Supporting Information

Facile difluoromethylation of aliphatic alcohols by S-(difluoro-

methyl)sulfonium salt: reaction, scope and mechanistic study

Guo-Kai Liu,*^a† Xin Li,^a† Wen-Bing Qin,^a Xiao-Shui Peng,^b Henry N. C. Wong,^b Linxing Zhang^c and Xinhao Zhang^c

- ^a School of Pharmaceutical Sciences, Shenzhen University Health Science Centre, Shenzhen University, 3688 Nanhai Ave., Shenzhen 518060 (China). E-mail: gkliu@szu.edu.cn
- ^b Department of Chemistry, the Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR (China).
- ^c Lab of Computational Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen 518055 (China).

Table of Contents

1.	General Experimental Information	S1
2.	General Procedure for the Preparation of 1a and 1b	S1
3.	General Procedure for Electrophilic Difluoromethylation of Alcohols	S2
4.	General Procedure for Electrophilic Difluoromethylation of Thioalcohols	S9
5.	Control Experiments of Mechanistic Study	S10
6.	DFT Calculations of Mechanistic Study	S19
7.	References	S28
8.	Copies of ¹ H-NMR, ¹³ C-NMR and ¹⁹ F-NMR Spectra of Compounds	S29

1. General Experimental Information

¹H NMR spectra were recorded on either a Bruker AscendTM 400MHz (400 MHz) spectrometer, or a Bruker AscendTM 500MHz (500 MHz) spectrometer at ambient temperature unless otherwise indicated. Data were reported as follows: chemical shifts in ppm from tetramethylsilane as an internal standard in $CDCl_3$, integration, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, dd = doublet-doublet, m = multiplet, br = broad), coupling constants (Hz), and assignment. ¹³CNMR spectra were recorded on either a Bruker AscendTM 500MHz (126 MHz) spectrometer or a Bruker AscendTM 400MHz (101 MHz) spectrometer at ambient temperature and were proton decoupled. Chemical shifts are reported in ppm from tetramethylsilane on the scale with the solvent resonance employed as the internal standard. ¹⁹F NMR spectra were recorded on a Bruker AscendTM 400MHz (376 MHz) spectrometer at ambient temperature. Chemical shifts are reported in ppm from CFCl₃ as the internal standard. ESI-MS analyses were performed in positive ionization mode on an Agilent 1260-Infinity LC/MSD or a Q-Exactive high resolution mass spectrometer. EI-MS analyses were performed on an Agilent Technologies 7820A-GC/5977E-MSD System or a ThermoFinnigan MAT 95XL. Commercially available reagents were used as received. Reactions were monitored by TLC: Detection with UV light followed by staining potassium permanganate (KMnO₄). Flash chromatography: silica gel (300-400 mesh).

2. General Procedure for the Preparation of S-Difluoromethyl-S-phenyl-2,4,6 -trimethoxyphenylsulfonium salts (1)

S-Difluoromethyl-S-phenyl-2,4,6-trimethoxyphenylsulfonium salts (1a and 1b) were prepared according to the procedure reported by us¹: Trifluoromethanesulfonic acid anhydride (Tf₂O, 10 mmol) was added dropwise slowly into the stirring solution of (Difluoromethyl)phenylsulfoxide (10 mmol) and 1,3,5-trimethoxybenzene (11 mmol) in dry Et₂O (20 mL) at 0 °C under N₂ atmosphere. After the reaction was finished, stopped stirring and the upper layer was removed, another dry Et₂O (10 mL) was added and the mixture was stirred again, after stirring for 5 min, the upper Et₂O layer was removed. This procedure aforementioned was repeated three times and the filtered precipitated, with Et₂O, give product was and washed dry to S-difluoromethyl-S-phenyl-2,4,6-trimethoxyphenylsulfonium trifluoromethanesulfonate. The solid was dissolved in dichloromethane and extracted with saturated aqueous KPF_6 (50 mL ×4) or NaBF₄ aqueous solution (1 M, 50 mL ×4). The organic layer was dried over Na₂SO₄, filtered and evaporated in vacuum at 30 °C. Recrystallization from dichloromethane and hexane afforded 1a or 1b.

$$\begin{array}{c} O \\ S \\ CF_{2}H \\ + \\ OMe \end{array} \begin{array}{c} OMe \\ \hline OMe \end{array} \begin{array}{c} 1) Tf_{2}O, Et_{2}O, 0 \ ^{\circ}C \\ \hline OMe \\ \hline OMe \\ OMe \\ \hline O$$

S-Difluoromethyl-S-phenyl-2,4,6-trimethoxyphenylsulfonium Hexafluorophosphate(V) (1a):

82% yield as white crystalline powder; M.p. 104-105 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.87 (dd, J = 56.2, 54.1 Hz, 1H), 7.72-7.66 (m, 5H), 6.35 (s, 2H), 3.97 (s, 6H) , 3.95 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 170.5, 163.0, 134.8, 131.6, 126.6, 120.7, 119.2 (t, J =296.5 Hz), 93.1, 80.6, 57.4, 56.8; ¹⁹F NMR (376 MHz, CDCl₃) δ

-73.6 (d, J = 711.1 Hz, 6F), -97.0 (dd, J = 233.5, 53.9 Hz, 1F), -98.0 (dd, J = 233.5, 53.9 Hz, 1F); MS (ESI): m/z 327 (C₁₆H₁₇O₃F₂S⁺); HRMS (ESI): calcd. for C₁₆H₁₇O₃F₂S⁺: 327.0861; Found: 327.0851.

S-Difluoromethyl-S-phenyl-2,4,6-trimethoxyphenylsulfonium Tetrafluoroborate (1b):

86% yield as white crystalline powder; M.p. 95.5-96.5 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.10 (t, *J* = 54.6 Hz, 1H), 7.72-7.64 (m, 5H), 6.37 (s, 2H), 3.99 (s, 6H), 3.96 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 170.4, 163.0, 134.7, 131.5, 129.9, 120.9, 119.3 (t, *J* = 298.0 Hz), 93.1, 81.2, 57.5, 56.9; ¹⁹F NMR (376 MHz, CDCl₃) δ

-97.7 (dd, J = 233.6, 54.2 Hz, 1F), -98.4 (dd, J = 235.0, 56.2 Hz, 1F), -153.8 (s, 1F), -153.9 (s, 3F); MS (ESI): m/z 327 (C₁₆H₁₇O₃F₂S⁺). HRMS (ESI): calcd. for C₁₆H₁₇O₃F₂S⁺: 327.0861; Found: 327.0849.

[D]-1a:

81% yield (D/H > 95:5) as white crystalline powder; M.p. 97-98 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.73-7.62 (m, 5H), 7.34 (s, 2H), 3.96 (s, 6H), 3.94 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 170.5, 163.0, 134.8, 131.6, 129.6, 120.7, 93.1, 80.7, 57.4, 56.7; ¹⁹F NMR (376 MHz, CDCl₃) δ -73.6 (d, *J* = 711.1 Hz), -97.9 (d, *J* = 233.9

Hz), -98.8 (d, J = 233.9 Hz). MS (ESI): m/z 328 (C₁₆H₁₆²HO₃F₂S⁺:); HRMS (ESI): calcd. for C₁₆H₁₆²HO₃F₂S⁺: 328.0924; Found: 328.0917.

3. General Procedure for Electrophilic Difluoromethylation of Alcohols with Reagent 1a

In a small vial (2.0 mL), a magnetic stir bar, alcohol **2** (0.2 mmol, 1.0 equiv.), 1**a** (0.6 mmol, 3.0 equiv.), NaOAc $3H_2O$ (1.0 mmol, 5.0 equiv.), Bu_4NBF_4 (0.04 mmol, 20%), CH_2Br_2 (0.2 mL) and H_2O (0.2 mL) were successively added. After stirring vigorously for 24 or 48 hours at room temperature, benzotrifluoride (0.1 mmol, 0.5 equiv.) and $CDCl_3$ (0.5 mL) were added for the determination of ¹⁹F-NMR Yield. Then the mixture was diluted by dichloromethane, dried over

anhydrous Na₂SO₄, filtered, and evaporated. The residue was purified by silica gel column chromatography to give product 3.

