ELECTRONIC SUPPLEMENTARY INFORMATION (ESI)

Polyhedral borane-capped coinage metal nanoparticles as highperforming catalysts for 4-nitrophenol reduction

Nathaniel E. Larm, Dronareddy Madugula, Mark W. Lee,* and Gary A. Baker*

Department of Chemistry, University of Missouri–Columbia, Columbia, MO 65211 USA. E-mail:

leemw@missouri.edu

bakergar@missouri.edu

Experimental section.

Materials and reagents. All experiments were carried out using ultrapure Millipore water (18.2 M Ω cm). Gold (III) chloride trihydrate (520918; ≥99.9%), silver nitrate (204390; 99.9999%), sodium borohydride (480886; 99.99%), and 4-nitrophenol (241326; ≥99%) were purchased from Sigma-Aldrich (St. Louis, MO). Cesium decaborate (Cs₂B₁₀H₁₀) was prepared from bistriethylammonium decaborate, which was prepared as described previously.¹ Briefly, 3.0 g (9.3 mmol) of bis-triethylammonium decaborate was dissolved in 50 ml of DI water. To this, a solution containing 2.85 g (19 mmol) of cesium hydroxide was added dropwise, with stirring. The volatiles were removed in vacuo and the white powder was resuspended in 25 ml of DI water, filtered, and dried in an oven at 104° C.

Characterization. UV–vis absorbance spectra were recorded on a Varian Cary 50 Bio Spectrophotometer using standard 1-cm PMMA cuvettes. Nuclear magnetic resonance (NMR) analysis was performed using a Bruker Avance-300 MHz spectrometer. For TEM analysis, 8-µL sample aliquots were deposited onto carbon-coated copper grids (Ted Pella, Inc.; 01814-F, support films, carbon type-B, 400 mesh copper grid) by drop-casting, followed by drying in open air. TEM micrographs were obtained on an FEI Tecnai (F20) microscope operated at a 200 keV. ImageJ software was used to analyze the resulting micrographs, and at least 300 particles were counted to create the corresponding size histograms.

[*closo*-B₁₀H₁₀]²⁻-decorated gold nanoparticle synthesis. Millipore water was used throughout all syntheses and analyses. Just prior to use, 81.5 mg (0.2 mmol) of cesium decaborate ($Cs_2B_{10}H_{10}$) was added to a fresh 20-mL scintillation vial and dissolved in 20 mL of water to produce a 10 mM [*closo*-B₁₀H₁₀]²⁻ stock solution. This [*closo*-B₁₀H₁₀]²⁻ stock and an aqueous solution of 5.0 mM aqueous HAuCl₄ were diluted in seperate fresh 50-mL FalconTM centrifuge tubes and diluted to 10 mL using water as per Table S1 to produce the desired range of reducing agent-to-gold ratios (R values). In each case the 10-mL solution of [*closo*-B₁₀H₁₀]²⁻ was added to the 10-mL solution of Au³⁺ under vortex. Note that the final [Au] in all solutions was

0.25 mM. The formation of gold nanoparticles (AuNPs) occurred over 1 h, as evidenced by a color change in the mixture from colorless to light pink followed by wine red. UV–vis analysis was performed on these colloidal solutions after aging for 1 d, and again after aging for 3, 5, 7, and 14 d to monitor changes in the localized surface plasmon resonance (LSPR) band.

[*closo*-B₁₀H₁₀]²⁻-decorated silver nanoparticle synthesis. [*closo*-B₁₀H₁₀]²⁻-decorated AgNPs were synthesized in a manner similar to the above method (similar R values) using 5.0 mM aqueous AgNO₃ in the place of the 5.0 mM aqueous HAuCl₄. The formation of AgNPs occurred slowly over several hours, as evidenced by a color change in the final solutions from colorless to faint yellow, with higher R values resulting in a faster color change and a deeper yellow appearance. UV–vis analysis was performed similar to the above characterization for [*closo*-B₁₀H₁₀]²⁻-decorated AuNPs.

