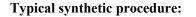
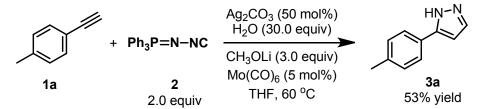
Supporting Information for

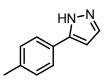
Molybdenum-Silver Co-catalyzed Cycloaddition of Alkynes with N-Isocyanoiminotriphenylphosphorane (NIITP): an Efficient Strategy for the Synthesis of Monosubstituted Pyrazoles

Pengbing, Mi,^b Jiajia, Lang,^c Shaojian, Lin*^a ^aSichuan University, College of Light Industry and Textile and Food Engineering, Sichuan University, Chengdu 610065, China ^bInstitute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China ^cResearch Center for Medicine, University of South China, Hengyang 421001, China Corresponding author E-mail: sjlin@scu.edu.cn


Contents


I. General information	2
II Synthesis and spectra data of 3a-3u	2
III. Synthesis and spectra data of 5a-5k	12
IV. ¹ H- and ¹³ C-NMR spectra copies	18

I. General information


All reagents were purchased from commercial sources and used without treatment, unless otherwise indicated. The products were purified by column chromatography over silica gel. ¹H-NMR and ¹³C-NMR spectra were recorded at 25 °C on a Varian 500 MHz and 125 MHz, and BRUKER 600 MHz and 150 MHz respectively, and TMS was used as internal standard. Mass spectra were recorded on BRUKER AutoflexIII Smartbeam MS-spectrometer. High resolution mass spectra (HRMS) were recorded on Bruck microTof by using ESI method. High Performance Liquid Chromatography were recorded on Agilent Technologies Inc.1220.

II Synthesis and spectra data of 3a-3u

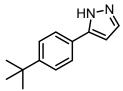
The mixture of 2 (181 mg, 0.6 mmol), CH₃OLi (34.2 mg, 0.9 mmol), Mo(CO)₆ (4 mg, 0.015 mmol) and Ag₂CO₃ (41.4 mg, 0.15 mmol) were added in a Schlenk tube. After evacuated and refilled with nitrogen 3 times, tetrahydrofuran (2.5 ml), 1b (34.8 mg, 0.3 mmol) and H₂O (162 μ l, 9 mmol) was added in one portion to the tube by syringe, follow stirred for 12 h at 60 °C. After completed, the reaction mixture was cooled to room temperature and quenched with water. The organic layer was extracted with 2M HCl (20 ml × 3), then use NaOH to adjust the aqueous layer's pH to 12-13, then the aqueous layer was extracted with CH₂Cl₂ (100 ml × 3). The combined organic layers were dried over MgSO₄ and filtered, evacuated under vacuum. The residue was purified by column chromatography (PE : EA = 2 : 1) to give 3a 36.1 mg (76%).

(3a) 5(3)-4-Tolyl-1H-pyrazole¹

White Solid (36.1 mg, 76%); ¹H NMR (600 MHz, CDCl₃) δ 11.95 (s, 1H), 7.64 (d, J = 8.0 Hz, 2H), 7.59 (s, 1H), 7.20 (d, J = 8.0 Hz, 2H), 6.56 (s, 1H), 2.37 (s, 3H).; ¹³C NMR (150 MHz, CDCl₃) δ 148.6, 138.1, 133.6, 129.5, 128.7, 125.8, 102.4, 21.2; HRMS (ESI) m/z calculated C₁₀H₁₁N₂ [M+H]⁺ 159.0937, found 159.0917.

(3b) 5(3)-Phenyl-1H-pyrazole¹

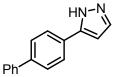
The mixture of 2 (181 mg, 0.6 mmol), CH₃OLi (34.2 mg, 0.9 mmol), Mo(CO)₆ (4 mg, 0.015 mmol) and Ag₂CO₃ (41.4 mg, 0.15 mmol) were added in a Schlenk tube. After evacuated and refilled with nitrogen 3 times, tetrahydrofuran (2.5 ml), 1b (31.6 mg, 0.3 mmol) and H₂O (162 µl, 9 mmol) was added in one portion to the tube by syringe, follow stirred for 12 h at 60 °C. After completed, the reaction mixture was cooled to room temperature and quenched with water. The organic layer was extracted with 2M HCl (20 ml \times 3), then use NaOH to adjust the aqueous layer's pH to 12-13, then the aqueous layer was extracted with CH_2Cl_2 (100 ml \times 3). The combined organic layers were dried over MgSO4 and filtered, evacuated under vacuum. The residue was purified by column chromatography (PE : EA = 2 : 1) to give 3b 27.6 mg (64%). White Solid; ¹**H** NMR (600 MHz, CDCl₃) δ 11.63 (s, 1H), 7.75 (d, J = 7.2 Hz, 2H), 7.60 (d, J = 2.4Hz, 1H), 7.39 (t, J = 7.2 Hz, 2H), 7.32 (t, J = 7.2 Hz, 1H), 6.60 (d, J = 2.4 Hz, 1H); ¹³C NMR (150


MHz, CDCl₃) δ 149.2, 133.5, 132.2, 128.7, 128.0, 125.9, 102.6; HRMS (ESI) m/z calculated C₉H₉N₂

(3c) 5(3)-(4-Methoxyphenyl)-1H-pyrazole¹

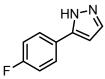
[M+H]⁺ 145.0760, found 145.0760.

The mixture of 1c (39.6 mg, 0.3 mmol), 2 (181 mg, 0.6 mmol), CH₃OLi (34.2 mg, 0.9 mmol), $Mo(CO)_6$ (4 mg, 0.015 mmol) and Ag_2CO_3 (41.4 mg, 0.15 mmol) were added in a Schlenk tube. After evacuated and refilled with nitrogen 3 times, tetrahydrofuran (2.5 ml) and H₂O (162 µl, 9 mmol) was added in one portion to the tube by syringe, follow stirred for 12 h at 60 °C. After completed, the reaction mixture was cooled to room temperature and quenched with water. The organic layer was extracted with 2M HCl (20 ml × 3), then use NaOH to adjust the aqueous layer's pH to 12-13, then the aqueous layer was extracted with CH_2Cl_2 (100 ml \times 3). The combined organic layers were dried over MgSO₄ and filtered, evacuated under vacuum. The residue was purified by column chromatography (PE : EA = 2 : 1) to give 3c 40.2 mg (77%).


White Solid; ¹**H** NMR (600 MHz, CDCl₃) δ 12.23 (s, 1H), 7.66 (d, J = 8.4 Hz, 2H), 7.57 (d, J = 2.2Hz, 1H), 6.90 (d, J = 8.4 Hz, 2H), 6.51 (d, J = 2.2 Hz, 1H), 3.82 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 159.5, 148.4, 133.6, 127.1, 124.8, 114.1, 102.0, 55.3; HRMS (ESI) m/z calculated C₁₀H₁₁N₂O [M+H]⁺ 175.0873, found 175.0866.

(3d) 5(3)-(4-(tert-butyl)phenyl)-1H-pyrazole

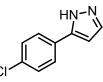
The mixture of 2 (181 mg, 0.6 mmol), CH₃OLi (34.2 mg, 0.9 mmol), Mo(CO)₆ (4 mg, 0.015 mmol) and Ag₂CO₃ (41.4 mg, 0.15 mmol) were added in a Schlenk tube. After evacuated and refilled with nitrogen 3 times, tetrahydrofuran (2.5 ml), 1d (47.5 mg, 0.3 mmol) and H₂O (162 μ l, 9 mmol) was added in one portion to the tube by syringe, follow stirred for 12 h at 60 °C. After completed, the reaction mixture was cooled to room temperature and quenched with water. Then the aqueous layer was extracted with CH₂Cl₂ (100 ml × 3). The combined organic layers were dried over MgSO₄ and filtered, evacuated under vacuum. The residue was purified by column chromatography (PE : EA = 5 : 1) to give 3d 31.8 mg (53%).


Light Yellow Solid; mp: 53-55°C; ¹H NMR (600 MHz, CDCl₃) δ 10.85 (s, 1H), 7.68 (d, J = 8.2 Hz, 2H), 7.59 (d, J = 1.2 Hz, 1H), 7.42 (d, J = 8.2 Hz, 2H), 6.57 (d, J = 1.2 Hz, 1H), 1.34 (s, 9H); ¹³C NMR (150 MHz, CDCl₃) δ 151.1, 148.5, 133.8, 129.1, 125.7, 125.5, 102.4, 34.6, 31.3; HRMS (ESI) *m/z* calculated C₁₃H₁₇N₂ [M+H]⁺ 201.1395, found 201.1386.

(3e) 5(3)-(4-[1,1'-biphenyl]-4-yl)-1H-pyrazole

The mixture of 1e (53.5 mg, 0.3 mmol), 2 (181 mg, 0.6 mmol), CH₃OLi (34.2 mg, 0.9 mmol), Mo(CO)₆ (4 mg, 0.015 mmol) and Ag₂CO₃ (41.4 mg, 0.15 mmol) were added in a Schlenk tube. After evacuated and refilled with nitrogen 3 times, tetrahydrofuran (2.5 ml) and H₂O (162 μ l, 9 mmol) was added in one portion to the tube by syringe, follow stirred for 12 h at 60 °C. After completed, the reaction mixture was cooled to room temperature and quenched with water. Then the aqueous layer was extracted with CH₂Cl₂ (100 ml × 3). The combined organic layers were dried over MgSO₄ and filtered, evacuated under vacuum. The residue was purified by column chromatography (PE : EA = 5 : 1) to give 3e 40.3 mg (61%).

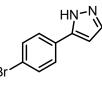
White Solid; mp: 151-153 °C; ¹H-NMR (600 MHz, CDCl₃) δ 11.63 (s, 1H), 7.83 (d, J = 8.4 Hz, 2H), 7.64 – 7.59 (m, 5H), 7.43 (t, J = 7.2 Hz, 2H), 7.35 (t, J = 7.2 Hz, 1H), 6.65 (s, 1H); ¹³C-NMR (150 MHz, CDCl₃) δ 148.8, 140.7, 140.5, 133.3, 131.0, 128.8, 127.4, 127.4, 126.9, 126.2, 102.7, 77.2, 77.0, 76.8.; HRMS (ESI) *m/z* calculated C₁₅H₁₃N₂ [M+H]⁺ 221.1081, found 221.1073.



(3f) 5(3)-(4-fluorophenyl)-1H-pyrazole¹

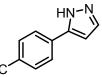
The mixture of 2 (181 mg, 0.6 mmol), CH₃OLi (34.2 mg, 0.9 mmol), Mo(CO)₆ (4 mg, 0.015 mmol) and Ag₂CO₃ (41.4 mg, 0.15 mmol) were added in a Schlenk tube. After evacuated and refilled with nitrogen 3 times, tetrahydrofuran (2.5 ml), 1f (36.0 mg, 0.3 mmol) and H₂O (162 μ l, 9 mmol) was added in one portion to the tube by syringe, follow stirred for 12 h at 60 °C. After completed, the reaction mixture was cooled to room temperature and quenched with water. The organic layer was extracted with 2M HCl (20 ml × 3), then use NaOH to adjust the aqueous layer's pH to 12-13, then the aqueous layer was extracted with CH₂Cl₂ (100 ml × 3). The combined organic layers were dried over MgSO₄ and filtered, evacuated under vacuum. The residue was purified by column chromatography (PE : EA = 2 : 1) to give 3f 36.0 mg (74%). White Solid; ¹**H-NMR** (600 MHz, CDCl₃) δ 12.09 (s, 1H), 7.72 – 7.65 (m, 2H), 7.55 (d, *J* = 2.2 Hz,

1H), 7.09 – 7.00 (m, 2H), 6.54 (d, J = 2.2 Hz, 1H); ¹³C-NMR (125 MHz, CDCl₃) δ 162.6 (d, J = 245

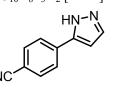

Hz), 149.1, 132.3, 128.7, 127.5 (d, J = 8.75 Hz), 115.7 (d, J = 22.5 Hz), 102.6; **HRMS** (ESI) m/z calculated C₉H₈FN₂ [M+H]⁺ 163.0670, found 163.0666.

(3g) 5(3)-(4-chlorophenyl)-1H-pyrazole¹

The mixture of 1g (40.8 mg, 0.3 mmol), 2 (181 mg, 0.6 mmol), CH₃OLi (34.2 mg, 0.9 mmol), Mo(CO)₆ (4 mg, 0.015 mmol) and Ag₂CO₃ (41.4 mg, 0.15 mmol) were added in a Schlenk tube. After evacuated and refilled with nitrogen 3 times, tetrahydrofuran (2.5 ml) and H₂O (162 μ l, 9 mmol) was added in one portion to the tube by syringe, follow stirred for 12 h at 60 °C. After completed, the reaction mixture was cooled to room temperature and quenched with water. The organic layer was extracted with 2M HCl (20 ml × 3), then use NaOH to adjust the aqueous layer's pH to 12-13, then the aqueous layer was extracted with CH₂Cl₂ (100 ml × 3). The combined organic layers were dried over MgSO₄ and filtered, evacuated under vacuum. The residue was purified by column chromatography (PE : EA = 2 : 1) to give 3g 44.4 mg (83%). White Solid; ¹H-NMR (600 MHz, CDCl₃) δ 11.21 (s, 1H), 7.70 (d, *J* = 8.4 Hz, 2H), 7.61 (d, *J* = 2.4

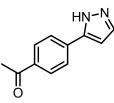

Hz, 1H), 7.39 – 7.35 (m, 2H), 6.60 (d, J = 1.8 Hz, 1H); ¹³C-NMR (150 MHz, CDCl₃) δ 148.8, 133.8, 132.5, 130.9, 128.9, 127.1, 102.7; **HRMS** (ESI) m/z calculated C₉H₈ClN₂ [M+H]⁺ 179.0373, found 179.0371.

