Supporting Information

For

FeCl₃ promoted ring size dictating diversity-oriented synthesis (DOS) of *N*-heterocycles using *in situ* generated cyclic imines and enamines

Ganesh Kumar Dhandabani,^[a] Mohana Reddy Mutra,^[a] and Jeh-Jeng Wang*^[a,b]

^[a] Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, No. 100, Shih-Chuan 1st Rd, Sanmin District, Kaohsiung City, 807 (Taiwan). Tel: (+886)-7-3121101, Fax: (+886)-7-3125339.

^[b] Department of Medical Research, Kaohsiung Medical University Hospital, No.100 Tzyou 1st Rd, Sanmin District, Kaohsiung City 807, Taiwan.

Email: jjwang@kmu.edu.tw

Table of Contents

1)	General Information	S 3
2)	Studies on parameters	S4-S6
3)	Mechanical studies	S7-S11
4)	Reaction Mechanisms	S12-S13
5)	General Experimental Procedures and Spectral Characterization	S14-S28
6)	References	S29
7)	X-ray Crystallography Data	S30-S35
8)	Copies of ¹ H and ¹³ C NMR spectrum	S36-S67
9)	Copies of ¹⁹ F NMR spectra	S68-S71
10)	Uv-visible absorption and emission spectra of dibenzo[<i>b</i> , <i>j</i>][1,10]	S72-S73
	phenanthrolines	

1) General Information

Starting materials were prepared according to the literature reported protocols.^{1 1}H, ¹³C and DEPT NMR spectra were recorded on a 400 MHz Varian Unity Plus or Varian Mercury plus spectrometer or JEOL 400 MHz. The chemical shift (δ) values are reported in parts per million (ppm), and the coupling constants (J) are given in Hz. The spectra were recorded using $CDCl_3$ as a solvent. ¹H NMR chemical shifts are referenced to tetramethylsilane (TMS) (0 ppm). ¹³C NMR was referenced to CDCl₃ (77.0 ppm). The abbreviations used are as follows: s, singlet; d, doublet; t, triplet; q, quartet; dd, doublet of doublet; ddd, doublet of doublet; dt, doublet of triplets; td, triplet of doublet; m, multiplet. Mass spectra and high-resolution mass spectra (HRMS) was measured using the ESI (FT-MS solariX) at National Sun Yat-Sen University, Kaohsiung, Taiwan or LTQ Orbitrap XL (Thermo Fischer Scientific) at National Chung Hsing University. Melting points were determined on an EZ-Melt (Automated melting point apparatus). All products reported showed ¹H NMR spectra in agreement with the assigned structures. Reaction progress and product mixtures were routinely monitored by TLC using Merck TLC aluminum sheets (silica gel 60 F254). Column chromatography was carried out with 230-400 mesh silica gel 60 (Merck)/neutral alumina and a mixture of hexane/ethyl acetate or hexane as an eluent.

2) Studies on reaction parameters

Table -S1 Optimization of reaction conditions for dibenzo[*b*,*j*][1,10]phenanthrolines ^{a,b}

Entry	Lewis acids	Oxidant/Additi	Solvent	Time,	Yield
5	(equiv.)	ve (equiv.)		h	$(\%)^{b}$
	· • /				
1	$FeCl_{3}(0.2)$		DMSO	10	<10
2^{c}	$FeCl_{3}(0.2)$	O_2	DMSO	14	24
3^d	$FeCl_3(0.2)$	TBHP(2.0)	DMSO	8	trace
$4^{\rm e}$	$FeCl_{3}(0.2)$	DTBP(2.0)	DMSO	11	13
5^{t}	$FeCl_{3}(0.2)$	NCS(1.2)	DMSO	8	22
6	$FeCl_{3}(0.5)$		DMSO	14	45
7	$FeCl_{3}$ (1.0)		DMSO	10	58
8	FeCl ₃ (1.5)		DMSO	8	83
9	FeCl ₃ (2.0)		DMSO	8	62
10	FeCl ₃ .6 H ₂ O		DMSO	8	47
	(1.5)				
11	$FeCl_{2}(1.5)$		DMSO	8	15
12	$FeBr_{3}(1.5)$		DMSO	14	0
13	$AlCl_{3}(1.5)$		DMSO	14	40
14	$I_{2}(1)$		DMSO	14	0
15	$FeCl_{3}(1.5)$	CH ₃ COOH	DMSO	8	45
		(2.0)			
16	$FeCl_{3}(1.5)$	C ₆ H ₅ COOH	DMSO	9	66
		(2.0)			
17	$FeCl_{3}(1.5)$	DDQ	DMSO	14	0
18 ^g			DMSO	14	0
19	$FeCl_{3}(1.5)$		Ethanol	10	40
20	$FeCl_{3}(1.5)$		DMF	14	traces
21	$FeCl_{3}(1.5)$		Toluene	14	0
22	$FeCl_{3}(1.5)$		Dioxane	14	0
23 ^h	$FeCl_{3}(1.5)$		H_2O	14	0
24 ¹	$FeCl_3(1.5)$		DMSO	14	50
25	Zn, In, Cu,		DMSO	14	0
	chlorides				

^a All reactions were carried out using **1a** (2.1 mmol), **2a** (1.0 mmol), FeCl₃ (1.5 mmol) and solvent (0.5 mL) at 110 °C and the mixtures were stirred at indicated time unless otherwise noted. ^b Isolated yield. ^c reaction performed under O₂ atmosphere. ^d both 70% Aq. TBHP and 5.5 M TBHP in decane were used. ^e Di-*tert*-butyl-peroxide (DTBP). ^f *N*-Chlorosuccinimide^{-g} reaction performed without FeCl₃. ^h 10 equiv. DMSO was used. ^I Reaction performed at 90 °C.

Initially, the reaction between 2-ethynyl aniline (1a) and cyclohexanone (2a) in the presence of 20 mol% FeCl₃ in DMSO at 110 °C afforded the desired product **3aa** less than 10% (Table-1, entry 1). Even though we introduce different oxidants or additives in reaction conditions, it couldn't help to improve the yield of the reaction (Table-1, entry 2-5). When we increased the $FeCl_3$ quantity from a catalytic amount to stoichiometric amount, (Table-1, entry 6-8) considerable improvement in the reaction yield was observed (Table-1, entry 8). However, further increasing the amount of FeCl₃ to 2 equivalent suppressed product formation (Table-1, entry 9). We screened the reaction with different iron salts such as FeCl₃.6H₂O, FeCl₂, FeBr₃ (Table-1, entry 10-12) and these all produce inferior yields. It confirmed the anhydrous FeCl₃ is the best choice for this reaction (Table-1, entry 8). Replacing FeCl₃ with AlCl₃ in the reaction medium resulted in 40% of 3aa. Stoichiometric amount of I₂ failed to promote the reaction (Table-1, entry 14). The addition of CH₃COOH and C₆H₅COOH in the reaction provided the moderate yield of 44 and 65% (Table-1, entry 15-16). Subsequent investigation of the reaction under the stoichiometric amount of DDQ ended up with sluggish reaction mixture (Table-1, entry 17). In the absence of FeCl₃, 3aa was not formed, which confirmed the role of FeCl₃ to promote the reaction (Table-1, entry 18). Further, we examined the reaction with different solvents, we found only ethanol to afford the 40% of the required product (Table-1, entry 19-23). While the reaction was carried out in the slightly lower temperature (90 °C), product formation was suppressed (Table-1, entry 24). Other common metal chlorides such as Cu, Zn, In were inferior to activate the reaction (Table-1, entry 25).

