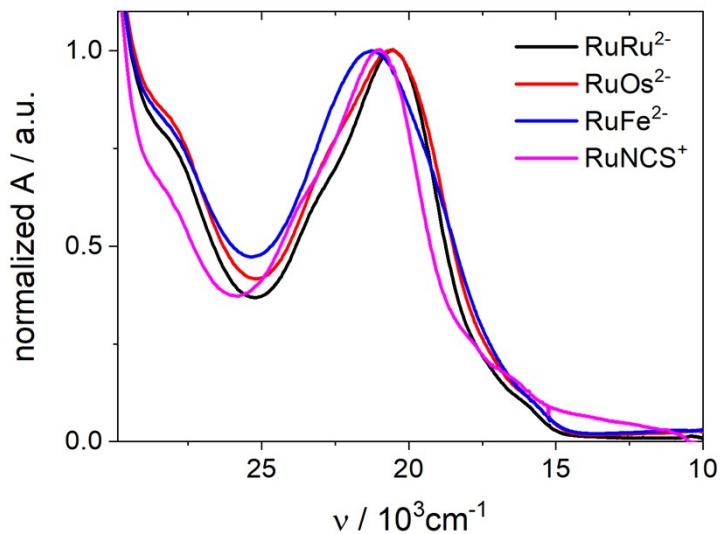
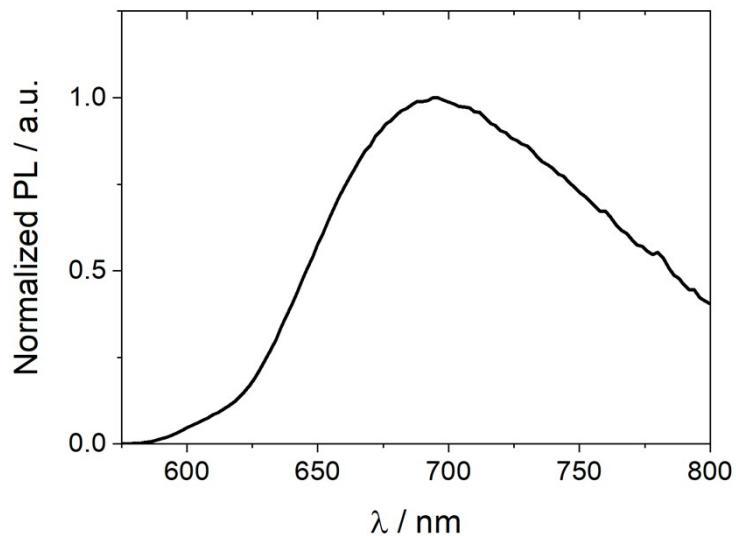


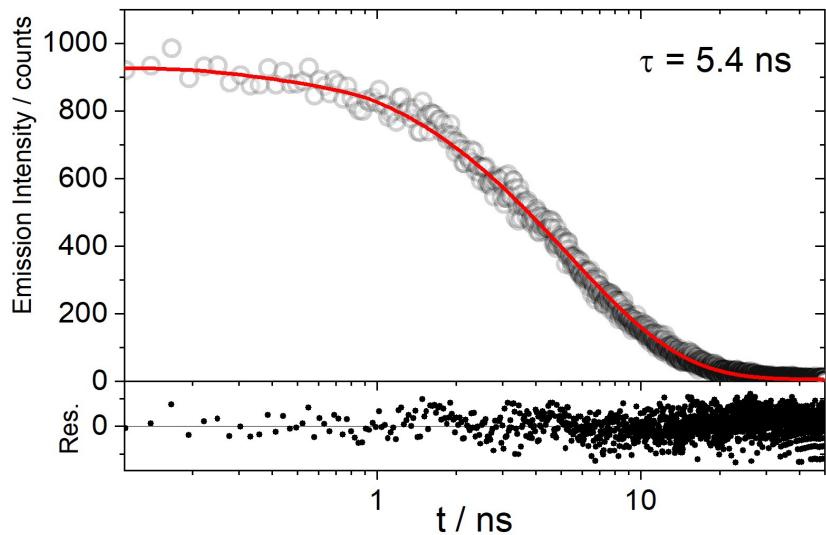
SUPPORTING INFORMATION
for
**Inversion of donor-acceptor roles in
photoinduced intervalence charge transfers**
by

