q, J = 7.6 Hz, 2H), 1.38 (t, J = 7.2 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 175.3, 160.0, 159.2, 157.1, 137.4, 131.3, 130.9, 130.5, 129.2, 128.9, 128.8, 125.1, 109.0, 102.6, 19.0, 14.1; HRMS (EI, 70 eV) *m/z* calcd for C₂₀H₁₄ClNO₃ [M]⁺ 351.0662, found 351.0668.

3-(4-Chlorophenyl)-6-phenyl-7-propyl-4*H***-pyrano[3,4-***d***]isoxazol-4-one (3ak). Obtained as a white solid (40.8 mg, 56%): mp 134-136 °C; R_f 0.4 (1:19 EtOAc/hexane); FT-IR (neat, cm⁻¹) 2960, 1751, 1561, 1495, 990, 777; ¹H NMR (500 MHz, CDCl₃) δ 8.26 (d,** *J* **= 8.5 Hz, 2H), 7.61-7.60 (m, 2H), 7.52-7.49 (m, 5H), 2.74 (t,** *J* **= 7.5 Hz, 2H), 1.77 (sextet,** *J* **= 7.5 Hz, 2H), 0.99 (t,** *J* **= 7.5 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 175.4, 160.3, 159.2, 157.1, 137.4, 131.4, 130.8, 130.5, 129.2, 128.9, 128.8, 125.1, 107.7, 102.5, 27.3, 22.8, 14.1; HRMS (EI, 70 eV)** *m/z* **calcd for C₂₁H₁₆ClNO₃ [M]⁺ 365.0819, found 365.0819.**

7-Butyl-3-(4-chlorophenyl)-6-phenyl-4*H***-pyrano[3,4-***d***]isoxazol-4-one (3al). Obtained as a white solid (45.4 mg, 60%): mp 135-137 °C; R_f 0.5 (1:19 EtOAc/hexane); FT-IR (neat, cm⁻¹) 2955, 2923, 1746, 1560, 1468, 843, 774; ¹H NMR (400 MHz, CDCl₃) δ 8.26 (d,** *J* **= 8.4 Hz, 2H), 7.62-7.60 (m, 2H), 7.52-7.49 (m, 5H), 2.76 (t,** *J* **= 7.6 Hz, 2H), 1.72 (quintet,** *J* **= 7.2 Hz, 2H), 1.40 (sextet,** *J* **= 7.2 Hz, 2H), 0.92 (t,** *J* **= 7.2 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 175.4,160.2, 159.2, 157.1, 137.4, 131.4, 130.8, 130.5, 129.2, 128.9, 128.8, 125.1, 107.9, 102.5, 31.5, 25.1, 22.6, 13.7; HRMS (EI, 70 eV)** *m/z* **calcd for C₂₂H₁₈CINO₃ [M]⁺ 379.0975, found 379.0975.**

7-Butyl-3-(4-chlorophenyl)-6-ethyl-4*H*-pyrano[3,4-*d*]isoxazol-4-one (3am) and 6-Butyl-3-(4chlorophenyl)-7-ethyl-4*H*-pyrano[3,4-*d*]isoxazol-4-one (3a'm'). Obtained as a mixture of regioisomers: Semi solid (41.0 mg, 62%): R_f 0.4 (1:9 EtOAc/hexane); FT-IR (neat, cm⁻¹) 2959, 1748, 1565, 1445, 1094, 835; ¹H NMR (400 MHz, CDCl₃) δ 8.21 (d, *J* = 8.4 Hz, 4H), 7.48 (d, *J* = 8.4 Hz, 4H), 2.71-2.63 (m, 8H), 1.75-1.67 (m, 2H), 1.65-1.58 (m, 2H), 1.42 (sextet, *J* = 7.2 Hz, 4H), 1.33-1.25 (m, 6H), 0.99-0.94 (m, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 175.1, 175.0, 165.5, 164.4, 159.1, 157.68, 157.67, 137.3, 130.5, 129.1, 125.2, 108.1, 106.4, 101.8, 101.7, 31.7, 30.2, 30.0, 24.2, 24.0, 22.5, 18.0, 14.2, 13.9, 13.8, 12.3; HRMS (EI, 70 eV) *m/z* calcd for C₁₈H₁₈CINO₃ [M]⁺ 331.0975, found 331.0981.

3-(4-Methoxyphenyl)-6,7-diphenyl-4*H***-pyrano[3,4-***d***]isoxazol-4-one (3ba). Obtained as a pale yellow solid (63.2 mg, 80%): mp 188-190 °C; R_f 0.4 (1:9 EtOAc/hexane); FT-IR (neat, cm⁻¹) 2958, 2923, 1741, 1546, 1251, 782; ¹H NMR (400 MHz, CDCl₃) δ 8.26 (d,** *J* **= 8.8 Hz, 2H), 7.46-7.44 (m, 2H), 7.41-7.35 (m, 6H), 7.29-7.25 (m, 2H), 7.04 (d,** *J* **= 8.8 Hz, 2H), 3.88 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 174.1, 161.9, 159.8, 159.6, 156.9, 131.1, 130.88, 130.8, 129.8, 129.6, 129.2, 129.0, 128.4, 118.9, 114.3, 108.9, 102.3, 55.5; HRMS (EI, 70 eV)** *m/z* **calcd for C₂₅H₁₇NO₄ [M]⁺ 395.1158, found 395.1159.**

6,7-Diethyl-3-(4-methoxyphenyl)-4*H***-pyrano[3,4-***d***]isoxazol-4-one (3bg). Colourless liquid (50.2 mg, 84%): R_f 0.3 (1:4 EtOAc/hexane); FT-IR (neat, cm⁻¹) 2972, 1745, 1610, 1567, 1437, 1254, 837; ¹H NMR (400 MHz, CDCl₃) δ 8.21 (d,** *J* **= 8.8 Hz, 2H), 7.00 (d,** *J* **= 8.8 Hz, 2H), 3.86 (s, 3H), 2.69-2.63 (m, 4H), 1.32-1.23 (m, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 174.7, 164.9, 161.8, 159.6, 157.8, 130.7, 119.0, 114.2, 107.6, 101.8, 55.4, 23.9, 17.9, 14.2, 12.4; HRMS (EI, 70 eV)** *m/z* **calcd for C₁₇H₁₇NO₄ [M]⁺ 299.1158, found 299.1159.**

3-(4-Nitrophenyl)-6,7-diphenyl-4*H***-pyrano[3,4-***d***]isoxazol-4-one (3ca). Obtained as a white solid (52.4 mg, 64%): mp 215-217 °C; R_f 0.3 (1: 9 EtOAc/hexane); FT-IR (neat, cm⁻¹) 2948, 1751, 1523, 1445, 1015, 753; ¹H NMR (400 MHz, CDCl₃) δ 8.53 (d,** *J* **= 8.8 Hz, 2H), 8.38 (d,** *J* **= 8.8 Hz, 2H), 7.47-7.42 (m, 5H), 7.40-7.35 (m, 3H), 7.32-7.28 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 174.7, 160.3, 158.5, 156.5, 149.4, 132.6, 131.1, 130.8, 130.4, 130.3, 129.8, 129.37, 129.32, 129.1, 128.5, 124.0, 108.8, 102.3; HRMS (EI, 70 eV)** *m/z* **calcd for C₂₄H₁₄N₂O₅ [M]⁺ 410.0903, found 410.0909.**

7-Methyl-3-(4-nitrophenyl)-6-phenyl-4*H***-pyrano[3,4-d]isoxazol-4-one (3ci)**. Obtained as a white solid (41.7 mg, 60%): mp 229-231 °C; R_f 0.4 (1:9 EtOAc/hexane); FT-IR (neat, cm⁻¹) 2965, 1730, 1516, 1294,

S15

1068, 753; ¹H NMR (400 MHz, CDCl₃) δ 8.54 (d, *J* = 9.2 Hz, 2H), 8.38 (d, *J* = 9.2 Hz, 2H), 7.69-7.67 (m, 2H), 7.54-7.53 (m, 3H), 2.45 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 175.9, 160.4, 158.6, 156.9, 149.4, 132.7, 131.1, 131.0, 130.3, 129.2, 128.8, 124.0, 102.6, 102.1, 10.9; HRMS (EI, 70 eV) *m/z* calcd for C₁₉H₁₂N₂O₅ [M]⁺ 348.0746, found 348.0747.

