SUPPORTING INFORMATION of SYNTHESES, STRUCTURES, AND COMPUTATIONS

Lewis base-complexed magnesium dithiolenes

Yuzhong Wang, Nirva A. Maxi, Yaoming Xie, Pingrong Wei, Henry F. Schaefer III, and Gregory H. Robinson*

Department of Chemistry and the Center for Computational Chemistry, The University of Georgia, Athens, Georgia 30602-2556, United States.

To whom correspondence should be addressed. Email: robinson@uga.edu

SUPPORTING INFORMATIONS of SYNTHESES

Materials and Methods

General.

The syntheses of air-sensitive compounds were performed under purified argon using Schlenk techniques and an inert atmosphere drybox (M-Braun LabMaster SP). Chemicals were purchased from Aldrich and Strem and used as received. Toluene and THF were dried and distilled under argon from Na or Na/benzophenone prior to use. The anhydrous acetonitrile (from Aldrich) was dried and distilled from CaH₂, which was then stored over 3A molecular sieves. ¹H NMR and ¹³C{¹H} NMR spectra were recorded on a Bruker Avance III HD 400 MHz spectrometer. X-ray intensity data for **2**-**4** were collected at room temperature on a Bruker D8 Quest PHOTON 100 CMOS Xray diffractometer system with Incoatec Microfocus Source (IµS) monochromated Mo K α radiation ($\lambda = 0.71073$ Å, sealed tube) using phi and omega-scan technique.

Compound 2: 100 ml of THF was added to a 250 mL Schlenk flask containing both $[:C{[N(2,6-Pr_{2}C_{6}H_{3})]_{2}CHCLi}]$ (4.000 g, 10.14 mmol) and elemental sulfur (1.318 g, 41.11 mmol) in an ice bath, giving a dark purple solution immediately. The resulting solution was allowed to be gradually warmed to room temperature and then stirred one more hour. Addition of 11 mL of mesityl magnesium bromide (1.0 M in THF) in the Schlenk flask immediately resulted in a brown color mixture, which was then stirred for 30 mins. After the volatile materials were removed in vacuo, the residue was extracted using 100 mL of toluene. After subsequently removing toluene from the filtrate in vacuo, the residue was rinsed using 100 mL of hexane, then dried in vacuo, and finally recrystallized in THF, giving colorless crystals of 2 (3.875 g, 48.1% yield). Mp: gradually decomposed (>110 °C) and melt (> 270 °C). ¹H NMR (400.14 MHz, THFd₈): δ1.24 [d, 24H, CH(CH₃)₂], 1.77 (THF), 2.94 [m, 4H, CH(CH₃)₂], 3.62 (THF), 7.08 [d, 4H, Ar-H], 7.19 [t, 2H, Ar-H]. ${}^{13}C{}^{1}H$ NMR (100.63 MHz, THF-d₈): δ 24.63, 24.74 [CH(CH₃)₂], 26.55 (THF), 29.85 [CH(CH₃)₂], 68.39 (THF), 123.34 [NCCN], 127.1, 128.4, 137.8, 148.3 [Ar-C], 160.7 [NC(=S)N]. Crystal data for 2: $C_{43}H_{66}MgN_2O_4S_3$, fw = 795.46, orthorhombic, $P2_12_12$, a = 13.3056(6) Å, b =13.8070(7) Å, c = 12.8135(6) Å, V = 2353.97(19) Å³, Z = 2, R1 = 0.0519 for 4111 data $(I > 2\sigma(I))$, wR₂ = 0.1372 (all data).

Compound 3: In the glovebox, 8 mL of toluene was added to a Schlenk tube containing 2 (0.400 g, 0.50 mmol) and $[:C{N(Pr^{i})CMe}_{2}]$ (0.182 g, 1.01 mmol) at room temperature. The resulting mixture was stirred under ambient temperature over 2h, giving a slurry containing colorless crystalline solid. The slurry was heated to get a clear solution and then kept stationary under ambient temperature over two days, giving

X-ray quality colorless crystals of **3**. The ¹H NMR reaction shows that **3** is synthesized in a quantitative yield. Mp: gradually decomposed (>255 °C) and melt at 293 °C. ¹H NMR (400.14 MHz, C₆D₆): δ 1.21 [d, 24H, CH(CH₃)₂, NHC], 1.56 (s, 12H, CH₃CCCH₃), 1.58 [d, 12H, CH(CH₃)₂, dithiolene], 1.68 [d, 12H, CH(CH₃)₂, dithiolene], 3.48 [m, 4H, CH(CH₃)₂, dithiolene], 4.90 [m, 4H, CH(CH₃)₂, NHC], 7.26-7.36 [m, 6H, Ar-H]. ¹³C{¹H} NMR (100.63 MHz, C₆D₆): δ 10.2 (CH₃CCCH₃) 23.0 [CH(CH₃)₂, NHC], 25.05, 25.14 [CH(CH₃)₂, dithiolene], 29.8 [CH(CH₃)₂, dithiolene], 52.9 [CH(CH₃)₂, NHC], 123.8 (CH₃CCCH₃), 125.3, [S(N)CC(N)S], 126.0, 137.3, 148.3 [Ar-C], 162.0 [NC(=S)N], 179.8 [NCN]. Crystal data for **3**·toluene: C₅₆H₈₂MgN₆S₃, fw = 959.76, monoclinic, P2₁/n, *a* = 15.5287(7) Å, *b* = 20.6762(10) Å, *c* = 18.7622(9) Å, β =93.047(2)°, *V* = 6015.5(5) Å³, *Z* = 4, R1 = 0.0628 for 6903 data (*I* > 2 σ (*I*)), wR₂ = 0.1597 (all data).

Compound 4: 6 mL of the mixed solvent [THF (3 mL)/MeCN (3 mL)] was added to a Schlenk tube containing 3 (0.400 g, 0.50 mmol) at room temperature, which was then stirred overnight. After removing the volatiles in vacuo, the residue was dissolved in CH₃CN to make a saturate solution. This solution was then kept stationary at 18 °C over three days, giving 4 as yellow crystals. Mp: gradually decomposed (>108 °C) and gradually melt (> 240 °C). ¹H NMR (400.14 MHz, CD₃CN): δ 1.20 [d, 24H, CH(CH₃)₂, dithiolene], 1.22 [d, 24H, CH(CH₃)₂, dithiolene], 1.47 [d, 24H, CH(CH₃)₂, imidazolium], 1.81 (m, THF), 2.21 (s, 12H, CH₃CCCH₃, imidazolium) 2.78 [m, 8H, CH(CH₃)₂, dithiolene], 3.65 (m, THF), 4.46 [m, 4H, CH(CH₃)₂, imidazolium], 7.20 [d, 8H, Ar-H], 7.34 [t, 4H, Ar-H], 8.36 [s, 2H, NC(H)N]. ¹³C{¹H} NMR (100.63 MHz, CD₃CN): *§* 9.01 (CH₃CCCH₃) 23.14, 24.55, 24.67 [CH(CH₃)₂], 26.61 (THF), 30.09 [CH(CH₃)₂, dithiolene], 51.58 [CH(CH₃)₂, imidazolium], 68.66 (THF), 124.49, [S(N)CC(N)S], 128.0 (CH₃CCCH₃), 130.6 [NC(H)N], 127.4, 129.7, 137.4, 148.8 [Ar-C], 160.4 [NC(=S)N]. Crystal data for 4: $C_{80}H_{118}MgN_8OS_6$, fw =1424.49, monoclinic, $P2_1/n$, a = 14.5228(12) Å, b = 16.6577(13) Å, c = 18.4634(14) Å, $\beta = 92.673(2)^\circ$, V = 16.6577(13)4461.7(6) Å³, Z = 2, R1 = 0.0828 for 5798 data ($I > 2\sigma(I)$), wR₂ = 0.2429 (all data).