Table -S2 Optimization of reaction conditions for 2(-inden-2-yl)-3-oxo-indolines derivatives^a

	Ph +	Condition		Ph H H
1a	6a			7aa 💛
Entry	Lewis acids (equiv.)	Solvent	Time, h	Yield $(\%)^b$
1	FeCl ₃ (1.5)	DMSO	8	80
2	FeCl ₃ (0.7)	DMSO	8	48
3	FeCl ₃ (0.4)	DMSO	8	25
4	FeCl ₃ (0.1)	DMSO	8	<10
5	FeCl ₃ (2.0)	DMSO	8	75
6 ^c	FeCl ₃ (1.5)	DMSO	8	22
7 ^d	FeCl ₃ (0.1)	DMSO	8	ND
8 ^e	FeCl ₃ (1.5)	DMSO	5	88
9	$FeCl_{3.}6H_{2}O(1.5)$	DMSO	10	20
10	FeBr ₃ (1.5)	DMSO	10	ND
11	$Fe(acac)_{3}(1.5)$	DMSO	10	ND
12	$Fe(OTf)_{3}(1.5)$	DMSO	10	20
13	FePC (1.5)	DMSO	10	ND
14	AlCl ₃ (1.5)	DMSO	10	ND
15	$InCl_3.H_2O(1.5)$	DMSO	10	45
16	AgNO ₃ (1.5)	DMSO	10	ND
17	$Cu(OTf)_2$ (1.5)	DMSO	10	<10
18	$BF_3.OEt_2(2)$	DMSO	7	65
19	$ZnCl_{2}(1.5)$	DMSO	10	ND
20	FeCl ₃ (1.5)	DMF	10	ND
21	FeCl ₃ (1.5)	Toluene	10	ND
22	FeCl ₃ (1.5)	Dioxane	10	ND
23	$FeCl_{3}(1.5)$	H_2O	10	ND
24	FeCl ₃ (1.5)	DCE	10	ND
25	FeCl ₃ (1.5)	<i>t</i> -Butanol	10	ND
26^{t}	FeCl ₃ (1.5)	DMSO	8	ND
27 ^g		DMSO	8	ND

^a All reactions were carried out using **1a** (1 mmol), **2a** (1.5 mmol), FeCl₃ (1.5 mmol) and solvent (1 mL) at 110 °C and reaction mixture were stirred at indicated time unless otherwise noted. ^b Isolated yield. ^c reaction performed under O₂ atmosphere. ^d both 70% Aq. TBHP and 5.5 M TBHP in decane was used. ^e Reaction performed under N₂ atmosphere. ^f Reaction carried out in 70 °C. ^g Without FeCl₃ reaction was performed.

3) Mechanistic studies

(1) ¹⁸O isotope labeling experiment of compound **5aa**.

In an oven dried 15 ml seal tube 2-(phenylethynyl) aniline **1a** (193 mg, 1 mmol) was added in 1 ml of dry DMSO followed by the sequential addition of anhydrous FeCl₃ (243 mg, 1.5 mmol) β -tetralone **4a** (219 mg, 1.5 mmol) and H₂¹⁸O (90 µl, 5 equivalent). The reaction mixture was allowed to stir at 110 °C for 12 h. After the completion, the reaction mixture was cooled to room temperature and diluted with 25.0 mL of cooled water. The water layer was extracted with (3X25 mL) of ethyl acetate and the combined ethyl acetate layer was given brine wash (1X10 mL). The final ethyl acetate layer was dried over sodium sulfate and concentrated under reduced pressure to get the crude compound. The crude product submitted for GC-MS analysis. The obtained crude was purified using column chromatography by eluting from hexane to 8-15% ethyl acetate/hexane to afford pure of benzo[*a*]acridin-12-yl(phenyl)methanone as a brown color solid.

Figure S1. GC-MS spectra of the ¹⁸O- and ¹⁶O-labeling products

(2) 18 O isotope labeling experiment of compound **7aa**.

In an oven dried 15 ml seal tube 2-(phenylethynyl) aniline **1a** (193 mg, 1 mmol) was added in 1 ml of DMSO followed by the sequential addition of anhydrous FeCl₃ (243 mg, 1.5 mmol), 2,3-dihydro-1*H*-inden-1-one **6a** (198 mg, 1.5 mmol) and $H_2^{18}O$ (90 µl, 5 equivalent)... The reaction mixture was allowed to stir at 110 °C for 7 h at nitrogen atmosphere. We did not observed any product formation (**7aa**) in presence of 5 equivalent of $H_2^{18}O$.

To understand the reaction mechanism of these all annulation reactions, we carried out various control studies. In case of dibenzo [b, j] [1,10] phenanthrolines cyclication reactions, we envisioned 1,2-cyclohexadione and 2-chlorocyclohexan-1-one were possible intermediates. This hypothesis was confirmed by control studies (Scheme 1, a and b). The cyclohexanone treated under the standard reaction conditions in the absence of o-alkynylaniline, it converted into 1,2-cyclohexadione. These results support the in situ generation of 1,2-cyclohexadione in the reaction medium (Scheme 1, c). ¹⁸O labelling studies with benzoylated acridines confirmed that water was the source of oxygen atom in the carbonyl group (Scheme 1, d). At the short reaction time (4 hr), we isolated the cyclized intermediate 5ab' and the desired product 5ab in the reaction of 2-(phenylethynyl)aniline 1a and α -tetralone 4b (Scheme 1, e). When this cyclized intermediate 5ab' subjected to our standard reaction conditions, it readily underwent benzylic oxidation to afford the final product 5ab in 95% yield (Scheme 1, f). These results ruled out the *in situ* generation of 1,2-dicarborbonyl group from oxidation of alkyne and consecutive Friedlander type cyclization.^{3a} when we have monitored the reaction in short reaction time (1 hour) through GC-MS analysis, we found 62% of imine intermediate J was formed in situ in reaction medium. Further continue the reaction up to 12 hour, we isolated the product 5aa with 85% yield. It confirm our proposed mechanism of imine formation as an initiation step of aerobic dehydrogenative aromatization reaction (Scheme 1, g). The ¹⁸O labelling studies with dihydro-1*H*-indenone was failed, even the desired product 7aa was not formed in the presence of water This result rationalized the source of oxygen should be DMSO (Scheme 1, h). Furthermore, our anticipated intermediate 2-phenyl-3*H*-indol-3-one 7a' efficiently reacted with dihydro-1*H*-indenone and transformed into our desired product 7aa (Scheme 1, i).

4) Reaction Mechanisms

i) Alternative mechanism for dibenzo[*b*,*j*][1,10]phenanthroline and benzoylated benzo[*a*] acridine derivatives formation.

ii) Mechanism for formation of benzoylated benzo[*c*]acridine formation.

<u>Path- A</u>

2) General Experimental Procedure and Spectral Characterization.

2.1 General procedure (A) for synthesis of dibenzo[*b*,*j*][1,10]phenanthroline.

In an oven dried 15 ml seal tube 2-(phenylethynyl) aniline **1a** (405 mg, 2.1 mmol) was added in 1 ml of DMSO followed by the sequential addition of anhydrous FeCl₃ (243 mg, 1.5 mmol) and cyclohexanone **2a** (98 mg, 1 mmol). The reaction mixture was allowed to stir at 110 °C for 8 h. After the completion, the reaction mixture was cooled to room temperature and diluted with 25.0 mL of ice water. The water layer was extracted with (3X25 mL) of ethyl acetate and the combined ethyl acetate layer was given brine wash (1X10 mL). The final ethyl acetate layer was dried over sodium sulfate and concentrated under reduced pressure to get the crude compound. The obtained crude was purified using column chromatography by eluting from hexane to 30-55% ethyl acetate/hexane to afford pure of 5,8-dibenzyl-6,7-dihydrodibenzo[*b*,*j*][1,10]phenanthroline (**3aa**) as an brown color solid (374 mg, 81%); m.p. 230-232 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.49 (d, *J* = 8.5 Hz, 2H), 7.99 (d, *J* = 7.8 Hz, 2H), 7.70 (dd, *J* = 8.3, 6.8, 1.2 Hz, 2H), 7.53 (ddd, *J* = 8.2, 6.8, 1.2 Hz, 2H), 7.26 – 7.14 (m, 6H), 7.07 (d, *J* = 7.0 Hz, 4H), 4.59 (s, 4H), 3.13 (s, 4H); ¹³C NMR (101 MHz, CDCl₃) δ 152.29, 147.84, 141.98, 138.45, 131.74, 131.13, 128.66, 128.54, 127.90, 127.32, 126.35, 123.69, 33.32, 24.95. HRMS (ESI) calcd for C₃₄H₂₇N₂ [M+H]⁺: 463.2167; found: 463.2168.

5,8-dibenzyl-3,10-difluoro-6,7-dihydrodibenzo[*b*,*j*][**1,10]phenanthroline** (**3ba**). Following

the general procedure (A) for 14 h on a 1.0 mmol scale, giving the compound as an brown color solid (273 mg, 55%); m.p. 235-237 °C; ¹H NMR (400 MHz, CDCl₃) δ

8.47 (dd, J = 9.3, 5.7 Hz, 2H), 7.58 (dd, J = 10.3, 2.7 Hz, 2H), 7.48 (ddd, J = 9.3, 8.0, 2.7 Hz, 2H), 7.26 – 7.16 (m, 6H), 7.06 (d, J = 6.9 Hz, 4H), 4.52 (s, 4H), 3.14 (s, 4H); ¹³C NMR (101 MHz, CDCl₃) δ 161.32 (d, $J_F = 248.7$ Hz), 151.70, 145.07, 141.59 (d, $J_F = 5.8$ Hz), 137.92, 134.27 (d, $J_F = 9.4$ Hz), 131.79, 128.92, 128.84, 127.85, 126.60, 119.05 (d, $J_F = 25.8$ Hz), 107.44 (d, J = 22.9 Hz), 33.60, 24.98; ¹⁹F NMR (376 MHz, CDCl₃) δ -111.03 (s, 2F); HRMS (ESI) calcd for C₃₄H₂₄F₂N₂ [M+H]⁺: 498.1908; found: 462.2096.