6,7-Diphenyl-3-propyl-4*H***-pyrano[3,4-***d***]isoxazol-4-one (3da). Obtained as a white solid (51.6 mg, 78%): mp 114-116 °C; R_f 0.4 (1:9 EtOAc/hexane); FT-IR (neat, cm⁻¹) 2960, 2926, 1758, 1546, 1201, 1056, 779; ¹H NMR (400 MHz, CDCl₃) δ 7.43-7.41 (m, 2H), 7.39-7.36 (m, 3H), 7.34-7.25 (m, 5H), 2.99 (t,** *J* **= 7.6 Hz, 2H), 1.90 (sextet,** *J* **= 7.2 Hz, 2H), 1.05 (t,** *J* **= 7.2 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 173.2, 161.9, 159.7, 156.9, 131.3, 130.7, 130.4, 129.8, 129.7, 129.1, 128.9, 128.4, 109.0, 103.4, 27.2, 20.9, 13.8; HRMS (EI, 70 eV)** *m/z* **calcd for C₂₁H₁₇NO₃ [M]⁺ 331.1208, found 331.1208.**

6,7-Dimethyl-3-propyl-4*H***-pyrano[3,4-***d***]isoxazol-4-one (3dh). Obtained as a semi-solid (23.5 mg, 57%): R_f 0.4 (1:9 EtOAc/hexane); FT-IR (neat, cm⁻¹) 2965, 1752, 1578, 1256, 1006, 775; ¹H NMR (400 MHz, CDCl₃) \delta 2.89 (t, J = 7.2 Hz, 2H), 2.31 (s, 3H), 2.17 (s, 3H), 1.81 (sextet, J = 7.6 Hz, 2H), 0.98 (t, J = 7.2 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) \delta 173.9, 161.7, 160.6, 157.7, 102.4, 102.2, 27.1, 20.8, 17.1, 13.7, 9.4; HRMS (EI, 70 eV)** *m/z* **calcd for C₁₁H₁₃NO₃ [M]⁺ 207.0895, found 207.0890.**

General procedure for the synthesis of isoquinolines 4 from isoxazolyl-4-carboxylic acids 1 and alkynes 2. In an oven dried vial tube, isoxazolyl-4-carboxylic acid 1 (0.2 mmol), alkyne 2 (0.24 mmol), $Cu(OAc)_2 \cdot H_2O$ (0.2 mmol) and $[Cp*RhCl_2]_2$ (5 mol %) were taken under argon atmosphere. To this reaction mixture DMF (1 mL) was added and then it was placed in a pre-heated metal block at 100 °C for 2 h (monitored by TLC). After completion of the reaction, the residue was filtered through a pad of celite using EtOAc (3 x 25 mL). To the filtrate saturated NH₄Cl (25 mL) solution was added, organic layer was separated, washed with brine (20 mL), dried over Na₂SO₄ and the solvent was evaporated under reduced

pressure to give crude products, which were purified by column chromatography using EtOAc/hexane as eluent.

6-Chloro-1-methyl-3,4-diphenylisoquinoline (4aa).^{11a} Obtained as a yellow solid (39.4 mg, 60%): mp 173-175 °C; $R_f 0.6$ (1:9 EtOAc/hexane); FT-IR (neat, cm⁻¹) 2921, 1604, 1568, 1097, 819; ¹H NMR (400 MHz, CDCl₃) δ 8.13 (d, J = 9.2 Hz, 1H), 7.63 (d, J = 1.6 Hz, 1H), 7.53 (dd, J = 9.2 Hz, 2.0 Hz, 1H), 7.38-7.31 (m, 5H), 7.21-7.17 (m, 5H), 3.05 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 157.8, 150.7, 140.7, 137.2, 137.0, 136.5, 131.4, 130.3, 128.6, 128.5, 127.8, 127.5, 127.4, 127.3, 125.2, 124.5, 22.8; HRMS (ESI) *m/z* calcd for C₂₂H₁₇ClN (M+H) 330.1050 and 332.1020, found 330.1042 and 332.1017.

6-Chloro-3,4-bis(4-methoxyphenyl)-1-methylisoquinoline (4ab). Obtained as a yellow solid (27.2 mg, 35%): mp 136-138 °C; R_f 0.6 (1:9 EtOAc/hexane); FT-IR (neat, cm⁻¹) 2930, 1602, 1509, 1246, 1032, 833; ¹H NMR (400 MHz, CDCl₃) δ 8.10 (d, *J* = 8.8 Hz, 1H), 7.63 (d, *J* = 1.6 Hz, 1H), 7.49 (dd, *J* = 8.8 Hz, 1.6 Hz, 1H), 7.31 (d, *J* = 8.4 Hz, 2H), 7.11 (d, *J* = 8.4 Hz, 2H), 6.92 (d, *J* = 8.4 Hz, 2H), 6.74 (d, *J* = 8.4 Hz, 2H), 3.85 (s, 3H), 3.76 (s, 3H), 3.02 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 158.9, 158.8, 157.4, 150.4, 137.7, 136.3, 133.4, 132.4, 131.6, 129.3, 127.6, 127.4, 127.2, 125.2, 124.3, 114.1, 113.3, 55.4, 55.3, 22.8; HRMS (ESI) *m/z* calcd for C₂₄H₂₁ClNO₂ [M + H]⁺ 390.1261 and 392.1231, found 390.1259 and 392.1236.

6-Chloro-1-methyl-3,4-dipropylisoquinoline (4af). Obtained as a semi solid (21.9 mg, 42%): $R_f 0.5$ (1:9 EtOAc/hexane); FT-IR (neat, cm⁻¹) 2959, 2871, 1607, 1393, 1103, 812; ¹H NMR (400 MHz, CDCl₃) δ 8.01 (d, J = 8.8 Hz, 1H), 7.906-7.903 (m, 1H), 7.41 (dd, J = 8.8 Hz, 1.2 Hz, 1H), 2.94-2.86 (m, 7H), 1.77 (sextet, J = 7.2 Hz, 2H), 1.65 (sextet, J = 7.2 Hz, 2H), 1.09 (t, J = 7.6 Hz, 3H), 1.03 (t, J = 7.2 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 155.7, 153.1, 136.6, 135.9, 128.0, 126.2, 125.6, 124.3, 122.8, 37.6, 29.8, 24.2, 23.8, 22.4, 14.6, 14.5; HRMS (ESI) *m/z* calcd for C₁₆H₂₁ClN [M + H]⁺ 262.1363 and 264.1333, found 262.1357 and 264.1325.