Dimesityl disulphide: ¹H NMR (400.14 MHz, C₆D₆): δ 2.00 [s, 6H, CH₃], 2.31 [s, 12H, CH₃], 6.65 [s, 4H, Ar-H]. The cell constants of the single-crystal of dimesityl disulphide (*i.e.*, a = 6.4974(8) Å, b = 17.579(2) Å, c = 14.930(2) Å, β = 97.228(3)°, volume = 1691.6(4) Å³) match those for Mes-S-S-Mes with the CCDC number of 859846 (private communication, by A. L. Rheingold).

Figure S1. Molecular structure of Dimesityl disulphide. (thermal ellipsoids represent 30% probability; hydrogen atoms on carbons are omitted for clarity). Selected bond distances (Å) and angles (deg): S(1)-S(2) 2.052(2), S(1)-C(1) 1.769(6); C(1)-S(1)-S(2) 103.7(2).

Figure S2. The ¹H NMR spectrum of compound $\mathbf{2}$ in THF-d₈

Figure S3. The ¹H NMR spectrum of compound **3** in C_6D_6 .

Figure S4. The ¹H NMR spectrum of compound **4** in CD₃CN.

SUPPORTING INFORMATIONS of COMPUTATIONS

All computations employed the Gaussian09 programs:

For Gaussian 09: M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, *Gaussian 09*, revision D.01; Gaussian, Inc., Wallingford CT, 2013.

Fig. S5 HOMO of the simplified 2-Me model.

Center	Atomic	Atomic	Coord	dinates (Ang	stroms)
Number	Number	Туре	Х	Y	Z
	10		0 011102	_0 007145	0
2	16	0	-6 040421	-0 013429	0.000040
2	16	0	-0 806881	-1 160786	1 402850
4		0	-3 501293	-0 701783	0 863602
5	, 6	0	-4 341603	-0 041871	0.006123
6	6	0	-2.160737	-0.471521	0.514195
7	6	0	-3.943123	-1.531000	1.967802
8	8	0	2.552680	1.033919	-1.076278
9	6	0	2.495873	1.387366	-2.494257
10	1	0	1.518579	1.834162	-2.681794
11	1	0	2.587884	0.472264	-3.079718
12	6	0	3.647356	2.368675	-2.731970
13	1	0	4.540181	1.840805	-3.078407
14	1	0	3.390876	3.121358	-3.478585
15	6	0	3.890063	2.960475	-1.336051
16	1	0	3.168681	3.752565	-1.120527
17	1	0	4.894798	3.368360	-1.212181
18	6	0	3.640795	1.754441	-0.440437
19	1	0	4.522821	1.105910	-0.404321
20	1	0	3.325113	1.991751	0.573115
21	8	0	0.995793	1.818920	1.367654
22	6	0	0.729457	3.144885	0.845156
23	1	0	0.699048	3.064411	-0.238714
24	1	0	1.547500	3.806397	1.158161
25	6	0	-0.614332	3.578732	1.450226
26	1	0	-0.582154	4.625518	1.759110
27		0	-1.412394	3.461286	0./1//42
28	0	0	-0.822448	2.010/94	2.648343
29	1	0	-1.032069	3.142043	3.381847
30	1 6	0	-1.044/01	1 930220	2.440037
32	1	0	1 229/17	2 330506	3 36/359
33	1	0	0 346447	0 799621	3 031645
34	16	0	-0 825762	1 017851	-1 499929
35	7	0	-3.523714	0.604208	-0.878389
36	6	0	-2.171631	0.350998	-0.581506
37	6	0	-4.023852	1.424005	-1.966657
38	8	0	2.578055	-0.920492	1.134706
39	6	0	2.501920	-1.220940	2.564212
40	1	0	1.534007	-1.688258	2.748179
41	1	0	2.553952	-0.281544	3.115721
42	6	0	3.677998	-2.156506	2.864864
43	1	0	4.538257	-1.590575	3.232716
44	1	0	3.420034	-2.902372	3.617723
45	6	0	3.995240	-2.769150	1.492757
46	1	0	3.315944	-3.595860	1.270552
47	1	0	5.020084	-3.136276	1.414341
48	6	0	3.727120	-1.595506	0.560855
49	1	0	4.577428	-0.904610	0.548715
50	1	0	3.467818	-1.866690	-0.459989
51	8	0	1.197817	-1.814899	-1.381208
52	6	0	0.978587	-3.157023	-0.879428
53	1	0	0.897876	-3.089055	0.202806
54	1	U	1.842164	-3.773210	-1.161664
55	6	U	-0.313300	-3.650032	-1.545564
56	Ţ	U	-0.230488	-4./01111	-1.829270

 Table S1. Coordinates of the B3LYP/6-311G** optimized geometry of 2-Me.

57	1	0	-1.151078	-3.543733	-0.857139
58	6	0	-0.490537	-2.717421	-2.772133
59	1	0	-0.593134	-3.267056	-3.709683
60	1	0	-1.368302	-2.083606	-2.646889
61	6	0	0.769640	-1.850081	-2.765407
62	1	0	1.577758	-2.291355	-3.363550
63	1	0	0.577525	-0.825833	-3.074558
64	1	0	-4.648023	0.824861	-2.632996
65	1	0	-4.635749	2.238278	-1.573117
66	1	0	-3.169100	1.822702	-2.509406
67	1	0	-3.600957	-2.559650	1.832175
68	1	0	-3.542190	-1.152635	2.910719
69	1	0	-5.031106	-1.499049	1.983303