The characterization data of known compounds 3a-e, 3g, 3j-k, 3m-v, 3x, 3aa, 3ab, 3ad, 3ae, **3af and 3ah** are consistent with the previous report.²

((Difluoromethoxy)methyl)benzene (3a):

The product was purified by silica gel column chromatography (Hexane) in OCF₂H 65% yield as colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 7.42-7.34 (m, 5H), 6.31 (t, J = 74.4 Hz, 1H), 4.90 (s, 2H); ¹⁹F NMR (376 MHz, CDCl₃) δ -84.8 $(d, J = 74.3 \text{ Hz}, 2\text{F}); \text{ MS (EI)}: m/z 158 (\text{M}^+).$

1-((Difluoromethoxy)methyl)-4-methylbenzene (3b):

The product was purified by silica gel column chromatography (Hexane) in 78% yield as colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 7.27 (d, J = 7.8 Hz, 2H), 7.20 (d, J = 7.8 Hz, 2H), 6.29 (t, J = 74.6 Hz, 1H), 4.87 (s,

2H), 2.37 (s, 3H); ¹⁹F NMR (376 MHz, CDCl₃) δ -84.6 (d, J = 74.6 Hz, 2F); MS (EI): m/z 172 $(M^{+}).$

1-((Difluoromethoxy)methyl)-4-iodobenzene (3c):

The product was purified by silica gel column chromatography (Hexane) in 70% yield as semisolid; ¹H NMR (400 MHz, CDCl₃) δ 7.71 (d, J = 8.2 Hz, 2H), 7.10 (d, J = 8.2 Hz, 2H), 6.30 (t, J = 74.0 Hz, 1H), 4.83 (s,

2H); ¹⁹F NMR (376 MHz, CDCl₃) δ -84.9 (d, J = 73.9 Hz, 2F); MS (EI): m/z 284 (M⁺).

2-(4-((Difluoromethoxy)methyl)phenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (3d):

The product was purified by silica gel column chromatography (Hexane) in 57% yield as colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 7.83 (d, *J* = 7.9 Hz, 2H), 7.37 (d, *J* = 7.9 Hz, 2H), 6.31 (t, J = 74.4 Hz, 1H), 4.91 (s, 2H), 1.35 (s, 12H); ¹⁹F NMR (376

MHz, CDCl₃) δ -84.8 (d, J = 74.3 Hz, 2F); MS (EI): m/z 284 (M⁺).

Methyl 4-((difluoromethoxy)methyl)benzoate (3e):

The product was purified by silica gel column chromatography (Hexane/Ethyl acetate = 100:1) in 63% yield as colorless oil; 1 H NMR (400 MHz, CDCl₃) δ 8.05 (d, J = 8.3 Hz, 2H), 7.42 (d, J =

8.3 Hz, 2H), 6.34 (t, J = 74.0 Hz, 1H), 4.95 (s, 2H), 3.92 (s, 3H); ¹⁹F NMR (376 MHz, CDCl₃) δ -85.0 (d, J = 73.8 Hz, 2F); MS (EI): m/z 216 (M⁺).

1-((Difluoromethoxy)methyl)-4-ethynylbenzene (3f):

The product was purified by silica gel column chromatography (Hexane) in 60% yield as colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 7.50 (d, J = 8.2 Hz, 2H), 7.32 (d, J = 8.2 Hz, 2H), 6.31 (t, J = 74.0 Hz,

1H), 4.89 (s, 2H), 3.10 (s, 1H); ¹³C NMR (101 MHz, CDCl3) δ 136.2, 132.5, 127.8, 122.3, 113.3 (t, J = 262.7 Hz), 83.3, 77.8, 64.8 (t, J = 6.3 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -84.9 (d, J = 74.0 Hz, 2F); MS (EI): m/z 182 (M⁺); HRMS (APCI): calcd. for $C_{11}H_{13}F_2O_2^+$ ([M+H+CH₃OH]⁺): 215.0878; found: 215.0879.

1-((Difluoromethoxy)methyl)-4-nitrobenzene (3g):

The product was purified by silica gel column chromatography (Hexane/Ethyl acetate = 50:1) in 50% yield as white solid; M.p. $38-39 \,{}^{\circ}\text{C}$; ¹H NMR (400 MHz, CDCl₃) δ 8.24 (d, J = 8.6 Hz, 2H), 7.53 (d, J = 8.6 Hz, 2H), 6.38 (t, J = 73.4 Hz, 1H), 5.00 (s, 2H); ¹⁹F NMR (376 MHz, CDCl₃) δ -85.3 (d,

J = 73.3 Hz, 2F); MS (EI): m/z 203 (M⁺).

5-((Difluoromethoxy)methyl)benzo[*d*][1,3]dioxole (3h):

The product was purified by silica gel column chromatography (Hexane) in 84% yield as colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 6.86-6.79 (m, 3H), 6.27 (t, *J* = 74.5 Hz, 1H), 5.97 (s, 2H), 4.79 (s, 2H);

¹³C NMR (101 MHz, CDCl3) δ 148.0, 147.8, 129.0, 122.0, 115.9 (t, J = 261.6 Hz), 108.8, 108.3, 101.2, 65.5 (t, J = 6.1 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -84.6 (d, J = 74.4 Hz, 2F); MS (EI): m/z202 (M⁺); HRMS (ESI): calcd. for C₉H₉F₂O₃⁺: 203.0514; found: 203.0515.

1-Chloro-2-(2-(difluoromethoxy)ethyl)benzene (3i):

The product was purified by silica gel column chromatography (Hexane) in 90% yield as colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 7.38-7.17 (m, 4H), 6.18 (t, J = 74.7 Hz, 1H), 4.08 (t, J = 7.0 Hz, 2H), 3.10 (t, J = 7.0 Hz, 2H); ¹³C NMR (101 MHz, CDCl3) δ 135.2, 134.3, 131.4, 129.7, 128.4, 127.0, 116.2 (t, J =

258.3 Hz), 62.4 (t, J = 5.5 Hz), 33.7; ¹⁹F NMR (376 MHz, CDCl₃) δ -84.6 (d, J = 74.6 Hz, 2F); MS (EI): m/z 206 (M⁺); HRMS (APCI): calcd. for C₈H₈Cl⁺ ([M-HCF₂O]⁺): 139.0309; found: 139.0309.

(2-(Difluoromethoxy)ethyl)benzene (3j):

The product was purified by silica gel column chromatography (Hexane) in 78% yield as colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 7.34-7.31 (m, 2H), 7.27-7.23 (m, 3H), 6.19 (t, *J* = 74.7 Hz, 1H), 4.07 (t, *J* = 7.1 Hz,

2H), 2.97 (t, J = 7.1 Hz, 2H); ¹³C NMR (101 MHz, CDCl3) δ 137.6, 129.0, 128.7, 126.8, 116.1 (t, J = 261.4 Hz), 64.1 (t, J = 5.4 Hz), 35.8; ¹⁹F NMR (376 MHz, CDCl₃) δ -84.7 (d, J = 74.6 Hz, 2F); MS (EI): m/z 172 (M⁺).