6-Chloro-3,4-diethyl-1-methylisoquinoline (4ag).^{11b} Obtained as a yellow semi solid (17.7 mg, 38%): R_f 0.5 (1:9 EtOAc/hexane); FT-IR (neat, cm⁻¹) 2965, 2932, 1607, 1567, 1391, 1099, 816; ¹H NMR (500 MHz, CDCl₃) δ 8.01 (d, J = 9.0 Hz, 1H), 7.93 (s, 1H), 7.43 (d, J = 9.0 Hz, 1H), 3.01-2.92 (m, 4H), 2.88 (s, 3H), 1.33 (t, J = 7.5 Hz, 3H), 1.27 (t, J = 7.5 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 155.8, 154.0, 136.3, 136.0, 128.0, 126.6, 126.2, 124.4, 122.6, 28.6, 22.4, 15.3, 14.9; HRMS (ESI) *m/z* calcd for C₁₄H₁₇ClN [M + H]⁺ 234.1050 and 236.1020, found 234.1047 and 236.1018.

6-Chloro-1,4-dimethyl-3-phenylisoquinoline (4ai). Obtained as a yellow solid (27.7 mg, 52%): mp 90-92 °C; R_f 0.6 (1:9 EtOAc/hexane); FT-IR (neat, cm⁻¹) 2922, 1606, 1392, 1097, 815, 700; ¹H NMR (400 MHz, CDCl₃) δ 8.10 (d, *J* = 9.2 Hz, 1H), 8.02 (d, *J* = 1.6 Hz, 1H), 7.56-7.53 (m, 3H), 7.49-7.45 (m, 2H), 7.41-7.37 (m, 1H), 2.96 (s, 3H), 2.56 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 156.0, 151.9, 141.3, 137.5, 136.3, 129.9, 128.3, 128.0, 127.8, 127.2, 124.6, 123.5, 121.6, 22.6, 15.5; HRMS (ESI) *m/z* calcd for C₁₇H₁₅CIN [M + H]⁺ 268.0893 and 270.0864, found 268.0880 and 270.0855.

6-Chloro-4-ethyl-1-methyl-3-phenylisoquinoline (4aj). Obtained as a pale yellow solid (25.8 mg, 46%): mp 108-110 °C; R_f 0.5 (1:9 EtOAc/hexane); FT-IR (neat, cm⁻¹) 2967, 2929, 1606, 1493, 1391, 1099, 700; ¹H NMR (400 MHz, CDCl₃) δ 8.11 (d, *J* = 8.8 Hz, 1H), 8.04 (d, *J* = 2.0 Hz, 1H), 7.54 (dd, *J* = 8.8 Hz, 2.0 Hz, 1H), 7.51-7.38 (m, 5H), 2.97-2.92 (m, 5H), 1.25 (t, *J* = 7.6 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 155.9, 152.0, 141.6, 136.44, 136.40, 129.2, 128.3, 128.2, 128.0, 127.7, 127.2, 125.1, 123.4, 22.6, 21.7, 15.7; HRMS (ESI) *m/z* calcd for C₁₈H₁₇ClN [M + H]⁺ 282.1050 and 284.1020, found 282.1037 and 284.1009.

4-Butyl-6-chloro-1-methyl-3-phenylisoquinoline (4al). Obtained as a yellow solid (30.3 mg, 49%): mp 58-60 °C; R_f 0.4 (1:9 EtOAc/hexane); FT-IR (neat, cm⁻¹) 2956, 2926, 1606, 1443, 1391, 1094, 700; ¹H NMR (400 MHz, CDCl₃) δ 8.10 (d, J = 8.8 Hz, 1H), 8.00 (d, J = 1.2 Hz, 1H), 7.53 (dd, J = 9.2 Hz, 7.6 Hz, 1H), 7.49-7.38 (m, 5H), 2.97-2.88 (m, 5H), 1.59 (quintet, J = 7.6 Hz, 2H), 1.32 (sextet, J = 7.2 Hz,

2H), 0.84 (t, J = 7.2 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 155.8, 152.3, 141.6, 136.6, 136.3, 129.3, 128.3, 128.1, 127.7, 127.1, 126.8, 125.0, 123.5, 33.4, 28.2, 22.9, 22.6, 13.8; HRMS (ESI) *m/z* calcd for C₂₀H₂₁ClN [M + H]⁺ 310.1363 and 312.1333, found 310.1358 and 312.1333.

3,4-Bis(4-bromophenyl)-6-methoxy-1-methylisoquinoline (4bd). Obtained as a yellow solid (60.6 mg, 63%): mp 171-173 °C; R_f 0.5 (1:4 EtOAc/hexane); FT-IR (neat, cm⁻¹) 2923, 1616, 1575, 1489, 1232, 1011, 833; ¹H NMR (400 MHz, CDCl₃) δ 8.10 (d, *J* = 9.2 Hz, 1H), 7.50 (d, *J* = 8.4 Hz, 2H), 7.34 (d, *J* = 8.4 Hz, 2H), 7.23 (dd, *J* = 9.2 Hz, 6.4 Hz, 1H), 7.20 (d, *J* = 8.4 Hz, 2H), 7.09 (d, *J* = 8.4 Hz, 2H), 6.84 (d, *J* = 2.4 Hz, 1H), 3.75 (s, 3H), 2.99 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 161.0, 157.7, 149.0, 139.6, 137.8, 136.7, 133.0, 131.98, 131.91, 131.0, 127.7, 127.4, 122.0, 121.7, 121.6, 119.1, 104.2, 55.4, 22.7; HRMS (ESI) *m/z* calcd for C₂₃H₁₈Br₂NO [M + H]⁺ 481.9755 and 483.9735, found 481.9740 and 483.9728.

6-Methoxy-1-methyl-3-phenyl-4-propylisoquinoline (4bk). Obtained as a pale yellow solid (32.0 mg, 55%): mp 125-127 °C; R_f 0.4 (1:9 EtOAc/hexane); FT-IR (neat, cm⁻¹) 2950, 2849, 1618, 1565, 1223, 1019, 825; ¹H NMR (400 MHz, CDCl₃) δ 8.07 (d, *J* = 8.8 Hz, 1H), 7.49-7.42 (m, 4H), 7.39-7.35 (m, 1H), 7.27 (d, *J* = 2.4 Hz, 1H), 7.22 (dd, *J* = 9.2 Hz, 6.8 Hz, 1H), 3.97 (s, 3H), 2.91 (s, 3H), 2.90-2.86 (m, 2H), 1.72-1.62 (m, 2H), 0.91 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 160.5, 155.3, 151.8, 142.2, 137.5, 129.3, 128.29, 128.23, 127.4, 126.5, 122.4, 118.2, 103.0, 55.4, 30.9, 24.0, 22.5, 14.6; HRMS (ESI) *m/z* calcd for C₂₀H₂₂NO [M + H]⁺ 292.1701 found 292.1696.

