Electronic Supplementary Material (ESI) for Chemical Communications. This journal is © The Royal Society of Chemistry 2019

Straightforward chemo- and stereoselective fluorocyclopropanation of allylic alcohols: exploiting the electrophilic nature of the not so elusive fluoroiodomethyllithium

Marco Colella,^{a,‡} Arianna Tota,^{a, ‡} Angela Großjohann^a, Claudia Carlucci,^a Andrea Aramini,^b Nadeem S. Sheikh,^{c,*} Leonardo Degennaro,^{a,*} and Renzo Luisi,^{a,*}

^a Department of Pharmacy – Drug Sciences, University of Bari "A. Moro" Via E. Orabona 4 - 70125 Bari, Italy.
^b Department of Discovery Dompé Farmaceutici S.p.A., Via Campo di Pile, L'Aquila 67100, Italy
^c Department of Chemistry, College of Science, King Faisal University, P.O. Box 380, Al-Ahsa 31982, Saudi Arabia

e-mail: renzo.luisi@uniba.it

Supporting Information

Table of contents:

1.	Instrumentation and General Analytical Methods	S2
2.	Optimization of the reaction conditions	S3
3.	General procedures for the preparation of allylic alcohols through:	S4
	3.1 Reduction of α,β -unsaturated aldehydes and ketones	
	3.2 Reduction of α , β -unsaturated carboxylic acids	
	3.3 Nucleophilic attack by organolithium to ketones	
4.	Collection of allylic alcohols	S5 – S9
5.	Assignment of stereochemistry of fluorocyclopropanes	S10
6.	General procedure for the preparation of fluorocyclopropanes	S11
7.	NMR data for fluorocyclopropanes	S11 - S22
8.	Synthesis of chiral allylic alcohol and fluorocyclopropane	S24 – S25
9.	Computational Studies	S26 – S34
10.	Copies of NMR Spectra (¹ H, ¹³ C and ¹⁹ F) for All the Synthesized Compounds	S35

1. Instrumentation and General Analytical Methods

HRMS spectra were recorded on Agilent 6530 accurate mass Q-TOF instrument. ¹H, ¹³C, ¹⁹F NMR spectra were recorded with an Agilent 500 spectrometer (500 MHz for ¹H, 126 MHz for ¹³C, 470 MHz for ¹⁹F), and a Varian Mercury 300 spectrometer (300 MHz for ¹H, 75 MHz for ¹³C, 282 MHz for ¹⁹F). Infrared spectra of the compounds were recorded by using a PerkinElmer 283 Spectrometer or by using attenuated total reflection spectrophotometer in reciprocal centimeter (cm⁻¹). The center of the (residual) solvent signal was used as an internal standard which was related to TMS with δ 7.26 ppm (¹H in CDCl₃), δ 77.00 ppm (¹³C in CDCl₃). Absolute referencing was used for the ¹⁹F NMR spectra. Spin-spin coupling constants (*J*) are given in Hz. As far as possible, full and unambiguous assignment of all resonances was performed by combined application of standard NMR techniques, such as HSQC, COSY and NOESY experiments. The enantiomeric ratio was determined by using HPLC 1260 Infinity with DIODE detector.

THF was distilled over Na/benzophenone.

Fluoroiodomethane was purchased from ABCR GmbH Germany and it was stored at -20°C. Lithium diisopropylamide [2 M in hexane/THF/ethylbenzene] was purchased from Sigma Aldrich. Other chemicals were purchased from Sigma-Aldrich, Alfa Aesar, Fluorochem and TCI Europe unless otherwise specified. Solutions were evaporated under reduced pressure with a rotary evaporator. TLC was carried out on aluminium sheets precoated with silica gel 60F254 (Merck); the spots were visualized under UV light (λ = 254 nm) and/or KMnO₄ (aq.) was used as revealing system.

2. Optimization of the reaction conditions

Entry	FCH₂l (equiv)	LDA (equiv)	Alcohol (equiv)	Solvent	T(°C)	Yield (%) ^[*]
1	4	4	1	THF : Et ₂ O=1:2	-78 °C	21
2	4	4	1	THF	-78 °C	31
3	4	4	1	Et ₂ O	-78 °C	21
4	1	3	2	CPME	-78 °C	14
5	4	4	1	Pentane	-78 °C	Traces
6	1	3	2	Toluene	-78 °C	Traces
7	1	3	2	2-MeTHF	-50 °C	<10%
8	6	6	1	THF	-78 °C	48
9 ^[a]	6	6	1	THF	-78 °C	35
10 ^[b]	1	3	2	THF	-78 °C	20
11 ^[c]	4	4	1	THF	-78 °C	28
12 ^[d]	4	4	1	THF	-78 °C	Traces
13 ^[e]	6	6	1	THF	-78 °C	/
14 ^[f]	1	3	2	THF	-78 °C	40
15 ^[f]	1	3	2	THF	-98 °C	40
16 ^[f]	1	3	2	THF	-50 °C	75
17 ^[f]	1	3	2	THF	-20 °C	33
18 ^[f,g]	1	3	2	THF	-78 °C	22
19 ^[h]	1	3	2	THF	-50 °C	80
20 ^[i]	1	3	2	THF	-50 °C	37
21	1	2	1	THF	-78 °C	38

[*] NMR yields calculated on the crude reaction mixture using mesitylene or hexafluorobenzene as internal standards; [a] Reaction time: 1.5 h at -78°C plus 0.25 h at rt; [b] Reaction quenched after 20 seconds; [c] Experiment performed adding FCH₂I to preformed lithium alcoholate; [d] Reaction carried out adding a THF solution of FCH₂I and cinnamyl alcohol to LDA; [e] Allylic alcohol added 1s after the LDA addition to FCH₂I; [f] Reaction run using 2 equivalents of allylic alcohol (FCH₂I as limiting reagent); [g] Reaction run using a concentration of 0.3 M for alcohol; [h] Reaction run using a concentration of 0.01 M for FCH₂I; [i] Reaction run using a concentration of 0.005 M for FCH₂I.

3. General procedures for the preparation of allylic alcohols through:

3.1 Reduction of α , β -unsaturated aldehydes and ketones

In a round bottom flask containing NaBH₄ (174 mg, 4.6 mmol, 1.15 equiv) at 0°C, a solution of aldehyde or ketone (4 mmol, 1 equiv) in absolute ethanol (10 mL) was added dropwise. After 30 min, sat. aqueous ammonium chloride and water were added. The resulting mixture was stirred at room temperature for additional 30 min, and diluted with dichloromethane (10 mL). The aqueous layer was extracted with dichloromethane (3 x 10 mL). The combined organic phases were washed with water (3 x 15 mL) and dried over Na₂SO₄. The solvent was removed under reduced pressure to afford the desired alcohol that was used without further purification.

3.2 Reduction of α , β -unsaturated carboxylic acids

Cinnamyl alchols were synthesized from the correspondent cinnamic acids following the reported procedure.¹

3.3 Nucleophilic addition of organolithiums to ketones

Allylic alcohols were prepared starting from corresponding ketone and alkyllithium according to the literature procedures.²

4. Collection of allylic alcohols

Scheme 1. Allylic alcohols

3-Methylcyclohex-2-enol (2a)

Prepared according to general procedure **3.1** to afford allylic alcohol **2a.** ¹H NMR (500 MHz, CDCl₃) δ 5.51-5.49 (m, 1H, CH=C_q), 4.17 (m, 1H, CHOH), 1.95-1.91 (m, 2H, CH₂), 1.80-1.75 (m, 2H, CH₂), 1.68 (d, *J* = 0.8 Hz, 3H, CH₃), 1.60-1.56 (m, 2H, CH₂); the data are consistent with literature.³

(E)-3-(p-Tolyl)prop-2-en-1-ol (2c)

Prepared according to general procedure **3.1** to afford allylic alcohol **2c.** ¹H NMR (300 MHz, CDCl₃): δ 7.29 (d, J = 8.0 Hz, 2H, 2 x Ar-H), 7.13 (d, J = 8.0 Hz, 2H, 2 x Ar-H), 6.59 (d, J = 15.9 Hz, 1H, ArCH=CH), 6.32 (dt, J = 15.9, 5.8 Hz, 1H, CH=CHCH₂), 4.31 (d, J = 5.7 Hz, 2H, CH₂OH), 2.34 (s, 3H, CH₃); the data are consistent with literature.⁴

(E)-3-(2-Methoxyphenyl)prop-2-en-1-ol (2d)

Prepared according to general procedure **3.1** to afford allylic alcohol **2d.** ¹H NMR (300 MHz, CDCl₃): δ 7.44 (dd, *J* = 7.6, 1.4 Hz, 1H, Ar-H), 7.22 (dd, *J* = 8.3, 1.1 Hz, 1H, Ar-H), 6.96-6.86 (m, 3H, overlapping 2 x Ar-H and ArCH=CH), 6.39 (dt, *J* = 16.0, 5.9 Hz, 1H, CH=CHCH₂), 4.33 (d, *J* = 5.9 Hz, 2H, CH₂OH), 3.85 (s, 3H, OCH₃); the data are consistent with literature.⁵

(E)-3-(4-Methoxyphenyl)prop-2-en-1-ol (2e)

Prepared according to general procedure **3.1** to afford allylic alcohol **2e.** ¹H NMR (300 MHz, CDCl₃) δ 7.32 (d, J = 8.7 Hz, 2H, 2 x Ar-H), 6.86 (d, J = 8.7 Hz, 2H, 2 x Ar-H), 6.55 (d, J = 15.9 Hz, 1H, ArCH=CH), 6.23 (dt, J = 15.8, 5.9 Hz, 1H, CH=CHCH₂), 4.29 (d, J = 5.9 Hz, 2H, CH₂OH), 3.81 (s, 3H, OCH₃); the data are consistent with literature.⁴

(E)-3-(3,4,5-Trimethoxyphenyl)prop-2-en-1-ol (2f)

Prepared according to general procedure **3.1** to afford allylic alcohol **2f.** ¹H NMR (500 MHz, CDCl₃): δ 6.60 (s, 2H, 2 x Ar-H), 6.53 (d, *J* = 15.8 Hz, 1H, ArCH=CH), 6.28 (dt, *J* = 15.8, 5.8 Hz, 1H, CH=CHCH₂), 4.31 (dd, *J* = 5.7, 1.1 Hz, 2H, CH₂OH), 3.86 (s, 6H, 2 x OCH₃), 3.84 (s, 3H, OCH₃); the data are consistent with literature.⁶

(E)-3-(4-(Dimethylamino)phenyl)prop-2-en-1-ol (2g)

Prepared according to general procedure **3.1** to afford allylic alcohol **2g.** ¹H NMR (300 MHz, CDCl₃) δ 7.29 (d, J = 8.8 Hz, 2H, 2 x Ar-H), 6.68 (d, J = 8.8 Hz, 2H, 2 x Ar-H), 6.52 (d, J = 15.8 Hz, 1H, ArCH=CH), 6.18 (dt, J = 15.8, 6.2 Hz, 1H, CH=CHCH₂), 4.28 (m, 2H, CH₂OH), 2.96 (s, 6H, N(CH₃)₂); the data are consistent with literature.⁷

(E)-3-(4-Fluorophenyl)prop-2-en-1-ol (2h)

Prepared according to general procedure **3.2** to afford allylic alcohol **2h.** ¹H NMR (300 MHz, CDCl₃) δ 7.38-7.33 (m, 2H, 2 x Ar-H), 7.04-6.98 (m, 2H, 2 x Ar-H), 6.59 (d, *J* = 15.9 Hz, 1H, ArC*H*=CH), 6.28 (dt, *J* = 15.8, 5.6 Hz, 1H, CH=CHCH₂), 4.33-4.31 (m, 2H, CH₂OH); the data are consistent with literature.⁴

(E)-3-(4-Chlorophenyl)prop-2-en-1-ol (2i)

Prepared according to general procedure **3.1** to afford allylic alcohol **2i.** ¹H NMR (300 MHz, CDCl₃): δ 7.33-7.27 (m, 4H, 4 x Ar-H), 6.58 (dt, *J* = 15.9, 1.5 Hz, 1H, ArCH=CH), 6.38-6.29 (m, 1H, CH=CHCH₂), 4.33 (d, *J* = 5.4 Hz, 2H, CH₂OH); the data are consistent with literature.⁸

(E)-3-(4-Bromophenyl)prop-2-en-1-ol (2j)