(3h) 5(3)-(4-bromophenyl)-1H-pyrazole¹


The mixture of 1h (55.4 mg, 0.3 mmol), 2 (181 mg, 0.6 mmol), CH₃OLi (34.2 mg, 0.9 mmol), Mo(CO)₆ (4 mg, 0.015 mmol) and Ag₂CO₃ (41.4 mg, 0.15 mmol) were added in a Schlenk tube. After evacuated and refilled with nitrogen 3 times, tetrahydrofuran (2.5 ml) and H₂O (162 μ l, 9 mmol) was added in one portion to the tube by syringe, follow stirred for 12 h at 60 °C. After completed, the reaction mixture was cooled to room temperature and quenched with water. The organic layer was extracted with 4M HCl (20 ml × 3), then use NaOH to adjust the aqueous layer's pH to 12-13, then the aqueous layer was extracted with CH₂Cl₂ (100 ml × 3). The combined organic layers were dried over MgSO₄ and filtered, evacuated under vacuum. The residue was purified by column chromatography (PE : EA = 2 : 1) to give 3h 48.2 mg (72%). White Solid; ¹**H-NMR** (600 MHz, CDCl₃) δ 12.52 (s, 1H), 7.59 (d, *J* = 8.4 Hz, 2H), 7.57 (d, *J* = 2.2 Hz, 1H), 7.40 (14 Hz, 20 Hz, 20) (657 (14 Hz, 20 Hz, 20) Hz).

Hz, 1H), 7.48 (d, J = 8.4 Hz, 2H), 6.57 (d, J = 2.2 Hz, 1H); ¹³C-NMR (150 MHz, CDCl₃) δ 148.8, 132.3, 131.8, 131.3, 127.4, 121.9, 102.7; HRMS (ESI) *m/z* calculated C₉H₈BrN₂ [M+H]⁺ 222.9872, found 222.9865.

(3i) 5(3)-(4-trifluoromethylphenyl)-1H-pyrazole


The mixture of 2 (181 mg, 0.6 mmol), CH₃OLi (34.2 mg, 0.9 mmol), Mo(CO)₆ (4 mg, 0.015 mmol) and Ag₂CO₃ (41.4 mg, 0.15 mmol) were added in a Schlenk tube. After evacuated and refilled with nitrogen 3 times, tetrahydrofuran (2.5 ml), 1i (52.1 mg, 0.3 mmol) and H₂O (162 μ l, 9 mmol) was added in one portion to the tube by syringe, follow stirred for 12 h at 60 °C. After completed, the reaction mixture was cooled to room temperature and quenched with water. The organic layer was extracted with 6M HCl (20 ml × 3), then use NaOH to adjust the aqueous layer's pH to 12-13, then the aqueous layer was extracted with CH₂Cl₂ (100 ml × 3). The combined organic layers were dried over MgSO₄ and filtered, evacuated under vacuum. The residue was purified by column chromatography (PE : EA = 2 : 1) to give 3i 48.3 mg (76%). White Solid; mp: 106-108 °C; ¹H-NMR (600 MHz, CDCl₃) ¹H NMR (600 MHz, CDCl₃) δ 11.60 (s, 1H), 7.88 (d, *J* = 7.8 Hz, 2H), 7.66 – 7.63 (m, 3H), 6.68 (d, *J* = 2.4 Hz, 1H); ¹³C-NMR (150 MHz, CDCl₃) δ 149.1, 135.9, 131.9, 129.9 (q, *J* = 18.0 Hz), 126.0, 125.7 (q, *J* = 3.0 Hz), 124.1 (q, *J* = 270.0 Hz), 103.3; **HRMS** (ESI) *m/z* calculated C₁₀H₈F₃N₂ [M+H]⁺ 213.0642, found 213.0634.

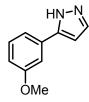
(3j) 5(3)-(4-cyanogroupphenyl)-1H-pyrazole²

The mixture of 2 (181 mg, 0.6 mmol), CH₃OLi (34.2 mg, 0.9 mmol), Mo(CO)₆ (4 mg, 0.015 mmol) and Ag₂CO₃ (41.4 mg, 0.15 mmol) were added in a Schlenk tube. After evacuated and refilled with nitrogen 3 times, tetrahydrofuran (2.5 ml), 1j (39.3 mg, 0.3 mmol) and H₂O (162 μ l, 9 mmol) was added in one portion to the tube by syringe, follow stirred for 12 h at 60 °C. After completed, the reaction mixture was cooled to room temperature and quenched with water. The organic layer was extracted with 2M HCl (20 ml × 3), then use NaOH to adjust the aqueous layer's pH to 12-13, then the aqueous layer was extracted with CH₂Cl₂ (100 ml × 3). The combined organic layers were dried over MgSO₄ and filtered, evacuated under vacuum. The residue was purified by column chromatography (PE : EA = 2 : 1) to give 3j 34.5 mg (68%).

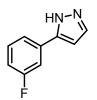
White Solid; ¹**H-NMR** (600 MHz, CDCl₃) δ 11.10 (s, 1H), 7.91 (d, J = 7.8 Hz, 2H), 7.69 (d, J = 7.8 Hz, 2H), 7.66 (d, J = 2.4 Hz, 1H), 6.71 (d, J = 1.8 Hz, 1H); ¹³**C-NMR** (150 MHz, CDCl₃) δ 149.1, 137.2, 132.6, 131.3, 126.1, 118.9, 111.1, 103.5; **HRMS** (ESI) *m*/*z* calculated C₁₀H₈N₃ [M+H]⁺ 170.0719, found 170.0713.

(3k) 5(3)-(4-ethanoylphenyl)-1H-pyrazole

The mixture of 1k (43.3 mg, 0.3 mmol), 2 (181 mg, 0.6 mmol), CH₃OLi (34.2 mg, 0.9 mmol), Mo(CO)₆ (4 mg, 0.015 mmol) and Ag₂CO₃ (41.4 mg, 0.15 mmol) were added in a Schlenk tube. After evacuated and refilled with nitrogen 3 times, tetrahydrofuran (2.5 ml) and H₂O (162 μ l, 9 mmol) was added in one portion to the tube by syringe, follow stirred for 12 h at 60 °C. After completed, the reaction mixture was cooled to room temperature and quenched with water. The organic layer was extracted with 4M HCl (20 ml × 3), then use NaOH to adjust the aqueous layer's pH to 12-13, then the aqueous layer was extracted with CH₂Cl₂ (100 ml × 3). The


combined organic layers were dried over MgSO₄ and filtered, evacuated under vacuum. The residue was purified by column chromatography (PE : EA = 2 : 1) to give 3k 41.9 mg (75%). White Solid; mp: 136-138 °C; ¹**H-NMR** (600 MHz, CDCl₃) δ 10.37 (s, 1H), 8.02 (d, *J* = 8.4 Hz, 2H), 7.90 (d, *J* = 7.8 Hz, 2H), 7.66 (d, *J* = 2.4 Hz, 1H), 6.73 (d, *J* = 2.4 Hz, 1H), 2.64 (s, 3H); ¹³C-NMR (150 MHz, CDCl₃) δ 197.7, 149.1, 137.0, 136.3, 131.9, 128.9, 125.7, 103.4, 26.6.; **HRMS** (ESI) *m/z* calculated C₁₁H₁₁N₂O [M+H]⁺ 187.0869, found 187.0866.

(3l) 5(3)-3-Tolyl-1H-pyrazole


The mixture of 2 (181 mg, 0.6 mmol), CH₃OLi (34.2 mg, 0.9 mmol), Mo(CO)₆ (4 mg, 0.015 mmol) and Ag₂CO₃ (41.4 mg, 0.15 mmol) were added in a Schlenk tube. After evacuated and refilled with nitrogen 3 times, tetrahydrofuran (2.5 ml), 11 (34.8 mg, 0.3 mmol) and H₂O (162 μ l, 9 mmol) was added in one portion to the tube by syringe, follow stirred for 12 h at 60 °C. After completed, the reaction mixture was cooled to room temperature and quenched with water. The organic layer was extracted with 2M HCl (20 ml × 3), then use NaOH to adjust the aqueous layer's pH to 12-13, then the aqueous layer was extracted with CH₂Cl₂ (100 ml × 3). The combined organic layers were dried over MgSO₄ and filtered, evacuated under vacuum. The residue was purified by column chromatography (PE : EA = 2 : 1) to give 31 26.6 mg (56%). Light Yellow Oil; ¹**H-NMR** (600 MHz, CDCl₃) δ 12.15 (s, 1H), 7.57 (d, *J* = 2.2 Hz, 2H), 7.53 (d, *J* = 7.8 Hz, 1H), 7.26 (t, *J* = 7.2 Hz, 1H), 7.13 (d, *J* = 6.6 Hz, 1H), 6.58 (d, *J* = 2.2 Hz, 1H), 2.35 (s, 3H);

7.8 Hz, 1H), 7.26 (t, J = 7.2 Hz, 1H), 7.13 (d, J = 6.6 Hz, 1H), 6.58 (d, J = 2.2 Hz, 1H), 2.35 (s, 3H); ¹³C-NMR (150 MHz, CDCl₃) δ 149.1, 138.4, 134.2, 132.0, 128.7, 128.7, 126.5, 123.0, 102.5, 21.4; HRMS (ESI) *m*/*z* calculated C₁₀H₁₁N₂ [M+H]⁺ 159.0912, found 159.0917.

(3m) 5(3)-(3-Methoxyphenyl)-1H-pyrazole¹

The mixture of 2 (181 mg, 0.6 mmol), CH₃OLi (34.2 mg, 0.9 mmol), Mo(CO)₆ (4 mg, 0.015 mmol) and Ag₂CO₃ (41.4 mg, 0.15 mmol) were added in a Schlenk tube. After evacuated and refilled with nitrogen 3 times, tetrahydrofuran (2.5 ml), 1m (39.6 mg, 0.3 mmol) and H₂O (162 μ l, 9 mmol) was added in one portion to the tube by syringe, follow stirred for 12 h at 60 °C. After completed, the reaction mixture was cooled to room temperature and quenched with water. The organic layer was extracted with 2M HCl (20 ml × 3), then use NaOH to adjust the aqueous layer's pH to 12-13, then the aqueous layer was extracted with CH₂Cl₂ (100 ml × 3). The combined organic layers were dried over MgSO₄ and filtered, evacuated under vacuum. The residue was purified by column chromatography (PE : EA = 2 : 1) to give 3m 34.0 mg (65%). White Solid; ¹H-NMR (600 MHz, CDCl₃) δ 12.53 (s, 1H), 7.57 (d, *J* = 1.8 Hz, 1H), 7.35 – 7.30 (m, 2H), 7.29 (t, *J* = 7.8 Hz, 1H), 6.86 (ddd, *J* = 7.8, 2.4, 1.2 Hz, 1H), 6.58 (d, *J* = 2.4 Hz, 1H), 3.78 (d, *J* = 1.2 Hz, 3H); ¹³C-NMR (150 MHz, CDCl₃) δ 159.9, 149.2, 133.5, 133.1, 129.8, 118.4, 113.8, 111.1, 102.7, 55.2; HRMS (ESI) *m/z* calculated C₁₀H₁₁N₂O [M+H]⁺ 175.0852, found 175.0866.

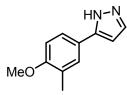
(3n) 5(3)-(3-fluorophenyl)-1H-pyrazole

The mixture of 2 (181 mg, 0.6 mmol), CH₃OLi (34.2 mg, 0.9 mmol), Mo(CO)₆ (4 mg, 0.015 mmol) and Ag₂CO₃ (41.4 mg, 0.15 mmol) were added in a Schlenk tube. After evacuated and refilled with nitrogen 3 times, tetrahydrofuran (2.5 ml), 1n (36.0 mg, 0.3 mmol) and H₂O (162 μ l, 9 mmol) was added in one portion to the tube by syringe, follow stirred for 12 h at 60 °C. After completed, the reaction mixture was cooled to room temperature and quenched with water. The organic layer was extracted with 2M HCl (20 ml × 3), then use NaOH to adjust the aqueous layer's pH to 12-13, then the aqueous layer was extracted with CH₂Cl₂ (100 ml × 3). The combined organic layers were dried over MgSO₄ and filtered, evacuated under vacuum. The residue was purified by column chromatography (PE : EA = 2 : 1) to give 3n 34.5 mg (71%).

White Solid; mp: 62-64 °C; ¹**H-NMR** (600 MHz, CDCl₃) δ 12.26 (s, 1H), 7.59 (d, J = 2.4 Hz, 1H), 7.53 (d, J = 7.8 Hz, 1H), 7.46 (d, J = 10.2 Hz, 1H), 7.37 – 7.30 (m, 1H), 7.01 (td, J = 8.4, 1.8 Hz, 1H), 6.60 (d, J = 2.4 Hz, 1H); ¹³**C-NMR** (150 MHz, CDCl₃) δ 163.1 (d, J = 203 Hz), 149.1, 134.7, 132.7, 130.3 (d, J = 7.5 Hz), 121.5 (d, J = 2.5 Hz), 114.7 (d, J = 17.5 Hz), 112.7 (d, J = 18.75 Hz), 102.9; **HRMS** (ESI) *m/z* calculated C₉H₇FN₂ [M+H]⁺ 163.0627, found 163.0752.

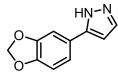
(30) 5(3)-(3-aminophenyl)-1H-pyrazole

The mixture of 2 (181 mg, 0.6 mmol), CH₃OLi (34.2 mg, 0.9 mmol), Mo(CO)₆ (4 mg, 0.015 mmol) and Ag₂CO₃ (41.4 mg, 0.15 mmol) were added in a Schlenk tube. After evacuated and refilled with nitrogen 3 times, tetrahydrofuran (2.5 ml), 10 (35.9 mg, 0.3 mmol) and H₂O (162 μ l, 9 mmol) was added in one portion to the tube by syringe, follow stirred for 12 h at 60 °C. After completed, the reaction mixture was cooled to room temperature and quenched with water. The organic layer was extracted with 2M HCl (20 ml × 3), then use NaOH to adjust the aqueous layer's pH to 12-13, then the aqueous layer was extracted with CH₂Cl₂ (100 ml × 6). The combined organic layers were dried over MgSO₄ and filtered, evacuated under vacuum. The residue was purified by column chromatography (PE : EA = 1 : 1) to give 3o 24.4 mg (51%).