3,4-Bis(4-methoxyphenyl)-1-methyl-6-nitroisoquinoline (4cb). Obtained as a yellow solid (32.0 mg, 40%): mp 67-69 °C; R_f 0.4 (1:4 EtOAc/hexane); FT-IR (neat, cm⁻¹) 2930, 2836, 1606, 1531, 1344, 1248, 841; ¹H NMR (400 MHz, CDCl₃) δ 8.60 (d, *J* = 1.6 Hz, 1H), 8.32-8.26 (m, 2H), 7.34 (d, *J* = 8.8 Hz, 2H), 7.14 (d, *J* = 8.4 Hz, 2H), 6.96 (d, *J* = 8.8 Hz, 2H), 6.77 (d, *J* = 8.8 Hz, 2H), 3.88 (s, 3H), 3.78 (s, 3H), 3.10 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 159.3, 159.1, 157.7, 151.4, 148.3, 136.4, 132.7, 132.4, 131.6,

129.6, 128.4, 127.7, 127.6, 122.8, 119.6, 114.4, 113.4, 55.4, 55.3, 23.0; HRMS (ESI) m/z calcd for C₂₄H₂₁N₂O₄ [M + H]⁺ 401.1501 found 401.1496.

General procedure for the synthesis of hydroarylation of alkynes 5. In an oven dried vial tube 4isoxazolyl carboxylic acid 1 (0.1 mmol), diphenyl acetylene 2 (0.15 mmol), AdCO₂H (0.1 mmol), base (0.03 mmol) and Rh catalyst (0.025 mmol) were taken in mesitylene (0.5 mL). The vial was sealed with a screw cap and then placed in a pre-heated metal block at 120 °C for 8 h (monitored by TLC). After completion of the reaction, the residue was filtered through a pad of celite using EtOAc (3 x 25 mL). The solvent was evaporated under reduced pressure to give crude products, which were purified by column chromatography using EtOAc/hexane as eluent.

(*E*)-3-(4-Chlorophenyl)-5-(1,2-diphenylvinyl)isoxazole (5aa). Obtained as a white solid (27.84 mg, 78%): mp 147-148 °C; R_f 0.6 (1:9 EtOAc/hexane); FT-IR (neat, cm⁻¹) 3156, 1602, 1559, 1426, 1092; ¹H NMR (400 MHz, CDCl₃) δ 7.70 (d, *J* = 8.4 Hz, 2H), 7.55 (s, 1H), 7.46-7.444 (m, 3H), 7.39 (d, *J* = 8.4 Hz, 2H), 7.36-7.33(m, 2H), 7.20-7.14 (m, 3H), 7.08-7.06 (m, 2H), 6.07 (s, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 172.2, 161.8, 136.9, 136.0, 135.3, 131.5, 130.1, 129.7, 129.3, 129.2, 128.5, 128.43, 128.40, 128.3, 128.1, 127.6, 100.9; HRMS (ESI) *m/z* calcd for C₂₃H₁₆ClNONa [M+Na]⁺ 380.0818 and 382.0789, found 380.0804 and 382.0780.

(*E*)-3-(4-chlorophenyl)-5-(1,2-di-p-tolylvinyl)isoxazole (5ac). Obtained as a white solid (20.02 mg, 52%): mp 155-156 °C; R_f 0.6 (1:9 EtOAc/hexane); FT-IR (neat, cm⁻¹) 2919, 1602, 1509, 1427, 1375, 1092; ¹H NMR (500 MHz, CDCl₃) δ 7.69 (d, *J* = 8.5 Hz, 2H), 7.47 (s, 1H), 7.38 (d, *J* = 8.5 Hz, 2H), 7.23-7.20 (m, 4H), 6.97 (br s, 4H), 6.04 (s, 1H), 2.43 (s, 3H), 2.27 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 172.6, 161.8, 138.4, 138.2, 135.9, 134.1, 132.6, 131.3, 130.1, 130.0, 129.6, 129.19, 129.10, 128.1, 127.8, 127.5, 100.5, 21.5, 21.4; HRMS (ESI) *m/z* calcd for C₂₅H₂₀ClNONa [M+Na]⁺ 408.1131 and 410.1102, found 408.1126 and 410.1091.

(*E*)-5-(1,2-bis(4-bromophenyl)vinyl)-3-(4-chlorophenyl)isoxazole (5ad). Obtained as a pale yellow solid (40.52 mg, 79%): mp 174-175 °C; R_f 0.7 (1:9 EtOAc/hexane); FT-IR (neat, cm⁻¹) 2921, 1557, 1487, 1427, 1092, 817; ¹H NMR (400 MHz, CDCl₃) δ 7.69 (d, *J* = 8.4 Hz, 2H), 7.58 (d, *J* = 8.0 Hz, 2H), 7.46 (s, 1H), 7.40 (d, *J* = 8.4 Hz, 2H), 7.32 (d, *J* = 8.4 Hz, 2H), 7.20 (d, *J* = 8.0 Hz, 2H), 6.92 (d, *J* = 8.4 Hz, 2H), 6.08 (s, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 171.3, 161.9, 136.2, 135.4, 133.8, 132.7, 131.7, 131.49, 131.43, 130.7, 129.3, 128.1, 127.9, 127.4, 123.1, 122.8, 101.2; HRMS (ESI) *m/z* calcd for C₂₃H₁₄Br₂ClNONa [M+Na]⁺ 535.9028 and 537.9008, found 535.9049 and 537.9025.

(*E*)-5-(1,2-bis(4-(trifluoromethyl)phenyl)vinyl)-3-(4-chlorophenyl)isoxazole (5ae). Obtained as a white solid (33.03 mg, 67%): mp 197-198 °C; R_f 0.6 (1:9 EtOAc/hexane); FT-IR (neat, cm⁻¹) 2922, 1613, 1562, 1428, 1323, 1116, 825; ¹H NMR (400 MHz, CDCl₃) δ 7.74-7.69 (m, 4H), 7.61 (s, 1H), 7.48-7.44 (m, 4H), 7.40 (d, *J* = 6.4 Hz, 2H), 7.14 (d, *J* = 6.4 Hz, 2H), 6.11 (s, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 170.7, 162.0, 140.0, 138.2, 136.4, 131.2 (q, *J*_{C-F} = 32.6 Hz), 130.7, 130.3 (q, *J*_{C-F} = 32.7 Hz), 130.2, 130.1, 129.3, 129.2, 128.1, 127.2, 126.5 (q, *J*_{C-F} = 3.7 Hz), 125.5 (q, *J*_{C-F} = 3.6 Hz), 123.9 (q, *J*_{C-F} = 270.7 Hz), 123.8 (q, *J*_{C-F} = 270.6 Hz), 101.7; HRMS (EI, 70 eV) *m/z* calcd for C₂₅H₁₄ClF₆NO [M]⁺ 493.0668, found 493.0672.

(*E*)-3-(4-Chlorophenyl)-5-(1-phenylprop-1-en-2-yl)isoxazole (5ai). Obtained as a mixture of isomers (62:1), White solid (20.06 mg, 68%): mp 139-140 °C; R_f 0.5 (1:9 EtOAc/hexane); FT-IR (neat, cm⁻¹) 3099, 1453, 1103, 919, 808; ¹H NMR (400 MHz, CDCl₃) δ 7.78 (d, *J* = 8.4 Hz, 2H), 7.45 (d, *J* = 8.8 Hz, 2H), 7.42-7.38 (m, 5H), 7.35-7.29 (m, 1H), 6.55 (s, 1H), 2.29 (d, *J* = 1.2 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 172.8, 161.9, 136.2, 136.0, 131.3, 129.5, 129.3, 128.5, 128.1, 127.9, 127.8, 123.7, 98.2, 15.4; HRMS (ESI) *m/z* calcd for C₁₈H₁₄ClNONa [M+Na]⁺ 318.0662 and 320.0632, found 318.0655 and 320.0630.