Center	Atomic	Atomic	Coord	dinates (Ang	stroms)
Number	Number	Туре	Х	Y	Z
	12	0	0.030033	-0.000005	0.000000
2	16	0	-6.828597	-0.000038	-0.000004
3	16	0	-1.601369	-0.584956	1.723887
4	16	0	-1.601373	0.584916	-1./23894
5	/	0	-4.294631	-0.348941	1.030961
6	/	0	-4.294632	0.348884	-1.030968
1	6	0	-5.126876	-0.000032	-0.000004
8	6	0	-2.951111	-0.218920	0.649031
9	6	0	-2.951113	0.218872	-0.649036
10	7	0	2.275264	-2.131691	0.929329
11	7	0	1.275181	-3.035403	-0.746152
12	6	0	1.360885	-1.871022	-0.049903
13	6	0	2.741625	-3.448807	0.860686
14	6	0	2.106194	-4.016645	-0.203283
15	6	0	0.363461	-3.301295	-1.891280
16	1	0	0.668588	-4.281176	-2.259430
17	6	0	-1.092922	-3.402165	-1.428758
18	1	0	-1.198502	-4.142423	-0.632247
19	1	0	-1.469138	-2.447408	-1.060753
20	1	0	-1.721742	-3.707565	-2.268907
21	6	0	0.571497	-2.301714	-3.029527
22	1	0	1.628953	-2.230668	-3.298472
23	1	0	0.017594	-2.639921	-3.908877
24	1	0	0.185310	-1.315364	-2.770192
25	6	0	2.224601	-5.402174	-0.749409
26	1	0	2.916793	-5.986089	-0.142971
27	1	0	2.605417	-5.409294	-1.775485
28	1	0	1.264563	-5.926367	-0.746852
29	6	0	3.758233	-4.065388	1.767594
30	1	0	3.800213	-5.140689	1.593230
31	1	0	3.518250	-3.920501	2.822440
32	1	0	4.762597	-3.667868	1.595860
33	6	0	2.582065	-1.134629	1.981812
34	1	0	2.117504	-0.218699	1.613603
35	6	0	4.080777	-0.842033	2.111928
36	1	0	4.215393	0.058300	2.716309
37	1	0	4.626016	-1.648687	2.603228
38	1	0	4.531813	-0.662690	1.133313
39	6	0	1.918799	-1.497222	3.315224
40	1	0	2.041117	-0.671374	4.020322
41	1	0	0.850436	-1.674961	3.180273
42	1	0	2.363723	-2.386185	3.767360
4.3	- 7	Ő	2.275230	2.131726	-0.929320
44	7	0 0	1.275113	3.035421	0.746149
4.5	, 6	Ő	1.360850	1.871039	0.049906
46	6	Õ	2.741560	3.448854	-0.860679
47	6	Õ	2.106106	4.016680	0.203283
4.8	6	n N	0 363380	3 301296	1 891271
49	1	0 0	0.668481	4.281185	2.259419

 Table S2. Coordinates of the B3LYP/6-311G** optimized geometry of 3-Me.

50	6	0	-1.093003	3.402130	1.428740
51	1	0	-1.721833	3.707530	2.268882
52	1	0	-1.198594	4.142374	0.632217
53	1	0	-1.469199	2.447361	1.060748
54	6	0	0.571432	2.301723	3.029523
55	1	0	0.017537	2.639936	3.908877
56	1	0	0.185246	1.315370	2.770199
57	1	0	1.628891	2.230683	3.298458
58	6	0	2.224472	5.402217	0.749399
59	1	0	2.605289	5.409357	1.775474
60	1	0	1.264418	5.926380	0.746839
61	1	0	2.916645	5.986148	0.142955
62	6	0	3.758165	4.065450	-1.767578
63	1	0	3.800128	5.140752	-1.593214
64	1	0	3.518195	3.920559	-2.822426
65	1	0	4.762534	3.667945	-1.595833
66	6	0	2.582062	1.134668	-1.981796
67	1	0	2.117514	0.218730	-1.613591
68	6	0	1.918804	1.497242	-3.315218
69	1	0	2.041132	0.671386	-4.020305
70	1	0	0.850439	1.674976	-3.180277
71	1	0	2.363727	2.386202	-3.767362
72	6	0	4.080782	0.842102	-2.111897
73	1	0	4.215422	-0.058238	-2.716262
74	1	0	4.626007	1.648761	-2.603205
75	1	0	4.531815	0.662784	-1.133276
76	6	0	-4.744139	0.796593	-2.335319
77	1	0	-4.367822	1.801286	-2.540236
78	1	0	-4.381376	0.121164	-3.113403
79	1	0	-5.832321	0.799958	-2.321183
80	6	0	-4.744136	-0.796658	2.335310
81	1	0	-4.367808	-1.801347	2.540225
82	1	0	-4.381384	-0.121226	3.113397
83	1	0	-5.832317	-0.800035	2.321172

Center	Atomic	Atomic	Coord	dinates (Ang	stroms)
Number	Number	Туре	Х	Y	Ζ
1	 16	0	7.065427	0.054637	-0.589304
2	16	0	1.882151	-1.787368	0.219572
3	16	0	1.805359	1.762030	-0.033638
4	16	0	-7.065426	-0.054634	-0.589305
5	16	0	-1.805360	-1.762032	-0.033640
6	16	0	-1.882150	1.787365	0.219575
7	7	0	4.571090	-1.062966	-0.170870
8	7	0	4.522571	1.106209	-0.321181
9	7	0	-4.522571	-1.106208	-0.321182
10	7	0	-4.571088	1.062967	-0.170868
11	6	0	5.372961	0.032295	-0.360817
12	6	0	3.210775	-0.679474	-0.011167
13	6	0	3.180956	0.688164	-0.105679
14	6	0	4.934543	2.468844	-0.492073
15	6	0	4.936823	3.026268	-1.782227
16	6	0	5.331512	4.359449	-1.921849
17	1	0	5.339467	4.809949	-2.908755
18	6	0	5.706970	5.116876	-0.819918
19	1	0	6.008051	6.152316	-0.948341
20	6	0	5.688596	4.549385	0.447745
21	1	0	5.975542	5.147609	1.306346
22	6	0	5.300633	3.220684	0.637301
23	6	0	5.278256	2.631426	2.041254
24	1	0	4.943529	1.597303	1.955497
25	6	0	4.265134	3.363346	2.940271
26	1	0	3.269052	3.336670	2.493215
27	1	0	4.217284	2.885398	3.925089
28	1	0	4.547129	4.410944	3.092718
29	6	0	6.684993	2.607480	2.666119
30	1	0	7.375352	2.050686	2.029069
31	1	0	7.079107	3.620563	2.803980
32	1	0	6.655863	2.124823	3.649220
33	6	0	4.525995	2.225892	-3.010901
34	1	0	4.245527	1.227884	-2.673471
35	6	0	3.288542	2.834616	-3.694900
36	1	0	2.979099	2.209840	-4.539317
37	1	0	2.454589	2.896838	-2.993123
38	1	0	3.496098	3.838895	-4.080994
39	6	0	5.701676	2.065050	-3.992334
40	1	0	5.405768	1.433294	-4.836667
41	1	0	6.020989	3.032518	-4.395999
42	1	0	6.555042	1.598879	-3.495141
43	6	0	5.043579	-2.416589	-0.161985
44	6	0	5.069880	-3.139367	-1.367174
45	6	0	5.524893	-4.460094	-1.332297
46	1	0	5.551832	-5.036481	-2.251003
47	6	0	5.937184	-5.047037	-0.143018
48	1	0	6.285963	-6.075437	-0.135885
49	6	0	5.895058	-4.317991	1.038502
50	1	0	6.212012	-4.783112	1.966178
51	6	0	5.445718	-2.995178	1.053808
52	6	0	5.400948	-2.226340	2.367424
53	1	0	5.001625	-1.234955	2.150853
54	6	0	4.446469	-2.891431	3.375920

Table S3. Coordinates of the B3LYP/6-311G** optimized geometry of $[4]^{2-}$ (in C_2 symmetry).