[*closo*-B₁₀H₁₀]²⁻-decorated bimetallic nanoparticle synthesis. [*closo*-B₁₀H₁₀]²⁻-decorated bimetallic Au_xAg_{1-x}NPs were synthesized using an R value of 3.0, a final metal concentration of 0.25 mM, and x values of 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, and 0.9. For each x value, a 10-mL solution containing 1.5 mM aqueous $Cs_2B_{10}H_{10}$ was rapidly added to a 10-mL solution consisting of aqueous dispersions of HAuCl₄ and AgNO₃ of the appropriate concentrations while mixing via vortex. The delay between the mixing of Ag⁺ to Au³⁺ and the addition of [*closo*-B₁₀H₁₀]²⁻ solution was purposefully kept short (< 5 s) to minimize formation of AgCl. Each solution rapidly turned a shade of orange or red, indicating NP ripening. UV–vis analysis was performed on the assynthesized colloidal solutions and at various stability time-points to monitor changes in the LSPR.

Catalyzed reduction of 4-nitrophenol to 4-aminophenol. The model reduction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP) using sodium borohydride (NaBH₄) was used to assess the catalytic activity of the [closo-B₁₀H₁₀]²⁻-decorated monometallic Au- and AgNPs and bimetallic Au_xAg_{1-x}NPs. A stock of 0.2 mM aqueous 4-NP was freshly prepared daily as needed. 37.8 mg of NaBH₄ and 10 mL of water were added to separate, fresh 20-mL scintillation vials which were both stored on ice. Just prior to use, this water was added to the solid NaBH₄ to produce a 0.1 M aqueous NaBH₄ stock, which was then stored on ice for use. This NaBH₄ solution was reprepared as needed every 15 min or once consumed. For the analysis, 2.1 mL of 0.2 mM aqueous 4-NP stock and 0.9 mL of 0.1 M NaBH₄ stock (1:214 molar ratio 4-NP to NaBH₄) were added to a PMMA cuvette, creating a yellow solution of 4-nitrophenolate (λ_{max} = 400 nm). 84 µL of 0.25 mM NP solution was added to a cuvette cap (5 mol% metal to 4-NP) which was then placed on the cuvette and the solution was inverted 3-4 times to mix and placed in a spectrophotometer which was set to record absorbance at 400 nm every 0.15 s. There was about a 3-5 s delay between introduction of the NP solution and the start of the UVI-vis analysis. The resulting apparent rate (k_{app}) was determined by finding the slope of the linear portion of a corresponding plot of $\ln(A_0/A_t)$ @ 400 nm versus time. To perform the recycling study, following reaction completion the cuvette was removed from the instrument, the cap was taken off, 84 μ L of freshly prepared 5.0 mM aqueous 4-NP and 90 μ L of 0.1 M aqueous NaBH₄ stock were spiked into the cap, the cap was replaced, the cuvette was shaken 3 times, and finally the cuvette was placed back in the instrument to continue measurements.

Table S1 Target concentrations of noble metal (Au ³⁺ or Ag ⁺) and $[closo-B_{10}H_{10}]^{2-}$ for each corresponding R value. Solutions were prepared by rapid addition of 10 mL of $[closo-B_{10}H_{10}]^{2-}$ solution to 10 mL of metal solution under vortex as described above.					
	R Value	[noble metal] (mM)	[B ₁₀ H ₁₀ ^{2–}] (mM)		

R Value	[noble metal]	
K value	(mM)	(mM)
0.5	0.25	0.125
1.0	0.25	0.25
3.0	0.25	0.75
5.0	0.25	1.25
10	0.25	2.5

Table S2 Tabulated catalytic results for $[closo-B_{10}H_{10}]^{2-}$ -decorated AuNPs for 4-NP reduction, 5 mol% metal to 4-NP catalyst loading.