(*E*)-3-(4-Chlorophenyl)-5-(1-phenylbut-1-en-2-yl)isoxazole (5aj). Obtained as a mixture of isomers (72:1), white solid (24.54 mg, 71%): mp 114-115 °C; $R_f 0.4$ (1:9 EtOAc/hexane); FT-IR (neat, cm⁻¹) 2908,

1600, 1557, 1427, 1090, 813; ¹H NMR (400 MHz, CDCl₃) δ 7.78 (d, *J* = 8.8 Hz, 2H), 7.44 (d, *J* = 8.4 Hz, 2H), 7.41-7.38 (m, 4H), 7.35 (s, 1H), 7.34-7.30 (m, 1H), 6.56 (s, 1H), 2.70 (q, *J* = 7.6 Hz, 2H), 1.29 (t, *J* = 7.6 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 172.3, 161.9, 136.1, 136.0, 131.1, 130.3, 129.3, 129.1, 128.6, 128.1, 128.0, 127.8, 98.1, 22.2, 14.0; HRMS (ESI) *m/z* calcd for C₁₉H₁₆ClNONa[M+Na]⁺ 332.0818 and 334.0789, found 332.0811 and 334.0787.

(*E*)-3-(4-chlorophenyl)-5-(1-phenylpent-1-en-2-yl)isoxazole (5ak). Obtained as a mixture of isomers (99:1), white solid (24.54 mg, 76%): mp 76-77 °C; R_f 0.5 (1:9 EtOAc/hexane); FT-IR (neat, cm⁻¹) 2960, 1602, 1559, 1427, 1092, 788; ¹H NMR (400 MHz, CDCl₃) δ 7.78 (d, *J* = 8.8 Hz, 2H), 7.44 (d, *J* = 8.4 Hz, 2H), 7.41-7.36 (m, 5H), 7.34-7.30 (m, 1H), 6.54 (s, 1H), 2.64 (quintate, *J* = 5.6 Hz, 2H), 1.69 (septet, *J* = 7.2 Hz, 2H), 1.02 (t, *J* = 7.6 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 172.6, 161.8, 136.2, 136.0, 131.5, 129.3, 129.2, 129.1, 128.6, 128.1, 127.98, 127.90, 98.0, 31.0, 22.7, 14.3; HRMS (ESI) *m/z* calcd for C₂₀H₁₉CINO [M+H]⁺ 324.1155 and 326.1126, found 324.1150 and 326.1116.

(*E*)-5-(1,2-Diphenylvinyl)-3-(4-methoxyphenyl)isoxazole (5ba). Obtained as a white solid (25.76 mg, 73%); mp 155-156 °C; R_f 0.6 (1:9 EtOAc/hexane); FT-IR (neat, cm⁻¹) 3055, 2933, 1612, 1524, 1429, 1251, 1028; ¹H NMR (400 MHz, CDCl₃) δ 7.69 (d, *J* = 8.8 Hz, 2H), 7.52 (s, 1H), 7.45-7.41 (m, 3H), 7.36-7.32 (m, 2H), 7.19-7.13 (m, 3H), 7.07-7.05 (m, 2H), 6.93 (d, *J* = 9.2 Hz, 2H), 6.04 (s, 1H), 3.83 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 171.6, 162.4, 161.0, 137.1, 135.4, 131.1, 130.1, 129.8, 129.2, 128.6, 128.5, 128.3, 128.2, 121.7, 114.3, 101.0, 55.4; HRMS (ESI) *m/z* calcd for C₂₄H₁₉NO₂Na [M+Na]⁺ 376.1313, found 376.1296.

(*E*)-5-(1,2-Bis(4-(trifluoromethyl)phenyl)vinyl)-3-(4-methoxyphenyl)isoxazole (5be). Obtained as a pale yellow solid (40.09 mg, 82%); mp 164-165 °C; R_f 0.4 (1:9 EtOAc/hexane); FT-IR (neat, cm⁻¹) 2919, 1613, 1430, 1324, 1018; ¹H NMR (400 MHz, CDCl₃) δ 7.73-7.69 (m, 4H), 7.59 (s, 1H), 7.48-7.43 (m, 4H), 7.13 (d, *J* = 8.0 Hz, 2H), 6.94 (d, *J* = 8.8 Hz, 2H), 6.08 (s, 1H), 3.84 (s, 3H); ¹³C NMR (125 MHz, 2H), 7.13 (d, *J* = 8.0 Hz, 2H), 6.94 (d, *J* = 8.8 Hz, 2H), 6.08 (s, 1H), 3.84 (s, 3H); ¹³C NMR (125 MHz, 2H), 7.13 (d, *J* = 8.0 Hz, 2H), 6.94 (d, *J* = 8.8 Hz, 2H), 6.08 (s, 1H), 3.84 (s, 3H); ¹³C NMR (125 MHz, 2H), 7.13 (d, *J* = 8.0 Hz, 2H), 6.94 (d, *J* = 8.8 Hz, 2H), 6.08 (s, 1H), 3.84 (s, 3H); ¹³C NMR (125 MHz, 2H), 7.13 (s, 125 MHz, 2H),

CDCl₃) δ 170.1, 162.6, 161.2, 140.1, 138.3, 131.0 (q, J_{C-F} = 32.4 Hz), 130.4, 130.3, 130.2 (q, J_{C-F} = 32.2 Hz), 130.1, 129.4, 128.3, 126.4 (q, J_{C-F} = 3.6 Hz), 125.4 (q, J_{C-F} = 4.0 Hz), 124.0 (q, J_{C-F} = 270.8 Hz), 123.9 (q, J_{C-F} = 270.3 Hz), 114.4, 101.8; HRMS (ESI) *m/z* calcd for C₂₆H₁₇F₆NO₂Na [M+Na]⁺ 512.1061, found 512.1066.

(*E*)-5-(1,2-Diphenylvinyl)-3-(4-nitrophenyl)isoxazole (5ca). Obtained as a white solid (25.76 mg, 70%): mp 175-176 °C; R_f 0.5 (1:9 EtOAc/hexane); FT-IR (neat, cm⁻¹) 2916, 1561, 1519, 1429, 1340, 851; ¹H NMR (400 MHz, CDCl₃) δ 8.28 (d, *J* = 8.8 Hz, 2H), 7.94 (d, *J* = 9.2 Hz, 2H), 7.57 (s, 1H), 7.47-7.44 (m, 3H), 7.37-7.33 (m, 2H), 7.22-7.15 (m, 3H), 7.08-7.06 (m, 2H), 6.15 (s, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 173.0, 161.0, 148.7, 136.7, 135.3, 135.1, 132.0, 130.2, 129.7, 129.4, 128.7, 128.6, 128.4, 128.1, 127.7, 124.2, 100.9; HRMS (ESI) *m/z* calcd for C₂₃H₁₆N₂O₃Na [M+Na]⁺ 391.1059, found 391.1041.