55	1	0	4.374976	-2.286673	4.286717
56	1	0	3.446971	-2.992668	2.947426
57	1	0	4.798898	-3.887337	3.665905
5.8	6	0	6 810389	-2 034748	2 956490
59	1	Õ	6 762543	-1 429238	3 868311
60	1	0	7 267700	-2 005611	3 217660
61	1	0	7.207790	1 526501	2 220204
01	1 C	0	1.43/1/2	-1.320301	2.230294
62	0	0	4.620841	-2.528502	-2.08/805
63	1	0	4.306352	-1.504515	-2.485519
64	6	0	3.401187	-3.268444	-3.266391
65	1	0	3.062472	-2.776988	-4.184454
66	1	0	3.642510	-4.308425	-3.513463
67	1	0	2.575788	-3.262340	-2.551884
68	6	0	5.781851	-2.460695	-3.697114
69	1	0	5.455872	-1.959994	-4.615013
70	1	0	6.621696	-1.901531	-3.279009
71	1	0	6.133382	-3.461830	-3.970969
72	6	0	-5.372960	-0.032293	-0.360818
73	6	0	-3.180956	-0.688164	-0.105680
74	6	Ő	-3 210775	0 679474	-0 011166
75	6	Õ	-5 043576	2 416590	-0 161980
76	e e	0	5.043370	2 1 2 0 2 7 0	1 267160
70	6	0	-5.009070	3.139370	-1.30/100
77	0	0	-J.JZ4009	4.400097	-1.332200
/8	1	0	-5.551827	5.036486	-2.250994
79	6	0	-5.937181	5.047039	-0.143009
80	1	0	-6.285961	6.075438	-0.135873
81	6	0	-5.895056	4.317989	1.038509
82	1	0	-6.212012	4.783108	1.966186
83	6	0	-5.445717	2.995176	1.053813
84	6	0	-5.400949	2.226336	2.367427
85	1	0	-5.001626	1.234951	2.150856
86	6	0	-6.810392	2.034741	2.956490
87	1	0	-6.762547	1.429230	3.868310
88	1	0	-7.267793	2.995637	3.217661
89	1	0	-7.457173	1,526576	2,238292
90	-	Ő	-4 446473	2 891424	3 375927
91	1	Õ	-3 446974	2 992664	2 947435
92	1	0	-1 798903	3 887329	3 665917
02	1	0	4.774001	2 206665	1 206722
93	L G	0	-4.3/4901	2.200000	4.200723
94	0	0	-4.020030	2.328309	-2.00/000
95	1	0	-4.306345	1.504522	-2.48551/
96	6	0	-3.401184	3.268454	-3.266386
97	1	0	-3.062468	2.776999	-4.184448
98	1	0	-3.642509	4.308435	-3.513457
99	1	0	-2.575785	3.262352	-2.551878
100	6	0	-5.781847	2.460702	-3.697109
101	1	0	-5.455867	1.960004	-4.615009
102	1	0	-6.621690	1.901535	-3.279004
103	1	0	-6.133381	3.461836	-3.970961
104	6	0	-4.934545	-2.468842	-0.492077
105	6	0	-4.936827	-3.026263	-1.782233
106	6	0	-5.331517	-4.359444	-1.921856
107	1	0	-5 339474	-4 809942	-2 908764
108	-	Õ	-5 706974	-5 116873	-0 819927
100	1	Õ	-6.008055	-6 152313	-0 948351
110	± 6	0	-5 600507	_1 5/030F	0 //7777
111	1	0	-5.00039/	-4.J49300 _5 1/7/11	1 206227
⊥⊥⊥ 110	Ĺ	U	-J.9/3342	-J.14/011	1.30033/
112	6	U	-3.300633	-3.220685	0.03/296
113	6	U	-5.278254	-2.631430	2.041250
114	1	0	-4.943524	-1.597307	1.955495
115	6	0	-4.265132	-3.363354	2.940265
116	1	0	-4.217280	-2.885407	3.925083
117	1	0	-4.547128	-4.410951	3.092710

118	1	0	-3.269051	-3.336678	2.493207
119	6	0	-6.684989	-2.607482	2.666117
120	1	0	-7.375348	-2.050685	2.029068
121	1	0	-7.079106	-3.620564	2.803976
122	1	0	-6.655858	-2.124827	3.649219
123	6	0	-4.526001	-2.225885	-3.010905
124	1	0	-4.245535	-1.227876	-2.673473
125	б	0	-3.288544	-2.834605	-3.694903
126	1	0	-2.979101	-2.209827	-4.539318
127	1	0	-2.454593	-2.896825	-2.993124
128	1	0	-3.496097	-3.838884	-4.080997
129	6	0	-5.701680	-2.065045	-3.992340
130	1	0	-5.405773	-1.433286	-4.836671
131	1	0	-6.020989	-3.032513	-4.396007
132	1	0	-6.555048	-1.598877	-3.495147
133	12	0	0.00000	-0.000002	0.399641
134	8	0	-0.000001	-0.000004	2.543673
135	6	0	1.191601	0.080165	3.361461
136	1	0	1.585495	1.098138	3.290096
137	1	0	1.919907	-0.616145	2.945867
138	6	0	0.722436	-0.261912	4.775198
139	1	0	0.733318	-1.345497	4.927958
140	1	0	1.350841	0.198535	5.541634
141	6	0	-0.722438	0.261893	4.775199
142	1	0	-1.350844	-0.198559	5.541632
143	1	0	-0.733321	1.345477	4.927966
144	6	0	-1.191602	-0.080175	3.361460
145	1	0	-1.585497	-1.098148	3.290089
146	1	0	-1.919907	0.616138	2.945869

SUPPORTING INFORMATIONS of X-RAY

Compound 2

Table S4. Sample and crystal data for 2.				
Identification code	2			
Chemical formula	$C_{43}H_{66}MgN_{2}O_{4}S_{3} \\$			
Formula weight	795.46 g/mol			
Temperature	296(2) K			
Wavelength	0.71073 Å			
Crystal size	0.100 x 0.180 x 0.320 mm			
Crystal system	orthorhombic			
Space group	P2 ₁ 2 ₁ 2 (No. 18)			
Unit cell dimensions	$a = 13.3056(6) \text{ Å} \qquad \alpha = 90$	0		
	$b = 13.8070(7) \text{ Å} \qquad \beta = 90$	0		
	$c = 12.8135(6) \text{ Å} \qquad \gamma = 90$	0		
Volume	2353.97(19) Å ³			
Z	2			
Density (calculated)	1.122 g/cm ³			
Absorption coefficient	0.210 mm ⁻¹			
F(000)	860			

 Table S5. Data collection and structure refinement for 2.