Aging	R value	<i>k</i> _{app} (s ⁻¹)	t _{rxn} (s)	TOF (h ⁻¹)
	0.5	8.58 (±0.24) × 10 ⁻³	339	202 (±5)
	1.0	9.62 (±1.52) × 10 ⁻³	299	232 (±34)
1 day	3.0	2.67 (±0.40) × 10 ⁻³	1138	61 (±9)
	5.0	2.69 (±0.23) × 10 ⁻³	1118	61 (±5)
	10.0	3.12 (±0.38) × 10 ⁻³	969	71 (±8)
	0.5	1.82 (±0.16) × 10 ⁻³	1752	39 (±3)
7	1.0	2.13 (±0.43) × 10 ⁻³	1500	46 (±9)
,	3.0	1.25 (±0.02) × 10 ⁻²	232	294 (±4)
days	5.0	1.76 (±0.07) × 10 ⁻³	1719	40 (±2)
	10.0	*	*	*

* indicates the measurement was not performed due to visual detection of aggregates.

Table S3 Tabulated catalytic results for $[closo-B_{10}H_{10}]^{2-}$ -decorated AgNPs for 4-NP reduction, 5 mol% metal to 4-NP catalyst loading.

Aging	R value	k_{app} (s ⁻¹)	t _{rxn} (s)	TOF (h ^{−1})
	0.5	2.49 (±0.08) × 10 ⁻¹	40	1691 (±14)
	1.0	1.47 (±0.18) × 10 ⁻¹	53	1291 (±29)
1 day	3.0	9.21 (±1.77) × 10 ^{−2}	52	1330 (±83)
	5.0	6.58 (±0.60) × 10 ⁻²	63	1095 (±76)
	10.0	5.04 (±0.64) × 10 ⁻²	72	959 (±70)
	0.5	$1.40 (\pm 0.12) \times 10^{-1}$	57	1207 (±27)
7	1.0	1.46 (±0.06) × 10 ⁻¹	67	1015 (±9)
days	3.0	1.77 (±0.07) × 10 ⁻¹	55	1239 (±33)
	5.0	1.63 (±0.03) × 10 ⁻¹	56	1228 (±5)
	10.0	1.26 (±0.08) × 10 ⁻¹	52	1304 (±40)

Aging	X	<i>k</i> _{арр} (s ⁻¹)	t _{rxn} (s)	TOF (h ⁻¹)
	0.9	8.47 (±0.18) × 10 ⁻³	344	199 (±5)
	0.8	3.60 (±0.05) × 10 ⁻²	71	967 (±4)
	0.7	1.34 (±0.14) × 10 ⁻¹	24	2925 (±271)
	0.6	$1.90 (\pm 0.06) \times 10^{-1}$	18	3894 (±18)
1 day	0.5	1.67 (±0.01) × 10 ^{-!}	20	3488 (±83)
	0.4	1.74 (±0.19) × 10 ^{-!}	20	3426 (±650)
	0.3	1.92 (±0.02) × 10 ^{-!}	19	3518 (±66)
	0.2	2.07 (±0.05) × 10 ⁻²	18	3792 (±129)
	0.1	$1.11 (\pm 0.32) \times 10^{-1}$	35	1975 (±339)
	0.9	4.76 (±0.37) × 10 ⁻²	73	947 (±115)
	0.8	$1.31 (\pm 0.09) \times 10^{-1}$	25	2796 (±158)
	0.7	2.00 (±0.08) × 10 ⁻¹	15	4672 (±141)
7	0.6	1.58 (±0.04) × 10 ⁻¹	20	3413 (±85)
	0.5	1.95 (±0.03) × 10 ^{-!}	21	3208 (±261)
days	0.4	1.53 (±0.03) × 10 ^{-!}	23	2945 (±122)
	0.3	1.18 (±0.03) × 10 ^{-!}	27	2570 (±28)
	0.2	8.68 (±0.94) × 10 ⁻²	39	1741 (±144)
	0.1	1.37 (±0.04) × 10 ⁻¹	26	2601 (±79)