5,8-dibenzyl-3,10-dimethyl-6,7-dihydrodibenzo[b,j][1,10]phenanthroline (3ca). Following

the general procedure (A) for 7 h on a 1.0 mmol scale, giving the compound as an off-white solid (441 mg, 90%); m.p. 290-291 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.37 (d, *J* = 8.6 Hz, 2H), 7.73 (s, 2H), 7.53 (dd, *J* = 8.7, 1.6 Hz, 2H),

7.25 – 7.14 (m, 6H), 7.07 (d, J = 7.1 Hz, 4H), 4.54 (s, 4H), 3.06 (s, 4H), 2.50 (s, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 151.46, 146.34, 140.83, 138.46, 136.97, 131.31, 130.91, 130.63, 128.49, 127.76, 127.72, 126.11, 122.40, 33.04, 24.79, 21.96; HRMS (EI) calcd for : C₃₆H₃₀N₂ [M⁺]: 490.2409; found: 490.2408.

5,8-bis(3-fluorobenzyl)-6,7-dihydrodibenzo[b,j][1,10]phenanthroline (3da). Following the

general procedure (A) for 6 h on a 1.0 mmol scale, giving the compound as an brown color solid (418 mg, 85%); m.p. 210-211 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.95 (dd, J = 8.5, 0.7 Hz, 2H), 7.72 (ddd, J = 8.4, 6.8, 1.3 Hz, 2H), 7.55 (ddd, J = 8.3, 6.8, 1.3 Hz, 2H), 7.20 (td, J = 8.0, 6.0Hz, 2H), 6.91 – 6.84 (m, 4H), 6.78 (dd, J = 9.9, 1.7 Hz,

4H), 4.57 (s, 4H), 3.12 (s, 4H); ¹³C NMR (101 MHz, CDCl₃) δ 163.06 (d, J_F = 246.5 Hz), 152.30, 147.95, 141.22, 141.03 (d, J_F = 7.2 Hz), 131.89, 131.09, 130.19 (d, J_F = 8.4 Hz), 128.75, 127.77, 127.58, 123.56 (d, J_F = 2.9 Hz), 123.50, 114.95 (d, J_F = 21.7 Hz), 113.44 (d, J_F = 21.1 Hz), 33.08, 24.97; ¹⁹F NMR (376 MHz, CDCl₃) δ -112.56 (s, 2F); HRMS (EI) calcd for C₃₄H₂₄F₂N₂ [M⁺]: 498.1907; found: 498.1898.

5,8-bis(3-(trifluoromethyl)benzyl)-6,7-dihydrodibenzo[*b*,*j*][1,10]phenanthroline (3ea).

Following the general procedure (A) for 10 h on a 1.0 mmol scale, giving the compound as an off-white color solid (466 mg, 78 %); m.p. 241-242 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.51 (d, *J* = 7.8 Hz, 2H), 7.93 (d, *J* = 8.3 Hz, 2H), 7.73 (td, *J* = 7.2, 1.2 Hz, 2H), 7.55 (td, *J* = 7.2, 1.2 Hz, 2H), 7.31 (dd, J = 7.2, 1.2

9.9, 5.5 Hz, 2H), 7.14 (d, J = 7.8 Hz, 2H), 4.64 (s, 4H), 3.11 (s, 4H); ¹³C NMR (101 MHz, CDCl₃) δ 152.33, 148.01, 140.83, 139.41, 132.00, 131.06, 130.91, 129.27, 128.84, 127.72, 127.67, 124.71 (q, $J_F = 3.8$ Hz), 123.43 (q, $J_F = 3.7$ Hz), 123.35, 33.09, 25.02; ¹⁹F NMR (376 MHz, CDCl₃) δ -62.05 (s, 6F); HRMS (EI) calcd for C₃₆H₂₄F₆N₂ [M⁺]: 598.1843; found: 598.1849.

5,8-bis(3-methylbenzyl)-6,7-dihydrodibenzo[b,j][1,10]phenanthroline (3fa). Following the

general procedure (A) for 8 h on a 1.0 mmol scale, giving the compound as an brown color solid (382 mg, 78%); m.p. 254-256 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.47(d, *J* = 7.8 Hz, 2H), 7.98 (d, *J* = 7.8 Hz, 2H), 7.69 (ddd, *J* = 8.0, 6.8, 1.2 Hz, 2H), 7.51 (ddd, *J* = 8.3, 6.8, 1.3 Hz, 2H), 7.10 (t, *J*

= 7.7 Hz, 2H), 6.97 (d, J = 7.4 Hz, 2H), 6.85 (d, J = 8.3 Hz, 4H), 4.54 (s, 4H), 3.11 (s, 4H), 2.21 (s, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 152.34, 147.84, 142.06, 138.40, 138.31, 131.68, 131.17, 128.61, 128.51, 127.96, 127.26, 127.10, 124.94, 123.75, 33.25, 24.97, 21.33; HRMS (ESI) calcd for: C₃₆H₃₁N₂ [M+H]⁺: 491.2481; found: 491.2481.

5,8-bis(4-chlorobenzyl)-6,7-dihydrodibenzo[b,j][1,10]phenanthroline (3ga). Following the

general procedure (A) for 7 h on a 1.0 mmol scale, giving the compound as an off-white color solid (254 mg, 48%); m.p. 259-260 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.50 (d, *J* = 7.9 Hz, 2H), 7.94 (d, *J* = 8.0 Hz, 2H), 7.72 (ddd, J = 8.0, 6.8, 1.2 Hz, 2H), 7.54 (ddd, J = 8.2, 6.9, 1.2 Hz, 2H), 7.24 – 7.16 (m, 4H), 7.00 (d, J = 8.5 Hz, 4H), 4.55 (s, 4H), 3.09 (s, 4H); ¹³C NMR (101 MHz, CDCl₃) δ 152.36, 147.99, 141.41, 136.93, 132.26, 131.96, 131.02, 129.25, 128.87, 128.72, 127.74, 127.56, 123.49, 32.71, 24.98; HRMS (EI) calcd for C₃₄H₂₄Cl₂N₂ [M⁺]: 530.1316; found: 530.1312.

5,8-bis(4-(trifluoromethyl)benzyl)-6,7-dihydrodibenzo[*b*,*j*][1,10]phenanthroline (3ha).

Following the general procedure (A) for h on a 1.0 mmol scale, giving the compound as a white color solid (484 mg, 81%); m.p. 252-253 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.53 (dd, J = 8.5,

0.7 Hz, 2H), 7.94 (d, J = 7.9 Hz, 2H), 7.75 (ddd, J = 8.4, 6.8, 1.3 Hz, 2H), 7.57 (ddd, J = 8.3, 6.8, 1.3 Hz, 2H), 7.51 (d, J = 8.1 Hz, 4H), 7.20 (d, J = 8.1 Hz, 4H), 4.66 (s, 4H), 3.12 (s, 4H); ¹³C NMR (101 MHz, CDCl₃) δ 152.35, 148.05, 142.58, 140.87, 132.07, 131.05, 128.85, 128.24, 127.73, 125.69 (q, $J_F = 3.7$ Hz), 123.38, 33.19, 25.03; ¹⁹F NMR (376 MHz, CDCl₃) δ -62.38 (s, 6F); HRMS (EI) calcd for C₃₆H₂₄F₆N₂ [M⁺]: 598.1843; found: 598.1846.

1,1'-(((6,7-dihydrodibenzo[b,j][1,10]phenanthroline-5,8-diyl)bis(methylene))bis(4,1-

phenylene)) bis(ethan-1-one) (3ia). Following the general procedure (A) for 6 h on a 1.0 mmol scale, giving the compound as brown color solid (425 mg, 78%); m.p. 178-180 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.49 (dd, J = 8.5, 0.8 Hz, 2H),

7.93 (dd, J = 8.5, 0.7 Hz, 2H), 7.86 – 7.79 (m, 4H), 7.72 (ddd, J = 8.3, 6.8, 1.3 Hz, 2H), 7.54 (ddd, J = 8.3, 6.8, 1.3 Hz, 2H), 7.15 (d, J = 8.5 Hz, 4H), 4.63 (s, 4H), 3.09 (s, 4H), 2.52 (s, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 197.53, 152.29, 147.97, 144.09, 141.07, 135.54, 131.91, 131.04, 128.83, 128.14, 127.73, 127.65, 123.44, 33.39, 26.51, 25.01. HRMS (ESI) calcd for C₃₈H₃₁N₂O₂ [M+H]⁺: 547.2380; found: 547.2380.