Prepared according to general procedure **3.2** to afford allylic alcohol **2j.** ¹H NMR (300 MHz, CDCl₃) δ 7.44 (d, J = 7.8 Hz, 2H, 2 x Ar-H), 7.24-7.23 (m, 2H, 2 x Ar-H), 6.57 (d, J = 16.7 Hz, 1H, ArCH=CH), 6.38-6.31 (m, 1H, CH=CHCH₂), 4.34-4.32 (m, 2H, CH₂OH); the data are consistent with literature.⁵

Prepared according to general procedure **3.3** to afford allylic alcohol **21.** ¹H NMR (500 MHz, CDCl₃): δ 7.39 (d, J = 7.3 Hz, 2H, 2 x Ar-H), 7.32 (t, J = 7.6 Hz, 2H, 2 x Ar-H), 7.24 (t, J = 7.3 Hz, 1H, Ar-H), 6.57 (d, J = 15.9 Hz, 1H, ArCH=CH), 6.23 (dd, J = 15.9, 6.8 Hz, 1H, CH=CHCH), 4.28 (m, 1H, CHOH), 1.77 (bs, 1H, OH), 1.72-1.58 (m, 2H, CH₂), 1.45-1.34 (m, 4H, 2 x CH₂), 0.93 (t, J = 7.0 Hz, 3H, CH₃); the data are consistent with literature.⁹

(E)-4-Phenylbut-3-en-2-ol (2m)

Me

Prepared according to general procedure **3.3** to afford allylic alcohol **2m.**¹H NMR (300 MHz, CDCl₃) δ 7.40-7.24 (m, 5H, 5 x Ar-H), 6.56 (d, *J* = 16.0 Hz, 1H, Ar-CH=CH), 6.30-6.22 (m, 1H, Ar-CH=CH), 4.53-4.44 (m, 1H, CHOH), 1.37 (d, *J* = 6.4 Hz, 3H, CH₃); the data are consistent with literature.¹⁰

(E)-2-Methyl-1-phenylhept-1-en-3-ol (2n)

Prepared according to general procedure **3.3** to afford allylic alcohol **2n.** ¹H NMR (500 MHz, CDCl₃) δ 7.35-7.32 (m, 2H, 2 x Ar-H), 7.29-7.27 (m, 2H, 2 x Ar-H), 7.23-7.19 (m, 1H, Ar-H), 6.48 (s, 1H, CH=Cq), 4.17 (t, *J* = 6.7 Hz, 1H, CHOH), 1.87 (d, *J* = 1.3 Hz, 3H, CH₃C_q), 1.65-1.62 (m, 2H, CHCH₂), 1.43-1.33 (m, 4H, 2 x CH₂), 0.92 (t, *J* = 7.1 Hz, 3H, CH₂CH₃); the data are consistent with literature.¹¹

1-Butylcyclohex-2-enol (2o)

Prepared according to general procedure **3.3** to afford allylic alcohol **20.** ¹H NMR (500 MHz, CDCl₃): δ 5.80-5.77 (m, 1H, C_qCH=CH), 5.61 (d, *J* = 10.0 Hz, 1H, C_qCH=CH), 2.05-2.01 (m, 1H, CH_aH_b), 1.95-1.89 (m, 1H, CH_aH_b), 1.73-1.45 (m, 6H, 3 x CH₂), 1.32-1.31 (m, 4H, 2 x CH₂), 0.92-0.89 (m, 3H, CH₃); the data are consistent with literature.¹²

(E)-Dec-2-en-1-ol (2r)

Prepared according to general procedure **3.1** to afford allylic alcohol **2r.** ¹H NMR (500 MHz, CDCl₃) δ 5.72-5.60 (m, 2H, CH=CH), 4.08 (d, J = 4.9 Hz, 2H, CH₂OH), 2.06-2.01 (m, 2H, CH₂CH=CH), 1.38-1.31 (m, 10H, 5 x CH₂), 0.88 (t, J = 6.4 Hz, 3H, CH₃); the data are consistent with literature.¹³

(E)-Dodec-2-en-1-ol (2t)

Prepared according to general procedure **3.1** to afford allylic alcohol **2t.** ¹H NMR (300 MHz, CDCl₃) δ 5.73-5.58 (m, 2H, CH=CH), 4.08 (d, J = 4.9 Hz, 2H, CH₂OH), 2.07-2.00 (m, 2H, CH₂CH=CH), 1.39-1.19 (m, 14H, 7 x CH₂), 0.88 (t, J = 6.6 Hz, 3H, CH₃); the data are consistent with literature.¹⁴

(E)-Hex-2-en-1-ol (2u)

Prepared according to general procedure **3.1** to afford allylic alcohol **2u.** ¹H NMR (300 MHz, CDCl₃) δ 5.74-5.58 (m, 2H, CH=CH), 4.08 (d, J = 4.4 Hz, 2H, CH₂OH), 2.05-1.98 (m, 2H, CH₂CH=CH), 1.41-1.36 (m, 2H, CH₂CH₃), 0.90 (t, J = 7.3 Hz, 3H, CH₃); the data are consistent with literature.¹⁵

(E)-3-(3-(trifluoromethyl)phenyl)prop-2-en-1-ol (2ad)

Prepared according to general procedure **3.2** to afford allylic alcohol **2ad.** ¹H NMR (500 MHz, CDCl₃) δ 7.62 (s, 1H, Ar-H), 7.55 (d, *J* = 7.7 Hz, 1H, Ar-H), 7.49 (d, *J* = 7.7 Hz, 1H, Ar-H), 7.43 (t, *J* = 7.7 Hz, 1H, Ar-H), 6.66 (d, ³*J* trans = 16.0 Hz, 1H, ArCH=CH), 6.44 (dt, *J* = 16.0, 5.4 Hz, 1H, CH=CHCH₂), 4.36 (broad signal, 2H, CH₂OH); ¹⁹F NMR (470 MHz, CDCl₃) δ 62.84 (s, 3F, CF₃); the data are consistent with literature.¹⁶

Compounds **2b**, **2k**, **2p**, **2q**, **2s**, **2v**, **2w**, **2x**, **2y**, **2z**, **2aa** are commercially available.

5. Assignment of stereochemistry for fluorocyclopropanes 4.

ΟН

The stereochemistry of fluorocyclopropanes **4** was ascertained according to previous stereochemical assignments reported by Charette.¹⁷ The relative configuration of cyclopropanes was established considering the ¹H and ¹⁹F coupling constants values. Typical ${}^{3}J_{H-H}$ and ${}^{3}J_{H-F}$ values for these systems are reported in the following scheme:

The stereochemical assignment is made assuming that the *trans* stereochemistry of the starting alkene is maintained in the cyclopropanation reaction, according to the proposed mechanism. For example, in cyclopropane **4d** the ¹H NMR spectrum showed H_a as a quartet, a *trans* relationship with the fluorine (${}^{3}J_{H-F} = 6-8$ Hz), and a *cis* relationship with H_b (${}^{3}J_{H-H} = 6-8$ Hz). The proposed stereochemistry has also been

confirmed by 2D NOESY experiments (See below). Similar considerations apply to all fluorocyclopropanes.

6. General procedure for the preparation of fluorocyclopropanes

To a stirred solution of allylic alcohols (2 mmol, 2 equiv) in dry THF (33 mL) cooled at -50°C, fluoroiodomethane (159.92 mg, 0.67 mL, 1 mmol, 1 equiv) was added. Then, a commercial solution of LDA (2M, in THF/hexane/ethylbenzene, 1.5 mL, 3 mmol, 3 equiv) was added dropwise. After stirring for 15 minutes at -50°C and for 10 minutes at room temperature, the reaction was quenched with water (1 mL). The mixture was poured into water (10 mL) and extracted with EtOAc (3 x 10 mL). The combined organic layers were dried over Na₂SO₄, and concentrated under vacuum. Chromatography purification of the crude afforded the desired fluorocyclopropanes.

7. NMR data for fluorocyclopropanes

(1R*,2R*,6R*,7R*)-7-Fluoro-6-methylbicyclo[4.1.0]heptan-2-ol (4a)

Prepared according to general procedure **6** to afford fluorocyclopropane **4a** as pale yellow oil (70 mg, 56%, dr = 80:20, selected data for major). Compound **4a** mixture with allylic alcohol **2a**. R_f = 0.3 (20% AcOEt in hexane); IR (film)/cm⁻¹ 3392, 2924, 2853, 1640, 1462, 1377, 1054; ¹H NMR (500 MHz, CDCl₃) δ 4.51 (dd, ²J (H-F) = 65.2 Hz, ³J trans (H-H) = 2.2 Hz, 1H, CHF), 4.17-4.16 (m, 1H, CHOH), 1.75-1.71 (m, 1H, CH_aH_b), 1.54-1.51 (m, 2H, CH₂), 1.37-1.30 (m, 1H, CHCHF), 1.27-1.24 (m, 1H, CH_aH_b), 1.21 (d, *J* = 1.7 Hz, 3H, C_qCH₃), 1.17-1.11 (m, 1H, CH_aH_b), 0.97-0.93 (m, 1H, CH_aH_b); ¹³C NMR (126 MHz, CDCl₃, selected data for major) δ 78.6 (d, ¹J (C-F) = 225.8 Hz, CHF), 66.0 (CHOH), 31.8 (CH₂), 31.1 (d, ²J (C-F) = 9.1 Hz, CHCHF), 30.7 (CH₂), 23.9 (d, ²J (C-F) = 9.5 Hz, C_qCH₃), 19.5 (d, ³J (C-F) = 8.6 Hz, C_qCH₃), 19.1 (CH₂); ¹⁹F NMR (470 MHz, CDCl₃, selected data for major) δ -218.15 (dd, ²J (H-F) = 65.2 Hz, ³J cis (H-F) = 23.4 Hz, CHF); HRMS (ESI-TOF) *m*/*z* Calcd for C₈H₁₃FNaO [M+Na]⁺ 167.0843; Found: 167.0842.

((1R*,2S*,3R*)-2-Fluoro-3-phenylcyclopropyl)methanol (4b)

Prepared according to general procedure **6** to afford fluorocyclopropane **4b** as colorless oil (115 mg, 80%, dr = 90:10). R_f = 0.3 (30% EtOAc in hexane). IR (film)/cm⁻¹3367, 2922, 1603, 1498, 1458, 1260, 1095, 1029, 913, 799, 743; ¹H NMR (500 MHz, CDCl₃): δ 7.32-7.30 (m, 2H, 2 x Ar-H), 7.25-7.22 (m, 3H, 3 x Ar-H), 4.69 (ddd, ²J (H-F) = 64.9 Hz, ³J cis (H-H) = 6.7 Hz, ³J trans (H-H) = 2.5 Hz, 1H, CHF), 3.71-3.65 (m, 2H, CH₂OH), 2.08 (q, ³J trans (H-H) = ³J (H-F) = 6.7 Hz, 1H, ArCHCHF), 1.98-1.89 (m, 1H, CHCH₂OH); ¹³C NMR (126 MHz, CDCl₃): δ 135.3 (d, ³J (C-F) = 3.0 Hz, Ar-C_q), 128.6 (d, ⁴J (C-F) = 1.3 Hz, 2 x Ar-C), 128.4 (2 x Ar-C), 126.7 (Ar-C), 75.5 (d, ¹J (C-F) = 226.5 Hz, CHF), 62.4 (d, ³J (C-F) = 0.8 Hz, CH₂OH), 27.2 (d, ²J (C-F) = 8.8 Hz, CHCH₂), 26.5 (d, ²J (C-F) = 11.0 Hz, ArCHCHF); ¹⁹F NMR (470 MHz, CDCl₃): δ -220.75 (ddd, ²J (H-F) = 64.9 Hz, ³J cis (H-F) = 20.7 Hz, ³J trans (H-F) = 5.8 Hz, CHF); HRMS (ESI-TOF) *m*/z Calcd for C₁₀H₁₀FO [M-H]⁻ 165.0721; Found: 165.0721.