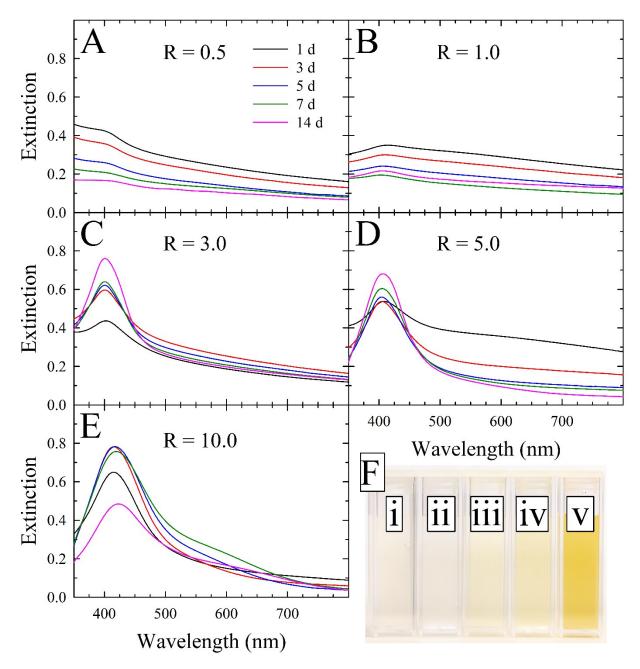

Table S4 Tabulated catalytic results for $[closo-B_{10}H_{10}]^{2-}$ -decorated bimetallic Au_xAg_{1-x}NPs for 4-NP reduction, 5 mol% metal to 4-NP catalyst loading.

Table S5 Tabulated catalytic results for the recycling study of $[closo-B_{10}H_{10}]^{2-}$ -decorated bimetallic Au_xAg_{1-x}NPs for 4-NP reduction, 5 mol% metal to 4-NP catalyst loading, after aging of the NPs for 1 d.

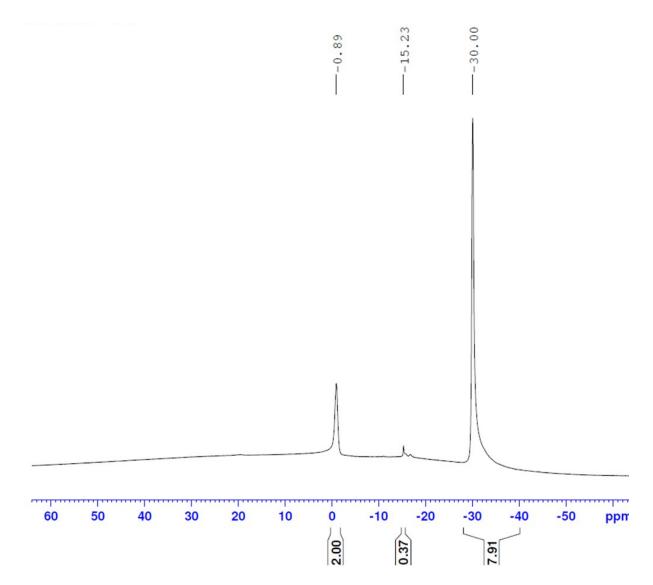
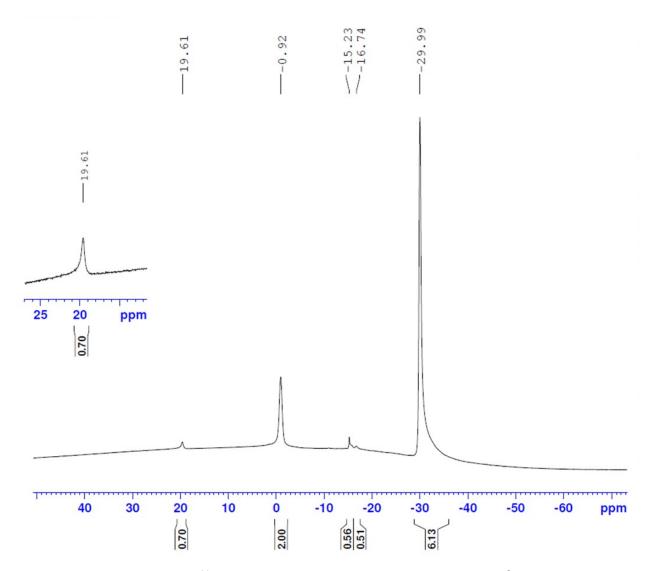
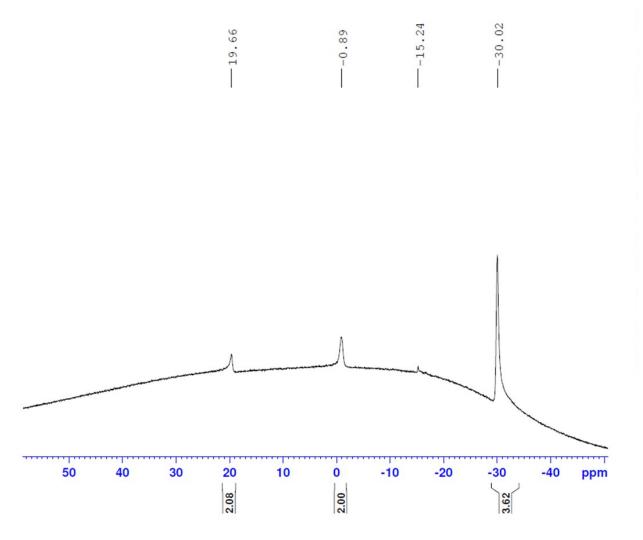
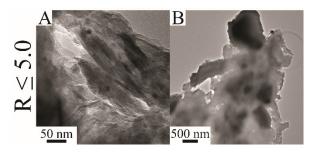
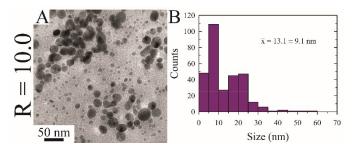