(*E*)-5-(1,2-Bis(4-bromophenyl)vinyl)-3-(4-nitrophenyl)isoxazole (5cd). Obtained as a pale yellow solid (33.99 mg, 65%); mp 199-200 °C; R_f 0.4 (1:9 EtOAc/hexane); FT-IR (neat, cm⁻¹) 2922, 1607, 1519, 1455, 1344, 1071; ¹H NMR (400 MHz, CDCl₃) δ 8.29 (d, *J* = 8.8 Hz, 2H), 7.94 (d, *J* = 9.2 Hz, 2H), 7.60 (d, *J* = 8.4 Hz, 2H), 7.49 (s, 1H), 7.33 (d, *J* = 8.8 Hz, 2H), 7.21 (d, *J* = 8.4 Hz, 2H), 6.94 (d, *J* = 8.4 Hz, 2H), 6.18 (s, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 172.0, 161.1, 148.8, 135.1, 135.0, 133.6, 132.8, 131.8, 131.5, 131.3, 131.2, 127.7, 127.6, 124.3, 123.2, 123.1, 101.2; HRMS (ESI) *m/z* calcd for C₂₃H₁₄Br₂N₂O₃Na [M+Na]⁺ 546.9269 and 548.9248, found 546.9282 and 548.9264.

(*E*)-3-(4-Nitrophenyl)-5-(1-phenylhex-1-en-2-yl)isoxazole (5cl). Obtained as mixer of isomers (99:1), red solid (25.05 mg, 72%): mp 98-99 °C; R_f 0.6 (1:9 EtOAc/hexane); FT-IR (neat, cm⁻¹) 2956, 2869, 1606, 1562, 1518, 1348, 857; ¹H NMR (400 MHz, CDCl₃) δ 8.34 (d, *J* = 8.8 Hz, 2H), 8.03 (d, *J* = 8.8 Hz, 2H), 7.41-7.31 (m, 6H), 6.64 (s, 1H), 2.69 (t, *J* = 7.6 Hz, 2H), 1.65 (sextet, *J* = 7.2 Hz, 2H), 1.45 (sextet, *J* = 7.2 Hz, 2H), 0.95 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 173.5, 161.0, 148.7, 136.0, 135.5, 131.9, 129.1, 128.7, 128.1, 127.7, 124.3, 98.1, 31.5, 28.7, 23.0, 13.9; HRMS (ESI) *m/z* calcd for C₂₁H₂₀N₂O₃Na [M+Na]⁺ 371.1372, found 371.1360.

(*E*)-5-(1,2-diphenylvinyl)-3-(4-propylphenyl)isoxazole (5da). Obtained as a white solid (24.09 mg, 66%): mp 79-80 °C; R_f 0.6 (1:9 EtOAc/hexane); FT-IR (neat, cm⁻¹) 2962, 1566, 1496, 1420, 1006; ¹H NMR (400 MHz, CDCl₃) δ 7.45 (s, 1H), 7.42-7.39 (m, 3H), 7.30-7.28 (m, 2H), 7.15-7.13 (m, 3H), 7.04-7.01 (m, 2H), 5.64 (s, 1H), 2.58 (t, *J* = 7.6 Hz, 2H), 1.65 (sextet, *J* = 7.6 Hz, 3H), 0.95 (t, *J* = 7.6 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 171.0, 164.5, 137.2, 135.5, 130.8, 130.0, 129.7, 129.1, 128.8, 128.3, 128.2, 128.1, 102.8, 28.1, 21.7, 13.9; HRMS (ESI) *m/z* calcd for C₂₀H₁₉NONa [M+Na]⁺ 312.1364, found 312.1350.

(*E*)-5-(1,2-Bis(4-bromophenyl)vinyl)-3-(4-propylphenyl)isoxazole (5dd). Obtained as a white solid (31.20 mg, 60%): mp 120-121°C; R_f 0.6 (1:9 EtOAc/hexane); FT-IR (neat, cm⁻¹) 2960, 1571, 1487, 1421, 1071, 817; ¹H NMR (400 MHz, CDCl₃) δ 7.55 (d, *J* = 8.4 Hz, 2H), 7.37 (s, 1H), 7.30 (d, *J* = 8.4 Hz, 2H), 7.15 (d, *J* = 8.4 Hz, 2H), 6.89 (d, *J* = 8.8 Hz, 2H) 5.66 (s, 1H), 2.59 (t, *J* = 7.6 Hz, 2H), 1.65 (sextet, *J* = 7.6 Hz, 3H), 0.95 (t, *J* = 7.6 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 170.1, 164.5, 135.6, 134.1, 132.6, 131.6, 131.43, 131.41, 130.0, 128.2, 122.8, 122.5, 103.1, 28.1, 21.7, 13.8; HRMS (ESI) *m/z* calcd for C₂₀H₁₇Br₂NONa [M+Na]⁺ 467.9575 and 469.9554, found 467.9576 and 469.9553.

(*E*)-5-(1,2-Bis(4-(trifluoromethyl)phenyl)vinyl)-3-(4-propylphenyl)isoxazole (5de). Obtained as a white solid (26.05 mg, 52%): mp 84-85°C; R_f 0.5 (1:9 EtOAc/hexane); FT-IR (neat, cm⁻¹) 2964, 1616, 1408, 1323, 1067, 835; ¹H NMR (400 MHz, CDCl₃) δ 7.69 (d, *J* = 8.0 Hz, 2H), 7.52 (s, 1H), 7.42 (d, *J* = 7.6 Hz, 4H), 7.11 (d, *J* = 8.0 Hz, 2H), 5.69 (s, 1H), 2.60 (t, *J* = 7.6 Hz, 2H), 1.66 (sextet, *J* = 7.6 Hz, 2H), 0.96 (t, *J* = 7.6 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 169.5, 164.6, 140.2, 138.4, 131.1 (q, *J*_{C-F} = 32.5 Hz), 130.2, 130.1, 130.0, 129.8 (q, *J*_{C-F} = 32.3 Hz), 126.3 (q, *J*_{C-F} = 3.5 Hz), 125.4 (q, *J*_{C-F} = 3.6 Hz), 124.0

(q, $J_{C-F} = 270.7$ Hz), 123.8 (q, $J_{C-F} = 270.3$ Hz), 103.7, 28.1, 21.7, 13.8; HRMS (ESI) m/z calcd for $C_{22}H_{17}F_6NONa[M+Na]^+ 448.1112$ found 448.1110.

Mechanistic studies

We treated **3aa** and **3ae** under decarboxylative hydroarylation conditions (Rh(III)/acidic conditions), but, we did not observe the formation of **5aa** and **5ae** respectively. These results suggest that reaction did not proceed via/through annulated product formation to give hydroarylation product **5** (Scheme S1).

Scheme S1. Decarboxylative experiment/reaction from 3ae and 3ae under optimized reaction conditions

Synthesis of rhodacyle 7

In an oven dried vial tube isoxazolyl-4-carboxylic acid **1a** (0.1 mmol), $[Cp*RhCl_2]_2$ (0.05 mmol) and NaOAc (0.1 mmol) were added in DCE (1 mL) under argon atmosphere, and then the reaction mixture was heated at 100 °C for 4 h (monitored by TLC). After completion of the reaction, the solvent was evaporated, and the crude residue was purified by column chromatography using EtOAc/hexane (4:1) as eluent to give rhodacyle **7** as a brown solid (7.8 mg, 20%). mp 147-149 °C; R_f 0.2 (4:1 EtOAc/hexane);

FT-IR (neat, cm⁻¹) 3202, 2914, 1567, 1536, 1455, 1380, 1083, 753; ¹H NMR (400 MHz, CDCl₃) δ 8.80 (br s, 1H), 7.75 (d, *J* = 1.6 Hz, 1H), 7.30 (d, *J* = 8.4 Hz, 1H), 7.00 (dd, *J* = 8.0 Hz, 6.0 Hz, 1H), 2.50 (s, 3H), 1.68 (s, 15H); ¹³C NMR (125 MHz, CDCl₃) δ 185.8, 185.5, 184.0, 144.2, 137.1, 136.0, 128.6, 122.8, 95.9, 95.8, 22.8, 9.4; HRMS (ESI) *m*/*z* calcd for C₁₈H₂₂NCl₂RhNa [M + Na]⁺ 448.0082 and 450.0053 found 448.0077 and 450.0035.