Theta range for data collection	2.21 to 27.88°				
Index ranges	-17<=h<=17, -18<	<=k<=18, -16<=1<=16			
Reflections collected	38275				
Independent reflections	5611 [R(int) = 0.0	396]			
Max. and min. transmission	0.7457 and 0.6384	1			
Structure solution technique	direct methods				
Structure solution program	SHELXS-97 (Sheldrick 2008)				
Refinement method	Full-matrix least-squares on F ²				
Refinement program	SHELXL-2014/7 (Sheldrick, 2014)				
Function minimized	$\Sigma \mathrm{w}(\mathrm{Fo}^2 - \mathrm{Fc}^2)^2$				
Data / restraints / parameters	5611 / 500 / 371				
Goodness-of-fit on F ²	1.048				
Δ/σ_{max}	0.002				
Final R indices	4111 data; Ι>2σ(Ι)	R1 = 0.0519, wR2 = 0.1236			
	all data	R1 = 0.0788, wR2 = 0.1372			
Weighting scheme	w=1/[$\sigma^2(F_o^2)$ +(0.0) where P=(F_o^2+2F_o^2)	719P) ² +0.2954P] ⁽²⁾ /3			
Absolute structure parameter	0.364(19)				
Largest diff. peak and hole	0.288 and -0.284 eÅ ⁻³				
R.M.S. deviation from mean	0.037 eÅ ⁻³				

Table S6. Bond lengths (Å) for 2.

Mg1-O2'	2.093(13)	Mg1-O2'	2.093(13)
Mg1-01'	2.139(10)	Mg1-O1'	2.139(10)
Mg1-O2	2.187(9)	Mg1-O2	2.187(9)
Mg1-01	2.143(9)	Mg1-O1	2.143(9)
Mg1-S2	2.5339(12)	Mg1-S2	2.5339(12)
S1-C1	1.721(7)	S1'-C1	1.671(11)
S2-C2	1.724(3)	N1-C1	1.378(4)
N1-C2	1.404(4)	N1-C3	1.425(4)
C1-N1	1.378(4)	C1-S1'	1.671(11)
C2-C2	1.360(6)	C3-C8	1.390(7)
C3-C4	1.387(6)	C4-C5	1.394(6)
C4-C12'	1.514(16)	C4-C12	1.528(13)
C5-C6	1.363(8)	C6-C7	1.343(7)
C7-C8	1.413(6)	C8-C9	1.489(7)
C9-C10	1.499(9)	C9-C11	1.524(8)
C12-C13	1.509(15)	C12-C14	1.512(15)
C12'-C13'	1.48(2)	C12'-C14'	1.509(18)
O1-C18	1.453(14)	O1-C15	1.410(15)
C15-C16	1.464(14)	C16-C17	1.529(14)
C17-C18	1.450(13)	O1'-C18'	1.45(2)
O1'-C15'	1.377(19)	C15'-C16'	1.446(16)
C16'-C17'	1.522(17)	C17'-C18'	1.385(16)
O2-C22	1.445(15)	O2-C19	1.479(15)
C19-C20	1.510(16)	C20-C21	1.557(18)
C21-C22	1.460(17)	O2'-C19'	1.43(2)
O2'-C22'	1.41(2)	C19'-C20'	1.50(2)
C20'-C21'	1.55(2)	C21'-C22'	1.40(2)

 Table S7. Bond angles (°) for 2.

O2'-Mg1-O2'	178.5(13)	O2'-Mg1-O1'	89.4(9)
O2'-Mg1-O1'	89.5(11)	O2'-Mg1-O1'	89.5(11)
O2'-Mg1-O1'	89.3(9)	O1'-Mg1-O1'	85.9(8)
O2-Mg1-O2	164.5(8)	O2-Mg1-O1	87.6(7)
O2-Mg1-O1	81.8(8)	O2-Mg1-O1	81.8(8)
O2-Mg1-O1	87.6(7)	O1-Mg1-O1	93.3(7)
O2'-Mg1-S2	88.6(9)	O2'-Mg1-S2	92.5(6)
O1'-Mg1-S2	92.2(4)	O1'-Mg1-S2	177.3(6)
O2-Mg1-S2	97.2(3)	O2-Mg1-S2	93.8(5)
O1-Mg1-S2	175.0(6)	O1-Mg1-S2	88.6(4)
O2'-Mg1-S2	92.5(6)	O2'-Mg1-S2	88.6(9)
O1'-Mg1-S2	177.3(6)	O1'-Mg1-S2	92.2(4)
O2-Mg1-S2	93.8(5)	O2-Mg1-S2	97.2(3)
O1-Mg1-S2	88.6(4)	O1-Mg1-S2	175.1(6)
S2-Mg1-S2	89.82(5)	C2-S2-Mg1	95.03(11)
C1-N1-C2	110.9(3)	C1-N1-C3	122.9(3)
C2-N1-C3	126.1(3)	N1-C1-N1	104.4(4)
N1-C1-S1	127.82(19)	N1-C1-S1	127.82(19)
N1-C1-S1'	124.9(4)	N1-C1-S1'	125.3(4)
N1-C1-S1'	125.3(4)	N1-C1-S1'	124.9(4)
C2-C2-N1	106.91(17)	C2-C2-S2	130.06(10)
N1-C2-S2	123.0(2)	C8-C3-C4	122.7(3)
C8-C3-N1	118.5(4)	C4-C3-N1	118.8(4)
C3-C4-C5	117.0(5)	C3-C4-C12'	112.9(12)
C5-C4-C12'	129.9(12)	C3-C4-C12	129.5(10)
C5-C4-C12	113.5(10)	C4-C5-C6	121.7(5)
C7-C6-C5	120.4(4)	C6-C7-C8	121.5(5)
C3-C8-C7	116.7(4)	C3-C8-C9	124.4(4)
C7-C8-C9	118.9(5)	C10-C9-C8	112.9(4)
C10-C9-C11	113.1(7)	C8-C9-C11	110.5(5)
C13-C12-C14	111.3(15)	C13-C12-C4	116.2(17)

116.4(17)	C13'-C12'-C14'	113.6(19)
104(2)	C14'-C12'-C4	106.3(18)
105.4(8)	C18-O1-Mg1	128.5(10)
126.0(10)	O1-C15-C16	104.9(10)
100.7(11)	C16-C17-C18	96.6(10)
108.6(10)	C18'-O1'-C15'	104.8(10)
129.3(14)	C15'-O1'-Mg1	123.8(11)
109.1(12)	C17'-C16'-C15'	104.0(11)
100.9(10)	O1'-C18'-C17'	112.6(12)
107.5(8)	C22-O2-Mg1	124.2(9)
125.4(10)	O2-C19-C20	106.0(10)
103.0(11)	C22-C21-C20	105.0(13)
102.7(12)	C19'-O2'-C22'	109.9(11)
128.8(15)	C22'-O2'-Mg1	120.5(13)
102.7(14)	C19'-C20'-C21'	106.1(14)
104.2(14)	O2'-C22'-C21'	109.8(14)
	116.4(17) $104(2)$ $105.4(8)$ $126.0(10)$ $100.7(11)$ $108.6(10)$ $129.3(14)$ $109.1(12)$ $100.9(10)$ $107.5(8)$ $125.4(10)$ $103.0(11)$ $102.7(12)$ $128.8(15)$ $102.7(14)$ $104.2(14)$	116.4(17) $C13'-C12'-C14'$ $104(2)$ $C14'-C12'-C4$ $105.4(8)$ $C18-O1-Mg1$ $126.0(10)$ $O1-C15-C16$ $100.7(11)$ $C16-C17-C18$ $108.6(10)$ $C18'-O1'-C15'$ $129.3(14)$ $C15'-O1'-Mg1$ $109.1(12)$ $C17'-C16'-C15'$ $100.9(10)$ $O1'-C18'-C17'$ $107.5(8)$ $C22-O2-Mg1$ $125.4(10)$ $O2-C19-C20$ $103.0(11)$ $C22-C21-C20$ $102.7(12)$ $C19'-O2'-C22'$ $128.8(15)$ $C22'-O2'-Mg1$ $102.7(14)$ $C19'-C20'-C21'$ $104.2(14)$ $O2'-C22'-C21'$