Light yellow Solid; mp: 115-117 °C; ¹**H-NMR** (600 MHz, CDCl₃) δ 7.56 (d, J = 2.4 Hz, 1H), 7.16 (t, J = 7.8 Hz, 1H), 7.12 (d, J = 7.8 Hz, 1H), 7.06 (s, 1H), 6.62 (dd, J = 7.8, 1.2 Hz, 1H), 6.53 (d, J = 2.4 Hz, 1H); ¹³**C-NMR** (150 MHz, CDCl₃) δ 148.5, 146.8, 133.8, 132.8, 129.7, 116.3, 114.9, 112.3, 102.6; **HRMS** (ESI) m/z calculated C₉H₁₀N₃ [M+H]⁺ 160.0862, found 160.0869.

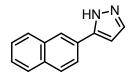
(3p) 5(3)-(2-Methoxyphenyl)-1H-pyrazole³

The mixture of 2 (181 mg, 0.6 mmol), CH₃OLi (34.2 mg, 0.9 mmol), Mo(CO)₆ (4 mg, 0.015 mmol) and Ag₂CO₃ (41.4 mg, 0.15 mmol) were added in a Schlenk tube. After evacuated and refilled with nitrogen 3 times, tetrahydrofuran (2.5 ml), 1p (39.6 mg, 0.3 mmol) and H₂O (162 μ l, 9 mmol) was added in one portion to the tube by syringe, follow stirred for 12 h at 60 °C. After completed, the reaction mixture was cooled to room temperature and quenched with water. The organic layer was extracted with 2M HCl (20 ml × 3), then use NaOH to adjust the aqueous layer's pH to 12-13, then the aqueous layer was extracted with CH₂Cl₂ (100 ml × 3). The combined organic layers were dried over MgSO₄ and filtered, evacuated under vacuum. The residue was purified by column chromatography (PE : EA = 2 : 1) to give 3p 33.9 mg (65%). White Solid; ¹H NMR (600 MHz, CDCl₃) δ 11.43 (s, 1H), 7.69 (dd, *J* = 7.8, 1.2 Hz, 1H), 7.61 (d, *J* =


1.8 Hz, 1H), 7.33 – 7.28 (m, 1H), 7.06 – 7.00 (m, 2H), 6.65 (d, J = 1.8 Hz, 1H), 3.97 (s, 3H); ¹³C-NMR (150 MHz, CDCl₃) δ 155.8, 141.2, 139.1, 129.1, 128.0, 121.3, 118.1, 111.5, 102.8, 55.7; HRMS (ESI) *m/z* calculated C₁₀H₁₁N₂O [M+H]⁺ 175.0865, found 175.0866.

(3q) 5(3)-(4-methoxy-3-methylphenyl)-1H-pyrazole

The mixture of 2 (181 mg, 0.6 mmol), CH₃OLi (34.2 mg, 0.9 mmol), Mo(CO)₆ (4 mg, 0.015 mmol) and Ag₂CO₃ (41.4 mg, 0.15 mmol) were added in a Schlenk tube. After evacuated and refilled with nitrogen 3 times, tetrahydrofuran (2.5 ml), 1q (43.8 mg, 0.3 mmol) and H₂O (162 μ l, 9 mmol) was added in one portion to the tube by syringe, follow stirred for 12 h at 60 °C. After completed, the reaction mixture was cooled to room temperature and quenched with water. The organic layer was extracted with 2M HCl (20 ml × 3), then use NaOH to adjust the aqueous layer's pH to 12-13, then the aqueous layer was extracted with CH₂Cl₂ (100 ml × 3). The combined organic layers were dried over MgSO₄ and filtered, evacuated under vacuum. The residue was purified by column chromatography (PE : EA = 2 : 1) to give 3q 32.2 mg (57%).


Light Yellow Solid; mp: 101-103 °C; ¹H-NMR (600 MHz, CDCl₃) δ 10.71 (s, 1H), 7.57 (d, J = 2.4 Hz, 1H), 7.51 (s, 2H), 6.80 (d, J = 9.0 Hz, 1H), 6.50 (d, J = 2.4 Hz, 1H), 3.83 (s, 3H), 2.22 (s, 3H); ¹³C-NMR (150 MHz, CDCl₃) δ 157.7, 148.3, 134.0, 128.3, 126.9, 124.4, 124.1, 110.0, 101.9, 55.3, 16.2; HRMS (ESI) *m/z* calculated C₁₁H₁₃N₂O [M+H]⁺ 189.1027, found 189.1022.

(3r) 5(3)-(1,3-benzodioxol-5-yl)-1H-pyrazole

The mixture of 2 (181 mg, 0.6 mmol), CH₃OLi (34.2 mg, 0.9 mmol), Mo(CO)₆ (4 mg, 0.015 mmol) and Ag₂CO₃ (41.4 mg, 0.15 mmol) were added in a Schlenk tube. After evacuated and refilled with nitrogen 3 times, tetrahydrofuran (2.5 ml), 1r (43.8 mg, 0.3 mmol) and H₂O (162 μ l, 9 mmol) was added in one portion to the tube by syringe, follow stirred for 12 h at 60 °C. After completed, the reaction mixture was cooled to room temperature and quenched with water. The organic layer was extracted with 2M HCl (20 ml × 3), then use NaOH to adjust the aqueous layer's pH to 12-13, then the aqueous layer was extracted with CH₂Cl₂ (100 ml × 3). The

combined organic layers were dried over MgSO₄ and filtered, evacuated under vacuum. The residue was purified by column chromatography (PE : EA = 2 : 1) to give 3r 35.6 mg (63%). White Solid; mp: 105-107 °C; ¹**H-NMR** (600 MHz, CDCl₃) δ 11.91 (s, 1H), 7.55 (d, *J* = 2.4 Hz, 1H), 7.22 - 7.18 (m, 2H), 6.80 (d, *J* = 8.4 Hz, 1H), 6.48 (d, *J* = 1.8 Hz, 1H), 5.97 (s, 2H); ¹³**C-NMR** (150 MHz, CDCl₃) δ 149.3, 148.0, 147.4, 133.8, 126.6, 119.6, 108.5, 106.5, 102.2, 101.1; **HRMS** (ESI) *m/z* calculated C₁₀H₉N₂O₂ [M+H]⁺ 189.0664, found 189.0659.

(3s) 5(3)-(2-naphthalen)-1H-pyrazole⁵

The mixture of 1s (45.6 mg, 0.3 mmol), 2 (181 mg, 0.6 mmol), CH₃OLi (34.2 mg, 0.9 mmol), Mo(CO)₆ (4 mg, 0.015 mmol) and Ag₂CO₃ (41.4 mg, 0.15 mmol) were added in a Schlenk tube. After evacuated and refilled with nitrogen 3 times, tetrahydrofuran (2.5 ml) and H₂O (162 μ l, 9 mmol) was added in one portion to the tube by syringe, follow stirred for 12 h at 60 °C. After completed, the reaction mixture was cooled to room temperature and quenched with water. The organic layer was extracted with 4M HCl (20 ml × 3), then use NaOH to adjust the aqueous layer's pH to 12-13, then the aqueous layer was extracted with CH₂Cl₂ (100 ml × 3). The combined organic layers were dried over MgSO₄ and filtered, evacuated under vacuum. The residue was purified by column chromatography (PE : EA = 2 : 1) to give 3s 33.2 mg (57%). White Solid; ¹**H-NMR** (600 MHz, CDCl₃) δ 11.00 (s, 1H), 8.21 (s, 1H), 7.92 (d, *J* = 8.4 Hz, 1H), 7.88 – 7.82 (m, 3H), 7.67 (d, *J* = 2.4 Hz, 1H), 7.50 – 7.45 (m, 2H), 6.75 (d, *J* = 1.8 Hz, 1H); ¹³**C-NMR** (150 MHz, CDCl₃) δ 149.5, 133.5, 133.1, 133.0, 129.6, 128.5, 128.1, 127.7, 126.4, 126.1, 124.4, 124.0,

103.0; **HRMS** (ESI) *m/z* calculated C₁₃H₁₁N₂ [M+H]⁺ 195.0918, found 195.0917.

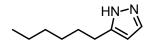
(3t) 5(3)-(2- pyridine)-1H-pyrazole ⁴

The mixture of 2 (181 mg, 0.6 mmol), CH₃OLi (34.2 mg, 0.9 mmol), Mo(CO)₆ (4 mg, 0.015 mmol) and Ag₂CO₃ (41.4 mg, 0.15 mmol) were added in a Schlenk tube. After evacuated and refilled with nitrogen 3 times, tetrahydrofuran (2.5 ml), 1t (30.9 mg, 0.3 mmol) and H₂O (162 μ l, 9 mmol) was added in one portion to the tube by syringe, follow stirred for 12 h at 60 °C. After completed, the reaction mixture was cooled to room temperature and quenched with water. The organic layer was extracted with 2M HCl (20 ml × 3), then use NaOH to adjust the aqueous layer's pH to 12-13, then the aqueous layer was extracted with CH₂Cl₂ (100 ml × 3). The combined organic layers were dried over MgSO₄ and filtered, evacuated under vacuum. The residue was purified by column chromatography (PE : EA = 2 : 1) to give 3t 26.1 mg (60%).

White Solid; ¹**H-NMR** (600 MHz, CDCl₃) δ 12.11 (s, 1H), 8.68 (d, J = 4.8 Hz, 1H), 7.80 – 7.71 (m, 2H), 7.67 (d, J = 1.8 Hz, 1H), 7.24 (dd, J = 8.4, 4.8 Hz, 1H), 6.81 (s, 1H); ¹³C-NMR (125 MHz, CDCl₃) δ 149.4, 144.5, 137.5, 137.0, 122.8, 120.2, 103.4; **HRMS** (ESI) *m/z* calculated C₈H₈N₃ [M+H]⁺ 146.0719, found 146.0713.

(3u) 5(3)-(Thien-3-yl)-1H-pyrazole

The mixture of 2 (181 mg, 0.6 mmol), CH₃OLi (34.2 mg, 0.9 mmol), Mo(CO)₆ (4 mg, 0.015 mmol) and Ag₂CO₃ (41.4 mg, 0.15 mmol) were added in a Schlenk tube. After evacuated and refilled with nitrogen 3 times, tetrahydrofuran (2.5 ml), 1u (32.4 mg, 0.3 mmol) and H₂O (162 μ l, 9 mmol) was added in one portion to the tube by syringe, follow stirred for 12 h at 60 °C. After completed, the reaction mixture was cooled to room temperature and quenched with water. The organic layer was extracted with 2M HCl (20 ml × 3), then use NaOH to adjust the aqueous layer's pH to 12-13, then the aqueous layer was extracted with CH₂Cl₂ (100 ml × 3). The combined organic layers were dried over MgSO₄ and filtered, evacuated under vacuum. The residue was purified by column chromatography (PE : EA = 2 : 1) to give 3u 32.4 mg (72%). White Solid; mp: 102-104 °C; ¹H-NMR (600 MHz, CDCl₃) δ 12.46 (s, 1H), 7.55 (d, *J* = 1.8 Hz, 1H), 7.52 (dd, *J* = 3.0, 1.2 Hz, 1H), 7.41 (dd, *J* = 5.4, 1.2 Hz, 1H), 7.33 (dd, *J* = 4.8, 3.0 Hz, 1H), 6.48 (d, *J* = 2.4 Hz, 1H); ¹³C-NMR (CDCl₃, 150 MHz) δ 145.1, 133.6, 133.0, 126.2, 126.0, 120.9, 102.8; HRMS (ESI) *m/z* calculated C₇H₇N₂S [M+H]⁺ 151.0318, found 151.0324.



(3v) 5(3)-(Thien-2-yl)-1H-pyrazole¹

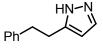
calculated $C_7H_7N_2S$ [M+H]⁺ 151.0326, found 151.0324.

The mixture of 2 (181 mg, 0.6 mmol), CH₃OLi (34.2 mg, 0.9 mmol), Mo(CO)₆ (4 mg, 0.015 mmol) and Ag₂CO₃ (41.4 mg, 0.15 mmol) were added in a Schlenk tube. After evacuated and refilled with nitrogen 3 times, tetrahydrofuran (2.5 ml), 1v (32.4 mg, 0.3 mmol) and H₂O (162 µl, 9 mmol) was added in one portion to the tube by syringe, follow stirred for 12 h at 60 °C. After completed, the reaction mixture was cooled to room temperature and quenched with water. The organic layer was extracted with 2M HCl (20 ml × 3), then use NaOH to adjust the aqueous layer's pH to 12-13, then the aqueous layer was extracted with CH₂Cl₂ (100 ml × 3). The combined organic layers were dried over MgSO₄ and filtered, evacuated under vacuum. The residue was purified by column chromatography (PE : EA = 2 : 1) to give 3v 22.1 mg (49%). White Solid; ¹**H-NMR** (600 MHz, CDCl₃) δ 12.20 (s, 1H), 7.61 (d, *J* = 2.4 Hz, 1H), 7.33 (dd, *J* = 3.6, 1.2 Hz, 1H), 7.26 (dd, *J* = 5.4, 1.2 Hz, 1H), 7.06 (dd, *J* = 4.8, 3.6 Hz, 1H), 6.53 (d, *J* = 1.8 Hz, 1H); ¹³**C-NMR** (150 MHz, CDCl₃) δ 145.6, 135.8, 131.4, 127.6, 124.6, 124.1, 102.6; **HRMS** (ESI) *m/z*

III. Synthesis and spectra data of 5a-5k

(5a) 5(3)-heptyl-1H-pyrazole

The mixture of 2 (136 mg, 0.45 mmol), CH₃OLi (34.2 mg, 0.9 mmol), Mo(CO)₆ (4 mg, 0.015 mmol) and Ag₂CO₃ (41.4 mg, 0.15 mmol) were added in a Schlenk tube. After evacuated and refilled with nitrogen 3 times, tetrahydrofuran (2.5 ml), 4a (33.1 mg, 0.3 mmol) and H₂O (162 µl, 9 mmol) was added in one portion to the tube by syringe, follow stirred for 12 h at 60 °C. After completed, the reaction mixture was cooled to room temperature and quenched with water. The organic layer was extracted with 2M HCl (20 ml × 3), then use NaOH to adjust the aqueous layer's pH to 12-13, then the aqueous layer was extracted with CH₂Cl₂ (100 ml × 3). The combined organic layers were dried over MgSO₄ and filtered, evacuated under vacuum. The residue was purified by column chromatography (PE : EA = 1 : 1) to give 5a 23.7 mg (52%). Light Yellow Oil; ¹**H-NMR** (600 MHz, CDCl₃) δ 11.23 (s, 1H), 7.49 (d, *J* = 1.8 Hz, 1H), 6.09 (d, *J* = 1.8 Hz, 1H), 2.70 – 2.66 (m, 2H), 1.69 – 1.63 (m, 2H), 1.39 – 1.33 (m, 2H), 1.33 – 1.28 (m, 4H), 0.88 (t, *J*=7.2 Hz, 3H); ¹³**C-NMR** (125 MHz, CDCl₃) δ 148.0, 135.2, 103.3, 31.6, 29.4, 29.0, 26.7, 22.5, 14.0;

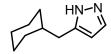


HRMS (ESI) m/z calculated C₉H₁₇N₂ [M+H]⁺ 153.1393, found 153.1386.