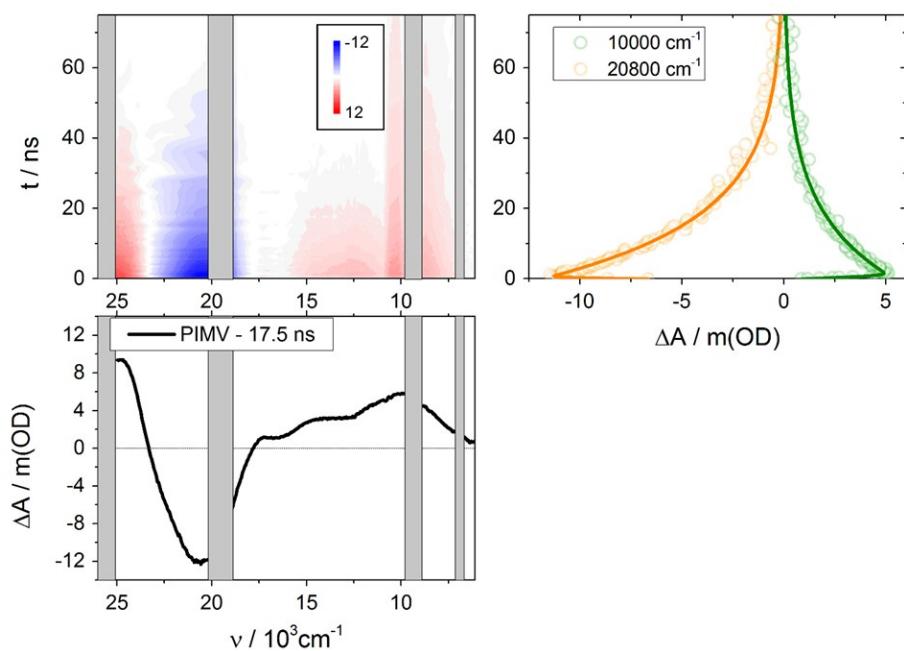

Bruno M. Aramburu-Trošelj, Paola S. Oviedo, Ivana Ramírez-Wierzbicki, Luis M. Baraldo, and
Alejandro Cadanel.

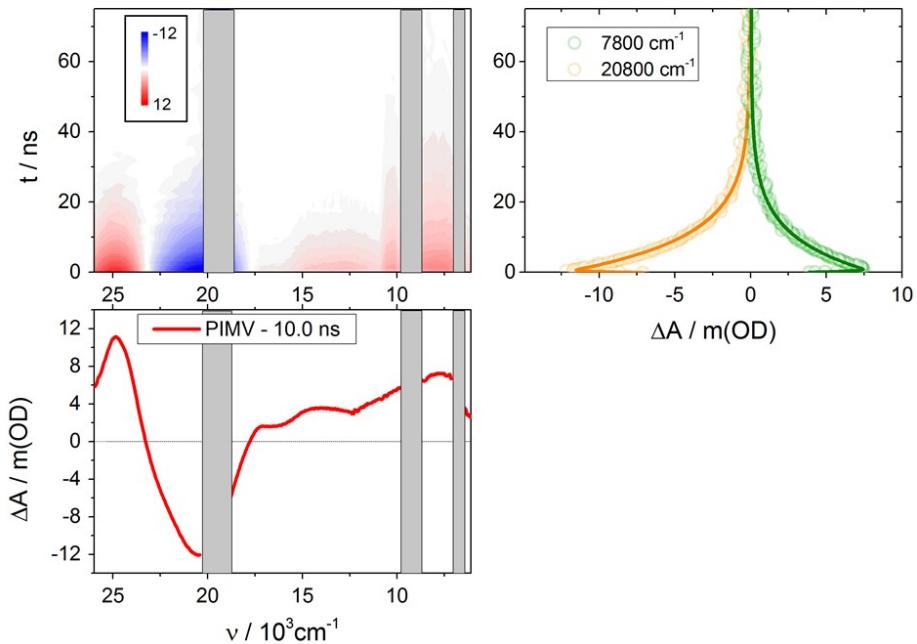
Contents	Page
Experimental Details	S2
Figure S1	S3
Figure S2	S3
Figure S3	S4
Figure S4	S4
Figure S5	S5
Figure S6	S5
Figure S7	S6
Table S1	S6
Figure S8	S7
References	S7