1-(2-(Difluoromethoxy)ethyl)-4-methoxybenzene (3k):

The product was purified by silica gel column chromatography (Hexane) in 91% yield (93% isolated yield in 2.0 mmol scale) as colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 7.15 (d, J = 8.5 Hz,

2H), 6.86 (d, J = 8.5 Hz, 2H), 6.19 (t, J = 74.9 Hz, 1H), 4.02 (t, J = 7.1 Hz, 2H), 3.80 (s, 3H), 2.90 (t, J = 7.1 Hz, 2H); ¹⁹F NMR (376 MHz, CDCl₃) δ -84.6 (d, J = 74.8 Hz, 2F); MS (EI): m/z 202 $(M^{+}).$

4-(2-(Difluoromethoxy)ethyl)phenol (3l):

The product was purified by silica gel column chromatography (Hexane/Ethyl acetate = 20:1) in 62% yield as semisolid; ¹H NMR (400 MHz, CDCl₃) δ 7.09 (d, *J* = 8.4 Hz, 2H), 6.79 (d, *J* =

8.4 Hz, 2H), 6.18 (t, J = 74.9 Hz, 1H), 4.01 (t, J = 7.1 Hz, 2H), 2.89 (t, J = 7.1 Hz, 2H); ¹³C NMR (101 MHz, CDCl3) δ 154.5, 130.2, 129.7, 116.2 (t, J = 261.2 Hz), 115.6, 64.5 (t, J = 5.3 Hz), 34.9; ¹⁹F NMR (376 MHz, CDCl₃) δ -84.5 (d, J = 74.9 Hz, 2F); MS (EI): m/z 120 ([M-HCF₂OH]⁺); HRMS (APCI): calcd. for C₈H₉O⁺ ([M-HCF₂O]⁺): 121.0648; found: 121.0649.

(3-(Difluoromethoxy)propyl)benzene (3m):

The product was purified by silica gel column chromatography (Hexane) in 78% yield as colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 7.33-7.28 (m, 2H), 7.23-7.19 (m, 3H), 6.22 (t, *J* = 75.1 Hz, 1H), 3.86

(t, J = 6.4 Hz, 2H), 2.73 (t, J = 7.5 Hz, 2H), 1.98 (quint, J = 7.0 Hz, 2H); ¹³C NMR (101 MHz, CDCl3) δ 141.2, 128.6, 126.2, 116.3 (t, J = 260.7 Hz), 62.9 (t, J = 5.3 Hz), 32.0, 30.9; ¹⁹F NMR (376 MHz, CDCl₃) δ -83.8 (d, J = 75.0 Hz, 2F); MS (EI): m/z 186 (M⁺).

Benzyl (*R*)-(1-(difluoromethoxy)-3-phenylpropan-2-yl)carbamate (3n):

The product was purified by silica gel column chromatography (Hexane/Ethyl acetate = 10:1) in 61% yield as white solid; M.p. 68-69 °C; ¹H NMR (400 MHz, CD₃CN) δ 7.39-7.22 (m, 10H), 6.38 (t, J = 75.7 Hz, 1H), 5.77 (d, J = 8.4 Hz, 1H), 5.02 (d, J = 12.7 Hz, 1H),

4.98 (d, J = 12.7 Hz, 1H), 4.09-4.00 (m, 1H), 3.89 (dd, J = 10.1, 4.6 Hz, 1H), 3.82 (dd, J = 10.1, 4.6 Hz, 1H), 2.90 (dd, J = 13.8, 5.6 Hz, 1H), 2.75 (dd, J = 13.8, 9.1 Hz, 1H), 2.23 (s, 1H); ¹³C NMR (101 MHz, CD₃CN) δ 155.9, 138.1, 129.3, 128.5, 128.4, 127.8, 127.5, 126.5, 117.4, 116.9 (t, J = 258.2 Hz), 65.7, 63.9 (t, J = 3.4 Hz), 52.0, 36.8; ¹⁹F NMR (376 MHz, CD₃CN) δ -84.6 (d, J = 74.3 Hz, 2F); MS (ESI): m/z 336.1 (M+H⁺); HRMS (ESI): calcd. for C₁₈H₂₀F₂NO₃⁺: 336.1406; found: 336.1394.

(*E*)-(3-(difluoromethoxy)prop-1-en-1-yl)benzene (30):

The product was purified by silica gel column chromatography (Hexane) in 73% yield as colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 7.40 (d, *J* = 7.3 Hz, 2H), 7.34 (t, *J* = 7.1 Hz, 2H), 7.30 (t, *J* = 7.0 Hz,

1H), 6.67 (d, J = 15.9 Hz, 1H), 6.29 (t, J = 74.6 Hz, 1H), 6.27 (dt, J = 15.9, 6.3 Hz, 1H), 4.53 (t, J = 6.3 Hz, 1H); ¹⁹F NMR (376 MHz, CDCl₃) δ -84.5 (d, J = 74.6 Hz, 2F); MS (EI): m/z 184 (M⁺).

(5-(Difluoromethoxy)pent-1-yn-1-yl)benzene (3p):

The product was purified by silica gel column chromatography (Hexane) in 80% yield as colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 7.43-7.39 (m, 2H), 7.31-7.28 (m, 3H), 6.23 (t, *J* = 75.0

Hz, 1H), 4.02 (t, J = 6.2 Hz, 2H), 2.55 (t, J = 7.0 Hz, 2H), 1.95 (quint, J = 6.5 Hz, 2H); ¹⁹F NMR (376 MHz, CDCl₃) δ -84.4 (d, J = 74.9 Hz, 2F); MS (EI): m/z 210 (M⁺).

1-(2-(Difluoromethoxy)ethyl)naphthalene (3q):

The product was purified by silica gel column chromatography (Hexane) in 92% yield as colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 8.03 (d, *J* = 8.4 Hz, 1H), 7.89 (d, *J* = 7.8 Hz, 1H), 7.78 (d, *J* = 7.9 Hz, 1H), 7.58-7.49 (m, 2H), 7.45-7.39 (m, 2H), 6.23 (t, *J* = 74.7 Hz, 1H), 4.20 (t, *J* = 7.4 Hz,

2H), 3.45 (t, J = 7.4 Hz, 2H); ¹⁹F NMR (376 MHz, CDCl₃) δ -84.5 (d, J = 74.6 Hz, 2F); MS (EI): m/z 222 (M⁺).

1-((Difluoromethoxy)methyl)naphthalene (3r):

The product was purified by silica gel column chromatography (Hexane) in 85% yield as colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 8.11 (d, *J* = 8.4 Hz, 1H), 7.93 (t, *J* = 7.9 Hz, 2H), 7.64-7.55 (m, 3H), 7.52-7.48 (m, 1H), 6.40 (t, *J* = 74.4 Hz, 1H), 5.40 (s, 2H); ¹⁹F NMR (376 MHz, CDCl₃) δ -84.7 (d, *J* =

74.4 Hz, 2F); MS (EI): *m*/*z* 208 (M⁺).

3-(2-(Difluoromethoxy)ethyl)-1*H*-indole (3s):

The product was purified by silica gel column chromatography (Hexane/Ethyl acetate = 20:1) in 88% yield as colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 8.01 (br, 1H), 7.62 (d, *J* = 7.8 Hz, 1H), 7.37 (d, *J* = 8.1 Hz, 1H), 7.22 (t, *J* = 7.1 Hz, 1H), 7.15 (t, *J* = 7.8 Hz, 1H), 7.08 (s,

1H), 6.23 (t, J = 75.1 Hz, 1H), 4.14 (t, J = 7.1 Hz, 2H), 3.14 (t, J = 7.1 Hz, 2H); ¹⁹F NMR (376 MHz, CDCl₃) δ -84.2 (d, J = 75.0 Hz, 2F); MS (EI): m/z 211 (M⁺).

3-(2-(Difluoromethoxy)ethyl)thiophene (3t):

 $S_{\text{OCF}_{2}\text{H}}$ The product was purified by silica gel column chromatography (Hexane) in 81% yield as colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 7.29 (dd, J = 4.8, 3.0 Hz, 1H), 7.03 (d, J = 3.0 Hz, 1H), 6.99 (d, J = 4.8 Hz, 1H), 6.18 (t, J =74.7 Hz, 1H), 4.04 (t, J = 6.9 Hz, 2H), 2.97 (t, J = 6.9 Hz, 2H); ¹⁹F NMR (376 MHz, CDCl₃) δ -84.7 (d, J = 74.5, 2.0 Hz, 2F); MS (EI): m/z 178 (M⁺).