X	Cycle	k _{app} (s ⁻¹)	t _{rxn} (s)	TOF (h ^{−1})
	1 st	9.45 × 10 ⁻²	35	1968
	2 nd	1.52×10^{-1}	21	3234
0.2	3 rd	9.92 × 10 ⁻²	28	2429
0.2	4 th	7.64×10^{-2}	35	1946
	5 th	3.06×10^{-2}	63	1081
	6 th	6.38×10^{-2}	43	1593
	1 st	2.19×10^{-1}	20	3411
	2 nd	2.08×10^{-1}	30	2307
0.6	3 rd	1.43×10^{-1}	41	1679
0.0	4 th	1.07×10^{-1}	55	1245
	5 th	9.30 × 10 ⁻²	67	1017
	6 th	7.19×10^{-2}	80	851

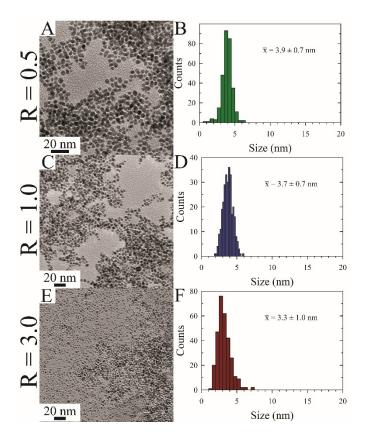
Table S6 Tabulated catalytic results for the recycling study of [closo-B ₁₀ H ₁₀] ²⁻ -decorated
bimetallic Au _x Ag _{1-x} NPs for 4-NP reduction, 5 mol% metal to 4-NP catalyst loading, after aging of
the NPs for 7 days.

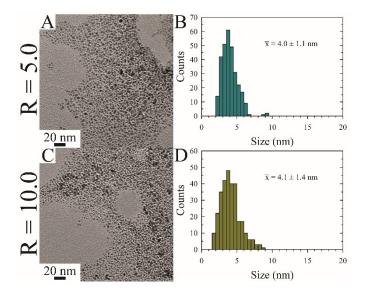

X	Cycle	k_{app} (s ⁻¹)	t _{rxn} (s)	TOF (h ⁻¹)
	1 st	1.89×10^{-1}	20	3463
	2 nd	1.64×10^{-1}	20	3345
0.2	3 rd	1.08×10^{-1}	27	2576
0.2	4 th	8.39 × 10 ⁻²	30	2261
	5 th	5.64 × 10 ⁻²	49	1383
	6 th	3.80×10^{-2}	55	1240
	1 st	7.31 × 10 ⁻²	45	1525
	2 nd	1.02×10^{-1}	30	2254
0.6	3 rd	5.89×10^{-2}	45	1505
	4 th	2.41×10^{-2}	104	660
	5 th	1.23 × 10 ⁻²	186	367
	6^{th}	7.67 × 10 ⁻³	280	245