((1R*,2S*,3S*)-2-Fluoro-3-(p-tolyl)cyclopropyl)methanol (4c)

Prepared according to general procedure **6** to afford fluorocyclopropane **4c** as orange oil (121 mg, 78%, dr = 90:10). R_f = (30% EtOAc in hexane). IR (film)/cm⁻¹ 3367, 2922, 2852, 1518, 1455, 1377, 1215, 1176, 1096, 1036, 988, 817, 737; ¹H NMR (500 MHz, CDCl₃): δ 7.17-7.12 (m, 4H, 4 x Ar-H), 4.67 (ddd, ²J _(H-F) = 65.0 Hz, ³J *cis* _(H-H) = 6.7 Hz, ³J *trans* _(H-H) = 2.4 Hz, 1H, CHF), 3.69-3.64 (m, 2H, CH₂OH), 2.34 (s, 3H, Ar-CH₃), 2.05 (q, ³J _(H-F) = ³J _(H-H) = 6.6 Hz, 1H, ArCHCHF), 1.95-1.87 (m, 1H, CHCH₂OH), 1.77 (bs, 1H, OH); ¹³C NMR (126 MHz, CDCl₃): δ 136.3 (Ar-*C*_q-CH₃), 132.1 (d, ³J _(C-F) = 3.2 Hz, Ar-*C*_qCH), 129.1 (2 x Ar-C), 128.5 (d, ⁴J _(C-F) = 1.0 Hz, 2 x Ar-C), 75.5 (d, ¹J _(C-F) = 226.0 Hz, CHF), 62.4 (d, ³J _(C-F) = 0.6 Hz, CH₂OH), 26.9 (d, ²J _(C-F) = 8.8 Hz, CHCH₂OH), 26.2 (d, ²J _(C-F) = 11.0 Hz, Ar-CHCHF), 21.1 (Ar-CH₃); ¹⁹F NMR (470 MHz, CDCl₃): δ -220.82 (ddd, ²J _(H-F) = 65.0 Hz, ³J *cis* _(H-F) = 20.7 Hz, ³J *trans* _(H-F) = 6.1 Hz, CHF); HRMS (ESI-TOF) *m*/z Calcd for C₁₁H₁₂FO [M-H]⁻ 179.0878; Found: 179.0872.

((1S*,2R*,3S*)-2-Fluoro-3-(2-methoxyphenyl)cyclopropyl)methanol (4d)

Prepared according to general procedure **6** to afford fluorocyclopropane **4d** as yellow oil (82 mg, 48%, dr = 90:10). R_f = 0.4 (20% EtOAc in hexane). IR (film)/cm⁻¹ 3368, 2921, 2850, 1601, 1585, 1495, 1463, 1435, 1245, 1110, 1027, 751; ¹H NMR (500 MHz, CDCl₃): δ 7.25-7.22 (m, 2H, 2 x Ar-H), 6.94-6.89 (m, 2H, 2 x Ar-H), 4.76 (ddd, ²J (H-F) = 64.2 Hz, ³J cis (H-H) = 6.6 Hz, ³J trans (H-H) = 2.2 Hz, 1H, CHF), 3.88 (s, 3H, Ar-OCH₃), 3.88-3.85 (m, 1H, CH_aH_b), 3.47-3.44 (m, 1H, CH_aH_b), 2.09-2.05 (m, 2H, overlapping bs OH and Ar-CHCHF), 1.85-1.76 (m, 1H, CHCH₂); ¹³C NMR (126 MHz, CDCl₃): δ 158.7 (Ar-C_q), 129.2 (d, ⁴J (C-F) = 2.5 Hz, Ar-C), 128.0 (Ar-C), 123.8 (d, ³J (C-F) = 2.5 Hz, Ar-C_q), 120.6 (Ar-C), 110.4 (Ar-C), 75.9 (d, ¹J (C-F) = 226.2 Hz, CHF), 63.0 (d, ³J (C-F) = 0.9 Hz, CH₂OH), 55.6 (OCH₃), 27.5 (d, ²J (C-F) = 9.3 Hz, CHCH₂), 21.4 (d, ²J (C-F) = 10.7 Hz, Ar-CHCHF); ¹⁹F NMR (470 MHz, CDCl₃): δ -219.20 (ddd, ²J (H-F) = 64.2 Hz, ³J cis (H-F) = 21.2 Hz, ³J trans (H-F) = 5.9 Hz, CHF); HRMS (ESI-TOF) *m/z* Calcd for C₁₁H₁₂FO₂ [M-H]⁻ 195.0827; Found: 195.0820.

((1R*,2S*,3R*)-2-Fluoro-3-(4-methoxyphenyl)cyclopropyl)methanol (4e)

Prepared according to general procedure **6** to afford fluorocyclopropane **4e** as yellow oil (121 mg, 64%, *dr*> *95:5*). $R_f = 0.3$ (60% diethyl ether in hexane); IR (film)/cm⁻¹ 3369, 2917, 1611, 1514, 1462, 1245, 1179, 1030, 830; ¹H NMR (300 MHz, CDCl₃) δ 7.18 (d, *J* = 8.2 Hz, 2H, 2 x Ar-H), 6.86 (d, *J* = 8.3 Hz, 2H, 2 x Ar-H), 4.66 (dd, ²*J*_(H-F) = 65.0 Hz, ³*J cis*_(H-F) = 6.5 Hz, 1H, CHF), 3.79 (s, 3H, OCH₃), 3.68 (d, *J* = 4.8 Hz, 2H, CH₂OH), 2.04 (q, ³*J*_(H-F) = ³*J*_(H-H) = 6.5 Hz, 1H, Ar-CHCHF), 1.91-1.82 (m, 1H, CHCH₂OH); ¹³C NMR (75 MHz, CDCl₃) δ 158.5 (OCH₃-Ar-

C_q), 129.7 (2 x Ar-C), 127.3 (d, ³*J* _(C-F) = 3.3 Hz, Ar-C_q), 113.9 (2 x Ar-C), 75.4 (d, ¹*J* _(C-F) = 225.4 Hz, CHF), 62.5 (CH₂OH), 55.4 (OCH₃), 27.0 (d, ²*J* _(C-F) = 8.8 Hz, CHCH₂OH), 25.8 (d, ²*J* _(C-F) = 11.1 Hz, Ar-CHCHF); ¹⁹F NMR (282 MHz, CDCl₃) δ -220.93 (ddd, ²*J* _(H-F) = 64.9 Hz, ³*J cis* _(H-F) = 20.7 Hz, ³*J trans* _(H-F) = 5.9 Hz, CHF); HRMS (ESI-TOF) *m/z* Calcd for C₁₁H₁₂FO₂ [M-H]⁻ 195.0827; Found: 195.0820.

((1R*,2S*,3R*)-2-Fluoro-3-(3,4,5-trimethoxyphenyl)cyclopropyl)methanol (4f)

Prepared according to general procedure **6** to afford fluorocyclopropane **4f** as orange oil (112 mg, 50%, *dr> 95:5*). R_f = 0.2 (50% EtOAc in hexane); IR (film)/cm⁻¹ 3392, 2923, 2852, 1588, 1510, 1463, 1413, 1235, 1125, 1005; ¹H NMR (500 MHz, CDCl₃): δ 6.48 (s, 2H, 2 x Ar-H), 4.69 (ddd, ²J _(H-F) = 64.9 Hz, ³J *cis* _(H-H) = 6.6 Hz, ³J *trans* _(H-H) = 2.5 Hz, 1H, CHF), 3.85 (s, 6H, 2 x OCH₃), 3.83 (s, 3H, OCH₃), 3.72-3.69 (m, 2H, CH₂OH), 2.07-2.03 (m, 1H, Ar-*CH*CHF), 1.90 (m, 1H, *CH*CH₂OH); ¹³C NMR (126 MHz, CDCl₃): δ 153.2 (2 x Ar-C_q), 137.0 (Ar-C_q), 131.0 (d, ³J _(C-F) = 3.2 Hz, Ar-C_q), 105.8 (d, ⁴J _(C-F) = 1.3 Hz, 2 x Ar-C), 75.5 (d, ¹J _(C-F) = 226.5 Hz, CHF), 62.3 (d, ³J _(C-F) = 0.8 Hz, CH₂OH), 61.0 (OCH₃), 56.2 (2 x OCH₃), 27.4 (d, ²J _(C-F) = 8.8 Hz, *C*HCH₂OH), 26.7 (d, ²J _(C-F) = 10.9 Hz, Ar-*C*HCHF); 1⁹F NMR (470 MHz, CDCl₃): δ -220.56 (ddd, ²J _(H-F) = 64.9 Hz, ³J *cis* _(H-F) = 20.9 Hz, ³J *trans* _(H-F) = 5.9 Hz, CHF); HRMS (ESI-TOF) *m*/z Calcd for C₁₃H₁₆FO₄ [M-H]⁻ 255.1038; Found: 255.1032

((1R*,2R*,3S*)-2-(4-(Dimethylamino)phenyl)-3-fluorocyclopropyl)methanol (4g)

Prepared according to general procedure **6** to afford fluorocyclopropane **4g** as orange oil (108 mg, 60%, *dr*> *95:5*). R_f = 0.4 (30% AcOEt in hexane); IR (film)/cm⁻¹ 3338, 2875, 1614, 1524, 1444, 1349, 1224, 1130, 1094, 1036, 987, 948, 818; ¹H NMR (500 MHz, CDCl₃) δ 7.14 (d, *J* = 8.6 Hz, 2H, 2 x Ar-H), 6.71 (d, *J* = 8.7 Hz, 2H, 2 x Ar-H), 4.64 (ddd, ²*J* (H-F) = 65.0 Hz, ³*J cis* (H-H) = 6.6 Hz, ³*J trans* (H-H) = 2.3 Hz, 1H, CHF), 3.71-3.63 (m, 2H, CH₂OH), 2.92 (s, 6H, N(CH₃)₂), 2.01 (q, *J* = 6.6 Hz, 1H, Ar-CHCHF), 1.90-1.83 (m, 1H, CHCH₂OH); ¹³C NMR (126 MHz, CDCl₃) δ 149.6 (Ar-C_q), 129.4 (d, ⁴*J* (C-F) = 1.0 Hz, 2 x Ar-C), 122.9 (Ar-C_q), 112.9 (2 x Ar-C), 75.5 (d, ¹*J* (C-F) = 225.1 Hz, CHF), 62.7 (d, ³*J* (C-F) = 0.7 Hz, CH₂OH), 40.9 (N(CH₃)₂), 26.8 (d, ²*J* (C-F) = 8.9 Hz, CHCH₂OH), 25.8 (d, ²*J* (C-F) = 11.0 Hz, Ar-CHCHF); ¹⁹F NMR (282 MHz, CDCl₃) δ -220.88 (ddd, ²*J* (H-F) = 66.2 Hz, ³*J cis* (H-F) = 21.8 Hz, ³*J trans* (H-F) = 6.6 Hz, CHF); HRMS (ESI-TOF) *m/z* Calcd for C₁₂H₁₅FNO [M-H]⁻ 208.1143; Found: 208.1160.

((1R*,2S*,3R*)-2-Fluoro-3-(4-fluorophenyl)cyclopropyl)methanol (4h)

Prepared according to general procedure **6** to afford fluorocyclopropane **4h** as yellow oil (86 mg, 54%, *dr*> *95:5*). R_f = 0.4 (60% diethyl ether in hexane); IR (film)/cm⁻¹ 3368, 2918, 1606, 1513, 1226, 1160, 1037, 834; ¹H NMR (500 MHz, CDCl₃) δ 7.23-7.19 (m, 2H, 2 x Ar-H), 7.01-6.98 (m, 2H, 2 x Ar-H), 4.68 (ddd, ²*J* (H-F) = 64.8 Hz, ³*J cis* (H-H) = 6.6 Hz, ³*J trans* (H-H) = 2.4 Hz, 1H, CHF), 3.69 (dd, *J* = 6.5, 2.2 Hz, 2H, CH₂OH), 2.06 (q, ³*J* (H-F) = ³*J* (H-H) = 6.6 Hz, 1H, Ar-CHCHF), 1.91-1.82 (m, 1H, CHCH₂OH); ¹³C NMR (75 MHz, CDCl₃) δ 161.8 (d, ¹*J* (C-F) = 244.8 Hz, F-Ar-Cq), 130.1 (d, ³*J* (C-F) = 7.9 Hz, 2 x Ar-C), 115.1 (d, ²*J* (C-F) = 21.4 Hz, 2 x Ar-C), 75.1 (d, ¹*J* (C-F) = 227.1 Hz, CHF), 62.0 (CH₂OH), 27.1 (d, ²*J* (C-F) = 8.7 Hz, CHCH₂OH), 25.5 (d, ²*J* (C-F) = 11.0 Hz, Ar-CHCHF); ¹⁹F NMR (282 MHz, CDCl₃) δ -116.43 - -116.55 (m, Ar-F, 1F), -220.91 (ddd, ²*J* (H-F) = 65.5 Hz, ²*J cis* (H-F) = 21.5 Hz, ²*J trans* (H-F) = 7.2 Hz, CHF); HRMS (ESI-TOF) *m*/*z* Calcd for C₁₀H₉F₂O [M-H]⁻ 183.0627; Found: 183.0626.