(5b) 5(3)-phenmethyl-1H-pyrazole

The mixture of 2 (136 mg, 0.45 mmol), CH₃OLi (34.2 mg, 0.9 mmol), Mo(CO)₆ (4 mg, 0.015 mmol) and Ag₂CO₃ (41.4 mg, 0.15 mmol) were added in a Schlenk tube. After evacuated and refilled with nitrogen 3 times, tetrahydrofuran (2.5 ml), 4b (34.8 mg, 0.3 mmol) and H₂O (162 μ l, 9 mmol) was added in one portion to the tube by syringe, follow stirred for 12 h at 60 °C. After completed, the reaction mixture was cooled to room temperature and quenched with water. The organic layer was extracted with 2M HCl (20 ml × 3), then use NaOH to adjust the aqueous layer's pH to 12-13, then the aqueous layer was extracted with CH₂Cl₂ (100 ml × 3). The combined organic layers were dried over MgSO₄ and filtered, evacuated under vacuum. The residue was purified by column chromatography (PE : EA = 1 : 1) to give 5b 24.2 mg (51%).

Light Yellow Oil; ¹**H-NMR** (600 MHz, CDCl₃) δ 11.15 (s, 1H), 7.41 (d, J = 1.8 Hz, 1H), 7.30 – 7.26 (m, 2H), 7.21 (d, J = 7.2 Hz, 3H), 6.06 (d, J = 2.4 Hz, 1H), 4.01 (s, 2H); ¹³C-NMR (150 MHz, CDCl₃) δ 147.8, 139.1, 134.1, 128.7, 128.5, 126.4, 104.3, 33.5.; **HRMS** (ESI) *m/z* calculated C₁₀H₁₁N₂ [M+H]⁺ 159.0911, found 159.0917.



(5c) 5(3)-phenethyl-1H-pyrazole

The mixture of 2 (136 mg, 0.45 mmol), CH₃OLi (34.2 mg, 0.9 mmol), Mo(CO)₆ (4 mg, 0.015 mmol) and Ag₂CO₃ (41.4 mg, 0.15 mmol) were added in a Schlenk tube. After evacuated and refilled with nitrogen 3 times, tetrahydrofuran (2.5 ml), 4c (39.1 mg, 0.3 mmol) and H₂O (162 μ l, 9 mmol) was added in one portion to the tube by syringe, follow stirred for 12 h at 60 °C. After completed, the reaction mixture was cooled to room temperature and quenched with water. The

organic layer was extracted with 2M HCl (20 ml \times 3), then use NaOH to adjust the aqueous layer's pH to 12-13, then the aqueous layer was extracted with CH₂Cl₂ (100 ml \times 3). The combined organic layers were dried over MgSO₄ and filtered, evacuated under vacuum. The residue was purified by column chromatography (PE : EA = 1 : 1) to give 5c 29.4 mg (57%).

Light Yellow Oil; ¹**H-NMR** (600 MHz, CDCl₃) δ 9.41 (s, 1H), 7.47 (d, J = 1.8 Hz, 1H), 7.27 (t, J = 7.2 Hz, 2H), 7.21 – 7.15 (m, 3H), 6.07 (d, J = 1.8 Hz, 1H), 3.01 – 2.95 (m, 4H); ¹³C-NMR (150 MHz, CDCl₃) δ 147.6, 141.2, 134.2, 128.4, 128.3, 126.1, 103.6, 35.6, 28.7; **HRMS** (ESI) *m/z* calculated C₁₁H₁₃N₂ [M+H]⁺ 173.1078, found 173.1073.

(5d) 5(3)-cyclohexylmethyl-1H-pyrazole

The mixture of 2 (136 mg, 0.45 mmol), CH₃OLi (34.2 mg, 0.9 mmol), Mo(CO)₆ (4 mg, 0.015 mmol) and Ag₂CO₃ (41.4 mg, 0.15 mmol) were added in a Schlenk tube. After evacuated and refilled with nitrogen 3 times, tetrahydrofuran (2.5 ml), 4d (36.7 mg, 0.3 mmol) and H₂O (162 μ l, 9 mmol) was added in one portion to the tube by syringe, follow stirred for 12 h at 60 °C. After completed, the reaction mixture was cooled to room temperature and quenched with water. The organic layer was extracted with 2M HCl (20 ml × 3), then use NaOH to adjust the aqueous layer's pH to 12-13, then the aqueous layer was extracted with CH₂Cl₂ (100 ml × 3). The combined organic layers were dried over MgSO₄ and filtered, evacuated under vacuum. The residue was purified by column chromatography (PE : EA = 1 : 1) to give 5d 22.7 mg (46%). Light Yellow Oil; ¹**H-NMR** (600 MHz, CDCl₃) δ 11.35 (s, 1H), 7.50 (d, *J* = 1.8 Hz, 1H), 6.07 (d, *J* =

1.8 Hz, 1H), 2.56 (d, J = 6.6 Hz, 2H), 1.70 (t, J = 13.2 Hz, 4H), 1.64 (d, J = 12.6 Hz, 1H), 1.62 – 1.55 (m, 1H), 1.25 – 1.12 (m, 3H), 1.00 – 0.92 (m, 2H); ¹³C-NMR (150 MHz, CDCl₃) δ 146.4, 135.5, 104.1, 38.4, 34.6, 33.1, 26.4, 26.1; **HRMS** (ESI) m/z calculated C₁₀H₁₇N₂ [M+H]⁺ 165.1066, found 165.1063.

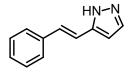
(5e) 5(3)-cyclopropyl-1H-pyrazole

found 109.0917.

The mixture of 2 (136 mg, 0.45 mmol), CH₃OLi (34.2 mg, 0.9 mmol), Mo(CO)₆ (4 mg, 0.015 mmol) and Ag₂CO₃ (41.4 mg, 0.15 mmol) were added in a Schlenk tube. After evacuated and refilled with nitrogen 3 times, tetrahydrofuran (2.5 ml), 4e (20.7 mg, 0.3 mmol) and H₂O (162 µl, 9 mmol) was added in one portion to the tube by syringe, follow stirred for 12 h at 60 °C. After completed, the reaction mixture was cooled to room temperature and quenched with water. The organic layer was extracted with 2M HCl (20 ml × 3), then use NaOH to adjust the aqueous layer's pH to 12-13, then the aqueous layer was extracted with CH₂Cl₂ (100 ml × 3). The combined organic layers were dried over MgSO₄ and filtered, evacuated under vacuum. The residue was purified by column chromatography (PE : EA = 1 : 1) to give 5e 15.9 mg (49%). Light Yellow Oil; ¹**H-NMR** (600 MHz, CDCl₃) δ 10.40 (s, 1H), 7.44 (d, *J* = 1.8 Hz, 1H), 5.96 (d, *J* = 2.4 Hz, 1H), 1.95 – 1.90 (m, 1H), 0.96 – 0.91 (m, 2H), 0.76 – 0.71 (m, 2H); ¹³C-NMR (150 MHz, CDCl₃) δ 152.0, 135.9, 100.9, 8.2, 7.7; **HRMS** (ESI) *m/z* calculated C₆H₉N₂ [M+H]⁺ 109.0911,

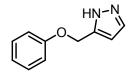
(5f) 5(3)-cyclopentyl-1H-pyrazole

The mixture of 2 (136 mg, 0.45 mmol), CH₃OLi (34.2 mg, 0.9 mmol), Mo(CO)₆ (4 mg, 0.015 mmol) and Ag₂CO₃ (41.4 mg, 0.15 mmol) were added in a Schlenk tube. After evacuated and refilled with nitrogen 3 times, tetrahydrofuran (2.5 ml), 4f (28.2 mg, 0.3 mmol) and H₂O (162 μ l, 9 mmol) was added in one portion to the tube by syringe, follow stirred for 12 h at 60 °C. After completed, the reaction mixture was cooled to room temperature and quenched with water. The organic layer was extracted with 2M HCl (20 ml × 3), then use NaOH to adjust the aqueous layer's pH to 12-13, then the aqueous layer was extracted with CH₂Cl₂ (100 ml × 3). The combined organic layers were dried over MgSO₄ and filtered, evacuated under vacuum. The residue was purified by column chromatography (PE : EA = 1 : 1) to give 5f 23.7 mg (58%).

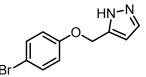

Light Yellow Oil; ¹H-NMR (600 MHz, CDCl₃) δ 11.02 (s, 1H), 7.41 (d, J = 2.4 Hz, 1H), 6.02 (d, J = 1.8 Hz, 1H), 3.16 – 3.09 (m, 1H), 2.10 – 2.07 (m, 2H), 1.75 – 1.65 (m, 2H), 1.64 – 1.54 (m, 4H); ¹³C-NMR (150 MHz, CDCl₃) δ 152.1, 135.7, 101.9, 37.7, 33.2, 25.2; HRMS (ESI) *m/z* calculated C₈H₁₃N₂ [M+H]⁺ 137.1068, found 137.1073.

(5g) 5(3)-cyclohexenyl-1H-pyrazole

The mixture of 2 (136 mg, 0.45 mmol), CH₃OLi (34.2 mg, 0.9 mmol), Mo(CO)₆ (4 mg, 0.015 mmol) and Ag₂CO₃ (41.4 mg, 0.15 mmol) were added in a Schlenk tube. After evacuated and refilled with nitrogen 3 times, tetrahydrofuran (2.5 ml), 4g (31.9 mg, 0.3 mmol) and H₂O (162 μ l, 9 mmol) was added in one portion to the tube by syringe, follow stirred for 12 h at 60 °C. After completed, the reaction mixture was cooled to room temperature and quenched with water. The organic layer was extracted with 2M HCl (20 ml × 3), then use NaOH to adjust the aqueous layer's pH to 12-13, then the aqueous layer was extracted with CH₂Cl₂ (100 ml × 3). The combined organic layers were dried over MgSO₄ and filtered, evacuated under vacuum. The residue was purified by column chromatography (PE : EA = 1 : 1) to give 5g 22.6 mg (51%).


Light Yellow Oil; ¹**H-NMR** (600 MHz, CDCl₃) δ 10.04 (s, 1H), 7.50 (d, J = 2.4 Hz, 1H), 6.28 (d, J = 1.8 Hz, 1H), 6.28 – 6.25 (m, 1H), 2.43 – 2.40 (m, 2H), 2.21 – 2.17 (m, 2H), 1.78 – 1.74 (m, 2H), 1.69 – 1.64 (m, 2H); ¹³C-NMR (150 MHz, CDCl₃) δ 148.4, 135.2, 128.1, 124.9, 101.0, 26.1, 25.3, 22.5, 22.1; **HRMS** (ESI) *m/z* calculated C₉H₁₃N₂ [M+H]⁺ 149.1080, found 149.1073.

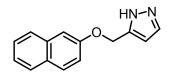
(5h) 5(3)-cinnamyl-1H-pyrazole


The mixture of 2 (136 mg, 0.45 mmol), CH₃OLi (34.2 mg, 0.9 mmol), Mo(CO)₆ (4 mg, 0.015 mmol) and Ag₂CO₃ (41.4 mg, 0.15 mmol) were added in a Schlenk tube. After evacuated and refilled with nitrogen 3 times, tetrahydrofuran (2.5 ml), 4h (38.7 mg, 0.3 mmol) and H₂O (162 μ l, 9 mmol) was added in one portion to the tube by syringe, follow stirred for 12 h at 60 °C. After

completed, the reaction mixture was cooled to room temperature and quenched with water. The organic layer was extracted with 4M HCl (20 ml × 3), then use NaOH to adjust the aqueous layer's pH to 12-13, then the aqueous layer was extracted with CH₂Cl₂ (100 ml × 3). The combined organic layers were dried over MgSO₄ and filtered, evacuated under vacuum. The residue was purified by column chromatography (PE : EA = 2 : 1) to give 5h 16.9 mg (33%). White Solid; mp: 90-92 °C; ¹H-NMR (600 MHz, CDCl₃) δ 9.69 (s, 1H), 7.59 (s, 1H), 7.49 – 7.45 (m, 2H), 7.32 (t, *J* = 7.2 Hz, 2H), 7.25 (t, *J* = 7.2 Hz, 1H), 7.12 (s, 2H), 6.51 (d, *J* = 2.4 Hz, 1H); ¹³C-NMR (150 MHz, CDCl₃) δ 147.1, 136.7, 133.7, 130.6, 128.7, 127.9, 126.5, 118.4, 102.8; HRMS (ESI) *m/z* calculated C₁₁H₁₁N₂ [M+H]⁺ 171.0914, found 171.0917.

(5i) 5(3)-phenoxybut-1H-pyrazole

The mixture of 2 (181 mg, 0.45 mmol), CH₃OLi (34.2 mg, 0.9 mmol), Mo(CO)₆ (4 mg, 0.015 mmol) and Ag₂CO₃ (41.4 mg, 0.15 mmol) were added in a Schlenk tube. After evacuated and refilled with nitrogen 3 times, tetrahydrofuran (2.5 ml), 4k (63.3 mg, 0.3 mmol) and H₂O (162 µl, 9 mmol) was added in one portion to the tube by syringe, follow stirred for 12 h at 60 °C. After completed, the reaction mixture was cooled to room temperature and quenched with water. The organic layer was extracted with 2M HCl (20 ml × 3), then use NaOH to adjust the aqueous layer's pH to 12-13, then the aqueous layer was extracted with CH₂Cl₂ (100 ml × 3). The combined organic layers were dried over MgSO4 and filtered, evacuated under vacuum. The residue was purified by column chromatography (PE : EA = 1 : 1)to give 5k 26.1 mg (50%). Light Yellow Oil; ¹**H-NMR** (600 MHz, CDCl₃) δ 11.27 (s, 1H), 7.53 (d, *J* = 2.4 Hz, 1H), 7.27 (t, *J* = 7.8 Hz, 2H), 7.00 – 6.90 (m, 3H), 6.38 (d, *J* = 1.8 Hz, 1H), 5.13 (s, 2H); ¹³**C-NMR** (150 MHz, CDCl₃) δ 158.5, 146.3, 131.7, 129.5, 121.1, 114.8, 104.6, 63.4; **HRMS** (ESI) *m/z* calculated C₁₀H₁₁N₂O


(5j) 5(3)-(4-bromophenoxy)but-1H-pyrazole

[M+H]⁺ 175.0865, found 175.0866.