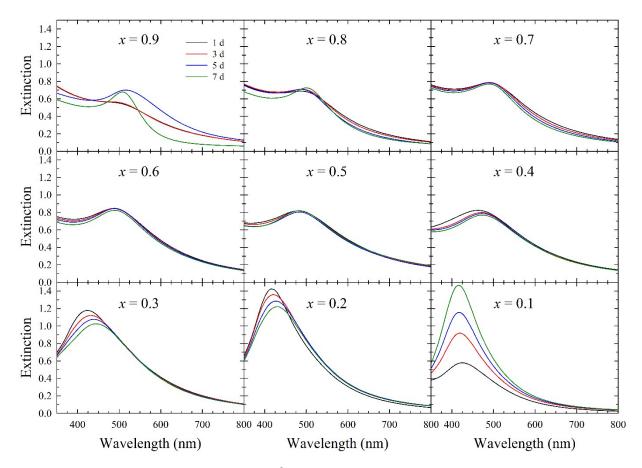

Fig. S1 Time-dependent UV–vis spectra for (A) R = 0.5, (B) R = 1.0, (C) R = 3.0, (D) R = 5.0, and (E) R = 10.0 $[closo-B_{10}H_{10}]^{2-}$ -decorated **AgNPs**. Solutions prepared using R values less than 3.0 produced AgNPs with low LSPR bands and very little coloration as seen in panel F. Solutions prepared using R values greater than 1.0 exhibited ripening throughout the studied time frame. The legend in (A) applies to plots A–E. (F) Photograph of (left to right) R = 0.5, 1.0, 3.0, 5.0, 10.0 AgNPs, labelled numerically using Roman numerals, after aging for 3 days.

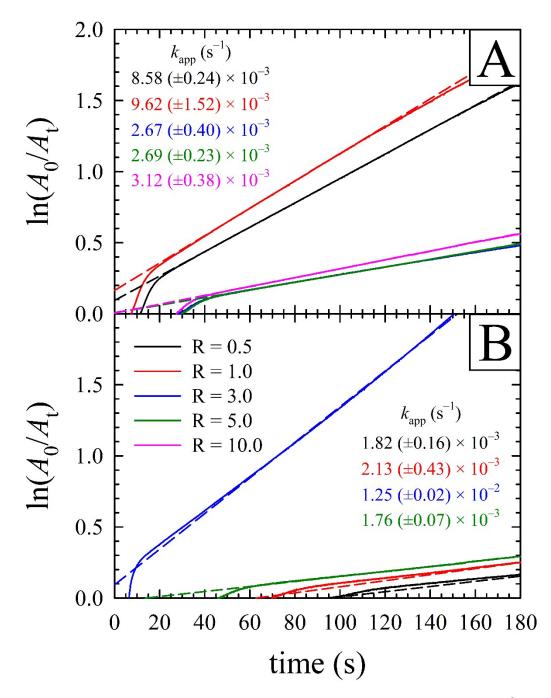

Fig. S2 Proton-decoupled ¹¹B-NMR spectrum of $Cs_2B_{10}H_{10}$; 400 MHz, H_2O , $\delta = -0.89$ (apical B), - 15.23 (residual [*closo*-B₁₂H₁₂]^{2–}), -30.00 (equatorial B).