Trapping of ketene intermediate with methanol for the formation of 6

In an oven dried vial tube, isoxazolyl-4-carboxylic acid **1a** (0.1 mmol), alkyne **2a** (0.12 mmol), $Cu(OAc)_2 \cdot H_2O$ (0.1 mmol) and [Cp*RhCl_2]_2 (5 mol%) were taken under argon atmosphere. To this reaction mixture methanol (10 equiv.) and DMF (0.5 mL) were added and then it was placed in a preheated metal block at 100 °C for 2 h (monitored by TLC). After completion of the reaction, the residue was filtered through a pad of celite using EtOAc (3 x 25 mL). To the filtrate saturated NH₄Cl (25 mL) solution was added, organic layer was separated, washed with brine (20 mL), dried over Na₂SO₄ and the solvent was evaporated under reduced pressure to give crude products, which were purified by column chromatography using EtOAc/hexane as eluent to give products **4aa** and **6**.

Methyl 2-(6-chloro-3,4-diphenylisoquinolin-1-yl)acetate (6). Obtained as a yellow solid (8.12 mg, 21%): mp 126-127 °C; R_f 0.4 (1:4 EtOAc/hexane); FT-IR (neat, cm⁻¹) 2955, 2921, 1738, 1606, 1456, 769; ¹H NMR (500 MHz, CDCl₃) δ 8.06 (dd, J = 7.2 Hz, 1H), 7.64 (d, J = 1.6 Hz, 1H), 7.53 (dd, J = 7.2 Hz, 1.6 Hz, 1H), 7.38-7.33 (m, 5H), 7.22-7.18 (m, 5H), 4.47 (s, 2H), 3.75 (s, 3H) ; ¹³C NMR (125 MHz, CDCl₃) δ 171.0, 153.6, 150.8, 140.3, 137.7, 136.7, 131.3, 130.4, 129.7, 128.6, 128.1, 127.7, 127.4, 127.0,

125.4, 124.5, 52.4, 42.4; HRMS (ESI) *m/z* calcd for C₂₄H₁₈ClNNaO₂ [M+Na]⁺ 410.0924 and 412.0894 found 410.0922 and 412.0904.

Crystal data and ORTEP diagram of compounds 3aa, 3ai, 4aa, 5aa, 5ae and 7

3aa: C₂₄H₁₄ClNO₃, M = 399.81, space group = P21, a = 11.1094(16), b = 5.7150(8), c = 15.077 (2) Å, V = 893.6(2) Å³, α = 90, β = 111.014(2), γ = 90, Z = 2, T = 90 K, F(000) = 412, Reflections collected = 3890, unique = 3743, R1 = 0.0290, wR2 = 0.0746.

Figure S1. ORTEP diagram of 3aa (CCDC 1870838)

Crystal data and ORTEP diagram of compound 3ai

3ai: C₁₉H₁₂ClNO₃, M = 337.75, space group = Pbca, a = 7.1186(6), b = 19.2065(17), c = 21.5744 (17) Å, V = 2949.7(4) Å³, α = 90, β = 90, γ = 90, Z = 8, T = 90 K, F(000) = 1392, Reflections collected = 3722, unique = 3299, R1 = 0.0294, wR2 = 0.0829.

Figure S2. ORTEP diagram of 3ai (CCDC 1870840)

Crystal data and ORTEP diagram of compound 4aa

4aa: C₂₂H₁₆ClN, M = 329.81, space group = P21/n, a = 10.8409(15), b = 10.0705(14), c = 15.263 (2) Å, V = 1665.5(4) Å³, α = 90, β = 91.756(2), γ = 90, Z = 4, T = 90 K, F(000) = 688, Reflections collected = 4080, unique = 3653, R1 = 0.0328, wR2 = 0.0988.

Figure S3. ORTEP diagram of 4aa (CCDC 1870841)

Crystal data and ORTEP diagram of compound 5aa

5aa: C₂₃H₁₆ClNO, M = 357.82, space group = P21/c, a = 11.027 (3), b = 8.159 (2), c = 19.126 (5) Å, V = 1718.5 (7) Å³, α = 90, β = 92.913 (2), γ = 90, Z = 4, T = 90 K, F(000) = 744, Reflections collected = 4233, unique = 3088, R1 = 0.0328, wR2 = 0.1134.

Figure S4. ORTEP diagram of 5aa (CCDC 1899700)

Crystal data and ORTEP diagram of compound 5ae

5ae: $C_{25}H_{14}ClF_6NO$, M = 493.82, space group = P21/c, a = 14.7536(19), b = 6.9198(9), c = 22.084 (3) Å, V = 2133.5(5) Å³, α = 90, β = 108.867(2), γ = 90, Z = 4, T = 90 K, F(000) = 1000, Reflections collected = 5256, unique = 4226, R1 = 0.0402, wR2 = 0.1151.

Figure S5. ORTEP diagram of 5ae (CCDC 1899699)

Crystal data and ORTEP diagram of Rodacycle 7

7: $C_{18}H_{22}Cl_2NRh$, M = 425.01, space group = P 21, a = 8.4219(12), b = 35.714(5), c = 13.5618 (19) Å, V = 3991.8(10) Å³, α = 90, β = 101.876(2), γ = 90, Z = 8, T = 90 K, F(000) = 1828, Reflections collected = 14947, unique = 13719, R1 = 0.0487, wR2 = 0.1058.

Figure S6. ORTEP diagram of 7 (CCDC 1870842)

NOESY of compounds 4ai, 4aj and 4al.

NOESY of compound 4ai.

There is a NOE correlation between Ha (δ 2.60, s) and Hb (δ 8.01, d). NOE is also observed between Ha (δ 2.6 s) and Hc (δ 7.49). There is no correlation between Hb and Hc. This suggests that regiochemistry of compound **4ai** is correct. Similar type of regiochemistry was observed in rhodium catalyzed reactions.¹²

S31

NOESY of compound 4aj.

There is a NOE correlation between Ha (δ 2.95, q) and Hb (δ 8.05, d). NOE is also observed between Hf (δ 1.38, t) and Hb (δ 8.05, d). There is no correlation between Hb and Hc. This suggests that regiochemistry of compound **4aj** is correct.

NOESY of compound 4al.

There is a NOE correlation between Ha (δ 2.95, q) and Hb (δ 8.04, d). NOE is also observed between Hf (δ 1.65, quintet) and Hb (δ 8.04, d). There is no correlation between Hb and Hc. This suggests that regiochemistry of compound **4al** is correct.

S34

1D-NOESY of compound 4bk.

First, we selectively irradiated Hb (δ 7.27, d) protons and the NOE was observed on Ha (δ 2.88, s) protons. Similarly, Ha (δ 2.88, s) protons irradiated and the NOE was observed at Hb (δ 7.27, d). There is no NOE in between Hb and Hc protons. This suggests that regiochemistry of compound **4bk** is correct.