The mixture of 2 (181 mg, 0.45 mmol), CH₃OLi (34.2 mg, 0.9 mmol), Mo(CO)₆ (4 mg, 0.015 mmol) and Ag₂CO₃ (41.4 mg, 0.15 mmol) were added in a Schlenk tube. After evacuated and refilled with nitrogen 3 times, tetrahydrofuran (2.5 ml), 4j (63.3 mg, 0.3 mmol) and H₂O (162 μ l, 9 mmol) was added in one portion to the tube by syringe, follow stirred for 12 h at 60 °C. After completed, the reaction mixture was cooled to room temperature and quenched with water. The organic layer was extracted with 4M HCl (20 ml × 3), then use NaOH to adjust the aqueous layer's pH to 12-13, then the aqueous layer was extracted with CH₂Cl₂ (100 ml × 3). The combined organic layers were dried over MgSO₄ and filtered, evacuated under vacuum. The residue was purified by column chromatography (PE : EA = 1 : 1) to give 5j 32.6 mg (43%). Yellow Solid; mp: 71-73 °C; ¹H-NMR (600 MHz, CDCl₃) δ 10.77 (s, 1H), 7.55 (d, *J* = 2.4 Hz,

1H), 7.35 (d, J = 9.0 Hz, 2H), 6.85 (d, J = 9.0 Hz, 2H), 6.39 (d, J = 2.4 Hz, 1H), 5.10 (s, 2H); ¹³C-

NMR (150 MHz, CDCl₃) δ 157.5, 146.3, 132.3, 131.4, 116.6, 113.3, 104.8, 63.7; **HRMS** (ESI) *m/z* calculated C₁₀H₁₀BrN₂O [M+H]⁺ 252.9971, found 252.9971.

(5k) 5(3)-(naphthalen-2-yloxy)but-1H-pyrazole

The mixture of 4i (54.6 mg, 0.3 mmol), 2 (181 mg, 0.45 mmol), CH₃OLi (34.2 mg, 0.9 mmol), Mo(CO)₆ (4 mg, 0.015 mmol) and Ag₂CO₃ (41.4 mg, 0.15 mmol) were added in a Schlenk tube. After evacuated and refilled with nitrogen 3 times, tetrahydrofuran (2.5 ml) and H₂O (162 μ l, 9 mmol) was added in one portion to the tube by syringe, follow stirred for 12 h at 60 °C. After completed, the reaction mixture was cooled to room temperature and quenched with water. Then the aqueous layer was extracted with CH₂Cl₂ (100 ml × 3). The combined organic layers were dried over MgSO₄ and filtered, evacuated under vacuum. The residue was purified by column chromatography (PE : EA = 5 : 1) to give 5i 46.4 mg (69%).

White Solid; mp: 80-82 °C; ¹**H-NMR** (600 MHz, CDCl₃) δ 10.29 (s, 1H), 7.73 (d, J = 8.4 Hz, 1H), 7.70 (d, J = 9.0 Hz, 1H), 7.66 (d, J = 8.4 Hz, 1H), 7.53 (s, 1H), 7.40 (t, J = 7.2 Hz, 1H), 7.32 (t, J = 7.2 Hz, 1H), 7.22 - 7.16 (m, 2H), 6.41 (s, 1H), 5.23 (s, 2H); ¹³**C-NMR** (150 MHz, CDCl₃) δ 156.4, 146.2, 134.4, 131.7, 129.5, 129.1, 127.6, 126.8, 126.3, 123.8, 118.8, 107.1, 104.8, 63.4; **HRMS** (ESI) *m/z* calculated C₁₄H₁₃N₂O [M+H]⁺ 225.1027, found 225.1022.

([D]-3a) 5(3)-4-Tolyl-1H-pyrazole

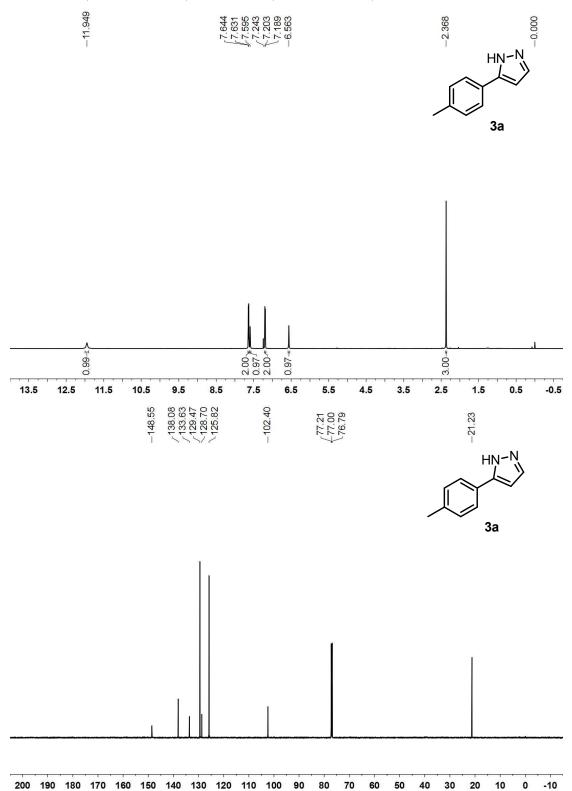
White Solid (36.1 mg, 75%); ¹**H NMR** (600 MHz, CDCl₃) δ 7.62 (d, J = 8.0 Hz, 2H), 7.58 (s, 0.15H), 7.19 (d, J = 8.0 Hz, 2H), 6.55 (s, 0.16H), 2.37 (s, 3H); **HRMS** (ESI) *m/z* calculated C₁₀H₉D₂N₂ [M+H]⁺ 161.1221, found 161.1219.

Refers:

[1] K. Longhi, D. N. Moreira, M. R. B. Marzari, V. M. Floss, H. G. Bonacorso, N. Zanatta and M. A. P. Martins *Tetrahedron Letters* 2010, **51**, 3193-3196.

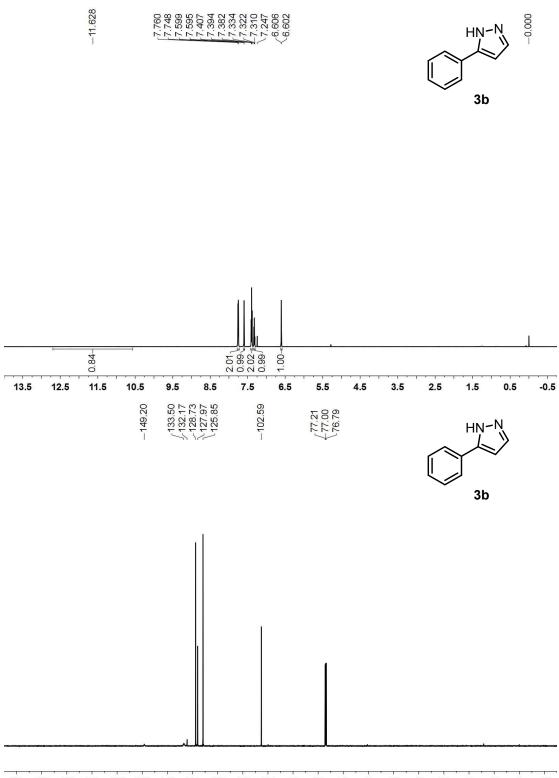
[2] G. A. Molander and L. Jeangérard J. Org. Chem. 2009, 74, 973-980.

[3] J.Catalan, F. Fabero, R. M. Claramunt, M. D. Santa Maria, M. C. Foces-Foces, F. Hernandez

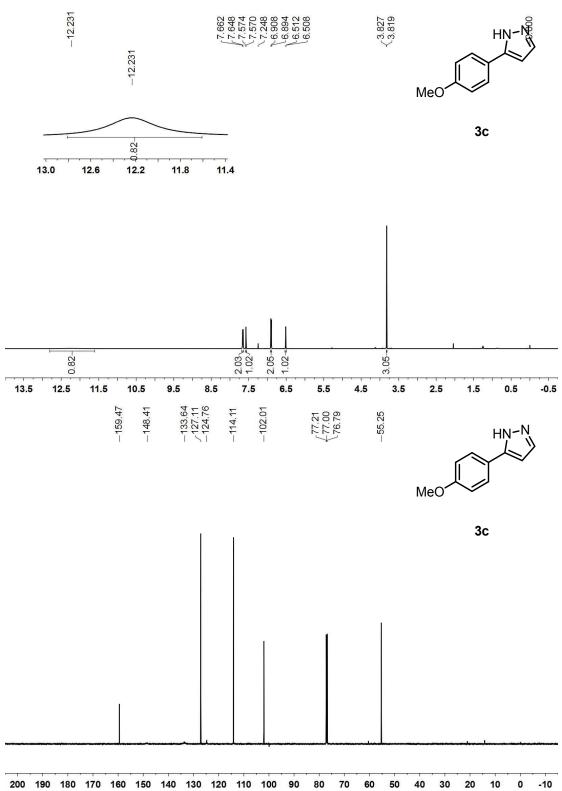

Cano, M. Martinez-Ripoll, J. Elguero and R. Sastre J. Am. Chem. Soc. 1992, 114, 5039-5048.

[4] K. Muller, Y. Sun, A. Heimermann, F. Menges, G. Niedner-Schatteburg, C. van Wüllen and

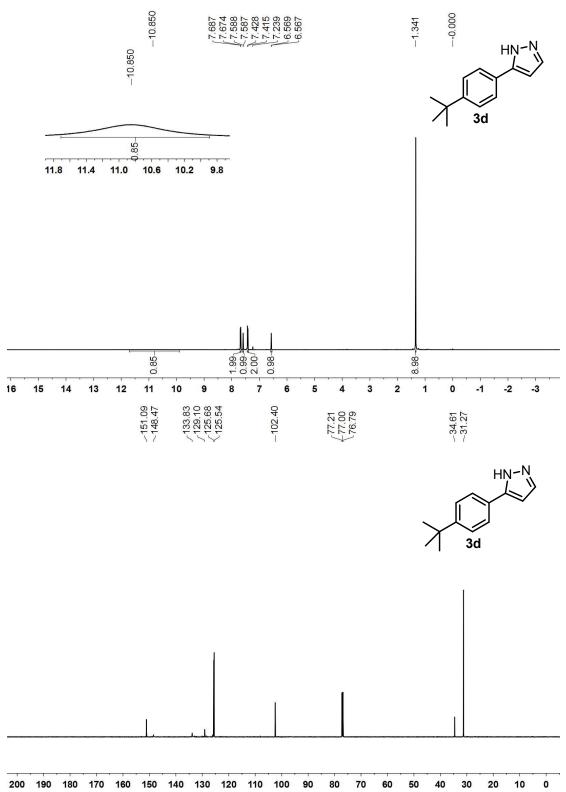
W. R. Thiel Chem. Eur. J. 2013, 19, 7825 –7834.

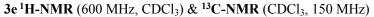

[5] E. V. Vashkevich, V. I. Potkin and N. G. Kozlov Russ. J. Org. Chem. 2004, 10, 1503-1507.

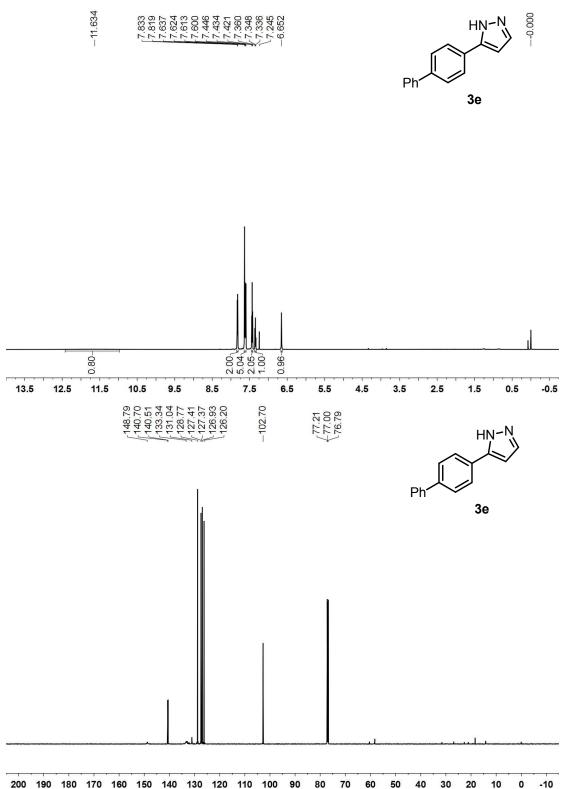
IV. ¹H- and ¹³C-NMR spectra copies

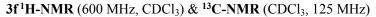


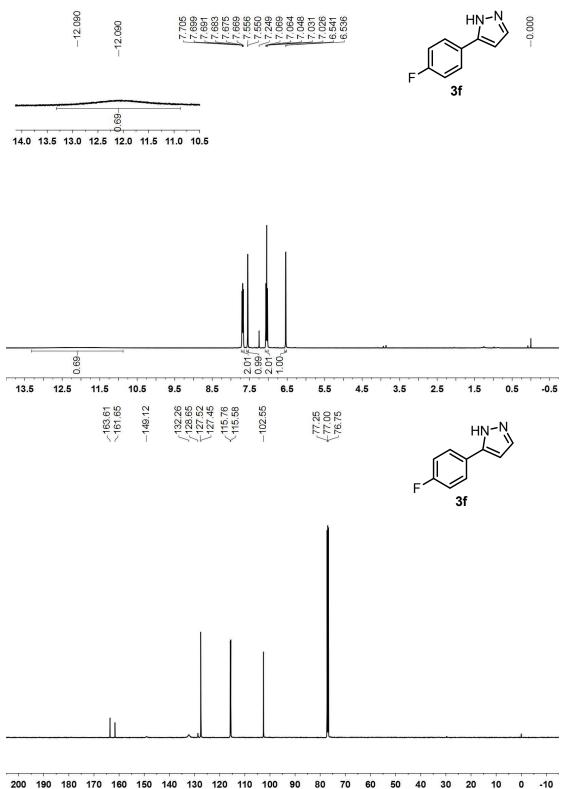
3a ¹H-NMR (600 MHz, CDCl₃) & ¹³C-NMR (CDCl₃, 150 MHz)