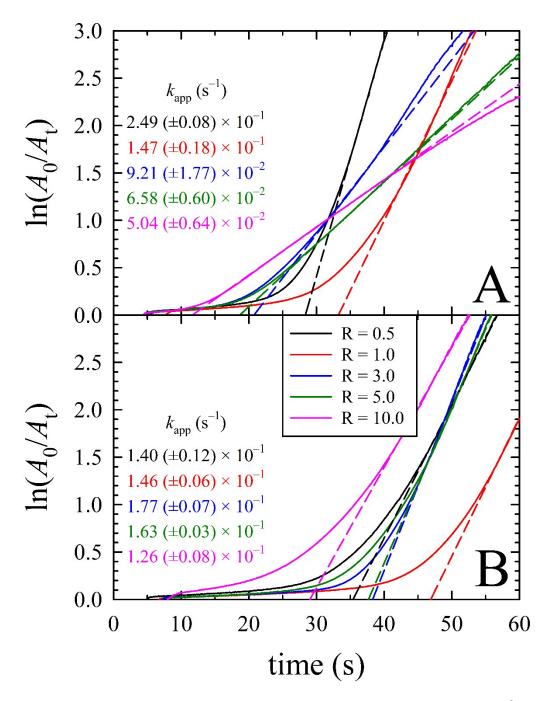

Fig. S3 Proton decoupled ¹¹B-NMR spectrum of colloidal $[closo-B_{10}H_{10}]^{2-}$ -decorated AuNPs (R=10.0); 400 MHz, H₂O, δ = 19.61 (boric acid), -0.92 (apical B), -15.23 (residual $[closo-B_{12}H_{12}]^{2-}$), -29.99 (equatorial B).

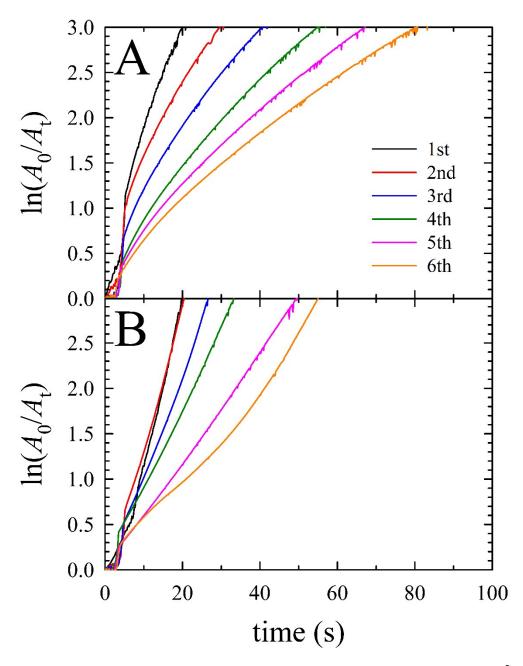

Fig. S4 Proton decoupled ¹¹B-NMR spectrum of colloidal $[closo-B_{10}H_{10}]^{2-}$ -decorated AuNPs (R=1.0); 400 MHz, H₂O, δ = 19.66 (boric acid), -0.89 (apical B), -15.24 (residual $[closo-B_{12}H_{12}]^{2-}$), -30.02 (equatorial B).


Fig. S5 Representative transmission electron microscopy (TEM) images representing [*closo*- $B_{10}H_{10}$]^{2–}-decorated **AgNPs** synthesized using an R value of 5.0 or less and aged for 3 days, resulting in aggregation upon drying on the TEM grid. The images in (A) and (B) represent solutions produced using R = 0.5 or R = 5.0, respectively.


Fig. S6 (A) Representative TEM image and (B) corresponding histogram for $[closo-B_{10}H_{10}]^{2-}$ decorated **AgNPs** synthesized using an R value of 10.0 and aged for 3 days. The average particle size is greatly affected by the presence of many large aggregates amongst a population of smaller particles.


Fig. S7 (A, C, and E) Representative TEM images and (B, D, and F) corresponding histograms for $[closo-B_{10}H_{10}]^{2-}$ -decorated **AuNPs** synthesized using R values of 0.5, 1.0, and 3.0 and aged for 3 days. While of the AuNPs produced in this study are quite small, images of the R = 3.0 sample present the smallest average size.


Fig. S8 (A and C) Representative TEM images and (B and D) corresponding histograms for [*closo*- $B_{10}H_{10}$]^{2–}-decorated AuNPs synthesized using a R values of 5.0 and 10.0 and aged for 3 days. While still small, the AuNPs represented here possess slightly larger average sizes. Notably, the R = 10.0 AuNP sample showed black aggregates once aged for 7 days.