Compound 3-toluene

 Table S8. Sample and crystal data for 3·toluene.

Identification code	3·toluene		
Chemical formula	$C_{56}H_{82}MgN_6S_3$		
Formula weight	959.76 g/mol		
Temperature	297(2) K		
Wavelength	0.71073 Å		
Crystal size	0.120 x 0.210 x 0.280 mm		
Crystal system	monoclinic		
Space group	P2 ₁ /n (No. 14)		
Unit cell dimensions	a = 15.5287(7) Å	$\alpha = 90^{\circ}$	
	b = 20.6762(10) Å	$\beta=93.047(2)^\circ$	
	c = 18.7622(9) Å	$\gamma = 90^{\circ}$	
Volume	6015.5(5) Å ³		
Z	4		
Density (calculated)	1.060 g/cm ³		
Absorption coefficient	0.171 mm ⁻¹		
F(000)	2080		

 Table S9. Data collection and structure refinement for 3.toluene.

Theta range for data collection	2.25 to 26.00°		
Index ranges	-19<=h<=19, -25<=k<=25, -23<=l<=23		
Reflections collected	175989		
Independent reflections	11797 [R(int) =	0.0900]	
Max. and min. transmission	0.7457 and 0.6223		
Structure solution technique	direct methods		
Structure solution program	SHELXS-97 (Sheldrick 2008)		
Refinement method	Full-matrix least-squares on F ²		
Refinement program	SHELXL-2014/7 (Sheldrick, 2014)		
Function minimized	$\Sigma \mathrm{w}(\mathrm{F_o}^2 - \mathrm{F_c}^2)^2$		
Data / restraints / parameters	11797 / 355 / 669		
Goodness-of-fit on F ²	1.039		
Final R indices	6903 data; I>2σ(I)	R1 = 0.0628, wR2 = 0.1318	
	all data	R1 = 0.1244, wR2 = 0.1597	
Weighting scheme	w=1/[$\sigma^2(F_o^2)$ +(0.0592P) ² +2.5708P] where P=(F_o^2 +2 F_c^2)/3		
Largest diff. peak and hole	0.286 and -0.181 eÅ ⁻³		
R.M.S. deviation from mean	0.036 eÅ ⁻³		

Table S10. E	Bond lengths	(Å) for $3 \cdot$	toluene.
--------------	--------------	-------------------	----------

Mg1-C39	2.226(3)	Mg1-C28	2.229(3)
Mg1-S2	2.4507(12)	Mg1-S3	2.4495(12)
S1-C1	1.677(3)	S2-C2	1.739(2)
S3-C3	1.735(2)	N1-C1	1.355(3)
N1-C2	1.408(3)	N1-C16	1.432(3)
N2-C1	1.356(3)	N2-C3	1.403(3)
N2-C4	1.436(3)	C2-C3	1.346(3)
C4-C9	1.385(4)	C4-C5	1.388(4)
C5-C6	1.396(4)	C5-C13	1.511(4)
C6-C7	1.368(5)	C7-C8	1.348(5)
C8-C9	1.389(4)	C9-C10'	1.494(14)
C9-C10	1.501(9)	C10-C12	1.525(9)
C10-C11	1.537(10)	C10'-C12'	1.525(16)
C10'-C11'	1.535(12)	C13-C15	1.516(5)
C13-C14	1.514(5)	C16-C17	1.377(4)
C16-C21	1.387(4)	C17-C18	1.389(4)
C17-C25	1.507(4)	C18-C19	1.358(5)
C19-C20	1.366(5)	C20-C21	1.394(4)
C21-C22	1.511(4)	C22-C23	1.523(5)
C22-C24	1.519(5)	C25-C26	1.519(5)
C25-C27	1.520(5)	N3-C28	1.358(4)
N3-C29	1.391(4)	N3-C36	1.467(4)
N4-C28	1.343(4)	N4-C30	1.385(4)
N4-C31	1.507(5)	C29-C30	1.339(4)
C29-C35	1.499(4)	C30-C34	1.500(5)
C31-C33	1.448(6)	C31-C32	1.466(6)
C36-C38	1.496(5)	C36-C37	1.514(5)
N5-C39	1.357(3)	N5-C40	1.391(4)
N5-C47	1.466(4)	N6-C39	1.349(4)
N6-C41	1.382(4)	N6-C42	1.482(4)
C40-C41	1.339(4)	C40-C46	1.491(4)
C41-C45	1.493(5)	C42-C44	1.478(5)

C42-C43	1.513(5)	C47-C49	1.523(5)
C47-C48	1.528(5)	C50-C51	1.39
C50-C55	1.39	C50-C56	1.457(7)
C51-C52	1.39	C52-C53	1.39
C53-C54	1.39	C54-C55	1.39
C50'-C51'	1.39	C50'-C55'	1.39
C50'-C56'	1.472(12)	C51'-C52'	1.39
C52'-C53'	1.39	C53'-C54'	1.39
C54'-C55'	1.39		

Table S11. Bon	d angles (°) for 3 ·1	toluene.
----------------	------------	--------------------	----------