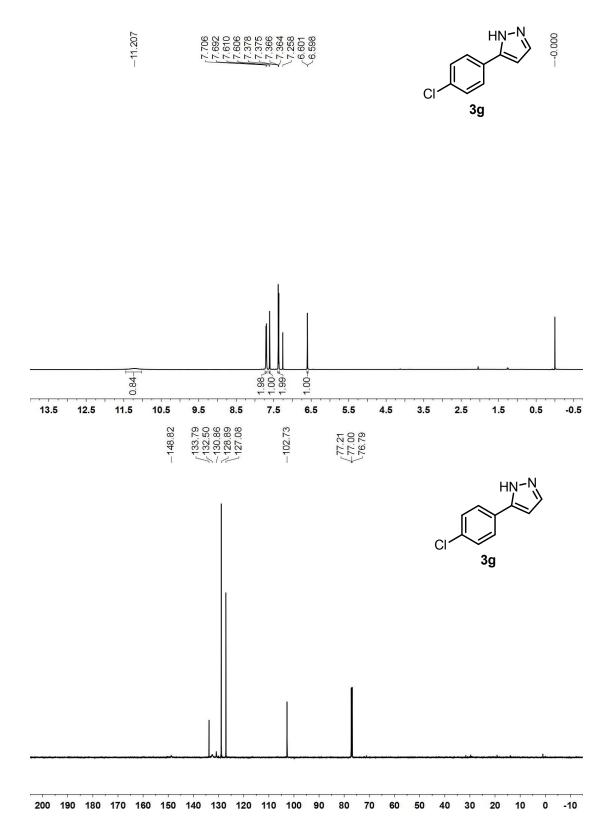

3b¹H-NMR (600 MHz, CDCl₃) & ¹³C-NMR (CDCl₃, 150 MHz)

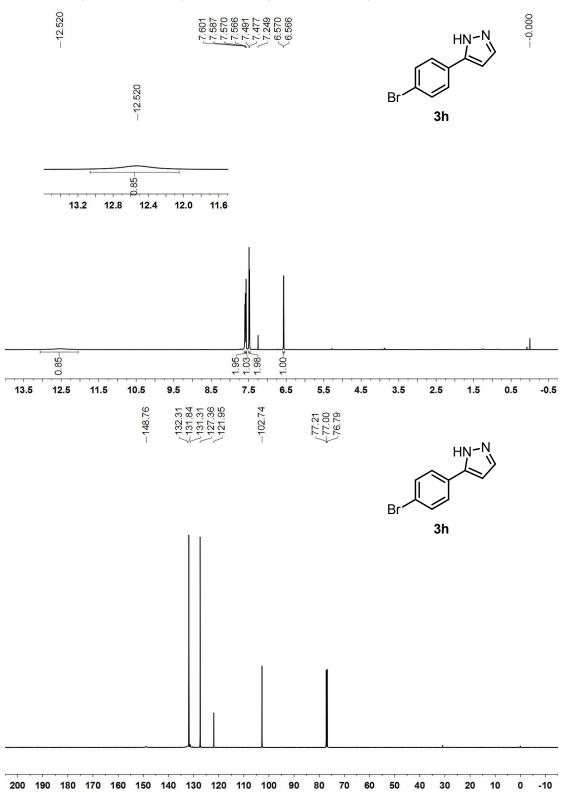


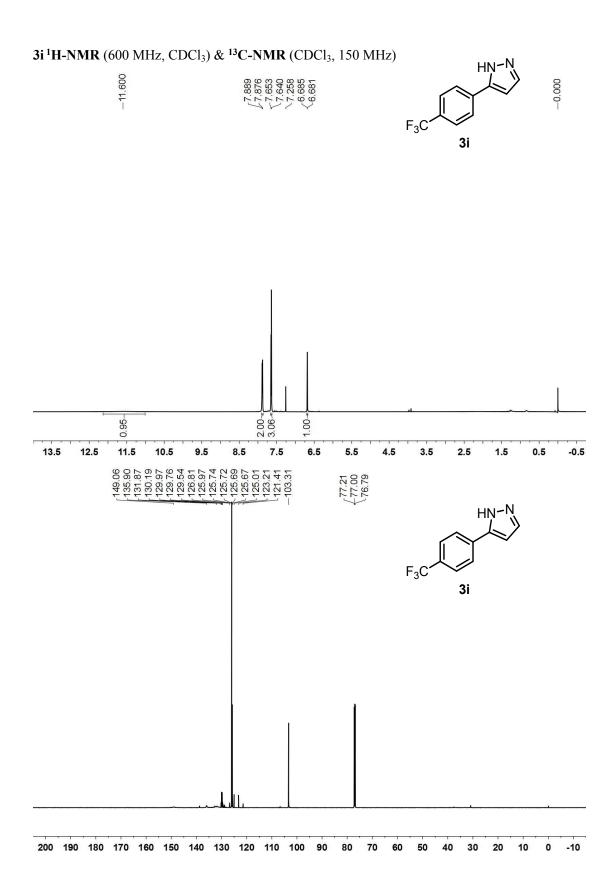

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10

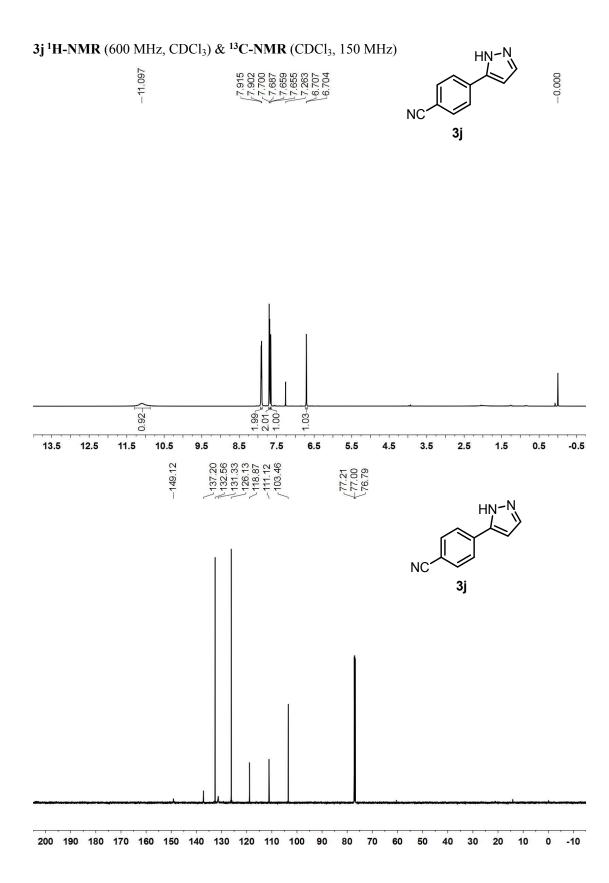


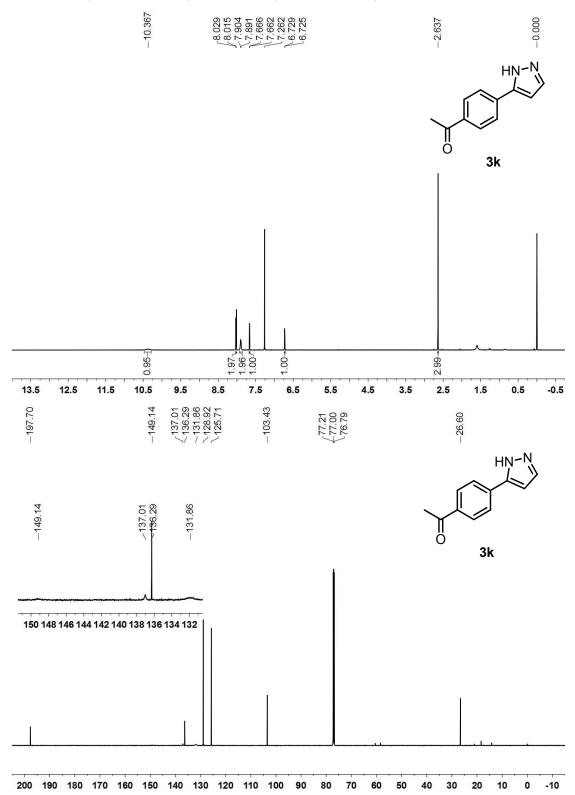

3d ¹H-NMR (600 MHz, CDCl₃) & ¹³C-NMR (CDCl₃, 150 MHz)