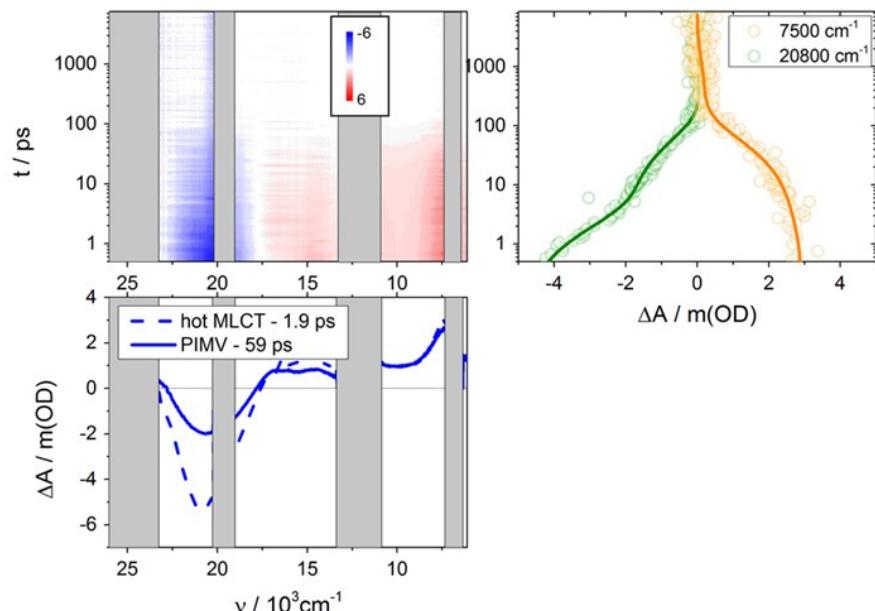

Experimental details

Materials. **RuRu²⁻**, **RuOs²⁻**, **RuFe²⁻** and **RuNCS⁺** were prepared according to published procedures.^{1,2} Anhydrous DMSO was provided by Sigma Aldrich and used as supplied.


Methods. Excitation and emission spectra were recorded in a PTI-QuantaMaster or a Cary Eclipse spectrofluorimeter. Quantum yields were measured in argon-saturated solutions using $[\text{Ru}(\text{bpy})_3]^{2+}$ ($\phi = 0.095^3$ in ACN at 25 °C). Fluorescence lifetimes were determined through the time-correlated single photon counting (TCSPC) technique using a Fluorolog 3 (Horiba Jobin Yvon). All measurements were conducted under argon atmosphere. The time profiles were recorded at 700 nm. Ultrafast transient absorption (TA) experiments were conducted using an amplified Ti:sapphire fs laser system (Clark MXR CPA2101 and 2110, 1kHz, FWHM = 150 fs, $\lambda_{\text{exc}} = 505$ nm, 200-300 nJ per pulse) with TA pump / probe Helios and EOS detection systems from Ultrafast Systems. For the picosecond to nanosecond experiments (Helios), white light was generated focusing a fraction of the fundamental 775 nm output onto a 2 mm sapphire disk (~430–760 nm) or a 1 cm sapphire disk (~800–1600 nm). A magic angle configuration was employed to avoid rotational dynamics. Excitation pulses of 505 nm wavelength were generated by a NOPA. Bandpass filters with ± 5 or ± 10 nm were used to ensure low spectral width and to exclude 775 nm photons. For the nanosecond to microsecond experiments (EOS), white light (~370 to >1600 nm) was generated by a built-in photonic crystal fiber supercontinuum laser source with a fundamental of 1064 nm at 2 kHz output frequency and pulse width of approximately 1 ns. All measurements were conducted in a 2 mm quartz cuvettes under argon atmosphere. Obtained data were treated by global and target analyses using the R-package **TIMP** and **GloTarAn**.⁴⁻⁶


Figure S1. UV-vis absorption spectra of **RuRu²⁻**, **RuOs²⁻**, **RuFe²⁻** and **RuNCS⁺** in water at room temperature.