5,8-bis(4-methylbenzyl)-6,7-dihydrodibenzo[b,j][1,10]phenanthroline (3ja) Following the

general procedure (A) for 7 h on a 1.0 mmol scale, giving the compound as a brown color solid (313 mg, 64%); m.p. 253-254 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.50 (dd, *J* = 19.0, 8.6 Hz, 2H), 7.98 (d, *J* = 8.0 Hz, 2H), 7.69 (ddd, *J* = 8.0, 6.8, 1.2 Hz, 2H), 7.51 (ddd, *J*

= 8.2, 6.8, 1.2 Hz, 2H), 7.03 (d, J = 7.9 Hz, 4H), 6.96 (d, J = 8.1 Hz, 4H), 4.54 (s, 4H), 3.12 (s, 4H), 2.27 (s, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 152.27, 147.78, 142.06, 135.80, 135.28, 131.62, 131.01, 129.23, 128.37, 127.83, 127.68, 127.14, 123.64, 32.81, 24.85, 20.79. HRMS (ESI) calcd for: C₃₆H₃₁N₂ [M+H]⁺: 491.2481; found: 491.2481.

5,8-bis(3,4-difluorobenzyl)-6,7-dihydrodibenzo[b,j][1,10]phenanthroline (3ka). Following

the general procedure (A) for 7 h on a 1.0 mmol scale, giving the compound as brown color solid (480 mg, 90%); m.p. 264-266 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.55 – 8.47 (m, 2H), 7.92 (d, *J* = 8.2 Hz, 2H), 7.77 – 7.71 (m, 2H), 7.66 – 7.43 (m, 3H), 7.02 (dd, *J* =

18.0, 8.4 Hz, 2H), 6.89 – 6.76 (m, 3H), 4.54 (s, 4H), 3.11 (s, 4H); ¹³C NMR (101 MHz, cdcl₃) δ 150.15 (d, $J_F = 432.1$ Hz), 140.99, 131.98, 131.60, 130.94, 129.42 (d, J = 59.2 Hz), 128.87, 128.20 (d, $J_F = 30.2$ Hz), 127.74, 127.60, 123.73, 118.28 (d, $J_F = 17.9$ Hz), 117.49 (d, $J_F = 17.1$ Hz), 116.84 (d, $J_F = 17.5$ Hz), 32.46, 24.95; ¹⁹F NMR (376 MHz, CDCl₃) δ -140.58 (s, 1F), -136.93 (s, 1F), 134.19 (s, 1F), -125.96 (s, 1F); HRMS (EI) calcd for C₃₄H₂₂F₄N₂ [M⁺]: 534.1719 ; found: 534.1725.

Procedure for synthesis of dibenzo[*b*,*j*][1,10]phenanthroline-5,8-diylbis(phenyl methanone) (3aa').

In an oven dried 10 ml seal tube 2-(phenylethynyl) aniline **1a** (40 mg, 2.1 mmol) was added in 250 μ l of DMSO followed by the sequential addition of anhydrous FeCl₃ (24 mg, 1.5 mmol) and cyclohexanone **2a** (9 μ l, 0.1 mmol). The reaction mixture was allowed to stir at 110 °C for 8 h. After the completion, the reaction mixture was cooled to room temperature and diluted with 10.0 mL of ice water. The water layer was extracted with (3X10 mL) of ethyl

acetate and the combined ethyl acetate layer was given brine wash (1X10 mL). The final ethyl acetate layer was dried over sodium sulfate and concentrated under reduced pressure to get the crude compound. The crude product directly carried to next step without further purification. In an oven dried 15 ml seal tube was loaded crude 5,8-dibenzyl-6,7-dihydrodibenzo[b_i] [1,10] phenanthroline **3aa** (consider the crude had 80% product, 36 mg 1 mmol) in 250 µl of DMSO followed by the addition of 70% TBHP in water (19 µl, 2 mmol) and trifluoroacetic acid (14 µl, 2 mmol). The resulting solution was sealed under O₂ and stirred at 110 °C for 3 h. After cooling to room temperature, the reaction mixture was diluted with 5 mL of water and neutralized with 10% aqueous NaHCO₃ solution. The aqueous layer was extracted with (3X5 mL) of ethyl acetate and the combined organic layer was given brine wash (2X5 mL). The final organic layer was evaporated in a rotary evaporator to remove the volatile components. The residue was purified by column chromatography on silica gel (40% ethyl acetate/ hexane to 60% ethyl acetate/hexane) to afford pure dibenzo [b, j] [1,10] phenanthroline-5,8-diylbis (phenyl methanone) (3aa') as a yellow color solid (21 mg, 45%); m.p. 255-256 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.53 (d, J = 8.8 Hz, 2H), 7.82 - 7.77 (m, 8H), 7.62 (dd, J = 12.9, 6.5 Hz, 3H), 7.55 - 7.48 (m, 3H), 7.49 - 7.487.39 (m, 4H); ¹³C NMR (101 MHz, CDCl₃) δ 197.29, 151.67, 147.95, 143.63, 136.47, 134.82, 131.52, 130.11, 129.78, 129.71, 129.30, 128.39, 128.32, 125.25, 124.69. HRMS (ESI) calcd for C₃₄H₂₁N₂O₂ [M+H]⁺: 489.1596; found: 489.1597.

Cyclohexane-1,2-dione (2a'').

Semi solid, ¹H NMR (400 MHz, CDCl₃) δ 6.24 – 6.11 (m, 1H), 6.01 (s, 1H), 2.55 (td, J = 6.8, 3.8 Hz, 2H), 2.48 – 2.34 (m, 2H), 2.15 – 1.87 (m, 2H).

General procedure (B) for synthesis of Benzoylated Acridines.

Preparation benzo[*a*]acridin-12-yl(phenyl)methanone (**5aa**).

In an oven dried 15 ml seal tube 2-(phenylethynyl) aniline **1a** (193 mg, 1 mmol) was added in 1 ml of DMSO followed by the sequential addition of anhydrous FeCl₃ (243 mg, 1.5 mmol) and α -tetralone **4a** (219 mg, 1.5 mmol). The reaction mixture was allowed to stir at 110 °C for 12 h. After the completion, the reaction mixture was cooled to room temperature and diluted with 25.0 mL of cooled water. The water layer was extracted with (3X25 mL) of ethyl acetate and the combined ethyl acetate layer was given brine wash (1X10 mL). The final ethyl acetate layer was dried over sodium sulfate and concentrated under reduced pressure to get the crude compound. The obtained crude was purified using column chromatography by eluting from (8% ethyl acetate/ hexane to 15% ethyl acetate/hexane) afford pure benzo[*a*]acridin-12-yl(phenyl)methanone (**5aa**) as a brown color solid (300 mg, 91%); m.p. 213-214 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.36 (d, *J* = 8.6 Hz, 1H), 8.33 (d, *J* = 8.3 Hz, 1H), 8.08 (d, *J* = 9.2 Hz, 1H), 7.97 (d, *J* = 9.2 Hz, 1H), 7.92 – 7.74 (m, 5H), 7.63 – 7.47 (m, 3H), 7.43 – 7.34 (m, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 200.15, 149.66, 147.26, 142.55, 136.72, 134.60, 133.24, 132.55, 130.20, 129.67, 129.41, 129.27, 129.20, 128.97, 128.71, 127.82, 127.67, 127.27, 126.94, 125.37, 123.62, 120.72; HRMS (EI) calcd for C₂₄H₁₅NO [M⁺]: 333.1153; found: 333.1152.

(10-chlorobenzo[*a*]acridin-12-yl)(phenyl)methanone (5la). Following the general procedure (B) for 12 h on a 1.0 mmol scale, giving the compound as a yellow color solid (220 mg, 60%); m.p. 221-222 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.35 (d, *J* = 8.4 Hz, 1H), 8.27 (d, *J* = 9.6 Hz, 1H), 8.06 (d, *J* = 9.2 Hz, 1H), 7.99 (d, *J* = 9.2 Hz, 1H), 7.87 (dd, *J* = 7.8, 1.2 Hz, 1H), 7.80 (d, *J* = 7.2 Hz, 2H), 7.78 – 7.72 (m, 2H), 7.64 – 7.53 (m, 2H), 7.48 – 7.34 (m, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 199.50, 149.76, 145.64, 141.51, 136.34, 134.85, 133.54, 132.89, 132.69, 131.38, 131.09, 129.69, 129.33, 129.29, 128.83, 128.41, 128.18, 127.87, 127.40, 123.98, 123.88, 121.28; HRMS (EI) calcd for C₂₄H₁₄ClNO [M⁺]: 367.0763; found: 367.0755.