References:

- 1. T. Morita, S. Fuse and H. Nakamura, Angew. Chem. Int. Ed. 2016, 55, 13580.
- B. C. Hamper, K. L. Leschinsky, S. S. Massey, C. L. Bell, L. H. Brannigan and S. D. Prosch, J. Agric. Food Chem 1995, 43, 219.
- M. T. Herrero, I. Tellitu, E. Dominguez, S. Hernandez, I. Moreno and R. SanMartin, *Tetrahedron*, 2002, 58, 8581.
- M. J. Mio, L. C. Kopel, J. B. Barun, T. L. Gadzikawa, K. L. Hull, R. G. Brisbois, C. J. Markworth and P. A. Grieco, *Org. Lett.* 2002, 4, 3199.
- (a) E. Kudo, Y. Shibata, M. Yamazaki, K. Masutomi, Y. Miyauchi, M. Fukui, H. Sugiyama, H. Uekusa, T. Satoh, M. Miura and K. Tanaka, *Chem. Eur. J.*, 2016, 22, 14190; (b) S. Warratz, C. Kornhaab, A. Cajaraville, B. Niepotter, D. Stalke and L. Ackermann, *Angew. Chem. Int. Ed.*, 2015, 54, 5513; (c) X. Xu, H. Zhao, J. Xu, C. Chen, Y. Pan, Z. Luo, Z. Zhang, H. Li and L. Xu, *Org. Lett.*, 2018, 20, 3843; (d) Z. Long, Y. Yang and J. You, *Org. Lett.*, 2017, 19, 2781; (e) R. Mandal and B. Sundararaju, *Org. Lett.*, 2017, 19, 2544.
- 6. J. Zhang, R. Shrestha, J. F. Hartwig and P. Zhao, Nat. Chem., 2016, 8, 1144.
- (a) L. Huang, A. Biafora, G. Zhang, V. Bragoni and L. J. Goossen, *Angew. Chem. Int. Ed.*, 2016, 55, 6933; (b) N. Y. Phani Kumar, A. Bechtoldt, K. Raghuvanshi and L. Ackermann, *Angew. Chem. Int. Ed.*, 2016, 55, 6929; (c) A. Biafora, B. A. Khan, J. Bahri, J. M. Hewer and L. J. Goossen, *Org. Lett.*, 2017, 19, 1232. (d) X.-Q. Hu, Z. Hu, A. S. Trita, G. Zhang and L. J. Goossen, *Chem. Sci.*, 2018, 9, 5289; (e) M. Simonetti and I. Larossa, *Nat. Chem.*, 2016, 8, 1086.
- 8. A. V. Dubrovskiy and R. C. Larock, Org. Lett. 2010, 12, 1180.
- 9. M. Shigenobu, K. Takenaka and H. Sasai, Angew. Chem. Int. Ed. 2015, 54, 9572.
- (a) A. Krasovskiy and P. Knochel, *Angew. Chem. Int. Ed.* 2004, 43, 3333. (b) A. Krasovskiy and P. Knochel, *Synthesis* 2006, 890.
- 11. (a) S.-C. Chuang, P. Gandeepan, C.-H. Cheng, *Org. Lett.* 2013, 15, 5750. (b) H. Wang, J. Koeller, W. Liu, L. Ackermann, *Chem. Eur. J.*, 2015, 21, 15525.
- (a) P. C. Too, Y.-F. Wang, S. Chiba, Org. Lett. 2010, 12, 5688. (b) T. K. Hyster, T. Rovis, Chem. Commun. 2011, 47, 11846.

Figure S7. ¹H and ¹³C NMR Spectra of compound 1a

Figure S8. ¹H and ¹³C NMR Spectra of compound 1b

Figure S9. ¹H and ¹³C NMR Spectra of compound 1c

Figure S10. ¹H and ¹³C NMR Spectra of compound 1d

Figure S12. ¹H and ¹³C NMR Spectra of compound 3aa

Figure S13. ¹H and ¹³C NMR Spectra of compound 3ab

Figure S14. ¹H and ¹³C NMR Spectra of compound 3ad

Figure S15. ¹H and ¹³C NMR Spectra of compound 3ae

Figure S16. ¹H and ¹³C NMR Spectra of compound 3af

Figure S17. ¹H and ¹³C NMR Spectra of compound 3ag

Figure S18. ¹H and ¹³C NMR Spectra of compound 3ah

Figure S19. ¹H and ¹³C NMR Spectra of compound 3ai

Figure S20. ¹H and ¹³C NMR Spectra of compound 3aj

Figure S22. ¹H and ¹³C NMR Spectra of compound 3al

Figure S23. ¹H and ¹³C NMR Spectra of compound 3ak

Figure S24. ¹H and ¹³C NMR Spectra of compound 3ba

Figure S25. ¹H and ¹³C NMR Spectra of compound 3bg

Figure S26. ¹H and ¹³C NMR Spectra of compound 3ca

Figure S27. ¹H and ¹³C NMR Spectra of compound 3ci

Figure S28. ¹H and ¹³C NMR Spectra of compound 3da

2.911 2.874 2.874 2.874 2.874 1.864 1.867 1.867 1.867 1.771 0.971

Figure S29. ¹H and ¹³C NMR Spectra of compound 3dh

Figure S30. ¹H and ¹³C NMR Spectra of compound 4aa

Figure S31. ¹H and ¹³C NMR Spectra of compound 4ab

Figure S32. ¹H and ¹³C NMR Spectra of compound 4af

Figure S33. ¹H and ¹³C NMR Spectra of compound 4ag

Figure S34. ¹H and ¹³C NMR Spectra of compound 4ai

Figure S35. ¹H and ¹³C NMR Spectra of compound 4aj

Figure S36. ¹H and ¹³C NMR Spectra of compound 4al

Figure S37. ¹H and ¹³C NMR Spectra of compound 4bd

Figure S38. ¹H and ¹³C NMR Spectra of compound 4bk

Figure S39. ¹H and ¹³C NMR Spectra of compound 4cb

Figure S40. ¹H and ¹³C NMR Spectra of compound 5aa

Figure S41. ¹H and ¹³C NMR Spectra of compound 5ac

Figure S42. ¹H and ¹³C NMR Spectra of compound 5ad

Figure S43. ¹H and ¹³C NMR Spectra of compound 5ae

Figure S44. ¹H and ¹³C NMR Spectra of compound 5ai

Figure S45. ¹H and ¹³C NMR Spectra of compound 5aj

Figure S46. ¹H and ¹³C NMR Spectra of compound 5ak

Figure S47. ¹H and ¹³C NMR Spectra of compound 5ba

Figure S48. ¹H and ¹³C NMR Spectra of compound 5be

Figure S49. ¹H and ¹³C NMR Spectra of compound 5ca

Figure S50. 1 H and 13 C NMR Spectra of compound 5cd

Figure S51. ¹H and ¹³C NMR Spectra of compound 5cl

Figure S52. ¹H and ¹³C NMR Spectra of compound 5da

Figure S53. ¹H and ¹³C NMR Spectra of compound 5dd

Figure S54. ¹H and ¹³C NMR Spectra of compound 5de

Figure S55. 1 H and 13 C NMR Spectra of compound 7

Figure S57. ¹H and ¹³C NMR Spectra of compound 6