Figure S2. Normalized emission spectrum of **RuNCS⁺** in water at room temperature.


Figure S3. TCSPC emission lifetime of RuNCS^+ in water at room temperature (black dots) and monoexponential fitting (red curve).

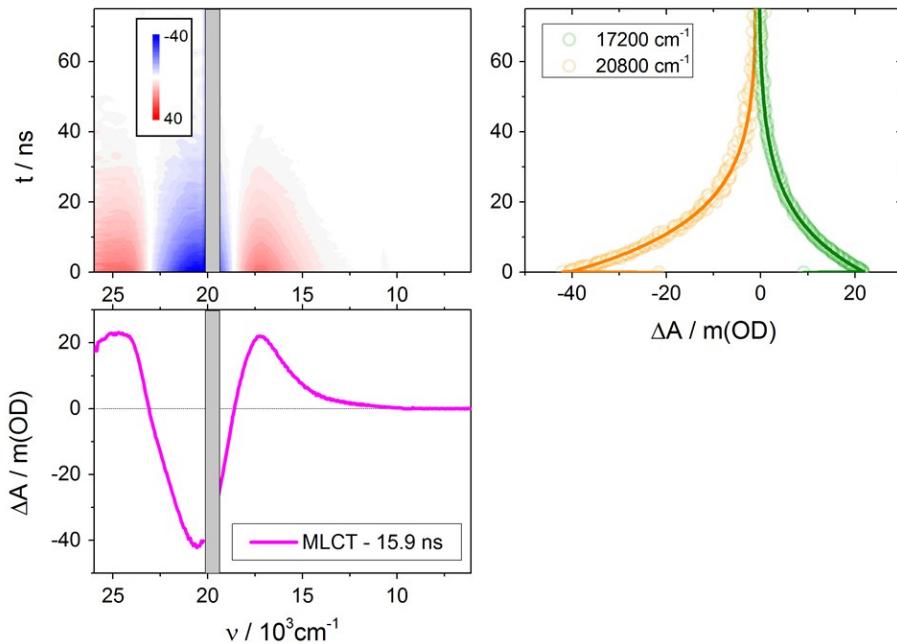

Figure S4. Upper left: Differential absorption 3D map obtained from nanosecond pump-probe experiments ($\lambda_{\text{exc}} = 505 \text{ nm}$) for RuRu^{2+} in water at room temperature. Upper right: Time absorption profiles (open circles) and corresponding fittings from global analysis (solid lines). Bottom left: Decay-associated differential spectra.

Figure S5. Upper left: Differential absorption 3D map obtained from nanosecond pump-probe experiments ($\lambda_{\text{exc}} = 505$ nm) for RuOs^{2+} in water at room temperature. Upper right: Time absorption profiles (open circles) and corresponding fittings from global analysis (solid lines). Bottom left: Decay-associated differential spectra.