Benzo[a]acridin-12-yl(3-fluorophenyl)methanone (5da). Following the general procedure (B)

for 10 h on a 1.0 mmol scale, giving the compound as a yellow color solid (298 mg, 85%); m.p. 180-181 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.36 (d, J = 8.3 Hz, 1H), 8.32 (dd, J = 8.4, 0.7 Hz, 1H), 8.11 (d, J =9.2 Hz, 1H), 8.01 (d, J = 9.2 Hz, 1H), 7.90 (dd, J = 7.8, 1.4 Hz, 1H),

7.85 (ddd, J = 8.6, 6.7, 1.3 Hz, 1H), 7.77 - 7.74 (m, 1H), 7.64 (td, J = 9.2, 2.0 Hz, 1H), 7.61 - 7.857.51 (m, 2H), 7.49 – 7.39 (m, 2H), 7.38 – 7.28 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 198.91, 163.06 (d, $J_F = 249.6$ Hz), 149.63, 147.28, 141.67, 138.71 (d, $J_F = 6.2$ Hz), 133.30, 132.61, 130.97 (d, $J_F = 7.6$ Hz), 129.56, 129.39, 128.99, 128.54, 127.98, 127.51, 127.34, 127.15, 125.72 (d, $J_F = 3.0$ Hz), 125.07, 123.42, 121.76 (d, $J_F = 21.6$ Hz), 120.69, 115.82 (d, $J_F = 22.4$ Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -110.45 (s, 1F); HRMS (EI) calcd for C₂₄H₁₄FNO [M⁺]: 351.1059; found: 351.1063.

Benzo[a]acridin-12-yl(3-methoxyphenyl)methanone (5ma). Following the general procedure

(B) for 24 h on 1.0 mmol scale, giving the compound as a brown color solid (326 mg, 90%); m.p. 164-165 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.33 (t, J = 9.2 Hz, 2H), 8.08 (d, J = 9.2 Hz, 1H), 7.98 (d, J = 9.2 Hz, 1H), 7.87(dd, J = 7.8, 1.3 Hz, 1H), 7.82 (td, J = 6.4, 1.2 Hz, 1H), 7.77 (ddd, J = 8.7)1.2, 0.7 Hz, 1H), 7.61 (s, 1H), 7.55 (td, J = 7.6, 1.2 Hz, 1H), 7.53 – 7.48 (m, 1H), 7.40 (ddd, J = 8.5, 7.2, 1.5 Hz, 1H), 7.24 – 7.16 (m, 2H), 7.12 (ddd, J = 7.7, 2.6, 1.7 Hz, 1H), 3.82 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 199.64, 159.89, 149.34, 146.90, 142.24, 137.72, 132.90, 132.22, 129.93, 129.85, 129.07, 128.96, 128.65, 128.38, 127.48, 127.35, 126.95, 126.59, 125.04, 123.35, 122.71, 120.88, 120.41, 112.65, 55.16; HRMS (EI) calcd for C₂₅H₁₇NO₂ [M⁺]: 363.1259; found: 363.1254.

(10-methylbenzo[a]acridin-12-yl)(phenyl)methanone (5ja). Following the general procedure

(B) for 12 h on 1.0 mmol scale, giving the compound as a yellow color solid (301 mg, 87%); m.p. 160-161 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.40 (d, *J* = 8.4 Hz, 1H), 8.32 (d, *J* = 8.6 Hz, 1H), 8.08 (d, *J* = 9.2 Hz, 1H), 7.97 (d, *J* = 9.2 Hz, 1H), 7.88 – 7.83 (m, 1H), 7.83 – 7.80 (m, 1H),

7.80 – 7.76 (m, 1H), 7.73 (d, J = 7.8 Hz, 2H), 7.51- 7.47 (m, 2H), 7.44 – 7.34 (m, 1H), 7.17 (d, J = 8.1 Hz, 2H), 2.35 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 199.69, 149.66, 147.25, 145.81, 142.79, 134.40, 133.15, 132.48, 130.10, 129.90, 129.78, 129.36, 129.19, 128.98, 128.75, 127.71, 127.67, 127.22, 126.81, 125.44, 123.65, 120.62, 21.80; HRMS (EI) calcd for C₂₅H₁₇NO [M⁺]: 347.1310; found: 347.1316.

(5,6-dihydrobenzo[c]acridin-7-yl)(phenyl)methanone (5ab). Following the general procedure

(B) for 14 h on 1.0 mmol scale giving the compound as a yellow color solid (234 mg, 70%); m.p. 125-126 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.62 (d, *J* = 7.7 Hz, 1H), 8.21 (d, *J* = 8.5 Hz, 1H), 7.87 (d, *J* = 8.1 Hz, 2H), 7.77 - 7.58 (m, 1H), 7.55 - 7.34 (m, 6H), 7.26 - 7.23 (m, 2H), 2.87 (s, 4H); ¹³C NMR (101 MHz, CDCl₃) δ 197.95, 153.03, 147.20, 142.61,

139.05, 136.55, 134.54, 134.33, 130.06, 129.94, 129.68, 129.20, 129. 12, 127.88, 127.47, 126.84, 126.59, 126.26, 124.67, 124.53, 27.77, 26.25. HRMS (ESI) calcd for $C_{24}H_{18}NO$ [M+H]⁺: 336.1384; found: 336.1382.

benzo[c]acridin-7-yl(3-methoxyphenyl)methanone (5mb). Following the general procedure (B)

for 48 h on 1.0 mmol scale, giving the compound as a brown color solid (237 mg, 65%); m.p. 150-152 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.62 (dd, J = 7.7, 1.2 Hz, 1H), 8.20 (ddd, J = 8.5, 1.2, 0.6 Hz, 1H), 7.67 (ddd, J = 8.4, 6.8, 1.5 Hz, 1H), 7.54 (d, J = 2.3Hz, 1H), 7.51 – 7.38 (m, 4H), 7.38 – 7.26 (m, 2H), 7.24 (d, J = 7.3 Hz, 1H), 7.17 (ddd, J = 7.8, 2.7, 1.5 Hz, 1H), 3.85 (s, 3H), 2.92 (s, 4H); ¹³C NMR (101 MHz,CDCl₃) δ 197.62, 160.06, 152.83, 147.03,

142.51, 138.88, 137.76, 134.17, 129.98, 129.89, 129.77, 129.03, 127.71, 127.30, 126.68, 126.42, 126.12, 124.51, 124.40, 122.91, 121.10, 112.59, 55.38, 27.65, 26.12; HRMS (ESI) calcd for $C_{25}H_{20}NO_2 [M+H]^+$: 366.1486; found: 366.1489.

7-benzyl-4a,5,6,12b-tetrahydrobenzo[c]acridine (5ab'). Following the general procedure (B)

for 4 h on 1.0 mmol scale, giving the compound yellow color solid; m.p. 109-110 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.59 (dd, J = 7.7, 1.2 Hz, 1H), 8.16 (dd, J = 8.4, 0.8 Hz, 1H), 7.93 (dd, J = 8.5, 0.8 Hz, 1H), 7.63 (ddd, J =8.3, 6.8, 1.3 Hz, 1H), 7.47 - 7.39 (m, 2H), 7.35 (td, J = 7.4, 1.5 Hz, 1H), 7.26 – 7.24 (m, 1H), 7.24 – 7.20 (m, 2H), 7.19 – 7.14 (m, 1H), 7.13 – 7.05 (m, 2H), 4.53 (s, 2H), 3.08 (dd, J = 8.6, 5.4 Hz, 2H), 2.94 (dd, J = 8.3, 5.6 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 152.90, 147.18, 141.27, 138.92, 138.65, 134.93, 130.10, 129.42, 129.28, 128.53, 128.25, 127.86, 127.41, 127.35, 127.14, 126.24, 126.16, 126.10, 123.86, 33.20, 28.03, 25.38; HRMS (ESI) calcd

for C₂₄H₂₀N [M+H]⁺: 322.1589; found: 322.1590.

Procedure for synthesis of benzo[*a*]acridine (5aa').