((1R*,2R*,3S*)-2-(4-Chlorophenyl)-3-fluorocyclopropyl)methanol (4i)

Prepared according to general procedure **6** to afford fluorocyclopropane **4i** as orange oil (70 mg, 40%, *dr*> *95:5*). R_f = 0.4 (50% EtOAc in hexane); IR (film)/cm⁻¹ 3338, 2918, 1494, 1213, 1178, 1090, 1014, 913, 826, 742; ¹H NMR (500 MHz, CDCl₃): δ 7.27 (d, *J* = 8.5 Hz, 2H, 2 x Ar-H), 7.18 (d, *J* = 8.5 Hz, 2H, 2 x Ar-H), 4.69 (ddd, ²*J* (H-F) = 64.8 Hz, ³*J cis* (H-H) = 6.6 Hz, ³*J trans* (H-H) = 2.4 Hz, 1H, CHF), 3.70 (s, 2H, CH₂OH), 2.08-2.04 (m, 1H, Ar-CHCHF), 1.93-1.84 (m, 1H, CHCH₂OH); ¹³C NMR (126 MHz, CDCl₃): δ 133.9 (d, ³*J* (c-F) = 3.1 Hz, Ar-C_q), 132.5 (Ar-C_q-Cl), 129.9 (d, ⁴*J* (c-F) = 1.4 Hz, 2 x Ar-C), 128.5 (2 x Ar-C), 75.3 (d, ¹*J* (c-F) = 226.7 Hz, CHF), 62.1 (CH₂OH), 27.4 (d, ²*J* (H-F) = 64.8 Hz, ³*J cis* (H-F) = 20.8 Hz, ³*J trans* (H-F) = 5.8 Hz, CHF); HRMS (ESI-TOF) *m/z* Calcd for C₁₀H₉CIFO [M-H]⁻ 199.0331; Found: 199.0327.

((1R*,2R*,3S*)-2-(4-Bromophenyl)-3-fluorocyclopropyl)methanol (4j)

Prepared according to general procedure **6** to afford fluorocyclopropane **4j** as yellow oil (85 mg, 54%, *dr*> *95:5*). R_f = 0.3 (60% diethyl ether in hexane); IR (film)/cm⁻¹ 3352, 2924, 2874, 1493, 1397, 1213, 1177, 1094, 1073, 1036, 1010, 824, 763, 717; ¹H NMR (300 MHz, CDCl₃) δ 7.42 (d, *J* = 8.5 Hz, 2H, 2 x Ar-H), 7.12 (d, *J* = 8.3 Hz, 2H, 2 x Ar-H), 4.69 (ddd, ²*J* (H-F) = 64.8 Hz, ³*J cis* (H-H) = 6.6 Hz, ³*J trans* (H-H) = 2.5 Hz, 1H, CHF), 3.70 (d, *J* = 6.2 Hz, 2H, CH₂OH), 2.05 (q, ³*J* (H-F) = ³*J* (H-H) = 6.6 Hz, 1H, Ar-CHCHF), 1.96-1.81 (m, 1H, CHCH₂OH); ¹³C NMR (75 MHz, CDCl₃) δ 134.6 (d, ³*J* (C-F) = 3.1 Hz, Ar-*C*_q), 131.4 (2 x Ar-C), 130.4 (2 x Ar-C), 120.5 (Ar-C_q-Br), 75.2 (d, ¹*J* (C-F))

_{F)} = 224.9 Hz, CHF), 62.1 (CH₂OH), 27.4 (d, ²*J* (C-F) = 8.7 Hz, CHCH₂OH), 25.9 (d, ²*J* (C-F) = 11.0 Hz, Ar-CHCHF); ¹⁹F NMR (282 MHz, CDCl₃) δ -220.82 (ddd, ²*J* (H-F) = 64.9 Hz, ³*J* cis (H-F) = 21.2 Hz, ³*J* trans (H-F) = 6.7 Hz, CHF); HRMS (ESI-TOF) m/z Calcd for C₁₀H₉BrFO [M-H]⁻ 242.9826; Found: 242.9840.

(R*)-((1S*,2R*,3S*)-2-Fluoro-3-phenylcyclopropyl)(phenyl)methanol (4k)

Prepared according to general procedure **6** to afford fluorocyclopropane **4k** as colorless oil (69 mg, 34%, *dr*= 80:20, *selected data for major*). R_f = 0.3 (30% EtOAc in hexane). IR (film)/cm⁻¹ 3400, 2923, 2852, 1496, 1455, 1178, 1072, 1028, 745, 698; ¹H NMR (500 MHz, CDCl₃, *selected data for major*) δ 7.45-7.29 (m, 8H, 8 x Ar-H), 7.22-7.19 (m, 2H, 2 x Ar-H), 4.88 (ddd, ²J (H-F) = 65.1 Hz, ³J *cis* (H-H) = 6.8 Hz, ³J *trans* (H-H) = 2.5 Hz, 1H, CHF), 4.64-4.62 (m, 1H, CHOH), 2.25 (q, J = 6.7 Hz, 1H, Ar-CHCHF), 2.09-1.99 (m, 1H, CHCHOH); ¹³C NMR (126 MHz, CDCl₃, *selected data for major*) δ 142.7 (Ar-Cq), 135.3 (d, ³J (C-F) = 2.9 Hz, Ar-Cq), 128.9 (2 x Ar-C), 128.7 (2 x Ar-C), 128.4 (2 x Ar-C), 128.3 (Ar-C), 126.7 (Ar-C), 126.2 (2 x Ar-C), 75.3 (d, ¹J (C-F) = 227.2 Hz, CHF), 73.0 (CHOH), 31.7 (d, ²J (C-F) = 8.6 Hz, CHCHOH), 26.2 (d, ²J (C-F) = 11.0 Hz, Ar-CHCHF); ¹⁹F NMR (470 MHz, CDCl₃, *selected data for major*) δ -221.24 (ddd, ²J (H-F) = 65.2 Hz, ³J *cis* (H-F) = 20.7 Hz, ³J *trans* (H-F) = 6.1 Hz, CHF); HRMS (ESI-TOF) *m/z* Calcd for C₁₆H₁₄FO [M-H]⁻ 241.1034; Found: 241.1031.

(R*)-1-((1R*,2S*,3R*)-2-Fluoro-3-phenylcyclopropyl)pentan-1-ol (4l)

Prepared according to general procedure **6** to afford fluorocyclopropane **4**I as pale yellow oil (67 mg, 35%, dr > 95:5). R_f = 0.2 (50% EtOAc in hexane); IR (film)/cm⁻¹ 3412, 2928, 2857, 2254, 1468, 1266, 1014, 912, 742; ¹H NMR (500 MHz, CDCl₃): δ 7.33-7.30 (m, 2H, 2 x Ar-H), 7.26-7.22 (m, 3H, 3 x Ar-H), 4.76 (ddd, ²J _(H-F) = 65.3 Hz, ³J *cis* _(H-H) = 6.7 Hz, ³J *trans* _(H-H) = 2.5 Hz, 1H, CHF), 3.39-3.37 (m, 1H, CHOH), 2.11-2.05 (m, 1H, Ar-CHCHF), 1.80-1.73 (m, 1H, CHCHOH), 1.67-1.62 (m, 2H, CH₂CHOH), 1.49-1.32 (m, 4H, CH₂CH₂CH₃), 0.91 (t, *J* = 7.1 Hz, 3H, CH₃); ¹³C NMR (126 MHz, CDCl₃): δ 135.6 (Ar-C_q), 128.6 (d, ⁴J _(C-F) = 1.3 Hz, 2 x Ar-C), 128.4 (2 x Ar-C), 126.6 (Ar-C), 75.2 (d, ¹J _(C-F) = 226.3 Hz, CHF), 71.6 (CHOH), 36.7 (CH₂CHOH), 31.2 (d, ²J _(C-F) = 8.1 Hz, CHCHOH), 27.8 (CH₂CH₂CHOH), 26.5 (d, ²J _(C-F) = 11.1 Hz, Ar-CHCHF), 22.8 (CH₂CH₃), 14.2 (CH₃); ¹⁹F NMR (470 MHz, CDCl₃): δ -217.80 (ddd, ²J _(H-F) = 27.7 Hz, ³J *cis* _(H-F) = 22.3 Hz, ³J *trans* _(H-F) = 6.0 Hz, CHF *minor*), -221.06 (ddd, ²J _(H-F) = 65.3 Hz, ³J *cis* _(H-F) = 6.0 Hz, CHF *minor*); HRMS (ESI-TOF) *m/z* Calcd for C₁₄H₁₈FO [M-H]⁻ 221.1347; Found: 221.1341.

(R*)-1-((1R*,2S*,3R*)-2-Fluoro-3-phenylcyclopropyl)ethanol (4m)

Prepared according to general procedure 6 to afford fluorocyclopropane 4m as pale yellow oil (59 mg, 38%, dr = 80:20, inseparable mixture of diastereoisomers). R_f = 0.2 (20 % EtOAc in hexane). IR (film)/cm⁻¹ 3367, 2919, 2851, 1603, 1498, 1431, 1073, 945, 745, 697; ¹H NMR (500 MHz, CDCl₃): δ 7.33-7.23 (m, 5H, 5 x Ar-H, overlapping major and minor), 4.76 (ddd, ${}^{2}J_{(H-F)}$ = 65.2 Hz, ${}^{3}J$ cis (H-H) = 6.7 Hz, ${}^{3}J$ trans (H-H) = 2.5 Hz, 1H, CHF *major*), 4.69 (ddd, ²*J* (H-F) = 65.1 Hz, ³*J* cis (H-H) = 6.7 Hz, ³*J* trans (H-H) = 2.5 Hz, 1H, CHF minor), 3.74-3.71 (m, 1H, CHCH3 minor), 3.61-3.58 (m, 1H, CHCH3 major), 2.22-2.18 (m, 1H, Ar-CHCHF minor), 2.10-2.06 (m, 1H, Ar-CHCHF major), 1.82-1.74 (m, 1H, CHCHCH₃ overlapping major and minor), 1.37 (d, J = 6.2 Hz, 3H, CH₃ minor) 1.35 (d, J = 6.3 Hz, 3H, CH₃ major); ¹³C NMR (126 MHz, CDCl₃): δ 135.7 (d, ³J (C-F) = 3.0 Hz, Ar-C_q minor), 135.5 (d, ³J (C-F) = 3.1 Hz, Ar-Cq major), 128.7 (d, ⁴J (C-F) = 1.2 Hz, 2 x Ar-C minor), 128.6 (d, ⁴J (C-F) = 1.3 Hz, 2 x Ar-C major), 128.39 (2 x Ar-C major) 128.37 (2 x Ar-C minor), 126.6 (Ar-C major), 126.5 (Ar-C minor), 76.1 (d, ¹J (C-F) = 226.2 Hz, CHF major), 74.3 (d, ¹J (C-F) = 226.1 Hz, CHF minor), 67.6 (CHCH₃ major), 67.1 (d, ³J (C-F) = 1.8 Hz, CHCH₃ minor), 32.4 (d, ²J (C-F) = 8.1 Hz, CHCHCH₃ minor), 32.3 (d, ²J (C-F) = 8.1 Hz, CHCHCH₃ major), 26.2 (d, ²J _{F)} = 11.2 Hz, Ar-CHCHF major), 26.0 (d, ²J (C-F) = 11.2 Hz, Ar-CHCHF minor), 22.8 (CH₃ minor), 22.5 (d, ⁴J (C-F) = 0.8 Hz, CH₃ major); ¹⁹F NMR (282 MHz, CDCl₃) δ -220.40 (ddd, ²J (H-F) = 65.4 Hz, ³J cis (H-F) = 21.2 Hz, ³J trans (H-F) = 6.4 Hz, CHF major), -221.37 (ddd, ²J (H-F) = 65.3 Hz, ³J cis (H-H) = 21.8 Hz, ³J trans (H-H) = 6.4 Hz, CHF minor); HRMS (ESI-TOF) *m/z* Calcd for C₁₁H₁₂FO [M-H]⁻ 179.0878, Found: 179.0872.