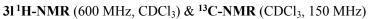


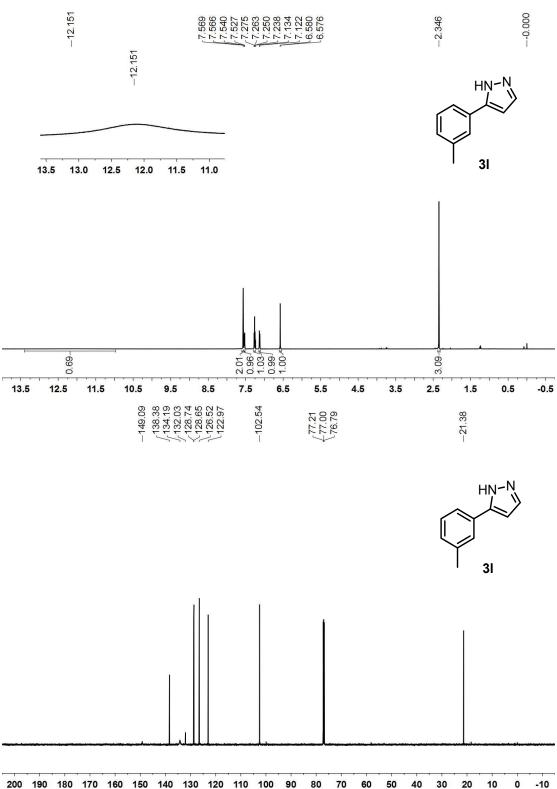


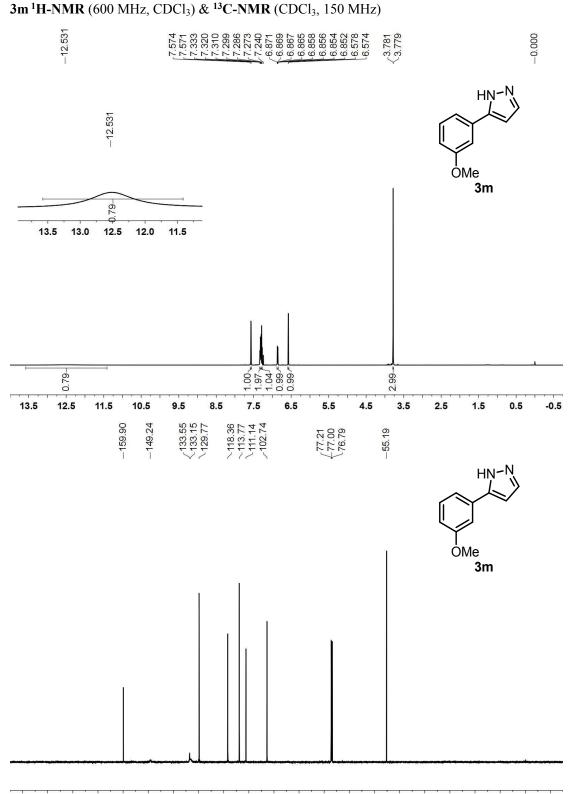




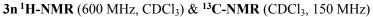


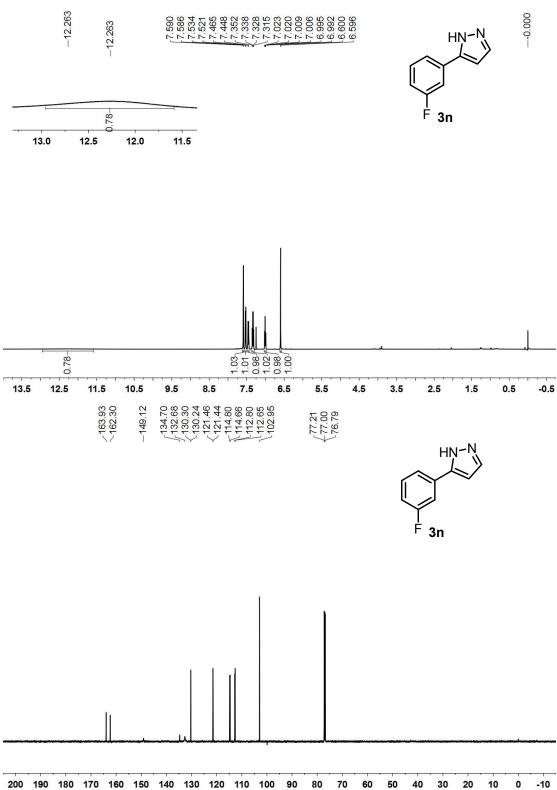


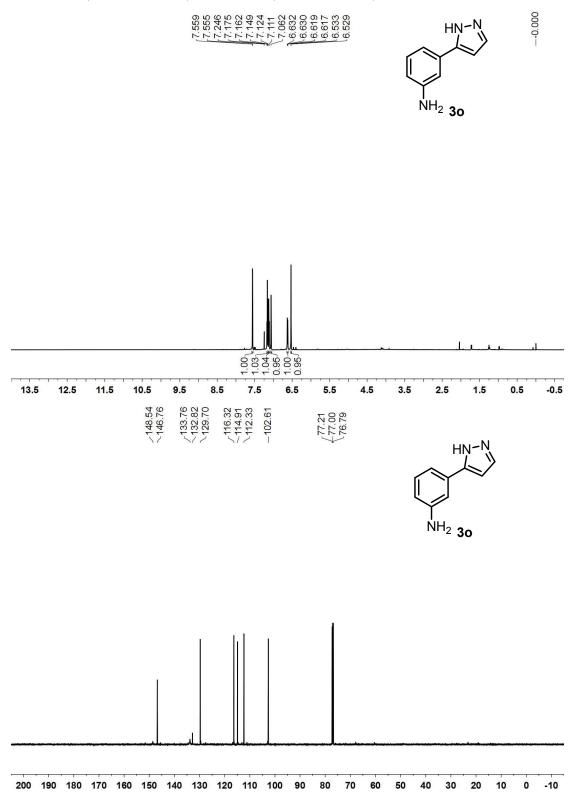


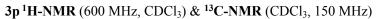


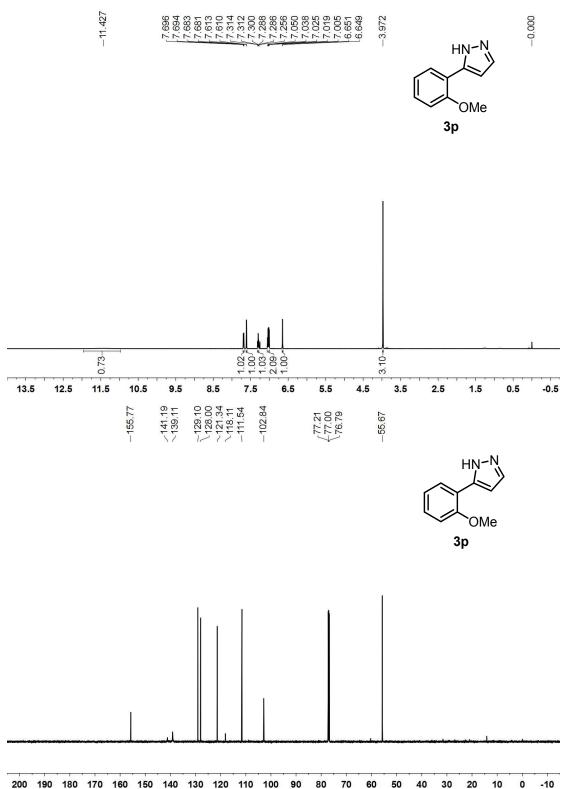
3k¹H-NMR (600 MHz, CDCl₃) & ¹³C-NMR (CDCl₃, 150 MHz)

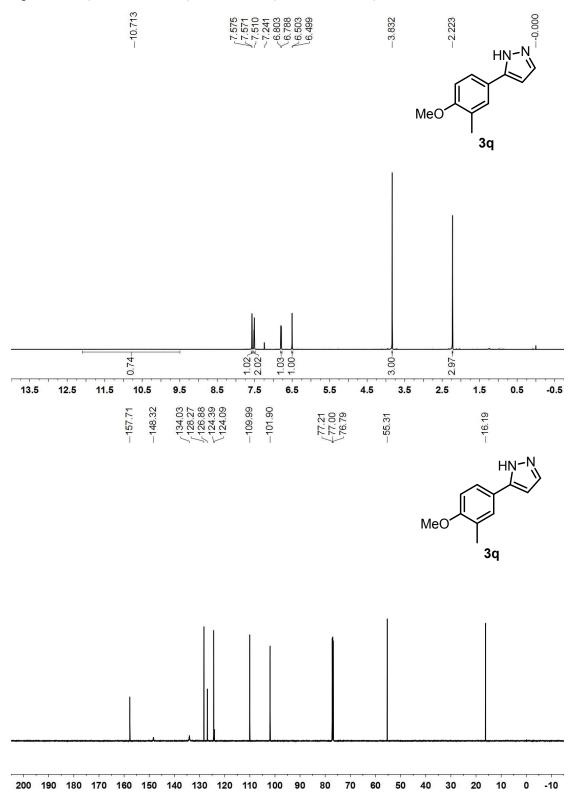


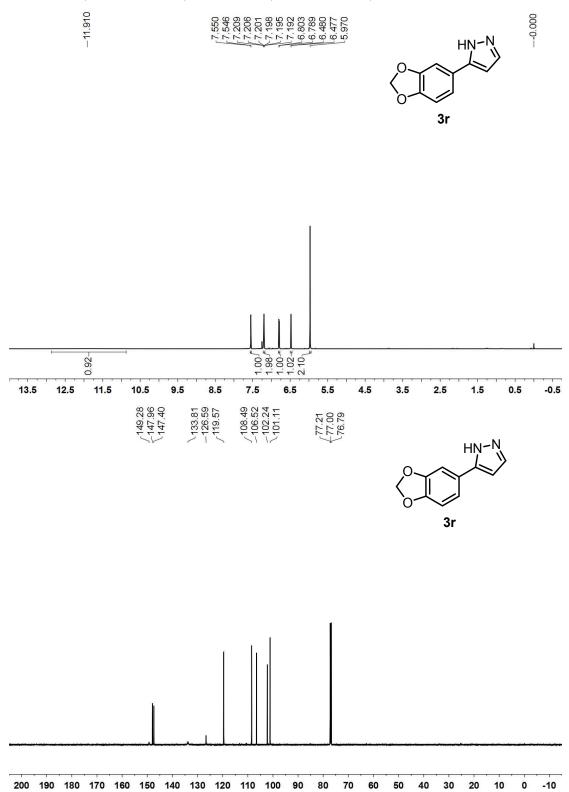


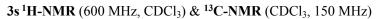


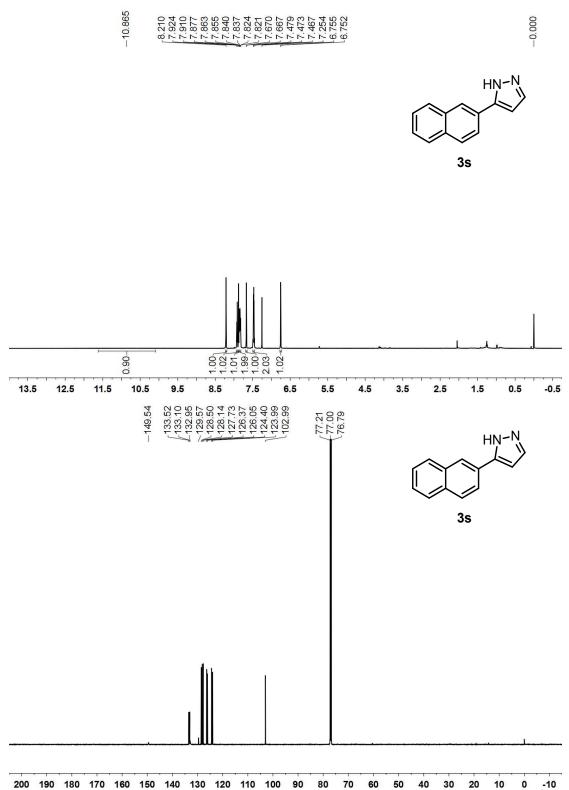

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10

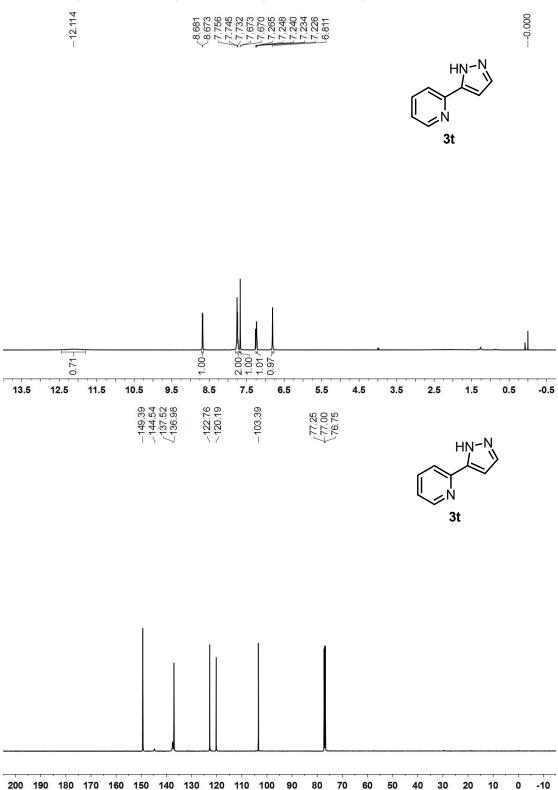


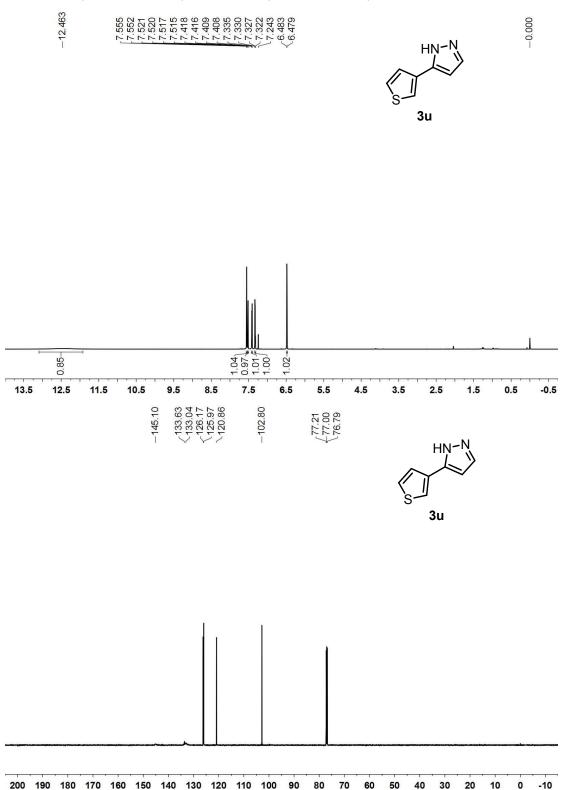

30 ¹**H-NMR** (600 MHz, CDCl₃) & ¹³**C-NMR** (CDCl₃, 150 MHz)

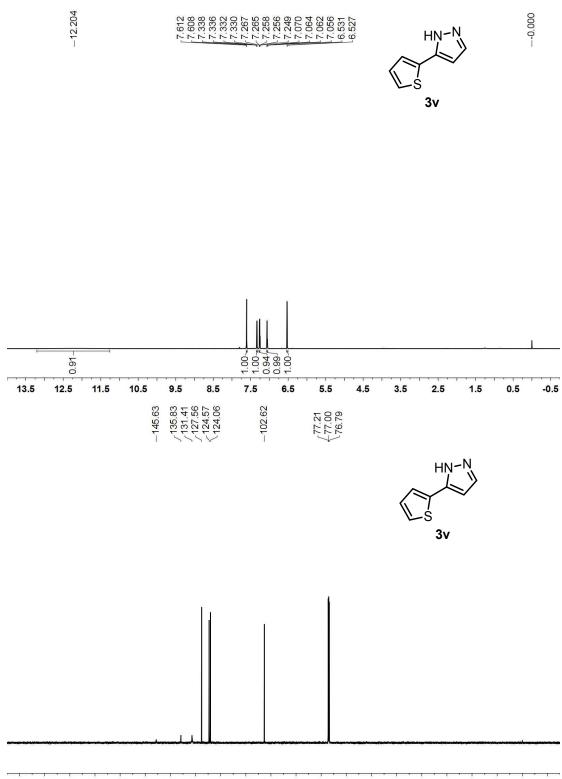


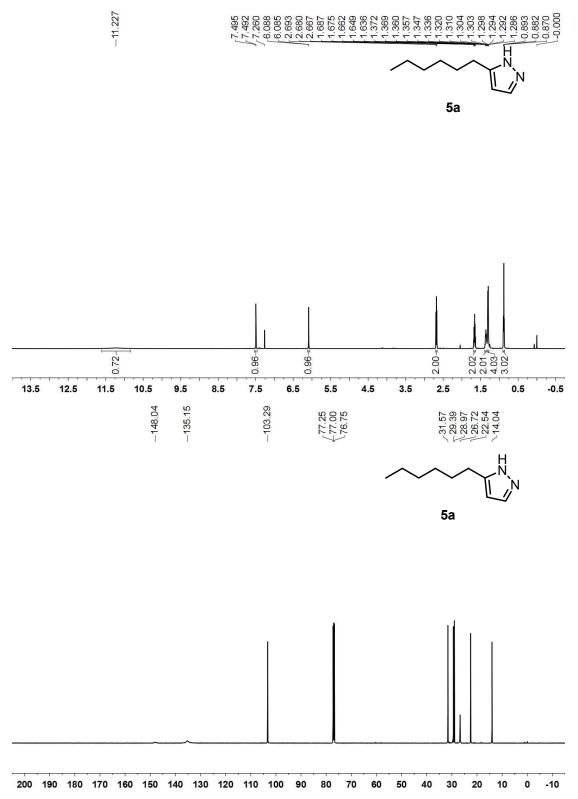


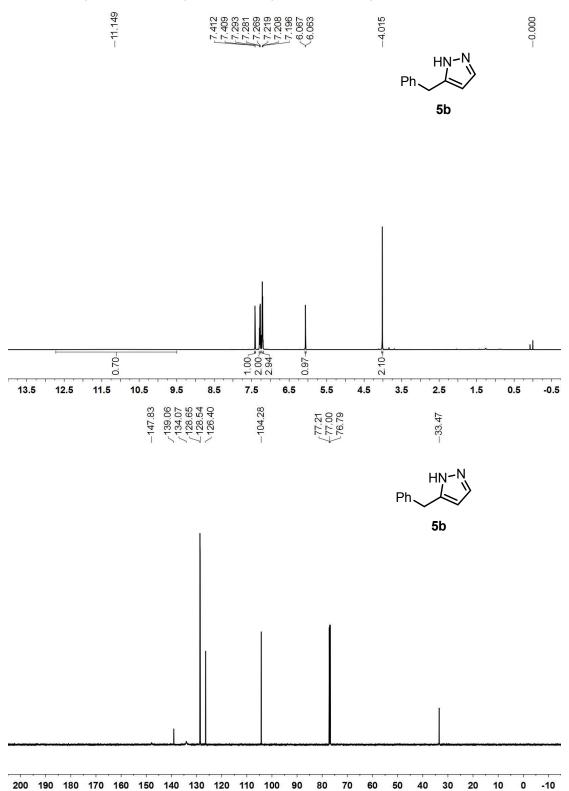


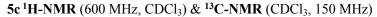

3q ¹H-NMR (600 MHz, CDCl₃) & ¹³C-NMR (CDCl₃, 150 MHz)