2-((Difluoromethoxy)methyl)-2,3-dihydrobenzo[b][1,4]dioxine (3u):

The product was purified by silica gel column chromatography (Hexane/Ethyl acetate = 200:1) in 60% yield as colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 6.92-6.85 (m, 4H), 6.29 (t, *J* = 73.7 Hz, 1H),

4.42-4.37 (m, 1H), 4.40 (dd, J = 11.5, 2.2 Hz, 1H), 4.14-4.03 (m, 3H); ¹⁹F NMR (376 MHz, CDCl₃) δ -85.5 (d, J = 73.6 Hz, 2F); MS (EI): m/z 216 (M⁺).

1-(Difluoromethoxy)decane (3v):

The product was purified by silica gel column chromatography (Hexane) in 91% yield as colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 6.18 (t, *J* = 75.3 Hz, 1H), 3.83 (t, *J* = 6.6 Hz, 2H), 1.63 (quint, *J* = 7.0 Hz, 2H), 1.38-1.27 (m, 14H), 0.88 (t, *J* = 6.5 Hz, 3H); ¹⁹F NMR (376 MHz, CDCl₃) δ -84.2 (d, *J* = 75.2 Hz, 2F); MS (EI): *m*/*z* 140 ([M-HCF₂OH]⁺).

1-(Difluoromethoxy)octadecane (3w):

The product was purified by silica gel column chromatography (Hexane) in 95% yield as semisolid; ¹H NMR (400 MHz, CDCl₃) δ 6.18 (t, *J* = 75.3 Hz, 1H), 3.83 (t, *J* = 6.6 Hz, 2H), 1.63 (quint, *J* = 6.6 Hz, 2H), 1.36-1.25 (m, 30H), 0.88 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 116.3 (t, *J* = 260.4 Hz), 63.9 (t, *J* = 5.3 Hz), 32.1, 29.9, 29.83, 29.81, 29.73, 29.68, 29.5, 29.4, 29.3, 25.9, 22.9, 14.3; ¹⁹F NMR (376 MHz, CDCl₃) δ -84.3 (d, *J* = 75.3 Hz, 2F); MS (EI): *m/z* 252 ([M-HCF₂OH]⁺); HRMS (EI): calcd. for C₁₈H₃₆⁺ ([M-HCF₂OH]⁺): 252.2812; found: 252.2811.

1-Bromo-11-(difluoromethoxy)undecane (3x):

 $\begin{array}{l} \text{Br} & \overbrace{9}^{0} \text{OCF}_{2}\text{H} \\ \text{Br} & \overbrace{9}^{0} \text{OCF}_{2}\text{H} \end{array} \\ \begin{array}{l} \text{The product was purified by silica gel column chromatography (Hexane) in} \\ 98\% \text{ yield as colorless oil; } ^{1}\text{H NMR (400 MHz, CDCl_3) } \delta \ 6.18 \ (t, J = 75.3 \text{Hz}, 1\text{H}), 3.82 \ (t, J = 6.6 \text{ Hz}, 2\text{H}), 3.40 \ (t, J = 6.9 \text{ Hz}, 2\text{H}), 1.85 \ (quint, J = 7.2 \text{ Hz}, 2\text{H}), 1.63 \ (quint, J = 7.0 \text{ Hz}, 2\text{H}), 1.43 \text{-}1.28 \ (m, 14\text{H}); \ ^{19}\text{F NMR (376 MHz, CDCl_3) } \delta \ -84.2 \ (d, J = 75.2 \text{ Hz}, 2\text{F}); \\ \text{MS (EI): } m/z \ 232 \ ([\text{M-HCF}_2\text{OH}]^+). \end{array}$

2-(Difluoromethoxy)tridecane (3aa):

OCF₂H The product was purified by silica gel column chromatography (Hexane) in 75% yield as colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 6.20 (t, J = 75.8 Hz, 1H), 4.24-4.17 (m, 1H), 1.62-1.55 (m, 1H), 1.50-1.41 (m, 1H), 1.33-1.25 (m, 21H), 0.88 (t, J = 7.0 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 116.6 (t, J = 258.5 Hz), 72.9 (t, J = 3.5 Hz), 37.0, 32.1, 29.81, 29.78, 29.74, 29.70, 29.59, 29.52, 25.4, 22.9, 21.3, 14.3; ¹⁹F NMR (376 MHz, CDCl₃) δ -80.5 (dd, J = 161.3, 75.9 Hz, 1F), -81.1 (dd, J = 161.3, 75.9 Hz, 1F); MS (EI): m/z 182 ([M-HCF₂OH]⁺).

1-(Difluoromethoxy)-1,2,3,4-tetrahydronaphthalene (3ab):

The product was purified by silica gel column chromatography (Hexane) in 70% yield as colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 7.39-7.36 (m, 1H), 7.26-7.21 (m, 2H), 7.15-7.12 (m, 1H), 6.37 (dd, J = 75.4, 74.4 Hz, 1H), 5.32-5.30 (m, 1H), 2.88 (dt, J = 16.7, 5.2 Hz, 1H), 2.79-2.71 (m, 1H), 2.17-2.10

(m, 1H), 2.08-1.97 (m, 2H), 1.86-1.78 (m, 1H); ¹⁹F NMR (376 MHz, CDCl₃) δ -80.1 (dd, J = 160.0, 75.5 Hz, 1F), -81.5 (dd, J = 160.0, 75.5 Hz, 1F); MS (EI): m/z 198 (M⁺).

1-(Difluoromethoxy)-2,3-dihydro-1*H*-indene (3ac):

	OCF ₂ H
	\checkmark
	$\langle \rangle$
\checkmark	~

The product was purified by silica gel column chromatography (Hexane) in 77% yield as colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 7.43 (t, J = 7.2 Hz, 1H), 7.34-7.24 (m, 3H), 6.35 (t, J = 74.6 Hz, 1H), 5.69 (dd, J = 6.9, 4.7 Hz, 1H), 3.12 (ddd, J = 16.0, 8.5, 5.4 Hz, 1H), 2.87 (ddd, J = 16.1, 8.3, 6.0 Hz, 1H),

2.49 (ddd, J = 20.8, 7.6, 6.3 Hz, 1H), 2.26-2.17 (m, 1H); ¹³C NMR (101 MHz, CDCl3) δ 144.0, 140.7, 129.2, 126.9, 125.4, 125.0, 116.2 (t, J = 261.1 Hz), 78.7 (t, J = 4.9 Hz), 33.5, 30.1; ¹⁹F NMR (376 MHz, CDCl₃) δ -80.9 (dd, J = 160.0, 74.9 Hz, 1F), -81.5 (dd, J = 160.0, 74.9 Hz, 1F); MS (EI): m/z 184 (M⁺); HRMS (ESI): calcd. for C₁₀H₁₁F₂O⁺: 185.0773; found: 185.0775.

(Difluoromethoxy)cyclododecane (3ad):

The product was purified by silica gel column chromatography (Hexane) in 93% yield as colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 6.21 (t, *J* = 75.9 Hz, 1H), 4.27 (tt, *J* = 7.2, 4.5 Hz, 1H), 1.78-1.69 (m, 2H), 1.59-1.51 (m, 2H), 1.48-1.33 (m, 18H); ¹⁹F NMR (376 MHz, CDCl₃) δ -80.5 (d, *J* =

75.8 Hz, 2F); MS (EI): *m*/*z* 166 ([M-HCF₂OH]⁺).

(3-(Difluoromethoxy)-3-methylbutyl)benzene (3ae):

The product was purified by silica gel column chromatography (Hexane) in 38% yield as colorless oil; ¹H NMR (400 MHz, $CDCl_3$) δ 7.31-7.27 (m, 2H), 7.22-7.17 (m, 3H), 6.33 (t, *J* = 76.8 Hz, 1H), 2.57-2.71 (m, 2H), 1.94-1.85 (m, 2H), 1.42 (s, 6H); ¹⁹F NMR (376 MHz, $CDCl_3$) δ -76.8 (d, *J* = 76.7 Hz, 2F);

MS (EI): *m*/*z* 214 (M⁺), 146 ([M-OCF₂H₂]⁺).