(R*)-1-((1R*,2S*,3S*)-2-Fluoro-1-methyl-3-phenylcyclopropyl)pentan-1-ol (4n)

Prepared according to general procedure **6** to afford fluorocyclopropane **4n** as colorless oil (37 mg, 36%, dr = 90:10). R_f = 0.2 (20% EtOAc in hexane). IR (film)/cm⁻¹3400, 2928, 2856, 1464, 1073, 737, 698; ¹H NMR (500 MHz, CDCl₃): δ 7.35-7.28 (m, 3H, 3 x Ar-H), 7.25-7.22 (m, 2H, 2 x Ar-H), 4.74 (dd, ²J _(H-F) = 65.5 Hz, ³J *cis* _(H-H) = 6.6 Hz, 1H, CHF), 3.04-3.02 (m, 1H, CHOH), 1.98 (t, J = 7.1 Hz, 1H, Ar-CHCHF), 1.65-1.62 (m, 2H, CH₂), 1.38-1.35 (m, 4H, 2 x CH₂), 0.96-0.93 (m, 6H, 2 x CH₃); ¹³C NMR (126 MHz, CDCl₃): δ 134.5 (Ar-C_q), 128.3 (2 x Ar-C), 128.3 (2 x Ar-C), 126.5 (Ar-C), 78.3 (d, ¹J _(C-F) = 237.8 Hz, CHF), 77.0 (CHOH), 32.9 (d, ⁴J _(C-F) = 1.9 Hz, CHCH₂), 27.7 (d, ²J _(C-F) = 9.4 Hz, Ar-CHCHF), 22.9 (2 x CH₂), 22.8 (*C*_qCHF), 14.2 (CH₂CH₃), 7.13 (d, J = 8.6 Hz, C_qCH₃); ¹⁹F NMR (470 MHz, CDCl₃) δ -227.51 (dd, ²J _(H-F) = 65.4 Hz, ³J *trans* _(H-F) = 7.5 Hz, CHF); HRMS (ESI-TOF) *m/z* Calcd for C₁₅H₂₀FO [M-H]⁻ 235.1504; Found: 235.1497.

Prepared according to general procedure **6** to afford fluorocyclopropane **4o-(minor)** as yellow oil (66 mg, 41%, dr = 60:40). R_f = 0.4 (30% EtOAc in hexane). IR (film)/cm⁻¹ 3398, 2913, 2855, 1457, 1371, 1050; ¹H NMR (500 MHz, CDCl₃): δ 4.66 (dt, ²J (H-F) = 68.2 Hz, ³J cis (H-H) = 6.4 Hz, 1H, CHF), 1.91-1.84 (m, 1H, CH_aH_b), 1.70-1.66 (m, 2H, CH₂), 1.53-1.26 (m, 9H, overlapping CH₂), 1.18-1.11 (m, 1H, CH₂CHCHF), 1.00-0.97 (m, 1H, C_qCHCHF), 0.93 (t, J = 7.3 Hz, 3H, CH₃); ¹³C NMR (126 MHz, CDCl₃): δ 76.8 (d, ¹J (C-F) = 219.0 Hz, CHF), 71.3 (d, ³J (C-F) = 3.3 Hz, C_q), 42.2 (CH₂), 36.7 (d, ³J (C-F) = 3.2 Hz, CH₂), 25.6 (CH₂), 23.4 (CH₂), 22.1 (d, ²J (C-F) = 8.4 Hz, C_qCHCHF), 21.6 (CH₂), 16.2 (d, ³J (C-F) = 5.8 Hz, CH₂) 15.1 (d, ²J (C-F) = 10.2 Hz, CH₂CHCHF), 14.3 (CH₃); ¹⁹F NMR (470 MHz, CDCl₃): δ -233.43 (d, ²J (H-F) = 68.1 Hz, CHF); HRMS (ESI-TOF) *m/z* Calcd for C₁₁H₁₈FO [M-H]⁻ 185.1342; Found: 185.1466.

(1R*,2R*,6R*,7S*)-2-Butyl-7-fluorobicyclo[4.1.0]heptan-2-ol ((4o)-major and (4o)-minor)

Prepared according to general procedure 6 to afford fluorocyclopropane 4o-(major) and 4o-(minor) as yellow oil (66 mg, 41%, dr = 60:40 according to ¹⁹F NMR of the crude). R_f = 0.6 (30% EtOAc in hexane). IR (film)/cm⁻¹ 3442, 2932, 2870, 1662, 1458, 1408, 1378, 1162, 1137, 1088, 1029, 786, 751; ¹H NMR (500 MHz, CDCl₃, mixture of diastereoisomers) δ 4.66 (dt, ²J (H-F) = 68.2 Hz, ³J cis (H-H) = 6.4 Hz, 1H, CHF minor) 4.58 (d, ²J (H-F) = 64.3 Hz, 1H, CHF major), 1.91-1.85 (m, 1H, CH_aH_b, overlapping major and minor), 1.79-1.65 (m, 3H, CH₂, overlapping major and minor), 1.54-1.50 (m, 2H, CH₂, overlapping major and minor), 1.45-1.41 (m, 2H, CH₂, overlapping major and minor), 1.36-1.26 (m, 4H, 2 x CH₂, overlapping major and minor), 1.18-1.11 (m, 1H, CH₂CHCHF, overlapping major and minor), 1.00-0.97 (m, 1H, C_qCHCHF, overlapping major and minor), 0.93 (t, J = 7.5 Hz, 3H, CH₃, overlapping major and minor); ¹³C NMR (126 MHz, CDCl₃, mixture of diastereoisomers) δ 76.1 (d, ¹J (C-F) = 220.7 Hz, CHF major) 75.1 (d, ¹J (C-F) = 219.0 Hz, CHF minor), 71.3 (d, ³J (C-F) = 3.1 Hz, C_q minor), 69.1 (C_{α} major), 43.9 (CH₂ major), 42.2 (CH₂ minor), 36.7 (d, ³J_(C-F) = 3.1 Hz, CH₂ minor), 35.1 (CH₂ major), 25.6 (CH₂ minor), 25.5 (CH₂ major), 23.4 (CH₂ minor), 23.3 (CH₂ major), 22.1 (d, ²J (C-F) = 8.5 Hz, CqCHCHF overlapping major and minor), 21.6 (CH₂ minor), 20.7 (CH₂ major), 18.0 (CH₂ major), 16.2 (d, ³J (C-F) = 5.8 Hz, CH₂ minor) 15.1 (d, ${}^{2}J_{(C-F)}$ = 10.2 Hz, CH₂CHCHF overlapping major and minor), 14.3 (CH₃ minor), 14.2 (CH₃ major); {}^{19}F NMR (470 MHz, CDCl₃, mixture of diastereoisomers) δ -206.79 (dt, ²J (H-F) = 64.5 Hz, ³J cis (H-F) = 22.5 Hz, CHF *major*), -233.44 (d, ²J (H-F) = 69.6 Hz, CHF *minor*); HRMS (ESI-TOF) *m/z* Calcd for C₁₁H₂₀FO [M+Na]⁺ 209.1312; Found: 209.1313.

((1R*,2S*,3S*)-2-Fluoro-3-((E)-prop-1-en-1-yl)cyclopropyl)methanol (4p)

Prepared according to general procedure **6** to afford fluorocyclopropane **4p** as orange oil (82 mg, 73%, *dr*> *95:5*). R_f = 0.4 (20% AcOEt in hexane); IR (film)/cm⁻¹ 3401, 2924, 2854, 1650, 1053; ¹H NMR (500 MHz, CDCl₃) δ 5.67 (m, 1H, CH₃CH=), 5.29-5.24 (m, 1H, CH₃CH=CH), 4.52 (ddd, ²J (H-F) = 63.9 Hz, ³J *cis* (H-H) = 6.4 Hz, ³J *trans* (H-H) = 2.4 Hz, 1H, CHF), 3.56-3.54 (m, 2H, CH₂OH), 1.70 (d, *J* = 1.7 Hz, 3H, CH₃), 1.55-1.46 (m, 2H, overlapping CHCHF and CHCH₂OH); ¹³C NMR (126 MHz, CDCl₃) δ 127.3 (CH₃CH=), 125.5 (d, ³J (C-F) = 7.7 Hz, CH₃CH=CH), 75.7 (d, ¹J (C-F) = 224.4 Hz, CHF), 62.2 (CH₂OH), 27.5 (d, ²J (C-F) = 9.5 Hz, CHCH₂OH), 24.9 (d, ²J (C-F) = 10.6 Hz, CHCH=CHCH₃); ¹⁹F NMR (470 MHz, CDCl₃) δ -221.26 (ddd, ²J (H-F) = 63.9 Hz, ³J *cis* (H-F) = 20.7 Hz, ³J *trans* (H-F) = 4.9 Hz, CHF); HRMS (ESI-TOF) *m/z* Calcd for C₇H₁₀FO [M-H]⁻ 129.0716; Found: 129.0919.

((1R*,2S*,3S*)-2-Fluoro-3-pentylcyclopropyl)methanol (4q)

Prepared according to general procedure **6** to afford fluorocyclopropane **4q** as yellow oil (98 mg, 70%, *dr*> 95:5). R_f = 0.4 (20% EtOAc in hexane). IR (film)/cm⁻¹ 3370, 2925, 2855, 1457, 1073; ¹H NMR (500 MHz, CDCl₃) δ 4.54-4.39 (m, 1H, CHF), 3.48 (d, *J* = 7.0 Hz, 2H, CH₂OH), 1.52-1.31 (m, 8H, 4 x CH₂), 1.20-1.14 (m, 1H, CHCH₂OH), 0.91-0.88 (m, 3H, CH₃), 0.88-0.78 (m, 1H, CH₃(CH₂)₄CH); ¹³C NMR (126 MHz, CDCl₃): δ 76.0 (d, ¹*J* (_{C-F}) = 222.5 Hz, CHF), 62.9 (CH₂OH), 31.7 (CH₂), 29.4 (CH₂), 26.4 (d, ²*J* (_{C-F}) = 9.1 Hz, CHCH₂OH), 26.1 (d, ³*J* (_{C-F}) = 6.4 Hz, CH₃(CH₂)₃CH₂), 22.7 (CH₂), 22.0 (d, ²*J* (_{C-F}) = 10.9 Hz, CH₃(CH₂)₄CHCHF), 14.2 (CH₃); ¹⁹F NMR (470 MHz, CDCl₃): δ -224.98 (ddd, ²*J* (_{H-F}) = 64.8 Hz, ³*J* cis (_{H-F}) = 20.8 Hz, ³*J* trans (_{H-F}) = 5.6 Hz, CHF); HRMS (ESI-TOF) *m/z* Calcd for C₉H₁₈FO [M+H]⁺ 161.1342; Found: 161.0525.

((1R*,2S*,3S*)-2-fluoro-3-heptylcyclopropyl)methanol (4r)

Prepared according to general procedure **6** to afford fluorocyclopropane **4r** as yellow oil (98 mg, 57%, *dr*> 95:5). R_f = 0.3 (50% diethyl ether in hexane); IR (film)/cm⁻¹ 3401, 2926, 2856, 1463, 1456, 1041, 1037; ¹H NMR (500 MHz, CDCl₃) δ 4.47 (ddd, ²J (H-F) = 64.7 Hz, ³J *cis* (H-H) = 6.5 Hz, ³J *trans* (H-H) = 2.0 Hz, 1H, CHF), 3.49 (d, *J* = 6.5 Hz, 2H, CH₂OH), 1.51-1.48 (m, 2H, CH₂CHCHF), 1.43-1.40 (m, 2H, CH₂CH₂CHCHF), 1.32-1.25 (m, 8H, 4 x CH₂), 1.18-1.15 (m, 1H, CHCH₂OH), 0.88 (t, *J* = 6.8 Hz, 3H, CH₃), 0.81-0.75 (m, 1H, CH₃(CH₂)₆CHCHF); ¹³C NMR (126 MHz, CDCl₃) δ 76.0 (d, ¹J (C-F) = 226.5 Hz, CHF), 63.0 (CH₂OH), 32.0 (CH₂), 29.7 (CH₂), 29.4₇ (CH₂), 29.4₀ (CH₂), 26.4 (d, ²J (C-F) = 9.1 Hz, CHCH₂OH), 26.1 (d, ³J (C-F) = 6.3 Hz, CH₂CHCHF), 22.8 (CH₂), 22.0 (d, ²J (C-F) = 11.0 Hz, CH₃(CH₂)₆CHCHF), 14.3 (CH₃); ¹⁹F NMR (470 MHz, CDCl₃) δ -224.99 (ddd, ²J (H-F) = 64.7 Hz, ³J *cis* (H-F) = 21.0 Hz, ³J *trans* (H-F) = 5.4 Hz, CHF); HRMS (ESI-TOF) *m*/z Calcd for C₁₁H₂₀FO [M-H]⁻ 187.1504; Found:187.1501.