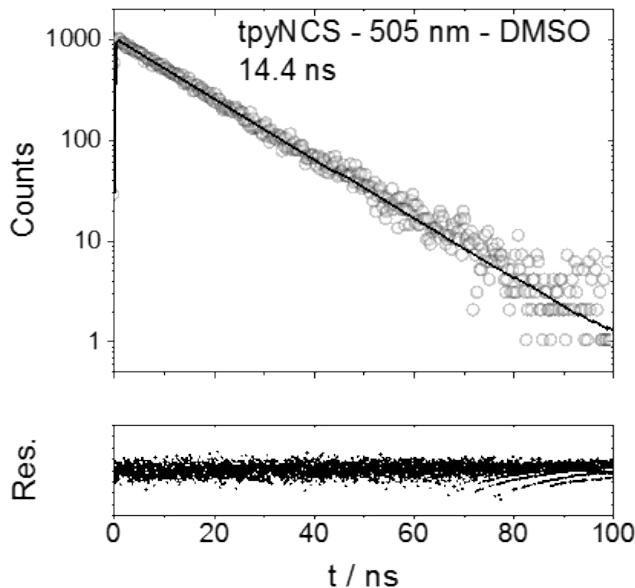

Figure S6. Upper left: Differential absorption 3D map obtained from picosecond pump-probe experiments ($\lambda_{\text{exc}} = 505$ nm) for RuFe^{2+} in water at room temperature. Upper right: Time absorption profiles (open circles) and corresponding fittings from global analysis (solid lines). Bottom left: Decay-associated differential spectra.

Figure S7. Upper left: Differential absorption 3D map obtained from nanosecond pump-probe experiments ($\lambda_{\text{exc}} = 505$ nm) for **RuNCS**⁺ in DMSO at room temperature. Upper right: Time absorption profiles (open circles) and corresponding fittings from global analysis (solid lines). Bottom left: Decay-associated differential spectra.

Table S1. Time constants extracted from global analyses of transient absorption experiments for **RuRu**²⁻, **RuOs**²⁻, **RuFe**²⁻ and **RuNCS**⁺ exciting at 505 nm, and TCSPC lifetimes.

Compound	Solvent	Transient Absorption		TCSPC
		τ_1 / ps (k_1 / ps ⁻¹)	τ_2 / ps (k_2 / ps ⁻¹)	
RuRu ²⁻	water	-	17500 (5.72 ± 0.08) x 10 ⁻⁵	16600
RuOs ²⁻	water	-	10000 (9.99 ± 0.01) x 10 ⁻⁵	9300
RuFe ²⁻	water	1.9 (0.52 ± 0.01)	59 (0.0170 ± 0.0001)	-
RuNCS ⁺	DMSO	-	15900 (6.31 ± 0.02) x 10 ⁻⁵	14400

Figure S8. TCSPC emission lifetime of RuNCS^+ in DMSO at room temperature (black dots) and monoexponential fitting (black curve).

References

- (1) Cadranel, A.; Alborés, P.; Yamazaki, S.; Kleiman, V. D.; Baraldo, L. M. Efficient Energy Transfer via the Cyanide Bridge in Dinuclear Complexes Containing Ru(II) Polypyridine Moieties. *Dalt. Trans.* **2012**, *41* (17), 5343–5350. <https://doi.org/10.1039/c2dt11869f>.
- (2) Cadranel, A.; Aramburu Trošelj, B. M.; Yamazaki, S.; Alborés, P.; Kleiman, V. D.; Baraldo, L. M. Emissive Cyanide-Bridged Bimetallic Compounds as Building Blocks for Polymeric Antennae. *Dalt. Trans.* **2013**, *42* (48), 16723–16732. <https://doi.org/10.1039/c3dt51164b>.
- (3) Yamamoto, Y.; Tamaki, Y.; Yui, T.; Koike, K.; Ishitani, O. New Light-Harvesting Molecular Systems Constructed with a Ru (II) Complex and a Linear-Shaped Re (I) Oligomer. *J. Am. Chem. Soc.* **2010**, *132* (33), 11743–11752.
- (4) Snellenburg, J. J.; Laptenok, S. P.; Seger, R.; Mullen, K. M.; van Stokkum, I. H. M. Glotaran : A Java -Based Graphical User Interface for the R Package TIMP. *J. Stat. Softw.* **2012**, *49* (3), 1–22.
- (5) Mullen, K. M.; van Stokkum, I. H. M. TIMP: An R Package for Modeling Multi-Way Spectroscopic Measurements. *J. Stat. Softw.* **2007**, *18* (3), 46.
- (6) Stokkum, I. H. M. Van; Larsen, D. S.; Grondelle, R. Van. Global and Target Analysis of Time-Resolved Spectra. **2004**, *1657*, 82–104. <https://doi.org/10.1016/j.bbabi.2004.04.011>.