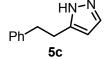


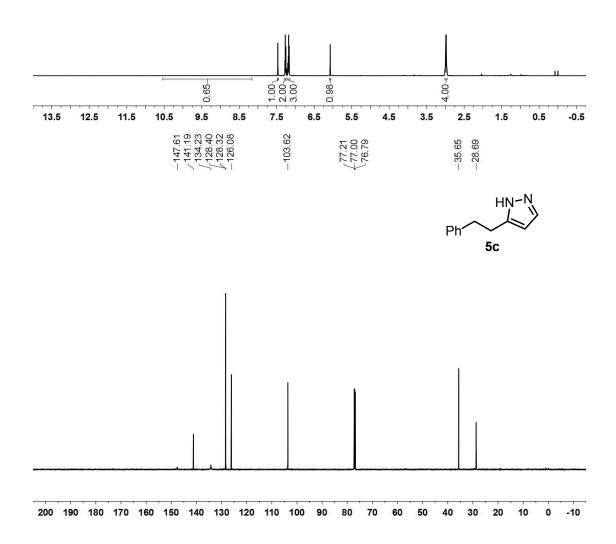


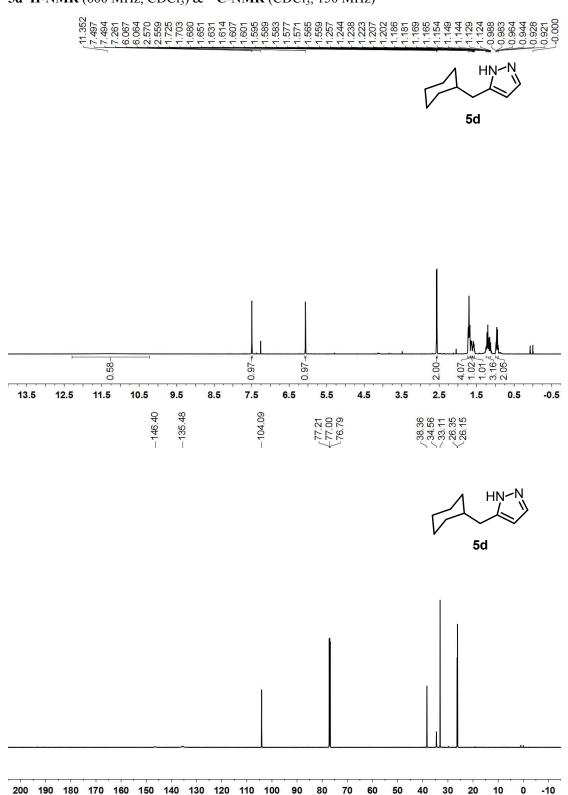


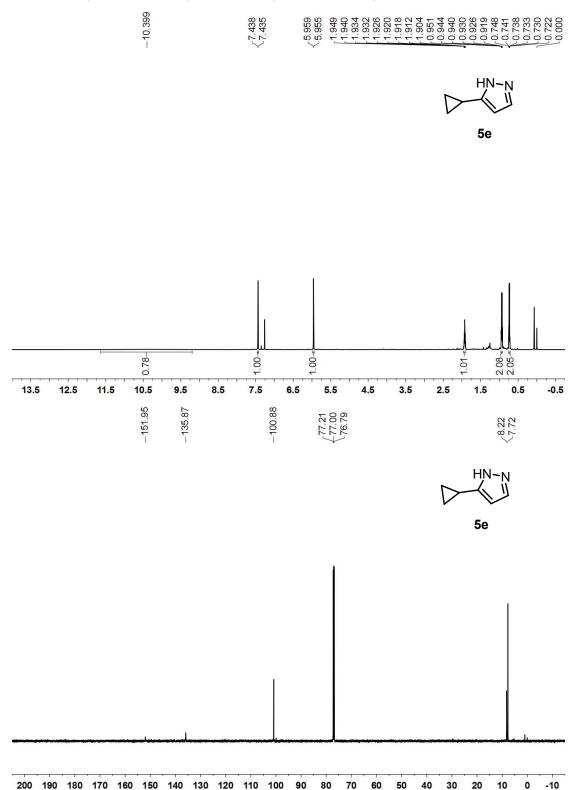


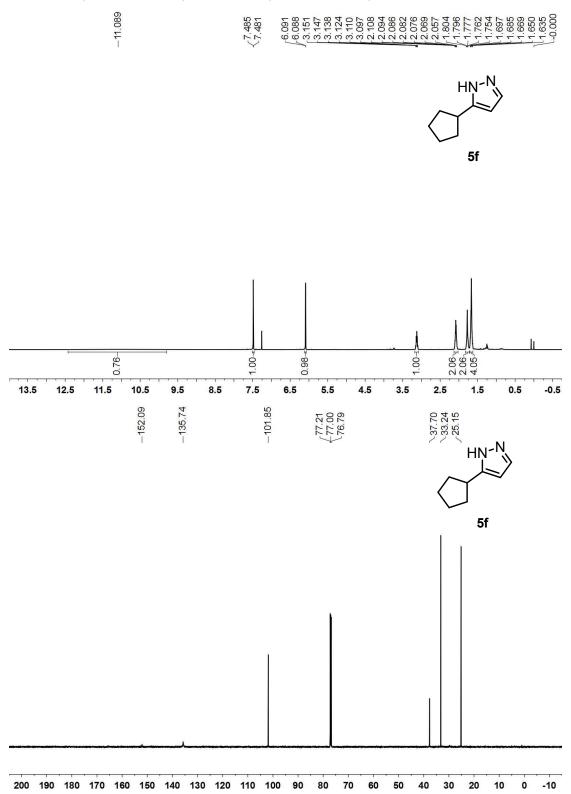



200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10

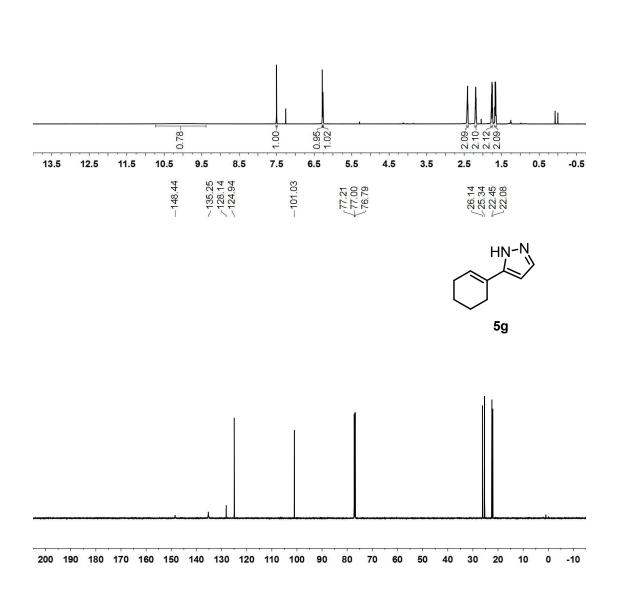


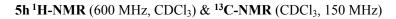


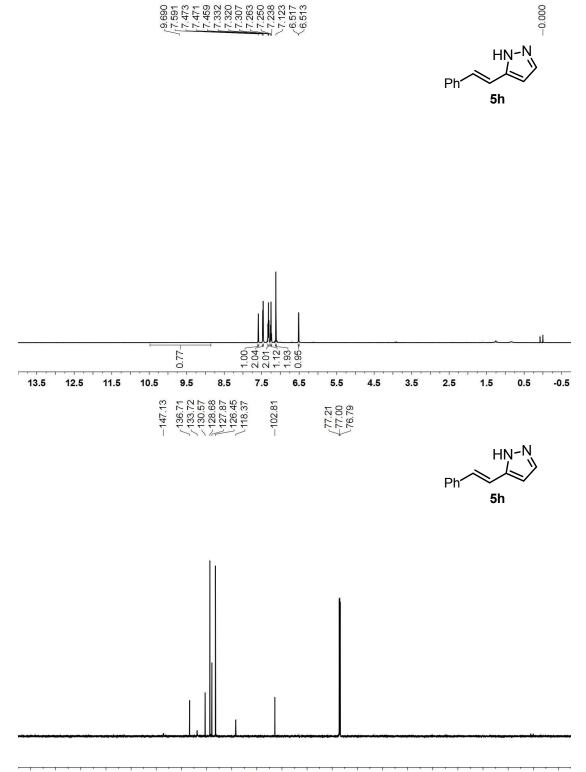


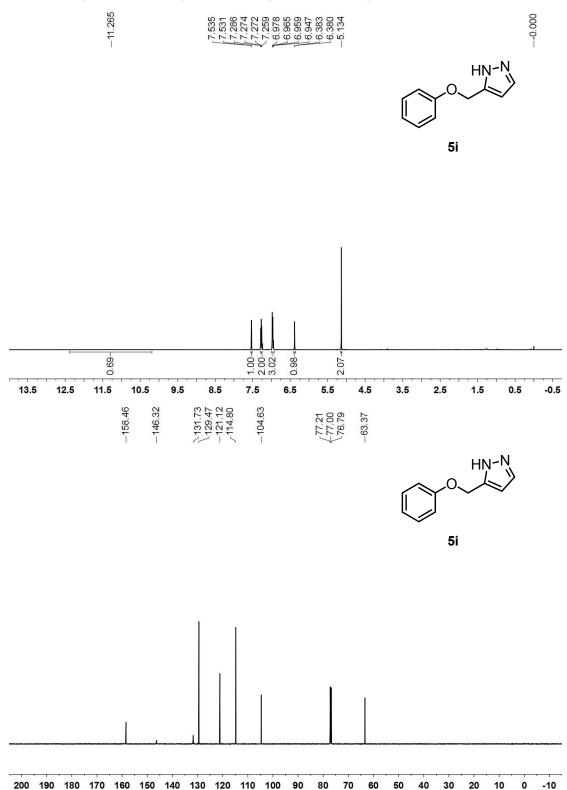


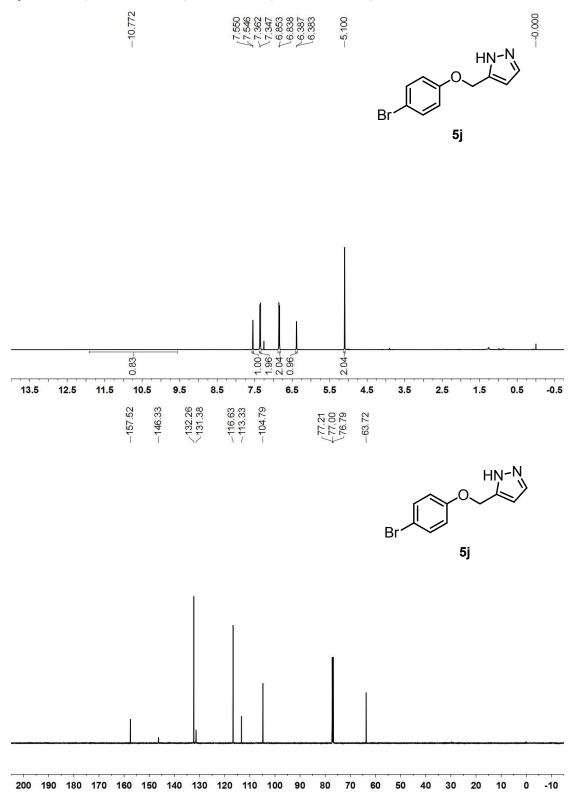
5d ¹H-NMR (600 MHz, CDCl₃) & ¹³C-NMR (CDCl₃, 150 MHz)

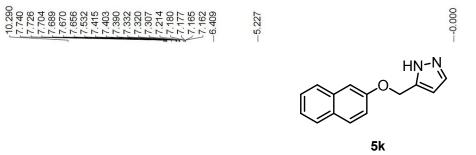


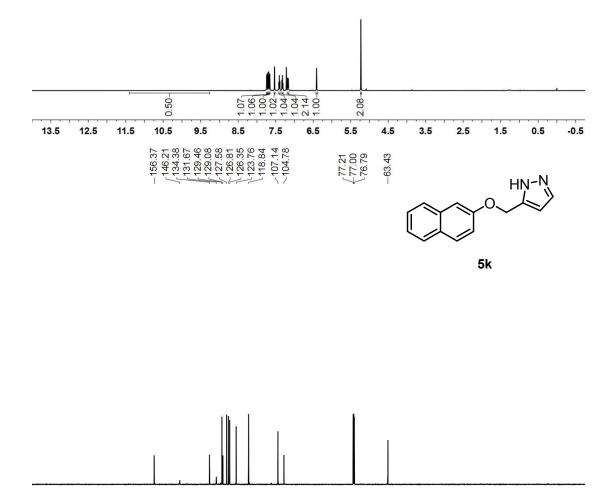



5g¹H-NMR (500 MHz, CDCl₃) & ¹³C-NMR (CDCl₃, 125 MHz)

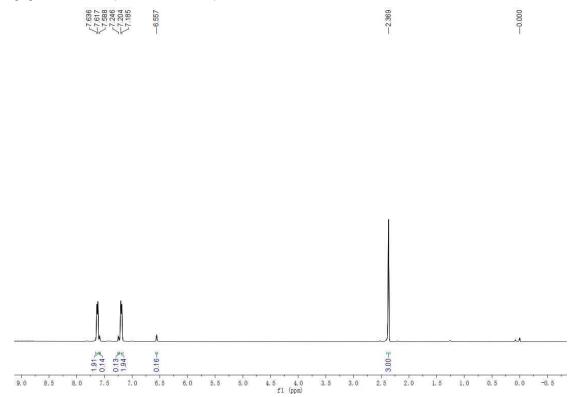

HN-N 5g






200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10

5j ¹H-NMR (600 MHz, CDCl₃) & ¹³C-NMR (CDCl₃, 150 MHz)



200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10

[D]-3a ¹H-NMR (600 MHz, CDCl₃)