((1R*,2S*,3S*)-2-Fluoro-3-octylcyclopropyl)methanol (4s)

Prepared according to general procedure **6** to afford fluorocyclopropane **4s** as pale yellow oil (105 mg, 60%, dr > 95:5). R_f = 0.3 (20% EtOAc in hexane). IR (film)/cm⁻¹ 3367, 2919, 1458, 1031, 666; ¹H NMR (500 MHz, CDCl₃): δ 4.46 (ddd, ²J (H-F) = 64.7 Hz, ³J cis (H-H) = 6.5 Hz, ³J trans (H-H) = 1.9 Hz, 1H, CHF), 3.47 (d, J = 7.0 Hz, 2H, CH₂OH), 1.51-1.47 (m, 2H, CH₂), 1.45-1.39 (m, 2H, CH₂), 1.34-1.27 (m, 10H, 5 x CH₂), 1.21-1.12 (m, 1H, CHCH₂OH), 0.88 (t, J = 6.9 Hz, 3H, CH₃), 0.81-0.74 (m, 1H, CH₃(CH₂)₇CHCHF); ¹³C NMR (126 MHz, CDCl₃): δ 76.0 (d, ¹J (C-F) = 222.4 Hz, CHF), 62.9 (CH₂OH), 32.0 (CH₂), 29.7 (CH₂), 29.6 (CH₂), 29.5 (CH₂), 29.4 (CH₂), 26.4 (d, ²J (C-F) = 9.1 Hz, CHCH₂OH), 26.1 (d, ³J (C-F) = 6.3 Hz, CH₃(CH₂)₆CH₂CH), 22.8 (CH₂), 21.9 (d, ²J (C-F) = 10.9 Hz, CH₃(CH₂)₇CHCHF), 14.2 (CH₃); ¹⁹F NMR (470 MHz, CDCl₃): δ -224.96 (ddd, ²J (H-F) = 64.7 Hz, ³J cis (H-F) = 20.8 Hz, ³J trans (H-F) = 5.6 Hz, CHF); HRMS (ESI-TOF) *m*/*z* Calcd for C₁₂H₂₂FO [M-H]⁻ 201.1660; Found: 201.1653.

((1R*,2S*,3S*)-2-Fluoro-3-nonylcyclopropyl)methanol (4t)

Prepared according to general procedure **6** to afford fluorocyclopropane **4t** as yellow oil (120 mg, 64%, *dr*> *95:5*). R_f = 0.3 (50% diethyl ether in hexane); IR (film)/cm⁻¹ 3339, 2921, 2852, 1455, 1049; ¹H NMR (300 MHz, CDCl₃) δ 4.47 (ddd, ²J (H-F) = 64.7 Hz, ³J *cis* (H-H) = 6.5 Hz, ³J *trans* (H-H) = 2.0 Hz, 1H, CHF), 3.78-3.47 (m, 6H, *overlapping* 3 x CH₂), 1.77-1.43 (m, 12H, *overlapping* 6 x CH₂), 1.16-1.11 (m, 1H, CHCH₂OH), 0.88 (t, *J* = 6.7 Hz, 3H, CH₃), 0.82-0.74 (m, 1H, CH₃(CH₂)₈CHCHF); ¹³C NMR (75 MHz, CDCl₃) δ 75.9 (d, ¹J (C-F) = 222.6 Hz, CHF), 64.4 (CH₂), 63.0 (CH₂), 61.5 (CH₂), 32.1 (CH₂), 29.7 (CH₂), 29.5 (CH₂), 29.4 (CH₂), 26.5 (d, ²J (C-F) = 9.0 Hz, CHCH₂OH), 26.1 (d, ³J (C-F) = 6.3 Hz, CH₂), 22.8 (CH₂), 22.0 (d, ²J (C-F) = 10.9 Hz, CH₃(CH₂)₈CHCHF), 14.2 (CH₃); ¹⁹F NMR (282 MHz, CDCl₃) δ -224.99 (ddd, ²J (H-F) = 65.3 Hz, ³J *cis* (H-F) = 21.7 Hz, ³J *trans* (H-F) = 6.2 Hz, CHF); HRMS (ESI-TOF) *m/z* Calcd for C₁₃H₂₄FO [M-H]⁻ 215.1817; Found: 215.1807.

((1R*,2S*,3S*)-2-Fluoro-3-propylcyclopropyl)methanol (4u)

Prepared according to general procedure **6** to afford fluorocyclopropane **4u** as colorless oil (93 mg, 81%, *dr*> 95:5). R_f = 0.4 (60% diethyl ether in hexane); IR (film)/cm⁻¹ 3400, 2957, 2924, 2853, 1730, 1633, 1463, 1377, 1232; ¹H NMR (500 MHz, CDCl₃) δ 4.47 (ddd, ²J (H-F) = 64.7 Hz, ³J *cis* (H-H) = 6.5 Hz, ³J *trans* (H-H) = 1.9 Hz, 1H, CHF), 3.49 (d, *J* = 7.0 Hz, 2H, CH₂OH), 1.50-1.43 (m, 4H, 2 x CH₂), 1.23-1.14 (m, 1H, CHCH₂OH), 0.95 (t, *J* = 7.0 Hz, 3H, CH₃), 0.82-0.79 (m, 1H, CH₃(CH₂)₂CH); ¹³C NMR (75 MHz, CDCl₃) δ 75.91 (d, ¹J (C-F) = 219.0 Hz, CHF), 63.0 (CH₂OH), 28.2 (d, ³J (C-F) = 6.3 Hz, CH₂CHCHF), 26.4 (d, ²J (C-F) = 9.1 Hz, CHCH₂OH), 22.8 (CH₃CH₂) 21.8 (d, ²J (C-F) = 10.9 Hz, CHCH₂CH₂CH₃), 13.9 (CH₃); ¹⁹F NMR (470 MHz, CDCl₃) δ -224.89 (ddd, ²J (H-F) = 64.8 Hz, ³J *cis* (H-F) = 20.6 Hz, ³J *trans* (H-F) = 5.6 Hz, CHF); HRMS (ESI-TOF) *m*/*z* Calcd for C₇H₁₂FO [M-H]⁻ 131.0878; Found: 131.0848.

((1R*,2R*,3R*)-2-Fluoro-3-propylcyclopropyl)methanol (4v)

Prepared according to general procedure **6** to afford fluorocyclopropane **4v** as colorless oil (91 mg, 80%, dr = 80:20, selected data for major). R_f = 0.3 (50% diethyl ether in hexane); IR (film)/cm⁻¹ 3392, 2923, 2853, 1463, 1377, 1233, 1052; ¹H NMR (500 MHz, CDCl₃, selected data for major) δ 4.69 (dt, ²J _(H-F) = 66.2 Hz, ³J cis _(H-H) = 6.0 Hz, 1H, CHF), 3.87 (dd, J = 11.3, 6.8 Hz, 1H, CH_aH_bOH), 3.79 (dd, J = 11.4, 8.9 Hz, 1H, CH_aH_bOH) 1.46-1.42 (m, 2H, CH₂CH₃), 1.30-1.28 (m, 2H, CH₃CH₂CH₂), 1.18-1.14 (m, 1H, CHCH₂OH), 0.95 (t, J = 7.1 Hz, 3H, CH₃), 0.88-0.84 (m, 1H, CH₃(CH₂)₂CHCHF); ¹³C NMR (126 MHz, CDCl₃, selected data for major) δ 73.7 (d, ¹J _(C-F) = 217.6 Hz, CHF), 57.5 (d, ³J _(C-F) = 9.3 Hz, CH₂OH), 29.9 (CH₃CH₂CH₂), 23.2 (CH₂CH₃), 20.5 (d, ²J _(C-F) = 9.7 Hz, CHCH₂OH), 19.4 (d, ²J _(C-F) = 10.5 Hz, CH₃(CH₂)₂CHCHF), 14.0 (CH₃CH₂); ¹⁹F NMR (470 MHz, CDCl₃, selected data for major) δ -239.88 (dt, ²J _(H-F) = 66.2 Hz, ³J trans _(H-F) = 7.9 Hz, CHF); HRMS (ESI-TOF) *m*/z Calcd for C₇H₁₃FNaO [M+Na]⁺ 155.0843; Found: 155.0839.

((1R*,2S*,3S*)-2-Fluoro-3-hexylcyclopropyl)methanol (4w)

Prepared according to general procedure **6** to afford fluorocyclopropane **4w** as yellow oil (83 mg, 55%, *dr*> *95:5*). R_f = 0.3 (50% diethyl ether in hexane); IR (film)/cm⁻¹ 3367, 2923, 2855, 1461, 1033; ¹H NMR (500 MHz, CDCl₃) δ 4.47 (ddd, ²J (H-F) = 64.7 Hz, ³J *cis* (H-H) = 6.5 Hz, ³J *trans* (H-H) = 1.9 Hz, 1H, CHF), 3.49-3.48 (m, 2H, CH₂OH), 1.53-1.48 (m, 2H, CH₂CH₃), 1.46-1.29 (m, *overlapping* 4 x CH₂), 1.21-1.14 (m, 1H, CHCH₂OH), 0.89 (t, *J* = 6.9 Hz, 3H, CH₃), 0.81-0.77 (m, 1H, CH(CH₂)₅CH₃); ¹³C NMR (126 MHz, CDCl₃) δ 75.9 (d, ¹J (C-F) = 222.7 Hz, CHF), 63.0 (CH₂OH), 31.9 (CH₂), 29.7 (CH₂), 29.1 (CH₂), 26.4 (d, ²J (C-F) = 9.1 Hz, CHCH₂OH), 26.1 (d, ³J (C-F) = 6.4 Hz, CH₃(CH₂)₄CH₂CHCHF), 22.8 (CH₂), 22.0 (d, ²J (C-F) = 10.9 Hz, CH(CH₂)₅CH₃), 14.2 (CH₃); ¹⁹F NMR (470 MHz, CDCl₃) δ -224.99 (ddd, ²J (H-F) = 64.7 Hz, ³J *cis* (H-F) = 20.7 Hz, ³J *trans* (H-F) = 5.6 Hz, CHF); HRMS (ESI-TOF) *m/z* Calcd for C₁₀H₁₈FO [M-H]⁻ 173.1347; Found: 173.1350.

((1R*,2R*,3R*)-2-Fluoro-3-hexylcyclopropyl)methanol (4x)

Prepared according to general procedure **6** to afford fluorocyclopropane **4x** as yellow oil (122 mg, 81%, *dr* = 70:30, selected data for major). R_f = 0.3 (50% diethyl ether in hexane); IR (film)/cm⁻¹ 3368, 2926, 2857, 1466, 1423, 1378, 1247, 1216, 1136, 1029; ¹H NMR (500 MHz, CDCl₃, selected data for major) δ 4.67 (dt, ²J (H-F) = 66.2 Hz, ³J cis (H-H) = 6.0 Hz, 1H, CHF), 3.86 (dd, *J* = 11.5, 6.7 Hz, 1H, CH_aH_bOH), 3.77 (dd, *J* = 11.6, 8.8 Hz, 1H, CH_aH_bOH), 1.52-1.29 (m, 10H, 5 x CH₂), 1.19-1.11 (m, 1H, CHCH₂OH), 0.93-0.91 (m, 1H, CH₃(CH₂)₅CHCHF), 0.88 (t, *J* = 6.8 Hz, 3H, CH₃); ¹³C NMR (126 MHz, CDCl₃, selected data for major) δ 73.7 (d, ¹J (C-F) = 217.6 Hz, CHF), 57.4 (d, ³J (C-F) = 9.3 Hz, CH₂OH), 31.9 (CH₂), 30.0 (CH₂), 29.2 (CH₂), 22.8 (CH₂), 21.3 (d, ³J (C-F) = 6.8 Hz, CH₂CHCHF), 20.5 (d, ²J (C-F) = 9.7 Hz, CHCH₂OH), 19.6 (d, ²J (C-F) = 10.5 Hz, CH₃(CH₂)₅CHCHF), 14.2 (CH₃); ¹⁹F NMR (470 MHz, CDCl₃, selected data for major) δ -240.00 (dt, ²J (H-F) = 66.2 Hz, ³J trans (H-F) = 7.9 Hz, CHF); HRMS (ESI-TOF) *m*/z Calcd for C₁₀H₁₈FO [M-H]⁻173.1347; Found: 173.1339.