(3*S*,5*S*,8*R*,9*S*,10*S*,13*S*,14*S*)-3-(difluoromethoxy)-10,13-dimethylhexadecahydro-17*H*-cyclopenta[*a*]phenanthren-17-one (3af):

The product was purified by silica gel column chromatography (Hexane/Ethyl acetate = 6:1) in 71% yield as white solid; M.p. 91-92 °C; ¹H NMR (400 MHz, CDCl₃) δ 6.21 (t, *J* = 75.8 Hz, 1H), 4.07-3.98 (m, 1H), 2.42 (dd, *J* = 19.2, 8.8 Hz, 1H), 2.10-2.00 (m, 1H), 1.95-1.72 (m, 6H), 1.66-1.42 (m, 6H), 1.36-1.22 (m, 4H), 1.19-1.10 (m, 1H), 1.03-0.96 (m, 2H), 0.85 (s,

3H), 0.84 (s, 3H), 0.69 (td, J = 11.3, 3.6 Hz, 1H); ¹⁹F NMR (376 MHz, CDCl₃) δ -80.3 (dd, J = 161.2, 75.7 Hz, 1F), -80.8 (dd, J = 161.2, 75.7 Hz, 1F); ¹³C NMR (101 MHz, CDCl₃) δ 116.4 (t, J = 258.7 Hz), 75.1 (t, J = 3.6 Hz), 54.4, 51.5, 47.9, 44.8, 36.8, 35.9, 35.6, 35.4, 35.1, 31.6, 30.9, 28.8, 28.4, 21.8, 20.5, 13.9, 12.3; MS (ESI): m/z 341.4 (M+H⁺); HRMS (ESI): calcd. for C₂₀H₃₁F₂O₂⁺: 341.2287; found: 341.2284.

1-((3*S*,8*S*,9*S*,10*R*,13*S*,14*S*,17*S*)-3-(difluoromethoxy)-10,13-dimethyl-2,3,4,7,8,9,10, 11,12,13,14,15,16,17-tetradecahydro-1*H*-cyclopenta[*a*]phenanthren-17-yl)ethan-1 -one (3ag)

The product was purified by silica gel column chromatography (Hexane/Ethyl acetate = 30:1) in 60% yield as white solid; M.p. 127-128 °C; ¹H NMR (400 MHz, CDCl₃) δ 6.21 (t, J = 75.6 Hz, 1H), 5.37 (d, J = 5.0 Hz, 1H), 3.99-3.91(m, 1H), 2.52 (m, 1H), 2.42-2.33 (m, 2H), 2.20-2.15 (m, 1H), 2.11 (s, 3H), 2.05-1.97 (m, 2H), 1.90-1.84 (m, 2H),

1.71-1.56 (m, 5H), 1.52-1.39 (m, 4H), 1.27-0.94 (m, 3H), 1.00 (s, 3H), 0.62 (s, 3H); ¹⁹F NMR (376 MHz, CDCl₃) δ -80.7 (d, J = 75.6 Hz, 2F); ¹³C NMR (101 MHz, CDCl₃) δ 209.6, 139.8, 122.5, 116.3 (t, J = 259.2 Hz), 75.3 (t, J = 3.6 Hz), 63.8, 57.0, 50.0, 44.1, 39.6, 38.9, 37.1, 36.6, 31.9, 31.6, 29.1, 24.6, 22.9, 21.1, 19.4, 13.3; MS (ESI): m/z 367.2 (M+H⁺); HRMS (ESI): calcd. for C₂₂H₃₃F₂O₂⁺: 367.2443; found: 367.2432.

2-(10-(Difluoromethoxy)decyl)-5,6-dimethoxy-3-methylcyclohexa-2,5-diene-1,4-dione (3ah):

The product was purified by silica gel column chromatography (Hexane/Ethyl acetate = 10:1) in 62% yield as dark yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 6.15 (t, *J* = 75.4 Hz, 1H), 3.96 (s, 6H), 3.79 (t, *J* = 6.6 Hz, 2H), 2.42 (t, *J* = 6.8 Hz, 2H), 1.98 (s, 3H), 1.60 (quint, *J* = 6.7 Hz, 2H), 1.35-1.25 (m, 14H); ¹⁹F NMR (376 MHz, CDCl₃) δ -84.2 (d, *J* = 75.3 Hz, 2F); MS (EI): *m/z* 388 (M⁺).

4. General Procedure for Electrophilic Difluoromethylation of Thioalcohols with Reagent 1b

To a solution of **4** (0.2 mmol, 1.0 equiv.) in acetonitrile (0.2 mL), KOH (0.48 mmol, 2.4 equiv., 1 M aqueous) was added. After stirring for 30 min at room temperature, **1b** (0.24 mmol, 1.2 equiv.) was added in one portion. The reaction mixture was stirred for another 30 min, then benzotrifluoride (0.1 mmol, 0.5 equiv.) and CDCl₃ (0.5 mL) were added for the determination of ¹⁹F-NMR Yield. Followed quenching with saturated aqueous solution of NH₄Cl, and extracted with EtOAc (10 mL ×3). The combined extracts was dried over anhydrous Na₂SO₄, filtered, and evaporated. The residue was purified by silica gel column chromatography to give product **5**.

The characterization data of known compounds 5a and 5c are consistent with the previous report.³

(Difluoromethyl)(phenethyl)sulfane (5a):

SCF₂H The product was purified by silica gel column chromatography (Hexane) in 50% yield as colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 7.35-7.32 (m, 2H), 7.28-7.22 (m, 3H), 6.78 (t, *J* = 56.3 Hz, 1H), 3.09-3.05 (m, 2H),

3.01-2.97 (m, 2H); ¹⁹F NMR (376 MHz, CDCl₃) δ -92.7 (d, J = 56.2 Hz, 2F); MS (EI): m/z 188 (M⁺).

(3-Bromobenzyl)(difluoromethyl)sulfane (5b):

The product was purified by silica gel column chromatography (Hexane) in 50% yield as colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 7.51 (t, *J* = 2.0 Hz, 1H), 7.42 (d, *J* = 7.8 Hz, 1H), 7.28 (d, *J* = 7.8 Hz, 1H), 7.21 (t, *J*

= 7.8 Hz, 1H), 6.75 (t, J = 56.2 Hz, 1H), 3.98 (s, 2H); ¹³C NMR (101 MHz, CDCl3) δ 138.9, 132.0, 130.9, 130.4, 127.6, 122.8, 120.1 (t, J = 274.8 Hz), 31.1 (t, J = 3.8 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -94.7 (d, J = 56.1 Hz, 2F); MS (EI): m/z 252 (M⁺), 254 (M⁺); HRMS (EI): calcd. for C₈H₇⁷⁹BrF₂S⁺: 251.9414; found: 251.9415.

(Difluoromethyl)(4-methoxybenzyl)sulfane (5c):

The product was purified by silica gel column chromatography (Hexane) in 57% yield as colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 7.27 (d, *J* = 8.6 Hz, 2H), 6.88 (d, *J* = 8.6 Hz, 2H), 6.73 (t, *J* = 56.6 Hz,

1H), 3.99 (s, 2H), 3.81 (s, 3H); ¹⁹F NMR (376 MHz, CDCl₃) δ -95.0 (d, *J* = 56.6 Hz, 2F); MS (EI): *m*/*z* 204 (M⁺).