In an oven dried 15 ml seal tube benzo[a]acridin-12-yl(phenyl)methanone **5aa** (333 mg, 1 mmol) was added in 1 ml of t-butanol followed by the addition of NaOH (400 mg, 10 mmol). The reaction mixture was allowed to stir at 110 °C for 24 h. After the completion, the reaction mixture was cooled to room temperature and diluted with 25.0 mL of cooled water. The water layer was extracted with (3X25 mL) of ethyl acetate and the combined ethyl acetate layer was given brine wash (1X10 mL). The final ethyl acetate layer was dried over sodium sulfate and concentrated under reduced pressure to get the crude compound. The obtained crude was purified using column chromatography by eluting from hexane to 8-15% ethyl acetate/hexane to afford benzo[a]acridine (**5aa'**) as a brown color solid (170 mg, 74%); m.p. 102-103 °C; ¹H NMR (400 MHz, CDCl₃) δ 9.42 (s, 1H), 8.75 (d, J = 8.1 Hz, 1H), 8.26 (dd, J = 8.7, 0.7 Hz, 1H), 8.09 (dd, J = 8.3, 0.5 Hz, 1H), $\delta 8.00$ (d, J = 9.3 Hz, 1H), 7.95 (d, J = 9.3 Hz, 1H), 7.89 (dd, J = 7.7, 1.3 Hz, 1H), 7.81 (ddd, J = 8.3, 6.7, 1.4 Hz, 1H), 7.76 – 7.57 (m, 3H; ¹³C NMR (101 MHz, CDCl₃) δ 149.33, 148.15, 132.53, 131.22, 130.49, 130.08, 129.96, 129.01, 128.85, 128.40, 128.26, 127.70, 127.44, 126.49, 126.04, 124.14, 122.87; HRMS (ESI) calcd for C₁₇H₁₂N [M+H]⁺: 230.0966; found: 230.0964.

General procedure (C) for synthesis of 2-(indenyl-2-yl)-3-Oxoindoline.

Preparation of 2-(1-oxo-2,3-dihydro-1*H*-inden-2-yl)-2-phenylindolin-3-one (7aa).

In an oven dried 15 ml seal tube 2-(phenylethynyl) aniline 1a (193 mg, 1 mmol) was added in 1 ml of DMSO followed by the sequential addition of anhydrous FeCl₃ (243 mg, 1.5 mmol) and 2,3-dihydro-1H-inden-1-one 6a (198 mg, 1.5 mmol). The reaction mixture was allowed to stir at 110 °C for 7 h at nitrogen atmosphere. After the completion, the reaction mixture was cooled to room temperature and diluted with 25.0 mL of cooled water. The water layer was extracted with (3X25 mL) of ethyl acetate and the combined ethyl acetate layer was given brine wash (1X10 mL). The final ethyl acetate layer was dried over sodium sulfate and concentrated under reduced pressure to get the crude compound. The obtained crude was purified using column chromatography by eluting from hexane to 10-16% ethyl acetate/hexane to afford pure of 2-(1-oxo-2,3-dihydro-1H-inden-2-yl)-2-phenylindolin-3-one (7aa) as a yellow color solid (298 mg, 88%); m.p. 215-216 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.68 (t, J = 7.5 Hz, 2H), 7.61 - 7.52 (m, 3H), 7.46 (ddd, J = 8.3, 7.2, 1.3 Hz, 1H), 7.40 (d, J = 7.7 Hz, 1H), 7.35 - 7.26 (m, 3H), 7.26 - 7.22 (m, 1H), 6.92 (d, J = 8.2 Hz, 1H), 6.87 (t, J = 7.6 Hz, 1H), 5.88 (s, 1H), 3.68 (dd, J = 8.3, 4.9 Hz, 1H), 3.35 (dd, J = 17.9, 8.4 Hz, 1H), 3.15 (dd, J = 18.0, 4.9 Hz, 1H);¹³C NMR (101 MHz, CDCl₃) δ 204.30, 200.25, 189.74, 167.70, 159.77, 153.45, 137.09, 136.91, 136.57, 135.06, 128.71, 127.89, 127.56, 126.39, 126.18, 125.28, 124.08, 120.71, 119.56, 112.14, 71.53, 53.88, 29.57; HRMS (EI) calcd for C₂₃H₁₇NO₂ [M⁺]: 339.1259; found: 339.1263.

7.25 – 7.18 (m, 2H), 6.88 (dd, J = 8.8, 3.8 Hz, 1H), 5.68 (s, 1H), 3.71 (dd, J = 8.3, 4.9 Hz, 1H), 3.33 (dd, J = 17.9, 8.3 Hz, 1H), 3.08 (dd, J = 17.9, 4.8 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 204.06, 199.86, 158.07, 155.69, 154.83 (d, J_F = 294.8 Hz), 156.31, 153.36, 136.55 (d, J_F = 20.0 Hz), 135.14, 128.83, 128.06, 127.75, 127.65, 126.39, 126.03, 125.09, 124.96 (d, J_F = 25.5 Hz), 113.22 (d, J_F = 7.6 Hz), 110.15 (d, J_F = 22.7 Hz), 72.68, 54.13, 29.58; ¹⁹F NMR (376 MHz, CDCl₃) δ -124.08 (s, 1F); HRMS (EI) calcd for C₂₃H₁₆FNO₂ [M⁺]: 357.1165; found: 357.1157.

5-methyl-2-(1-oxo-2,3-dihydro-1H-inden-2-yl)-2-phenylindolin-3-one (7ca). Following the

general procedure (C) for 5.5 h on 1.0 mmol scale, giving the compound as yellow color solid (289 mg, 82%); m.p. 212-213 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.65 (d, J = 7.7 Hz, 1H), 7.57 – 7.50 (m, 3H), 7.47 (s, 1H), 7.38 (d, J = 7.7 Hz, 1H), δ 7.37 – 7.26 (m, 4H), 7.23 (ddd, J = 7.3, 3.6, 1.3 Hz, 1H), 6.82 (d, J = 8.3 Hz, 1H), 5.66 (s, 1H),

3.70 (dd, J = 8.3, 4.9 Hz, 1H), 3.32 (dd, J = 17.9, 8.3 Hz, 1H), 3.09 (dd, J = 17.8, 4.8 Hz, 1H), 2.29 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 204.07, 200.21, 158.18, 153.36, 138.39, 137.20, 136.57, 134.91, 129.11, 128.67, 127.76, 127.47, 126.31, 126.04, 124.59, 124.01, 120.91, 112.01, 71.96, 53.90, 29.64, 20.51; HRMS (EI) calcd for C₂₄H₁₉NO₂ [M⁺]: 353.1415; found: 353.1424.

5-ethyl-2-(1-oxo-2,3-dihydro-1H-inden-2-yl)-2-phenylindolin-3-one (7na). Following the

general procedure (C) for 9 h on a 1.0 mmol scale, giving the compound as an yellow color solid (275 mg, 75%); m.p. 213-214 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.66 (d, *J* = 7.7 Hz, 1H), 7.61 – 7.46 (m, 4H), 7.39 (dd, *J* = 7.7, 0.8 Hz, 1H), 7.35 – 7.26 (m,

4H), 7.24 – 7.20 (m, 1H), 6.85 (d, J = 8.3 Hz, 1H), 5.71 (s, 1H), 3.68 (dd, J = 8.3, 4.9 Hz, 1H), 3.33 (dd, J = 17.9, 8.2 Hz, 1H), 3.12 (dd, J = 17.8, 5.0 Hz, 1H), 2.60 (q, J = 7.5 Hz, 2H), 1.34 – 0.85 (m, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 204.11, 200.22, 158.28, 153.31, 137.45, 137.08, 136.50, 135.54, 134.85, 128.55, 127.67, 127.39, 126.23, 126.02, 123.93, 123.27, 120.78, 112.01, 71.85, 53.76, 29.52, 27.87, 15.38; HRMS (ESI) calcd for C₂₅H₂₁NO₂ [M⁺]: 367.1572; found: 367.1577.

6-methyl-2-(1-oxo-2,3-dihydro-1H-inden-2-yl)-2-phenylindolin-3-one (7oa). Following the

general procedure (C) for 9 h on a 1.0 mmol scale, giving the compound as a white solid (282 mg, 80%); m.p. 258-259 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.66 (d, J = 7.6 Hz, 1H), 7.62 – 7.47 (m, 4H), 7.39 (d, J = 7.7 Hz, 1H), 7.36 – 7.27 (m, 3H), 7.24 – 7.20 (m, 1H), 6.78 – 6.65 (m, 2H), 5.81 (s, 1H), 3.64 (dd, J = 8.3, 4.9 Hz, 1H), 3.34

(dd, J = 17.9, 8.3 Hz, 1H), 3.14 (dd, J = 17.9, 4.9 Hz, 1H), 2.35 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 204.39, 199.52, 160.25, 153.48, 148.71, 137.18, 136.64, 135.01, 128.66, 127.81, 127.52, 126.39, 126.19, 124.99, 124.07, 121.36, 118.50, 112.24, 71.74, 53.80, 29.62, 22.47; HRMS (EI) calcd for C₂₄H₁₉NO₂ [M⁺]: 353.1415; found: 353.1417.