((1R*,2R*,3R*)-3-Fluoro-2-methyl-2-(4-methylpent-3-en-1-yl)cyclopropyl)methanol (4y-(major))

Prepared according to general procedure **6** to afford fluorocyclopropane **4y-(major)** as pale yellow oil (111 mg, 74%, *dr* = 70:30, selected data for major according to ¹⁹F NMR of the crude). $R_f = 0.5$ (60% diethyl ether in hexane); IR (film)/cm⁻¹ 3369, 2923, 1456, 1041; ¹H NMR (500 MHz, CDCl₃, selected data for major) δ 5.09-5.08 (m, 1H, CH=C(CH₃)₂), 4.18 (dd, ²J (H-F) = 64.6 Hz, ³J trans (H-H) = 2.5 Hz, 1H, CHF), 3.68-3.65 (m, 1H, CHCH_aCH_bOH), 3.59-3.55 (m, 1H, CHCH_aCH_bOH), 2.05-1.99 (m, 2H, CH₂CH=C(CH₃)₂), 1.69 (s, 3H, (CH₃)₂C=CH), 1.62 (s, 3H, (CH₃)₂C=CH), 1.37-1.33 (m, 2H, CH₂CH₂CH=C(CH₃)₂), 1.23 (d, *J* = 1.3 Hz, 3H, CH₃C_qCHF), 1.21 (m, 1H, CHCHF); ¹³C NMR (126 MHz, CDCl₃, selected data for major) δ 132.3 ((CH₃)₂C=CH), 123.9 ((CH₃)₂C=CH), 81.0 (d, ¹J (C-F) = 229.8 Hz, CHF), 60.4 (CH₂OH), 32.5 (d, ²J (C-F) = 8.9 Hz, CHCHF), 29.8 (CH₂CH₂CH=C(CH₃)₂), 25.8 (CH₃C_qCHF); ¹⁹F NMR (470 MHz, CDCl₃, selected data for major) δ -216.96 (dd, ²J (H-F) = 64.7 Hz, ³J cis (H-F) = 22.1 Hz, CHF); HRMS (ESI-TOF) *m*/z Calcd for C₁₁H₁₈FO [M-H]⁻ 185.1347; Found: 185.1333.

((1R*,2R*,3S*)-3-Fluoro-2-methyl-2-(4-methylpent-3-en-1-yl)cyclopropyl)methanol (4y-(minor))

Prepared according to general procedure **6** to afford fluorocyclopropane **4y-(minor)** as pale yellow oil (111 mg, 74%, dr = 70:30). R_f = 0.4 (60% diethyl ether in hexane); IR (film)/cm⁻¹ 3369, 2923, 1456, 1041; ¹H NMR (500 MHz, CDCl₃) δ 5.13 (t, J = 7.2 Hz, 1H, $CH=C(CH_3)_2$), 4.36 (dd, ² $J_{(H-F)} = 65.8$ Hz, ³ $J_cis_{(H-H)} = 6.1$ Hz, 1H, CHF), 3.90-3.86 (m, 1H, CHCH_aCH_bOH), 3.77-3.73 (m, 1H, CHCH_aCH_bOH), 2.14-1.99 (m, 2H, CH₂CH=C(CH₃)₂), 1.69 (s, 3H, (CH₃)₂C=CH), 1.62 (s, 3H, (CH₃)₂C=CH), 1.54-1.49 (m, 2H, CH₂CH₂CH=C(CH₃)₂), 1.00 (t, J = 4.9 Hz, 3H, CH_3C_qCHF), 1.01-0.95 (m, 1H, CHCHF); ¹³C NMR (126 MHz, CDCl₃) δ 132.1 ((CH₃)₂C=CH), 124.2 ((CH₃)₂C=CH), 79.4 (d, ¹ $J_{(C-F)} = 222.0$ Hz, CHF), 57.9 (d, ³ $J_{(C-F)} = 9.6$ Hz, CH_2OH), 29.3 (d, ² $J_{(C-F)} = 9.8$ Hz, CHCHF), 27.6 (d, ³ $J_{(C-F)} = 6.8$ Hz, $CH_2CH_2CH=C(CH_3)_2$), 25.8 (CH₃C=CH), 25.2 (CH₂CH=C(CH₃)₂), 22.9 (d, ² $J_{(C-F)} = 9.0$ Hz, C_qCHF), 22.2 (CH₃C_qCHF), 17.7 (CH₃C=CH); ¹⁹F NMR (470 MHz, CDCl₃) δ -231.11 (dd, ² $J_{(H-F)} = 65.5$ Hz, ³J trans (H-F) = 5.2 Hz, CHF); HRMS (ESI-TOF) *m*/*z* Calcd for C₁₁H₁₈FO [M-H]⁻ 185.1347; Found: 185.1333.

((1R*,2S*,3R*)-3-Fluoro-2-methyl-2-(4-methylpent-3-en-1-yl)cyclopropyl)methanol (4z-(major))

Prepared according to general procedure **6** to afford fluorocyclopropane **4z-(major)** as pale yellow oil (127 mg, 88%, dr = 55:45). R_f = 0.4 (60% diethyl ether in hexane); IR (film)/cm⁻¹ 3371, 2923, 2853, 1730, 1455, 1233, 1046; ¹H NMR (500 MHz, CDCl₃) δ 5.15 (t, J = 7.1 Hz, 1H, $CH=C(CH_3)_2$), 4.18 (dd, ² $J_{(H-F)}$ = 64.3 Hz, ³J trans (H-H) = 2.4 Hz, 1H, CHF), 3.75 (dd, J = 11.5, 6.7 Hz, 1H, CHC H_a CH $_b$ OH), 3.47 (t, J = 10.1 Hz, 1H, CHCH $_a$ CH $_b$ OH), 2.18-2.10 (m, 2H, CH_2 CH=C(CH $_3)_2$), 1.69 (s, 3H, CH_3 C=CH), 1.63 (s, 3H, CH_3 C=CH) , 1.53-1.50 (m, 2H, CH_2 CH=C(CH $_3)_2$), 1.30-1.27 (m, 1H, CHCHF), 1.04 (d, J = 3.0 Hz, 3H, CH_3 CqCHF); ¹³C NMR (126 MHz, CDCl $_3$) δ 131.9 ((CH $_3)_2$ C=CH), 124.3 ((CH $_3)_2$ C=CH), 81.6 (d, ¹ $J_{(C-F)}$ = 229.5 Hz, CHF), 60.6 (CH $_2$ OH), 33.7 (d, ³ $J_{(C-F)}$ = 6.4 Hz, CH_2 CH=C(CH $_3)_2$), 31.6 (d, ² $J_{(C-F)}$ = 9.4 Hz, CHCHF), 25.8 (CH_3 C=CH), 25.4 $_2$ (d, ² $J_{(C-F)}$ = 10.1 Hz, C_q CHF);

25.4 (*C*H₂CH=C(CH₃)₂), 17.7 (*C*H₃C=CH), 15.7 (d, ³*J*_(C-F) = 1.4 Hz, *C*H₃C_qCHF); ¹⁹F NMR (470 MHz, CDCl₃) δ -216.25 (dd, ²*J*_(H-F) = 64.3 Hz, ³*J cis*_(H-F) = 22.6 Hz, CHF); HRMS (ESI-TOF) *m/z* Calcd for C₁₁H₁₈FO [M-H]⁻ 185.1347; Found: 185.1354.

((1R*,2S*,3S*)-3-Fluoro-2-methyl-2-(4-methylpent-3-en-1-yl)cyclopropyl)methanol (4z-(minor))

Prepared according to general procedure **6** to afford fluorocyclopropane **4z-(minor)** as pale yellow oil (127 mg, 88%, dr = 55:45). Compound **4z-(minor)** mixtured with *trans*-geraniol **2z**. R_f = 0.6 (60% diethyl ether in hexane); IR (film)/cm⁻¹ 3338, 2967, 2917, 1669, 1439, 1377, 1109, 1014, 832; ¹H NMR (500 MHz, CDCl₃, *selected data for minor*) δ 5.05-5.03 (m, 1H, CH=C(CH₃)₂), 4.31 (dd, ²J _(H-F) = 66.0 Hz, ³J *cis* _(H-H) = 6.2 Hz, 1H, CHF), 3.79-3.70 (m, 2H, CH₂OH), 2.01-2.00 (m, 2H, CH₂CH=C(CH₃)₂), 1.67 (s, 6H, (CH₃)₂C=CH), 1.32-1.25 (m, 1H, CH_aH_bCH₂CH=C), 1.11 (d, *J* = 1.5 Hz, 3H, CH₃C_qCHF), 1.07-1.00 (m, 1H, CH_aH_bCH₂CH=C), 0.97-0.91 (m, 1H, CHCHF); ¹³C NMR (126 MHz, CDCl₃) δ 131.9 ((CH₃)₂C=CH), 123.8 ((CH₃)₂C=CH), 78.5 (d, ¹J _(C-F) = 223.1 Hz, CHF), 57.8 (d, ³J _(C-F) = 9.1 Hz, CH₂OH), 38.6 (CH₂CH₂CH=C) 27.8 (d, ²J _(C-F) = 9.9 Hz, CHCHF), 24.3 (d, ⁴J _(C-F) = 2.0 Hz, CH₂CH₂CH=C), 22.8 (d, ²J _(C-F) = 8.7 Hz, *C*_qCH₃CHF), 17.7 ((CH₃)₂C=CH), 10.2 (d, ³J _(C-F) = 9.3 Hz, CH₃C_qCHF); ¹⁹F NMR (470 MHz, CDCl₃) δ -230.82 (dd, ²J _(H-F) = 66.0 Hz, ³J *trans* _(H-F) = 6.7 Hz, CHF); HRMS (ESI-TOF) *m/z* Calcd for C₁₁H₁₈FO [M-H]⁻ 185.1347; Found: 185.0950.

((1R*,4R*,7R*)-7-Fluoro-4-(prop-1-en-2-yl)bicyclo[4.1.0]heptan-1-yl)methanol (4aa)

Prepared according to general procedure **6** to afford fluorocyclopropane **4aa** as yellow oil (69 mg, 36%, dr = 70:30, inseparable mixture of diastereoisomers). R_f = 0.2 (50% EtOAc in hexane); IR (film)/cm⁻¹ 3434, 2926, 2856, 1644, 1468, 1266, 1014; ¹H NMR (500 MHz, CDCl₃, selected data for major) δ 4.73-4.67 (m, 2H, Cq=CH₂), 4.37 (dd, ²J (H-F) = 67.2 Hz, ³J cis (H-H) = 6.7 Hz, 1H, CHF), 3.37-3.29 (m, 2H, CH₂OH), 2.13-2.09 (m, 1H, CH_aH_bCHCq=CH₂), 2.00-1.96 (m, 1H, CH_aH_bCHCHF), 1.87-1.79 (m, 2H, overlapping CH_aH_bCHCq=CH₂ and CHCq=CH₂), 1.70 (s, 3H, CH₃), 1.60-1.57 (m, 1H, CH_aCH_bCH₂CHCq=CH₂), 1.39-1.33 (m, 1H, CH_aH_bCHCHF), 1.18-1.16 (m, 1H, CH_aCH_bCH₂CHCq=CH₂), 107-1.02 (m, 1H, CHCHF); ¹³C NMR (126 MHz, CDCl₃, selected data for major) δ 150.2 (c_q =CH₂), 108.9 (c_q =CH₂), 77.6 (d, ¹J (c-F) = 225.1 Hz, CHF), 68.8 (CH₂OH), 41.7 (CH₂=CqCH), 27.0 (d, ⁴J (c-F) = 4.8 Hz, CH₂CH₂CHCq=CH₂), 23.1 (d, ⁵J (c-F) = 3.6 Hz, CH₂CH₂CHCq=CH₂), 22.1 (d, ³J (c-F) = 5.2 Hz, CH₂CHCHF), 20.9 (CH₃), 16.9 (d, ²J (c-F) = 10.1 Hz, CHCHF); ¹⁹F NMR (470 MHz, CDCl₃) δ -228.33 (dd, ²J (H-F) = 67.2 Hz, ³J trans (H-F) = 9.8 Hz, CHF minor), -229.73 (d, ²J (H-F) = 67.1 Hz, CHF major); HRMS (ESI-TOF) m/z Calcd for C₁₁H₁₆FO [M-H]⁻ 183.1191; Found: 183.1187.