(Difluoromethyl)(trityl)sulfane (5d):

Ph SCF₂H Ph SC

5. Control Experiments of Mechanistic Study

Control experiments were done as the procedure for electrophilic difluoromethylation of alcohols described above, and the results were determined by ¹⁹F NMR spectroscopy analysis.

Figure S2. Control Experiment B)

Figure S3. Control Experiment C)

Figure S4. Control Experiment D)

E)

Figure S6. Control Experiment F)

S16

Figure S8. Control Experiments A-G

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -120 -140 -160 -180 -200 f1 (ppm)

6. DFT Calculations of Mechanistic Study

All DFT computations were carried out with the Gaussian 09 program package.⁴ Geometry optimizations were performed using Truhlar's M06-2X density functional, which performs well for the study of main-group thermochemistry and kinetics.⁵ The 6-31G(d) basis set was adopted for all atoms.⁶ Solvent effects were taken into account during geometry optimizations via SMD in dibromomethane.⁷ Frequency analyses were performed at the same level to obtain thermal corrections at 298.15K, and to confirm the stationary points with zero imaginary frequency and transition with only imaginary states one frequency. SMD(dibromomethane)-M06-2X/6-311++G(d,p) single-point energies were computed on the SMD(dibromomethane)-M06-2X/6-31G(d)-optimized structures.⁸ The ultrafine integration grid was used in all DFT calculations.⁹ All structures shown here in figures were generated with the CYLview program.¹⁰

Calculated Enthalpy and Gibbs Free Energy

Figure S9. The free energy profile for the difluoromethylation of alcohol. Free energies and enthalpies (in parenthesis) are given in kcal/mol

	Н	G	ΔH	ΔG
H ₂ O	-76.40332	-76.424765	/	/
AcOH _{dimer}	-458.027291	-458.073912	/	/
2k	-500.34433	-500.393691	/	/
Pro_2	-1204.647829	-1204.714754	/	/
INT0	-1671.353579	-1671.441543	0.0	0.0
A_TS1	-2171.700633	-2171.815809	-1.7	12.2
B_TS1	-1671.348316	-1671.437689	3.3	2.4
B_INT1	-237.678038	-237.705349	8.8	-9.7
B1_TS2	-814.436054	-814.496153	2.3	7.6
B2_TS2	-737.992064	-738.049063	27.8	21.6
3k	-738.126262	-738.182488	-56.4	-62.1

Table S1. Energies of structures on reaction between 1 and 2k (units of H and G are Hartree, ΔH and ΔG are kcal/mol).

_

H_2O			
0	0.00000000	0.00000000	0.11950600
Н	0.00000000	0.76212300	-0.47802200
Н	0.00000000	-0.76212300	-0.47802200
AcOH _{dimer}			
С	1.93256900	-0.05556200	0.00001300
С	3.43038200	-0.08311500	-0.00012800
Н	3.80305300	0.44448700	0.88220200
Н	3.78492300	-1.11264300	0.00053300
Н	3.80283200	0.44325000	-0.88329500
0	1.43089400	1.16268700	-0.00076200
Н	0.43252800	1.11486400	-0.00032800
0	1.24143400	-1.06728900	0.00078900
С	-1.93253800	0.05551300	0.00015000
С	-3.43034200	0.08361100	-0.00030800
Н	-3.80342600	-0.44417100	0.88173400
Н	-3.78448900	1.11327400	0.00062700
Н	-3.80276000	-0.44228800	-0.88376700
0	-1.43128000	-1.16290600	-0.00055500
Н	-0.43298400	-1.11546500	-0.00019300
0	-1.24106100	1.06701000	0.00104300
2k			
С	1.09953000	1.53550700	-0.00146700
С	-0.27001200	1.44382300	0.19650000
С	-0.87765200	0.22503900	0.52624800
С	-0.06024300	-0.89737200	0.64569700
С	1.32006400	-0.82817400	0.44949300
С	1.90482000	0.39678700	0.12276100
Н	1.57129300	2.48042800	-0.25268000
Н	-0.88339900	2.33651600	0.09706600
Н	-0.50649500	-1.85529600	0.90338800
Н	1.92044400	-1.72410300	0.55736600
0	3.23393200	0.58116000	-0.08851300
С	4.06865800	-0.55866700	-0.01002400
Н	3.77778000	-1.31699600	-0.74627700
Н	5.07868800	-0.21164900	-0.23032200
Н	4.04923600	-0.99968100	0.99338800
С	-2.37329300	0.11865000	0.68777600
Н	-2.62640700	-0.66472800	1.41074500
Н	-2.78802300	1.06082800	1.06310100
С	-3.05292400	-0.21260500	-0.63507100

Н	-2.81953500	0.56963100	-1.37293600
Н	-2.65484900	-1.16225100	-1.02345900
0	-4.44585300	-0.29800800	-0.39862700
Н	-4.87959700	-0.49995900	-1.24155600
Pro_2			
С	4.74938000	0.27296200	0.33942000
С	3.72120100	0.66123500	-0.51408500
С	2.38697200	0.47298900	-0.13761600
С	2.09435800	-0.10911000	1.09694200
С	3.13074700	-0.50150800	1.94132400
С	4.46039800	-0.31307400	1.57062800
Н	5.78075500	0.42464800	0.03526800
Н	3.95551100	1.10783300	-1.47704600
Н	1.06207200	-0.25456400	1.40038200
Н	2.89183400	-0.95607800	2.89837900
Н	5.26315100	-0.62077200	2.23309100
S	1.14800700	1.04005600	-1.28768400
С	-0.34918600	0.33374400	-0.66982100
С	-1.39710000	1.15758300	-0.22972600
С	-0.53816400	-1.06546800	-0.65443700
С	-2.60796600	0.61233500	0.21769000
С	-1.72794700	-1.62079900	-0.19660500
С	-2.75579500	-0.77355000	0.22958000
Н	-3.40812900	1.25727700	0.55010100
Н	-1.89470800	-2.68963400	-0.16626700
0	0.50522900	-1.80357100	-1.08260600
0	-1.17500100	2.48839200	-0.27111500
0	-3.87972700	-1.40055600	0.64520000
С	-2.19368500	3.35583700	0.19573200
Н	-2.42420500	3.16725100	1.25008300
Н	-1.79573000	4.36499100	0.08813500
Н	-3.10557500	3.25985000	-0.40378000
С	0.39353300	-3.21503400	-1.01653700
Н	0.22861400	-3.54998300	0.01343900
Н	-0.41658300	-3.58040900	-1.65698500
Н	1.34494900	-3.60584800	-1.37728500
С	-4.97462400	-0.60122000	1.05771500
Н	-5.76871600	-1.29728900	1.32864100
Н	-4.71598700	0.01046200	1.92921300
Н	-5.32210400	0.04572300	0.24450800
INT0			
С	-2.99910000	2.95953400	-0.93842300