Fig. S9 UV–vis spectra of colloidal $B_{10}H_{10}^{2-}$ -decorated bimetallic $Au_xAg_{1-x}NPs$ synthesized using a reducing agent to metal molar ratio of 3.0 (R = 3.0). Stability measurements were acquired after aging for 1, 3, 5, and 7 days. The LSPR bands for x = 0.9, 0.3, 0.2, and 0.1 all undergo dramatic shifts as the NPs ripen over time, similar to the changes undergone for the monometallic Auand AgNPs. The legend in the first plot (for x = 0.9) applies to all other plots.

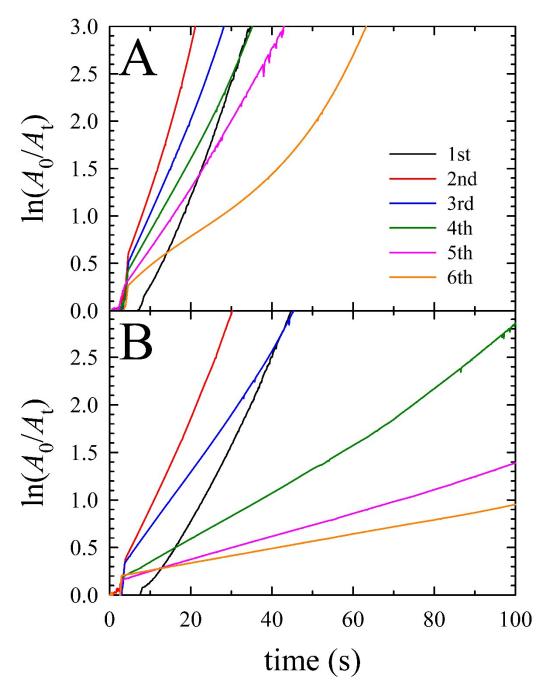

Fig. S10 Catalyzed reduction of 4-NP to 4-AP by NaBH₄ when using $[closo-B_{10}H_{10}]^{2-}$ -decorated AuNPs aged for (A) 1 day and (B) 7 days as catalysts. The dashed lines show the linear portion of each rate plot. Aging appears to have a mixed effect on the apparent catalytic rate (k_{app}), with AuNPs produced using R = 0.5, 1.0, and 5.0 showing significant drops in activity while R = 3.0 shows a dramatic increase in activity after aging. The R = 10 sample showed black precipitate after aging for 7 days, and as such the aged sample was ignored for this study. Catalyst loading was 5 mol% Au to 4-NP in all cases. The legend in (B) applies to both plots.

Fig. S11 Catalyzed reduction of 4-NP to 4-AP by NaBH₄ when using $[closo-B_{10}H_{10}]^{2-}$ -decorated AgNPs aged for (A) 1 day and (B) 7 days as catalysts. The dashed lines show the linear portion of each rate plot. Upon aging, the apparent catalytic rate (k_{app}) for AgNPs produced using R = 0.5 decreased while those for AgNPs produced using R = 3.0, 5.0, and 10.0 increased dramatically. The k_{app} of the R = 1.0 sample showed negligible change upon aging for 7 days. Catalyst loading was 5 mol% Ag to 4-NP in all cases. The legend in (B) applies to both plots.

Fig. S12 Recycling study for 4-NP reduction to 4-AP when using $[closo-B_{10}H_{10}]^{2-}$ -decorated Au_xAg_{1-x}NPs aged for (A) 1 day and (B) 7 days, where x = 0.6. The legend indicates the reduction cycle. These NPs show poor recyclability, herein attributed to poisoning of the NP surface with excess borohydride and reaction products.

Fig. S13 Recycling study for 4-NP reduction to 4-AP when using $[closo-B_{10}H_{10}]^{2-}$ -decorated Au_xAg_{1-x}NPs aged for (A) 1 day and (B) 7 days, where x = 0.2. The legend indicates the reduction cycle. These NPs show poor recyclability, herein attributed to poisoning of the NP surface with excess borohydride and the reaction products.

1. Hawthorne, F. M.; Pilling, R. L.; Knoth, W. H., Bis(Triethylammonium) Decahydrodecaborate(2–). In *Inorganic Syntheses*, Tyree Jr., S. Y., Ed. 1967.