2-(1-oxo-2,3-dihydro-1H-inden-2-yl)-2-(m-tolyl)indolin-3-one (7fa). Following the general

procedure (C) for 10 h on a 1.0 mmol scale, giving the compound as a yellow color solid (317 mg, 90%); m.p. 193-194 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.71 – 7.63 (m, 2H), 7.54 (td, *J* = 7.6, 1.2 Hz, 1H), 7.44 (ddd, *J* = 8.3, 7.1, 1.3 Hz, 1H), 7.38 (d, *J* = 7.7 Hz, 1H), 7.32 (dd, *J* = 9.7, 5.1 Hz, 3H), 7.17 (t, *J* = 7.7 Hz, 1H), 7.05 (d, *J* = 7.5 Hz, 1H), 6.97 – 6.84 (m,

2H), 5.80 (s, 1H), 3.69 (dd, J = 8.3, 5.0 Hz, 1H), 3.32 (dd, J = 17.9, 8.4 Hz, 1H), 3.09 (dd, J = 17.9, 4.9 Hz, 1H), 2.30 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 204.47, 200.60, 160.12, 153.73, 138.75, 137.31, 137.26, 136.93, 135.29, 129.00, 128.92, 127.85, 127.05, 126.69, 125.57, 124.37, 123.44, 121.12, 119.81, 112.40, 71.95, 54.30, 30.02, 21.93; HRMS (ESI) calcd for C₂₄H₁₉NO₂ [M⁺]: 353.1415; found: 353.1418.

2-(1-oxo-2,3-dihydro-1H-inden-2-yl)-2-(p-tolyl)indolin-3-one (7ja). Following the general

procedure (C) for 12 h on a 1.0 mmol scale, giving the compound as a brown color solid (307 mg, 87%); m.p. 183-184 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.67 (dd, J = 7.6, 3.3 Hz, 2H), 7.56 (td, J = 8.0, 1.2 Hz, 1H), 7.49 – 7.37 (m, 4H), 7.33 (t, J = 7.5 Hz, 1H), 7.09 (d, J = 8.0 Hz, 2H), 6.90 (d, J = 8.2 Hz, 1H), 6.86 (t, J = 7.4 Hz, 1H), 5.84 (s, 1H), δ 3.65 (dd,

J = 8.3, 4.9 Hz, 1H), 3.34 (dd, J = 17.8, 8.4 Hz, 1H), 3.13 (dd, J = 17.6, 4.9 Hz, 1H), 2.27 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 204.23, 200.27, 159.65, 153.34, 137.55, 136.87, 136.49, 134.87, 133.78, 129.30, 127.40, 126.26, 125.93, 125.14, 123.93, 119.33, 111.97, 53.69, 29.50, 20.78; HRMS (EI) calcd for C₂₄H₁₉NO₂ [M⁺]: 353.1415; found: 353.1422.

2-(4-methoxyphenyl)-2-(1-oxo-2,3-dihydro-1H-inden-2-yl)indolin-3-one (7pa). Following the

general procedure (C) for 12 h on a 1.0 mmol scale, giving the compound a red color solid (295 mg, 80%); m.p. 189-190 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.66 (t, *J* = 6.8 Hz, 2H)), 7.54 (t, *J* = 7.1 Hz, 1H), 7.47 – 7.36 (m, 4H), 7.31 (t, *J* = 7.4 Hz, 1H), 6.89 – 6.79 (m, 4H), 5.99 (s, 1H), 3.73 (s, 3H), 3.57 (dd, *J* = 8.2, 5.0 Hz, 1H), 3.32 (dd,

J = 17.9, 8.3 Hz, 1H), 3.16 (dd, J = 17.9, 4.8 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 204.46, 200.47, 159.58, 159.02, 153.42, 136.91, 136.45, 134.90, 128.58, 127.38, 127.35, 126.26, 125.10, 123.88, 120.52, 119.26, 113.90, 70.92, 55.07, 53.67, 29.37. HRMS (EI) calcd for C₂₄H₁₉NO₃ [M⁺]: 369.1364; found: 369.1372.

2-(1-oxo-2,3-dihydro-1*H*-inden-2-yl)-2-(thiophen-2-yl)indolin-3-one (7qa). Following the

general procedure (C) for 10 h on a 1.0 mmol scale, giving the compound as a brown color solid (243 mg, 65%); m.p. 164-165°C; ¹H NMR (400 MHz, CDCl₃) δ 7.70 (t, *J* = 7.6 Hz, 2H), 7.58 (td, *J* = 7.6, 1.2, 1H), 7.50 (ddd, *J* = 8.4, 7.1, 1.4 Hz, 1H), 7.46 (d, *J* = 7.6, 1H), 7.34 (dd, *J* = 11.0,

3.9 Hz, 1H), 7.15 (ddd, J = 6.3, 4.4, 1.2 Hz, 2H), 6.97 (d, J = 8.4, 1H), 6.91 – 6.85 (m, 2H), 6.54 (s, 1H), 3.59 (dd, J = 17.6, 4.2 Hz, 1H), 3.43 – 3.24 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 204.17, 199.24, 159.51, 154.09, 137.54, 136.49, 135.35, 127.53, 126.91, 126.49, 125.43, 125.37, 125.02, 124.06, 119.94, 119.74, 112.71, 69.73, 53.73, 28.94. HRMS (EI) calcd for C₂₁H₁₅NO₂S [M⁺]: 345.0823; found: 345.0832.

-7.17 (m, 1H), 7.10 - 6.98 (m, 2H), 6.93 (d, J = 8.2 Hz, 1H), 6.87 (t, J = 7.4 Hz, 1H), 5.92 (s,

1H), 3.65 (dd, J = 8.2, 4.9 Hz, 1H), 3.32 (dd, J = 18.2, 8.3 Hz, 1H), 3.16 (dd, J = 18.1, 4.7 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 202.53, 200.08, 167.31 (d, $J_F = 257.2$ Hz), 159.75, 156.37 (d, J = 10.3 Hz), 137.19, 136.60, 128.75, 127.99, 126.43 (d, J = 10.6 Hz), 126.18, 125.30, 120.67, 119.67, 115.99 (d, J = 23.8 Hz), 114.29, 113.04 (d, J = 22.3 Hz), 112.23, 71.35, 54.02, 29.45; ¹⁹F NMR (376 MHz, CDCl₃) δ -101.68 (s, 1F); HRMS (EI) calcd for C₂₃H₁₆FNO₂ [M⁺]: 357.1165; found: 357.1167.

2-phenyl-3H-indol-3-one (7aa') The 2-phenyl-3H-indol-3-one was prepared according to the

reported procedures.² Red color solid; m.p. 158-159 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.39 – 8.36 (m, 2H), 7.57 – 7.47 (m, 5H), 7.42 (d, *J* = 7.2 Hz, 1H), 7.25(d, *J* = 8.0 Hz, 1H).

6) References

(a) E. Chong, S. A. Blum, J. Am. Chem. Soc. 2015, **137**, 10144-10147; (b) T. Saito, H. Nihei,
 T. Otani, T. Suyama, N. Furukawa, M. Saito, Chem. Commun. 2008, **0**, 172-174; (c) G. K.
 Dhandabani, M. R. Mutra and J.-J. Wang, Adv. Synth. Catal. 2018, **360**, 4754-4763.

2. (a) J.-S. Li, Y.-J. Liu, G.-W. Zhang and J.-A. Ma, *Org. Lett.*, 2017, **19**, 6364-6367; (b) J.-X.
Liu, Q.-Q. Zhou, J.-G. Deng and Y.-C. Chen, *Org. Biomol. Chem.*, 2013, *11*, 8175-8178; (c) P.
Li, W. Yong, R. Sheng, W. Rao, X. Zhu and X. Zhang, *Adv. Synth. Catal.*, 2019, **361**, 201-207.

3. (a) G. C. Senadi, G. K. Dhandabani, W.-P. Hu and J.-J. Wang, *Green Chem.*, 2016, 18, 6241-6245; (b) G. K. Dhandabani, M. R. Mutra, J.-J. Wang, *Adv. Synth. Catal.*, 2018, 360, 4754-4763; (c) G. C. Senadi, T.-Y. Lu, G. K. Dhandabani J.-J. Wang, *Org. Lett.*, 2017, 19, 1172-1175; (d) M. R. Mutra, G. K. Dhandabani, J.-J. Wang, *Adv. Synth. Catal.*, 2018, 360, 3960-3968; (e) S. S. K. Boominathan, G. C. Senadi, J. K. Vandavasi, J. Y.-F. Chen and J.-J. Wang, *Chem. Eur. J.*, 2015, 21, 3193-3197; (f) G. C. Senadi and J.-J. Wang, *Green Chem.*, 2018, 20, 3420-3425.