С	-2.31390100	2.24217200	0.03860400
С	-0.97557000	1.93047200	-0.18680600
С	-0.30371800	2.32184600	-1.33901800
С	-1.00546400	3.04331600	-2.30102400
С	-2.34807900	3.35936300	-2.10309000
Н	-4.04557600	3.19999300	-0.78455100
Н	-2.82308100	1.93122700	0.94632800
Н	0.74047000	2.06513500	-1.48882800
Н	-0.49840700	3.35293300	-3.20890000
Н	-2.88925600	3.91736700	-2.86018900
S	-0.09876100	1.05888200	1.11861500
С	1.21635700	0.21110600	0.34487700
С	2.53173700	0.50161500	0.74853200
С	0.96997800	-0.76797800	-0.64538200
С	3.60188400	-0.18338600	0.17288900
С	2.02908000	-1.45353700	-1.21584000
С	3.33507100	-1.15499700	-0.79830300
Н	4.61498000	0.03204600	0.47911500
Н	1.88073800	-2.21569200	-1.96978500
С	-1.39654400	-0.31996100	1.49766800
Н	-2.05674000	-0.47391500	0.62867900
F	-2.03141900	0.15841500	2.57306300
F	-0.67291700	-1.37525200	1.84824500
0	-0.31717800	-0.94614900	-0.95261500
0	2.66843000	1.45376300	1.68361500
0	4.29679500	-1.86884900	-1.40341300
С	3.98102600	1.80274500	2.11031500
Н	4.57521100	2.17778300	1.27145400
Н	3.84918000	2.59295100	2.84831600
Н	4.48060900	0.94643300	2.57340600
С	-0.67395200	-1.96684100	-1.88235400
Н	-0.22775800	-1.76457600	-2.86123400
Н	-0.34690600	-2.94524200	-1.51573000
Н	-1.76108800	-1.92087800	-1.92989400
С	5.65144500	-1.62469600	-1.04829100
Н	6.24486500	-2.30517900	-1.65812600
Н	5.93566200	-0.59162600	-1.27352800
Н	5.82562300	-1.83777600	0.01143000
С	-4.63336400	-3.08288400	-0.41786400
Н	-5.15324300	-3.66438300	0.34692900
Н	-4.02012900	-3.76917000	-1.01451200
Н	-5.35906800	-2.62240100	-1.09397600
С	-3.72242800	-2.01862700	0.20975200
0	-3.34745800	-1.08585000	-0.56024800

0	-3.38979300	-2.16431200	1.40597700
A_TS1			
С	-2.60198200	-4.67995100	-1.40550900
С	-2.62142400	-3.72220000	-0.39607300
С	-2.80251800	-2.37771000	-0.72864500
С	-2.96318100	-1.98634000	-2.05564400
С	-2.94389000	-2.95532500	-3.05593700
С	-2.76282400	-4.29947900	-2.73646400
Н	-2.45988600	-5.72470500	-1.14784600
Н	-2.49484400	-4.02009700	0.64210800
Н	-3.10466200	-0.93969600	-2.30615200
Н	-3.07032900	-2.65354400	-4.09103100
Н	-2.74720700	-5.04832600	-3.52186100
S	-2.83157200	-1.22898600	0.63799800
С	-2.77401400	0.36839600	-0.09268200
С	-3.85393400	1.24905200	0.08465400
С	-1.62540800	0.80837200	-0.78231600
С	-3.79513000	2.55445300	-0.41128300
С	-1.56164200	2.09810200	-1.29059900
С	-2.64556400	2.96073800	-1.09321400
Н	-4.62364300	3.23221300	-0.26528000
Н	-0.69259600	2.46904500	-1.81770400
С	-0.59301300	-1.61656300	1.52696800
Н	-0.39360200	-0.52321600	1.51435500
F	-0.18355800	-2.40860900	0.59782900
F	-1.03512300	-2.25093600	2.56255900
0	-0.64976500	-0.10630900	-0.92448500
0	-4.91814200	0.76149400	0.75060400
0	-2.49092100	4.19608300	-1.61194100
С	-6.01430700	1.62771800	1.00080600
Н	-6.46785900	1.97300700	0.06580600
Н	-6.73900700	1.03306700	1.55643000
Н	-5.70763900	2.48739300	1.60569300
С	0.59084800	0.33319700	-1.45862000
Н	0.47154300	0.67719700	-2.49159500
Н	1.00729300	1.12953500	-0.83458900
Н	1.24741400	-0.53722700	-1.44586400
С	-3.53013700	5.14241000	-1.42025900
Н	-3.19057200	6.05969400	-1.90115300
Н	-4.46133800	4.80920900	-1.89113800
Н	-3.70164700	5.33162400	-0.35504500
С	5.32755700	1.16888200	-0.75592000
С	4.51012700	0.77609900	0.30431300

С	4.62453400	-0.48242500	0.89579100
С	5.58892700	-1.35909000	0.38461400
С	6.41373400	-0.98794900	-0.66781200
С	6.28821800	0.28061100	-1.24527500
Н	5.21086600	2.15826700	-1.18266300
Н	3.76620600	1.47503300	0.68370100
Н	5.69786400	-2.34773500	0.82408000
Н	7.16651000	-1.66471800	-1.05993800
0	7.13962000	0.55667400	-2.26746200
С	7.04419600	1.83332200	-2.86999300
Н	7.24113700	2.63348200	-2.14697900
Н	7.80666700	1.85727600	-3.64928000
Н	6.05824200	1.98865600	-3.32387200
С	3.68445800	-0.89470700	2.00008200
Н	4.09451700	-1.73842800	2.56510700
Н	3.52752600	-0.06573200	2.69954700
С	2.32076700	-1.28512300	1.42529400
Н	1.95121200	-0.46357300	0.79473300
Н	2.41782900	-2.17928700	0.79936300
0	1.37855300	-1.56821900	2.44483000
Н	1.27628200	-0.68655200	2.95497900
С	0.94719900	3.02614000	2.72002800
Н	2.01931800	3.24755300	2.70568300
Н	0.44726300	3.58538100	1.92761200
Н	0.56535400	3.34570800	3.69428700
С	0.73408000	1.52790200	2.55498100
0	0.08629900	1.12951200	1.55362700
0	1.23448100	0.78676200	3.44974300
B TS1			
C	-3.07156200	2.85632900	-0.87569500
С	-2.33254000	2.17263000	0.08667100
С	-0.99232600	1.89130700	-0.17051300
С	-0.37765900	2.28115600	-1.35618700
С	-1.13063100	2.96379600	-2.30765700
С	-2.47376600	3.25123100	-2.07013500
Н	-4.11778500	3.07436200	-0.68804800
Н	-2.79880100	1.85955500	1.01701600
Н	0.66778100	2.05070900	-1.53802700
Н	-0.66304200	3.26929300	-3.23819000
Н	-3.05456300	3.78211400	-2.81752000
S	-0.07882300	1.06880500	1.12998500
С	1.24499300	0.24339200	0.33205000
С	2.56103600	0.52147600	0.73825400

С	1.00735700	-0.72784700	-0.66659000
С	3.63616200	-0.15393200	0.15553000
С	2.07015800	-1.39946000	-1.25200800
С	3.37481200	-1.10830900	-0.83095400
Н	4.64783700	0.05684100	0.46935600
Н	1.92477000	-2.14954900	-2.01846200
С	-1.42614200	-0.43946400	1.55003300
Н	-2.30260800	-0.68933800	0.50293100
F	-1.94016500	0.01847000	2.70833600
F	-0.59613100	-1.43398700	1.88781700
0	-0.27851700	-0.91706700	-0.98804600
0	2.70455100	1.45506200	1.69488000
0	4.34023800	-1.81363000	-1.44794200
С	4.01822800	1.79030500	2.12192300
Н	4.61247800	2.18161700	1.29007000
Н	3.89368700	2.56527600	2.87758000
Н	4.51954100	0.92426200	2.56553900
С	-0.59850600	-1.88211400	-1.98136100
Н	-0.13785100	-1.61844000	-2.93901300
Н	-0.27055700	-2.87952400	-1.67080600
Н	-1.68363800	-1.85426300	-2.06097000
С	5.69166100	-1.56826300	-1.08722800
Н	6.29096400	-2.23528700	-1.70654200
Н	5.97195100	-0.53005700	-1.29449200
Н	5.86706400	-1.79679200	-0.03063600
С	-4.86155300	-2.62078600	-0.64125500
Н	-5.40015400	-3.40849200	-0.11297500
Н	-4.41542000	-3.03103300	-1.55289400
Н	-5.55850100	-1.83434500	-0.94518600
С	-3.77600600	-2.03230100	0.23980300
0	-3.12594400	-1.04643400	-0.30745000
0	-3.55128200	-2.46955800	1.36581600
D INTT1			
	0.0000000	0.0000000	0 50725400
C E	0.0000000	1.02625200	0.39733400
F	0.0000000	-1 02635300	-0.19911800
1	0.0000000	1.02055500	0.17711000
B1_TS2			
С	-2.60247900	-1.20588900	-0.64805200
С	-1.26168400	-1.15827700	-0.30001500
С	-0.75324300	-0.11616700	0.48697500
С	-1.63499500	0.87685600	0.90736300
С	-2.98918200	0.84640600	0.56986500