((1S*,2R*,3S*)-2-fluoro-3-phenylcyclopropyl)methanol (4ad)

Prepared according to general procedure **6** to afford fluorocyclopropane **4ad** as colourless oil (21 mg, 15 %, dr > 95:5). R_f = 0.4 (40% EtOAc in hexane); ¹H NMR (500 MHz, CDCl₃): δ 7.51-7.49 (m, 2H, 2 x Ar-H), 7.43-7.42 (m, 2H, 2 x Ar-H), 4.75 (ddd, ²J (H-F) = 64.6 Hz, ³J cis (H-H) = 6.6 Hz, ³J trans (H-H) = 2.5 Hz, 1H, CHF), 3.74 (d, ³J (H-H) = 6.1 Hz, 2H, CH₂OH), 2.18-2.14 (m, 1H, Ar-CHCHF), 2.01-1.92 (m, 1H, CHCH₂OH); ¹³C NMR (126 MHz, CDCl₃): δ 136.6 (d, ⁴J (C-F) = 2.9 Hz, Ar-Cq), 131.9 (Ar-C), 128.8 (Ar-Cq), 125.6-125.5 (m, Ar-C), 123.4₅ (q, ³J (C-F) = 3.8 Hz, Ar-C), 75.2 (d, ¹J (C-F) = 227.1 Hz, CHF), 61.9 (CH₂OH), 27.5₅ (d, ²J (C-F) = 8.7 Hz, CHCH₂OH), 26.1₅ (d, ²J (C-F) = 11.0 Hz, Ar-CHCHF); ¹⁹F NMR (470 MHz, CDCl₃): δ 62.70 (s, 3F, CF₃), -220.77 (ddd, ²J (H-F) = 64.6 Hz, ³J cis (H-F) = 20.8 Hz, ³J trans (H-F) = 6.0 Hz, CHF); HRMS (ESI-TOF) m/z Calcd for C₁₁H₉F₄O [M-H]⁻ 233.0595; Found: 233.0591.

8. Synthesis of chiral allylic alcohol and fluorocyclopropane

Chiral allylic alcohol **(***R***)-2m** was prepared using the correspondent ketone, (*S*)-CBS-Butyl and catecholborane according to the literature procedure.¹⁸

Chiralpak AD-H column; 99:1 = hexane:iPrOH, 1mL/min flux.

Chiralpak AD-H column; 99:1 = hexane:iPrOH, 1mL/min flux.

Computational Studies

1.1 Computational Methods

Density functional theory (DFT)¹⁹ calculations were performed using Gaussian 09 (revision E.01)²⁰ and the Gaussview²¹ was used to generate input geometries and visualize output structures. Regarding geometry optimizations and frequency calculations for fluoroiodomethane and fluoroiodomethyllithium, B3LYP functional²²⁻²⁵ was used with the 6-311++G(d,p)+LANL2DZ (for I) mixed basis set.²⁶ For comparative purpose and to model solvation effect, the calculations were carried out in THF as a solvent, by applying the most commonly used integral equation formalism (IEF) version of polarized continuum model (PCM).²⁷⁻²⁸ All stationary points were characterized as minima and thermal corrections were computed from unscaled frequencies, assuming a standard state of 298.15 K and 1 atm.

1.2 Structure optimization, bond lengths (Å) and measured bond angles (<)

No.	Parameters	FICH ₂ – Gas Phase	FICHLi – Gas Phase	FICH ₂ – THF	FICHLI – THF
1	Optimized Structures				
2	Li–C (Å)		1.98715		2.09782
3	Li−I (Å)		2.54426		3.32028
4	Li–F (Å)		2.93467		3.03683
5	C−I (Å)	2.18567	2.59734	2.18841	2.46282
6	C–F (Å)	1.36730	1.35715	1.37357	1.39964
7	С–Н (Å)	1.08609	1.10041	1.08486	1.09889
8	I–C–H (‹)	106.62399	93.11711	106.73539	92.94860
9	I–C–Li (<)		65.85965		93.09497
10	C–Li–I (‹)		68.68303		47.78852
11	Li—I—C (<)		45.45733		39.11651
12	F—C—Li (‹)		121.54336		119.17297
13	CLiF (<)		23.21132		23.72995
14	Li—F—C (‹)		35.24533		37.09708
15	I—C—F (<)	110.85934	106.95985	110.20028	104.53787
16	I—Li—F (<)		72.69869		58.65085

1.3 Electrostatic Potential Map

No.	Structure	Solid	Mesh	Transparent
1	FICH₂ – Gas Phase			
2	FICH₂ – THF			
3	FICHLi – Gas Phase			
4	FICHLi – THF			
Red: strong negative Blue: strong positive				

1.4 HOMO – LUMO Analysis

1.5 Natural and Mulliken Atomic Charges for FICH₂

	Natural Atomic	Charge	Mulliken A	tomic Charge
Atom	Gaseous Phase	THF (Solvent)	Gaseous Phase	THF (Solvent)
С	-0.07475	-0.06871	-0.394684	-0.391620
Н	0.17727	0.18879	0.186500	0.207569
F	-0.37077	-0.38313	-0.080463	-0.104348
Ι	0.09098	0.07427	0.102147	0.080830
Н	0.17727	0.18879	0.186500	0.207569

1.6 Natural and Mulliken Atomic Charges for FICHLi

	Natural Atomic	: Charge	Mulliken A	tomic Charge
Atom	Gaseous Phase	THF (Solvent)	Gaseous Phase	THF (Solvent)
С	-0.16466	-0.29347	-0.310173	-0.617807
н	0.12388	0.11641	0.161749	0.175419
F	-0.37211	-0.42592	-0.025295	-0.097187
I	-0.31412	-0.32845	-0.158408	-0.298543
Li	0.72701	0.93143	0.332127	0.838118

1.7 Computed Energies [values are in Hartree]

No.	Species	Total Electronic Energy	Sum of Electronic and Zero-point Energies	Sum of Electronic and Thermal Enthalpies	Gibbs Free Energy
1	FICH ₂ – Gas Phas	-150.5679248	-150.538204	-150.533635	-150.566043
2	FICH ₂ – THF	-150.5715945	-150.541926	-150.537344	-150.569778
3	FICHLi – Gas Phase	-157.4956551	-157.477551	-157.471563	-157.507425
4	FICHLI – THF	-157.5336842	-157.516485	-157.510176	-157.546843

1.8 Optimized Structures and Cartesian Coordinates

No.	Species	Optimized Structure			
1	FICH₂ – Gas Phas				
Carte	sian Coordinates				
С	0.52745600 -1.50045	5000 0.00000000			
н	1.09500400 -1.6794	9700 0.90852500			
F	-0.59497200 -2.2812	5700 0.0000000			
I	0.00000000 0.62062	300 0.0000000			
н	1.09500400 -1.6794	9700 -0.90852500			
2	FICH₂ – THF				
Carte	sian Coordinates				
С	0.53432300 -1.50202	2800 0.0000000			
н	1.09675600 -1.6825	5600 0.90994800			
F	-0.59993900 -2.2767	1300 0.0000000			
I	0.0000000 0.62014	500 0.0000000			
н	1.09675600 -1.6825	5600 -0.90994800			
3	FICHLi – Gas Phase				
Carte	Cartesian Coordinates				
с	1.80553100 0.39081	400 0.44497600			
н	1.76508600 -0.0431	0600 1.45541000			
F	2.50843400 -0.5072	1700 -0.29077000			
I	-0.71146600 -0.06526	5300 -0.00544200			

Li	0.84450100 1.90736	400 -0.40664400	
4	FICHLI – THF		
Carte	sian Coordinates		
С	1.68705600 0.29369	600 0.44219600	
Н	1.60703400 -0.1112	9000 1.46059700	
F	2.32173900 -0.73506	5800 -0.26336900	
Ι	-0.71125700 -0.03278	000 -0.01278400	
Li	1.69052700 2.23401	.700 -0.35529900	

8. Copies of NMR Spectra (¹H, ¹³C and ¹⁹F) for All the Synthesized Compounds

⁵ S. Elangovan, C. Topf, S. Fischer, H. Jiao, A. Spannenberg, W. Baumann, R. Ludwig, K. Junge, M. Beller, *JACS*, **2016**, *138*, 8809–8814.

- ⁶ R. Meib, K. Kumar, H. Waldmann, *Chemistry*, **2015**, *21*, 13526–13530.
- ⁷ Yasuda Shigeo, Kumagai Naoya, Shibasaki Masakatsu, *Heterocycles*, **2012**, *86*, 745–757.
- ⁸ D. Craig, N. K. Slavov, *Chem. Comm.*, **2008**, *45*, 6054–6056.

⁹ G. Y. Fang G. Y., Olov A. Wallner, N. Di Blasio, X. Ginesta, J. N. Harvey, V. K. Aggarwal, *J. Am. Chem. Soc.*, **2007**, *129*, 14632–14639.

- ¹⁰ M. Nishizwa, E. J. Org. Chem., **2011**, 13, 2417–2420.
- ¹¹ T. N. Grant, F. G. West, J. Am. Chem. Soc., **2006**, 128, 9348–9349.
- ¹² E. Brenna, M. Crotti, M. De Pieri, F. G. Gatti, G. Manenti, D. Monti, *Adv. Synth. and Catal.*, **2018**, *360*, 3677–3686.
- ¹³ Yahata Kenzo, Minami Masaki, Watanabe Kei, Fujoka Hirocmichi, Organic Letters, **2014**, *16*, 3680–3683.

¹⁴ T. V. K. Reddy, A. Jyotsna, B.L.A Prabhavathi Devi, R.B.N. Prasad, Y. Poornachandra, C. Ganesh Kumar, *Eur. J. Med. Chem.*, **2016**, *120*, 86–96.

- ¹⁵ Y-G. Chen, B. Shuai, C. Ma, X-J. Zhang, P. Fang, T.-S. Mei, *Organic Letters*, **2017**, *19*, 2969–2972.
- ¹⁶ M.-H. Yang, D. L. Orsi, R. A. Altman, Angewandte Chemie International Edition **2015**, *54*, 2361–2365.
- ¹⁷ C. Navuluri, A. B. Charette, Org. Lett., **2015**, 17, 4288–4291.
- ¹⁸ E. J. Corey, R. K. Bakshi, *Tetrahedron Letters*, **1990**, *31*, 611–614.

¹⁹ Parr, R. G.; Yang, W. Density-Functional Theory of Atoms and Molecules; Oxford University Press, U.K., **1989**.

²⁰ Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M., Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery Jr., J. A.; Peralta, J. E.; Ogliaor, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Keith, T.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski J.; Fox, D. J. *Gaussian 09*, revision E.01; Gaussian, Inc.; Wallingford, CT, **2013**.

²¹ Denningtom, R.; Keith, T.; Millam, J. *GaussView*, version 5; Semichem Inc.: Shawnee Mission, KS, **2009**.

²² Becke, A. D. J. Chem. Phys., **1993**, 98, 5648–5652.

²³ Becke, A. D. J. Chem. Phys., **1993**, 98, 1372–1377.

²⁴ Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B, **1988**, 37, 785–789.

²⁵ Stephens, P. J.; Devlin, F. J.; Chabalowski, C. F.; Frisch, M. J. J. Chem. Phys., **1994**, *98*, 11623–11627.

²⁶ Check, C. E.; Faust, T. O.; Bailey, J. M.; Wright, B. J.; Gilbert, T. M.; Sunderlin, L. S. *J. Phys. Chem. A*, **2001**, *105*, 8111–8116.

²⁷ Mennucci, B.; Cancès, E.; Tomasi, J. J. Phys. Chem. B, **1997**, 101, 10506–10517.

²⁸ Tomasi, J.; Mennucci, B.; Cammi, R.; Chem. Rev., **2005**, 105, 2999–3094.

¹ T. Schiefer, J. Med. Chem. 2018, 61, 4593-4607.

² V. Pace, L. Castoldi, P. Hoyos, J. V. Sinisterra, M. Pregnolato, J. Sánchez-Montero, *Tetrahedron*, **2011**, *67*, 2670–2675.

³ M. Nardi, G. Sindona, P. Costanzo, M. Oliviero, A. Procopio, *Tetrahedron*, **2015**, *71*, 1132–1135.

⁴ Li Chunsheng, Chen Huoji, Li Jianxiao, Li Meng, Liao Jianhua, Wu Wanqing, Jiang Huanfeng, *Adv. Synth. and Cat.*, **2018**, *360*, 1600–1604.