7) X-ray Crystallography Data

Identification code	th3175		
Empirical formula	C34 H26 N2		
Formula weight	462.57		
Temperature	150(2) K		
Wavelength	0.71073 Å		
Crystal system	monoclinic		
Space group	C 2/c		
Unit cell dimensions	a = 20.9893(8) Å	$\alpha = 90^{\circ}$.	
	b = 11.0183(4) Å	$\beta = 97.8192(16)^{\circ}.$	
	c = 11.5218(4) Å	$\gamma = 90^{\circ}$.	
Volume	2639.83(17) Å ³		
Z	4		
Density (calculated)	1.164 Mg/m ³		
Absorption coefficient	0.068 mm ⁻¹		
F(000)	976		
Crystal size	0.520 x 0.300 x 0.190	0.520 x 0.300 x 0.190 mm ³	
Theta range for data collection	3.570 to 26.389°.		
Index ranges -26<=h<=26, -13<=k<=13, -14<=l<=14		x=13, -14<=l<=14	
Reflections collected	23416		
Independent reflections	2696 [R(int) = 0.0438]]	
Completeness to theta = 25.242°	99.8 %		
Absorption correction	Semi-empirical from e	equivalents	
Max. and min. transmission	0.9281 and 0.8284	0.9281 and 0.8284	
Refinement method	Full-matrix least-square	Full-matrix least-squares on F ²	
Data / restraints / parameters	2696 / 0 / 163	2696 / 0 / 163	
Goodness-of-fit on F ²	1.024		
Final R indices [I>2sigma(I)]	R1 = 0.0531, $wR2 = 0$.1434	

Table 1. Crystal data and structure refinement for th3175.

R indices (all data)
$$R1 = 0.0688, wR2 = 0.1544$$

Extinction coefficient

n/a

Largest diff. peak and hole

0.335 and -0.403 $e.\ensuremath{\text{\AA}^{\text{-3}}}$

Table 1. Crystal data and structure refinement for th4036.

Identification code	th4036	
Empirical formula	C24 H19.90 N O0.45	
Formula weight	329.51	
Temperature	150(2) K	
Wavelength	0.71073 Å	
Crystal system	Triclinic	
Space group	P-1	
Unit cell dimensions	a = 9.2367(4) Å	$\alpha = 104.8513(17)^{\circ}.$
	b = 10.2565(5) Å	β = 109.5128(15)°.
	c = 11.0747(6) Å	$\gamma = 108.1988(15)^{\circ}.$
Volume	859.89(7) Å ³	
Z	2	
Density (calculated)	1.273 Mg/m ³	
Absorption coefficient	0.075 mm ⁻¹	
F(000)	349	
Crystal size $0.520 \ge 0.420 \ge 0.210 \text{ mm}^3$		
Theta range for data collection	3.203 to 26.384°.	
Index ranges	-11<=h<=11, -12<=k<=12, -13<=l<=13	
Reflections collected	28959	
Independent reflections	3517 [R(int) = 0.0419]	
Completeness to theta = 25.242°	99.7 %	
Absorption correction	Semi-empirical from equivalen	ts
Max. and min. transmission 0.9281 and 0.8922		
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	3517 / 0 / 238	

Goodness-of-fit on F ²	1.005
Final R indices [I>2sigma(I)]	R1 = 0.0425, wR2 = 0.1020
R indices (all data)	R1 = 0.0598, wR2 = 0.1139
Extinction coefficient	n/a
Largest diff. peak and hole	0.190 and -0.218 e.Å ⁻³

Table 1. Crystal data and structure refinen	nent for th6194.	
Identification code	th6194	
Empirical formula	C17 H11 N	
Formula weight	229.27	
Temperature	150(2) K	
Wavelength	0.71073 Å	
Crystal system	orthorhombic	
Space group	P 21 21 21	
Unit cell dimensions	a = 4.5356(4) Å	α= 90°.
	b = 17.1340(14) Å	β= 90°.
	c = 17.5416(14) Å	$\gamma = 90^{\circ}$.
Volume	1363.2(2) Å ³	
Z	4	
Density (calculated)	1.117 Mg/m ³	
Absorption coefficient	0.065 mm ⁻¹	
F(000)	480	
Crystal size	0.450 x 0.120 x 0.050 m	m ³
Theta range for data collection	3.324 to 26.413°.	
Index ranges	-5<=h<=5, -21<=k<=21,	-21 <= 1 < =21
Reflections collected	18945	
Independent reflections	2789 [R(int) = 0.0583]	
Completeness to theta = 25.242°	99.3 %	
Absorption correction	Semi-empirical from equ	uvalents
Max. and min. transmission	0.9281 and 0.8151	

Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	2789 / 0 / 163
Goodness-of-fit on F ²	1.032
Final R indices [I>2sigma(I)]	R1 = 0.0509, wR2 = 0.1307
R indices (all data)	R1 = 0.0781, $wR2 = 0.1496$
Absolute structure parameter	1.1(10)
Extinction coefficient	n/a
Largest diff. peak and hole	0.164 and -0.197 e.Å ⁻³

Table 1. Crystal data and structure refinement for th5094.

Identification code	th5094	
Empirical formula	C23 H16 F N O2	
Formula weight	357.37	
Temperature	150(2) K	
Wavelength	0.71073 Å	
Crystal system	trigonal	
Space group	R 3 c	
Unit cell dimensions	a = 29.6855(15) Å	α= 90°.
	b = 29.6855(15) Å	$\beta = 90^{\circ}$.
	c = 11.124(2) Å	$\gamma = 120^{\circ}$.
Volume	8489.4(18) Å ³	
Z	18	
Density (calculated)	1.258 Mg/m ³	
Absorption coefficient	0.087 mm ⁻¹	
F(000)	3348	
Crystal size	0.350 x 0.100 x 0.070 mm ³	
Theta range for data collection	2.745 to 26.387°.	
Index ranges	-36<=h<=37, -36<=k<=37, -13	<=l<=13

Reflections collected	41148
Independent reflections	3846 [R(int) = 0.1156]
Completeness to theta = 25.242°	99.8 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.9281 and 0.8247
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	3846 / 1 / 249
Goodness-of-fit on F ²	1.060
Final R indices [I>2sigma(I)]	R1 = 0.0523, wR2 = 0.0995
R indices (all data)	R1 = 0.0912, wR2 = 0.1127
Absolute structure parameter	-0.1(5)
Extinction coefficient	0.00066(16)
Largest diff. peak and hole	0.232 and -0.239 e.Å ⁻³

Table 1. Crystal data and structure refinement for th5094.

Identification code	th5094		
Empirical formula	C23 H16 F N O2		
Formula weight	357.37		
Temperature	150(2) K		
Wavelength	0.71073 Å		
Crystal system	trigonal		
Space group	R 3 c		
Unit cell dimensions	$a = 29.6855(15) \text{ Å} \alpha = 90^{\circ}.$		
	$b = 29.6855(15) \text{ Å} \beta = 90^{\circ}.$		
	$c = 11.124(2) \text{ Å} \gamma = 120^{\circ}.$		
Volume	8489.4(18) Å3		
Z	18		
Density (calculated)	1.258 Mg/m3		
Absorption coefficient	0.087 mm-1		
F(000)	3348		
Crystal size	0.350 x 0.100 x 0.070 mm3		
Theta range for data collect	ion 2.745 to 26.387°.		
Index ranges	-36<=h<=37, -36<=k<=37, -13<=l<=13		
Reflections collected	41148		
Independent reflections	3846 [R(int) = 0.1156]		
Completeness to theta = 25.242° 99.8 %			

Absorption correctionSemi-em	pirical from equivalents
Max. and min. transmission	0.9281 and 0.8247
Refinement methodFull-matrix	least-squares on F2
Data / restraints / parameters	3846 / 1 / 249
Goodness-of-fit on F2	1.060
Final R indices [I>2sigma(I)]	R1 = 0.0523, wR2 = 0.0995
R indices (all data)	R1 = 0.0912, wR2 = 0.1127
Absolute structure parameter	-0.1(5)
Extinction coefficient	0.00066(16)
Largest diff. peak and hole	0.232 and -0.239 e.Å-3

S43

2,232 2,255 2,556 2,566 2,556

10) Uv-visible absorption and emission spectra of dibenzo[b,j][1,10]phenanthrolines

Figure. S3 Uv-visible absorption spectra of dibenzo[b,j][1,10]phenanthrolines compounds in chloroform .

Figure. S4 Uv-visible emission spectra of dibenzo[b,j][1,10]phenanthrolines compounds in chloroform.