C39-Mg1-C28	111.95(12)	C39-Mg1-S2	127.12(9)
C28-Mg1-S2	102.28(9)	C39-Mg1-S3	96.82(8)
C28-Mg1-S3	125.76(11)	S2-Mg1-S3	94.23(4)
C2-S2-Mg1	92.49(9)	C3-S3-Mg1	92.78(9)
C1-N1-C2	110.46(19)	C1-N1-C16	124.9(2)
C2-N1-C16	124.6(2)	C1-N2-C3	110.91(19)
C1-N2-C4	123.7(2)	C3-N2-C4	125.39(19)
N1-C1-N2	105.3(2)	N1-C1-S1	127.35(18)
N2-C1-S1	127.40(19)	C3-C2-N1	106.9(2)
C3-C2-S2	130.46(19)	N1-C2-S2	122.63(17)
C2-C3-N2	106.5(2)	C2-C3-S3	130.00(19)
N2-C3-S3	123.51(17)	C9-C4-C5	123.1(2)
C9-C4-N2	118.5(2)	C5-C4-N2	118.5(2)
C4-C5-C6	116.9(3)	C4-C5-C13	121.7(2)
C6-C5-C13	121.4(3)	C7-C6-C5	120.9(3)
C8-C7-C6	120.5(3)	C7-C8-C9	121.8(3)
C4-C9-C8	116.8(3)	C4-C9-C10'	127.1(14)
C8-C9-C10'	116.1(15)	C4-C9-C10	119.9(9)
C8-C9-C10	123.3(9)	C9-C10-C12	109.9(16)
C9-C10-C11	106.8(14)	C12-C10-C11	111.8(11)
C9-C10'-C12'	121(3)	C9-C10'-C11'	117(2)
C12'-C10'-C11'	108.0(16)	C5-C13-C15	110.8(3)
C5-C13-C14	112.9(3)	C15-C13-C14	111.6(3)
C17-C16-C21	123.3(2)	C17-C16-N1	118.7(2)
C21-C16-N1	118.0(2)	C16-C17-C18	117.2(3)
C16-C17-C25	122.4(3)	C18-C17-C25	120.3(3)
C19-C18-C17	121.0(3)	C20-C19-C18	120.8(3)
C19-C20-C21	120.8(3)	C16-C21-C20	116.8(3)
C16-C21-C22	122.8(2)	C20-C21-C22	120.4(3)
C21-C22-C23	112.5(3)	C21-C22-C24	111.1(3)
C23-C22-C24	110.9(3)	C17-C25-C26	112.2(3)
C17-C25-C27	111.8(3)	C26-C25-C27	110.4(3)
C28-N3-C29	111.2(3)	C28-N3-C36	121.3(3)

C29-N3-C36	127.5(3)	C28-N4-C30	111.7(3)
C28-N4-C31	125.2(3)	C30-N4-C31	123.0(3)
N4-C28-N3	104.0(3)	N4-C28-Mg1	129.1(2)
N3-C28-Mg1	124.8(3)	C30-C29-N3	106.3(3)
C30-C29-C35	128.5(3)	N3-C29-C35	125.2(3)
C29-C30-N4	106.8(3)	C29-C30-C34	129.6(3)
N4-C30-C34	123.6(3)	C33-C31-C32	127.1(4)
C33-C31-N4	115.0(4)	C32-C31-N4	110.4(4)
N3-C36-C38	112.4(3)	N3-C36-C37	112.2(3)
C38-C36-C37	114.8(4)	C39-N5-C40	111.4(3)
C39-N5-C47	121.1(3)	C40-N5-C47	127.4(3)
C39-N6-C41	111.9(3)	C39-N6-C42	125.5(3)
C41-N6-C42	122.6(3)	N6-C39-N5	103.6(2)
N6-C39-Mg1	129.8(2)	N5-C39-Mg1	122.0(2)
C41-C40-N5	106.4(3)	C41-C40-C46	127.8(3)
N5-C40-C46	125.8(3)	C40-C41-N6	106.6(3)
C40-C41-C45	129.5(3)	N6-C41-C45	123.8(3)
N6-C42-C44	112.8(3)	N6-C42-C43	109.4(3)
C44-C42-C43	116.2(4)	N5-C47-C49	111.9(3)
N5-C47-C48	111.6(3)	C49-C47-C48	114.3(3)
C51-C50-C55	120.0	C51-C50-C56	122.2(7)
C55-C50-C56	117.8(7)	C50-C51-C52	120.0
C53-C52-C51	120.0	C54-C53-C52	120.0
C55-C54-C53	120.0	C54-C55-C50	120.0
C51'-C50'-C55'	120.0	C51'-C50'-C56'	133.5(19)
C55'-C50'-C56'	106.4(19)	C52'-C51'-C50'	120.0
C53'-C52'-C51'	120.0	C52'-C53'-C54'	120.0
C55'-C54'-C53'	120.0	C54'-C55'-C50'	120.0

Compound 4

Table S12. Sample and c	rystal data for 4 .		
Identification code	4		
Chemical formula	$C_{80}H_{118}MgN_8OS_6$		
Formula weight	1424.49 g/mol		
Temperature	297(2) K		
Wavelength	0.71073 Å		
Crystal size	0.100 x 0.190 x 0.280 mm		
Crystal system	monoclinic		
Space group	P2 ₁ /n (No. 14)		
Unit cell dimensions	a = 14.5228(12) Å	$\alpha = 90^{\circ}$	
	b = 16.6577(13) Å	$\beta = 92.673(2)^{\circ}$	
	c = 18.4634(14) Å	$\gamma = 90^{\circ}$	
Volume	4461.7(6) Å ³		
Z	2		
Density (calculated)	1.060 g/cm^3		
Absorption coefficient	0.204 mm ⁻¹		
F(000)	1540		

 Table S13. Data collection and structure refinement for 4.

Theta range for data collection	2.52 to 25.25°			
Index ranges	-17<=h<=17, -19<=k<=19, -1<=l<=22			
Reflections collected	8053			
Max. and min. transmission	0.7457 and 0.638	39		
Structure solution technique	direct methods	direct methods		
Structure solution program	SHELXS-97 (Sheldrick 2008)			
Refinement method	Full-matrix least-squares on F ²			
Refinement program	SHELXL-2014/7 (Sheldrick, 2014)			
Function minimized	$\Sigma \mathrm{w}(\mathrm{F_o}^2 - \mathrm{F_c}^2)^2$			
Data / restraints / parameters	8053 / 344 / 569			
Goodness-of-fit on F ²	1.090			
Final R indices	5798 data; Ι>2σ(Ι)	R1 = 0.0828, $wR2 = 0.2230$		
	all data	R1 = 0.1107, wR2 = 0.2429		
Weighting scheme	w=1/[$\sigma^2(F_o^2)$ +(0.0912P) ² +5.9344P] where P=(F_o^2 +2 F_c^2)/3			
Largest diff. peak and hole	0.643 and -0.332 eÅ ⁻³			
R.M.S. deviation from mean	0.065 eÅ ⁻³			

Table S14. Bond lengths (\AA) for 4.