С	-3.47665200	-0.20133400	-0.21379400
Н	-3.00039000	-2.01567400	-1.25143100
Н	-0.59326700	-1.94704500	-0.63784200
Н	-1.26402800	1.69512100	1.52021500
Н	-3.64514800	1.63378700	0.92225900
0	-4.77099700	-0.33246100	-0.60002100
С	-5.68859300	0.64443600	-0.14483600
Н	-5.42726600	1.64191800	-0.51683400
Н	-6.66154800	0.35495100	-0.54294900
Н	-5.73708500	0.66587400	0.95006600
С	0.71784300	-0.05091400	0.81802900
Н	0.88369000	0.50540200	1.74604600
Н	1.12347800	-1.05725400	0.95232300
С	1.46851800	0.64210100	-0.31038600
Н	1.36988600	0.09811000	-1.25303700
Н	1.11722800	1.66721400	-0.44637200
0	2.87452500	0.76346700	0.02256500
Н	3.56592500	1.36755400	-0.64189600
С	3.76024800	-0.46678600	0.12730500
F	3.59395800	-0.84959000	1.42127500
F	3.07746400	-1.41758300	-0.58236900
0	4.80901900	1.46204600	-1.10022800
Н	4.84089200	1.30863800	-2.06143400
Н	4.84577500	0.47894500	-0.62252300
B2 TS2			
C	2,14053300	1.37810200	0.06808800
C	0.80679500	1.07880500	0.29874800
C	0.37917200	-0.24391300	0.47581800
C	1.33555500	-1.25460900	0.40182700
C	2,68340700	-0.97530500	0.16966200
C	3 08932600	0.35005300	0.00249600
H	2 47492800	2.40237700	-0.06341100
Н	0.07857500	1.88534000	0.34765800
Н	1.02870900	-2.28957300	0.53479200
Н	3,39799800	-1.78905200	0.12578400
0	4 37093900	0 73770100	-0 22178700
C	5,35085300	-0.27871900	-0.31770300
H	5 13927600	-0.95897400	-1 15092100
H	6.29877200	0.22899000	-0.49869900
H	5.42198300	-0.85436800	0.61258100
C	-1 08258200	-0 56266800	0.66799900
т Н	-1 20389800	-1.48364700	1.24823900
H	-1.58314000	0.24354800	1.21440200
	1.000110000		

С	-1.77725300	-0.74328100	-0.67781600
Н	-1.68651400	0.17047300	-1.28083900
Н	-1.31996100	-1.56330200	-1.24187000
0	-3.15309700	-1.07406500	-0.47871700
Н	-3.84927300	-0.58739200	-1.31241600
С	-4.22567000	0.33839800	-0.49392400
F	-3.44916700	1.34801500	-0.13846500
F	-5.01094500	0.07035300	0.52708300
3k			
С	-2.46251200	-1.00236800	0.11068000
С	-1.08544500	-0.93350600	0.32765600
С	-0.41970200	0.28568200	0.43609000
С	-1.17635800	1.45917500	0.31810400
С	-2.54537500	1.41304200	0.10501100
С	-3.19843300	0.17858000	-0.00249000
Н	-2.94330600	-1.97068500	0.03660700
Н	-0.52184400	-1.85940400	0.41867300
Н	-0.68183100	2.42425400	0.40065800
Н	-3.13367600	2.32119700	0.01880400
0	-4.53841400	0.23053400	-0.21288800
С	-5.22138600	-0.99969400	-0.36816700
Н	-5.15245600	-1.61158600	0.53865300
Н	-6.26576200	-0.74588800	-0.55233500
Н	-4.83097600	-1.56638100	-1.22150000
С	1.07768500	0.34107800	0.61202800
Н	1.37080600	1.22760600	1.18476500
Н	1.42511500	-0.53838400	1.16372900
С	1.76321100	0.39844600	-0.75223800
Н	1.55355100	-0.51213700	-1.32954800
Н	1.40057200	1.25582300	-1.32306000
0	3.17886600	0.58815500	-0.66089700
С	3.86764900	-0.48048700	-0.20604800
Н	3.45868500	-1.44454900	-0.52507700
F	5.13912300	-0.35736000	-0.63531200
F	3.92770900	-0.47475800	1.15710800

7. References

- (a) S.-L. Lu, X. Li, W.-B. Qin, J.-J. Liu, Y.-Y. Huang, H. N. C. Wong and G.-K. Liu, *Org. Lett.* 2018, **20**, 6925; (b) G.-K. Liu, X. Li, W.-B. Qin, W.-F. Lin, L.-T. Lin, J.-Y. Chen and J.-J. Liu, *Chin. Chem. Lett.* 2019, DOI: <u>https://doi.org/10.1016/j.cclet.2019.03.036</u>; (c) G.-K. Liu, S.-L. Lu, X. Li and W.-B. Qin, *PCT Int. Appl.* CN 2018113547, 2018.
- 2 (a) J. Zhu, Y. Liu and Q. Shen, Angew. Chem. Int. Ed., 2016, 55, 9050; (b) Q. Xie, C. Ni, R. Zhang, L. Li, J. Rong and J. Hu, Angew. Chem. Int. Ed., 2017, 56, 3206.
- 3 (a) Y. Ran, Q.-Y. Lin, X.-H. Xu and F.-L. Qing, J. Org. Chem. 2017, 82, 7373; (b) X.-Y. Deng,
 J.-H. Lin, J. Zheng and J.-C. Xiao, Chem. Commun. 2015, 51, 8805.
- 4 Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.
- 5 (a) Y. Zhao and D. G. Truhlar, *Theor. Chem. Acc.* 2008, **120**, 215; (b) Y. Zhao and D. G. Truhlar, *Acc. Chem. Res.* 2008, **41**, 157.
- 6 (a) P. C. Hariharan and J. A. Pople, *Theor. Chim. Acta* 1973, 28, 213; (b) M. M. Francl, W. J. Pietro, W. J. Hehre, J. S. Binkley, M. S. Gordon, D. J. DeFrees and J. A. Pople, *J. Chem. Phys.* 1982, 77, 3654.
- 7 A. V. Marenich, C. J. Cramer and D. G. Truhlar, J. Phys. Chem. B 2009, 113, 6378.
- 8 (a) R. Krishnan, J. S. Binkley, R. Seeger and J. A. Pople, *J. Chem. Phys.* 1980, 72, 650; (b) A. D. McLean and G. S. Chandler, *J. Chem. Phys.* 1980, 72, 5639; (c) T. Clark, J. Chandrasekhar, G. W. Spitznagel and P. V. R. Schleyer, *J. Comput. Chem.* 1983, 4, 294.
- 9 S. E. Wheeler and K. N. Houk, J. Chem. Theory Comput. 2010, 6, 395.
- 10 C. Y. Legault, CYLview, 1.0b, Universite de Sherbrooke, 2009, http:// www.cylview.org.

8. Copies of ¹H-NMR, ¹³C-NMR and ¹⁹F-NMR Spectra of Compounds

S29

5.5 5.0 4.5 f1 (ppm) 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0. C

S31

S42

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

¹H-NMR Spectrum of 3ac

¹H-NMR Spectrum of 3ag

¹⁹F-NMR Spectrum of 3ag

< -80.5621< -80.7631

¹H-NMR Spectrum of 5d

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

¹⁹F-NMR Spectrum of 5d

< -94.0683< -94.2167