S1-C1	1.690(4)	S2-C2	1.723(4)
S2-Mg1	2.513(3)	S2-Mg1	2.545(3)
S3-C3	1.727(4)	S3-Mg1	2.550(3)
S3-Mg1	2.563(3)	Mg1-O1	2.123(13)
Mg1-O1'	2.149(12)	Mg1-S2	2.545(3)
Mg1-S3	2.563(3)	N1-C1	1.352(5)
N1-C2	1.406(5)	N1-C16	1.445(5)
N2-C1	1.348(5)	N2-C3	1.406(5)
N2-C4	1.433(5)	C2-C3	1.341(5)
C4-C9	1.382(7)	C4-C5	1.400(7)
C5-C6	1.408(8)	C5-C13'	1.496(10)
C5-C13	1.493(18)	C6-C7	1.360(11)
C7-C8	1.349(11)	C8-C9	1.389(8)
C9-C10	1.470(13)	C9-C10'	1.477(13)
C10-C11	1.529(14)	C10-C12	1.518(15)
C10'-C11'	1.535(15)	C10'-C12'	1.528(17)
C13-C15	1.551(14)	C13-C14	1.51(2)
C13'-C14'	1.512(13)	C13'-C15'	1.574(14)
C16-C21	1.391(7)	C16-C17	1.389(7)
C17-C25	1.501(9)	C17-C18	1.381(9)
C18-C19	1.353(13)	C19-C20	1.345(12)
C20-C21	1.399(8)	C21-C22	1.498(9)
C22-C23	1.512(10)	C22-C24	1.521(9)
C25-C26	1.531(9)	C25-C27	1.522(9)
O1-C31	1.347(14)	O1-C28	1.372(16)
C28-C29	1.477(16)	C29-C30	1.423(16)
C30-C31	1.460(16)	O1'-C28'	1.34(2)
O1'-C31'	1.311(18)	C28'-C29'	1.46(2)
C29'-C30'	1.40(2)	C30'-C31'	1.44(2)
N3-C32	1.321(6)	N3-C33	1.384(7)
N3-C40	1.447(8)	N4-C32	1.320(6)
N4-C34	1.380(6)	N4-C35	1.467(7)
С32-Н32	0.95(2)	C33-C34	1.360(9)
C33-C39	1.523(8)	C34-C38	1.459(9)
C35-C37	1.472(9)	C35-C36	1.476(7)
C40-C41	1.505(10)	C40-C42	1.501(10)

Table S15. Bond angles (°) for 4.

96.24(15)	C2-S2-Mg1	96.19(15)
95.13(15)	C3-S3-Mg1	95.48(15)
109.2(8)	O1'-Mg1-S2	101.4(7)
101.7(9)	O1'-Mg1-S3	107.4(7)
87.57(9)	O1-Mg1-S2	99.0(8)
106.7(7)	S2-Mg1-S2	151.77(13)
85.96(9)	O1-Mg1-S3	106.0(9)
100.6(7)	S2-Mg1-S3	86.37(9)
152.07(13)	S2-Mg1-S3	86.61(9)
111.2(3)	C1-N1-C16	126.2(3)
122.6(3)	C1-N2-C3	110.9(3)
126.3(3)	C3-N2-C4	122.8(3)
104.9(3)	N2-C1-S1	127.6(3)
127.4(3)	C3-C2-N1	106.2(3)
128.6(3)	N1-C2-S2	125.2(3)
106.9(3)	C2-C3-S3	129.0(3)
124.1(3)	C9-C4-N2	117.9(4)
124.2(4)	N2-C4-C5	117.8(4)
115.8(6)	C4-C5-C13'	123.1(8)
121.1(9)	C4-C5-C13	121(2)
123(2)	C7-C6-C5	119.5(7)
123.6(6)	C7-C8-C9	119.8(7)
117.1(6)	C4-C9-C10	122.4(11)
120.3(12)	C4-C9-C10'	121.7(10)
121.2(11)	C9-C10-C11	115.0(19)
108.9(14)	C11-C10-C12	108.6(15)
111.9(15)	C9-C10'-C12'	113.5(18)
109.4(14)	C5-C13-C15	115(2)
113(4)	C15-C13-C14	110(2)
112.2(13)	C5-C13'-C15'	110.3(12)
	96.24(15) 95.13(15) 109.2(8) 101.7(9) 87.57(9) 106.7(7) 85.96(9) 100.6(7) 152.07(13) 111.2(3) 122.6(3) 126.3(3) 104.9(3) 127.4(3) 128.6(3) 106.9(3) 124.1(3) 124.2(4) 115.8(6) 121.1(9) 123(2) 123.6(6) 117.1(6) 120.3(12) 121.2(11) 108.9(14) 111.9(15) 109.4(14) 112.2(13)	96.24(15)C2-S2-Mg195.13(15)C3-S3-Mg1109.2(8)O1'-Mg1-S2101.7(9)O1'-Mg1-S387.57(9)O1-Mg1-S2106.7(7)S2-Mg1-S285.96(9)O1-Mg1-S3100.6(7)S2-Mg1-S3152.07(13)S2-Mg1-S3111.2(3)C1-N1-C16122.6(3)C1-N2-C3126.3(3)C3-N2-C4104.9(3)N2-C1-S1127.4(3)C3-C2-N1128.6(3)N1-C2-S2106.9(3)C2-C3-S3124.1(3)C9-C4-N2124.2(4)N2-C4-C5115.8(6)C4-C5-C13'123(2)C7-C6-C5123.6(6)C7-C8-C9117.1(6)C4-C9-C10120.3(12)C4-C9-C10120.3(12)C4-C9-C10'121.2(11)C9-C10-C11108.9(14)C11-C10-C12111.9(15)C9-C10'-C12'109.4(14)C5-C13-C15113(4)C15-C13-C14112.2(13)C5-C13'-C15'

C14'-C13'-C15'	110.7(11)	C21-C16-C17	123.2(5)
C21-C16-N1	118.7(4)	C17-C16-N1	118.0(4)
C16-C17-C25	122.6(5)	C16-C17-C18	116.3(7)
C25-C17-C18	121.1(6)	C19-C18-C17	122.2(8)
C20-C19-C18	120.6(7)	C19-C20-C21	121.4(8)
C16-C21-C20	116.4(6)	C16-C21-C22	121.3(4)
C20-C21-C22	122.3(6)	C21-C22-C23	111.8(6)
C21-C22-C24	113.7(7)	C23-C22-C24	109.5(7)
C17-C25-C26	111.8(5)	C17-C25-C27	113.0(7)
C26-C25-C27	111.2(7)	C31-O1-C28	100.2(15)
C31-O1-Mg1	131.6(17)	C28-O1-Mg1	122.7(18)
O1-C28-C29	107.8(16)	C28-C29-C30	102.3(13)
C29-C30-C31	103.8(13)	O1-C31-C30	109.1(15)
C28'-O1'-C31'	103.6(14)	C28'-O1'-Mg1	129.7(18)
C31'-O1'-Mg1	123.0(15)	01'-C28'-C29'	112.6(18)
C30'-C29'-C28'	97.3(16)	C29'-C30'-C31'	107.2(17)
O1'-C31'-C30'	110.8(16)	C32-N3-C33	107.4(5)
C32-N3-C40	126.3(5)	C33-N3-C40	126.2(5)
C32-N4-C34	110.2(5)	C32-N4-C35	125.6(4)
C34-N4-C35	124.2(5)	H32-C32-N3	130(4)
H32-C32-N4	120(4)	N3-C32-N4	109.1(5)
C34-C33-N3	108.6(5)	C34-C33-C39	129.0(7)
N3-C33-C39	122.4(7)	C33-C34-N4	104.6(5)
C33-C34-C38	131.0(6)	N4-C34-C38	124.4(6)
C37-C35-N4	109.8(5)	C37-C35-C36	112.6(6)
N4-C35-C36	111.3(5)	N3-C40-C41	112.2(5)
N3-C40-C42	110.3(6)	C41-C40-C42	111.7(8)