Nickel-Catalyzed Direct α-Olefination of Alkyl Substituted N -Heteroarenes with Alcohols

Jagadish Das, Mari Vellakkaran and Debasis Banerjee*
Department of Chemistry
Laboratory of Catalysis and Organic Synthesis
Indian Institute of Technology Roorkee
Roorkee-247667, India
Email: dbane.fcy@iitr.ac.in

Table of Contents
General Experimental S2
General Experimental Procedure S2
α-Olefination of Methylquinolines with alcohols S3
Analytical Data S23
References S34
${ }^{1}$ H NMR, ${ }^{13} \mathrm{C}$ NMR and HRMS Spectra for selected compounds S35

[1.1] General Experimental Details:

All solvents and reagents were used, as received from the suppliers. TLC was performed on Merck Kiesel gel $60, \mathrm{~F}_{254}$ plates with the layer thickness of 0.25 mm . Column chromatography was performed on silica gel (100-200 mesh) using a gradient of ethyl acetate and hexane as mobile phase. ${ }^{1} \mathrm{H}$ NMR spectral data were collected at, 400 MHz (JEOL), 500 MHz (Bruker) and ${ }^{13} \mathrm{C}$ NMR were recorded at 100 MHz . ${ }^{1} \mathrm{H}$ NMR spectral data are given as chemical shifts in ppm followed by multiplicity (s- singlet; d- doublet; t- triplet; q- quartet; m - multiplet), number of protons and coupling constants. ${ }^{13} \mathrm{C}$ NMR chemical shifts are expressed in ppm. Elemental analysis data were recorded in Vario Micro Cube. GC-MS were recorded using Agilent GC Mass Spectrometer. All the reactions were performed in a close system using Schlenk tube. All nickel salts were purchased from Sigma Aldrich. Nickel(II) bromide (Assay- 98\%; CAS Number 13462-88-9; EC Number 236-665-0; Pack Size- No 217891-10G). Potassium tert-butoxide was purchased from Avra Synthesis Pvt. Ltd., India. (Purity-98\%, CAS No: 865-47-4, Catalog No- ASP2012).

[1.2] General Procedure for Nickel Catalysed α-Olefination of Methylquinolines with

Primary Alcohols:

In a 15 mL oven dried Schlenk tube, quinaldine (0.25 mmol), NiBr_{2} ($5 \mathrm{~mol} \%$), Phen (6 $\mathrm{mol} \%)$, alcohols $(0.50 \mathrm{mmol})$ and $\mathrm{KOH}(0.25 \mathrm{mmol})$, were added followed by toluene 2.0 mL under an atmosphere of N_{2} and the reaction mixture was heated at $140{ }^{\circ} \mathrm{C}$ for 24 h in close system. The reaction mixture was cooled to room temperature and 3.0 mL of ethyl acetate was added and concentrated in vacuo. The residue was purified by column chromatography using a gradient of hexane and ethyl acetate (eluent system) to afford the pure product.

[1.3] α-Olefination of 2-Methylquinolines with Alcohols:

Table S1: Screening of catalyst ${ }^{a}$

Reaction conditions: [a] Quinaldine 1a (0.25 mmol), Benzyl alcohol 2a (0.50 mmol), Ni Cat. ($5.0 \mathrm{~mol} \%$), Phen $(6.0 \mathrm{~mol} \%), t$-BuOK $(0.25 \mathrm{mmol})$, toluene $(2.0 \mathrm{~mL})$, Schlenk tube under nitrogen atmosphere, $130^{\circ} \mathrm{C}$ oil bath, 36 h reaction time.

Table S2: Screening of ligands ${ }^{\text {a }}$

Entry	Ligand	GC-MS Conversion 3a (\%)	Ratio 3a/3a'
1		65	13: 1
2		15	$7.5: 1$
3		15	-
4		43	-

5		10	-
6		12	-
7		30	15:1
8		28	-
9		34	17:1
10	 L10	17	8.5:1
11	 L11	15	15:1
$12^{\text {b }}$	 L12	7	$7: 1$

13^{b}	20	$4: 1$	
14	No Ligand	22	

Reaction conditions: [a] Quinaldine 1a (0.25 mmol), Benzyl alcohol 2a (0.50 mmol), NiBr_{2} ($5.0 \mathrm{~mol} \%$), Ligand $(6.0 \mathrm{~mol} \%), t$-BuOK $(0.25 \mathrm{mmol})$, toluene $(2.0 \mathrm{~mL})$, Schlenk tube under nitrogen atmosphere, $130^{\circ} \mathrm{C}$ oil bath, 36 h reaction time. [b] $10 \mathrm{~mol} \%$ of Ligand was used.

Table S3: Screening of solvents ${ }^{\text {a }}$

Reaction conditions: [a] Quinaldine 1a (0.25 mmol), Benzyl alcohol 2a (0.50 mmol), $\mathrm{NiBr}_{2}(5.0 \mathrm{~mol} \%$), Phen $(6.0 \mathrm{~mol} \%), t$-BuOK (0.25 mmol), solvent $(2.0 \mathbf{~ m L})$, Schlenk tube under nitrogen atmosphere, $130^{\circ} \mathrm{C}$ oil bath, 36 h reaction time.

Table S4: Screening of base ${ }^{\text {a }}$

 1a	 2a		ol\%) (\%) uiv.) ${ }^{\circ} \mathrm{C}, 36 \mathrm{~h}$ 3a	
	Entry	Base	GC-MS Conversion 3a (\%)	Ratio 3a/3a'
	1	t-BuOK	65	13:1
	2	t-BuONa	62	15:1
	3	$\mathrm{Cs}_{2} \mathrm{CO}_{3}$	1	1:1
	4	$\mathrm{Na}_{2} \mathrm{CO}_{3}$	6	3:1
	5	NaOH	70	17:1
	6	KOH	81 (78) ${ }^{\text {b }}$	5.7 : 1

Reaction conditions: [a] Quinaldine 1a (0.25 mmol), Benzyl alcohol 2a (0.50 mmol), $\mathrm{NiBr}_{2}(5.0 \mathrm{~mol} \%)$, Phen $(6.0 \mathrm{~mol} \%)$, Base ($\mathbf{0 . 2 5} \mathbf{~ m m o l}$), toluene (2.0 mL), Schlenk tube under nitrogen atmosphere, $130^{\circ} \mathrm{C}$ oil bath, 36 h reaction time. [b] Isolated yield average of two run.

Table S5: Screening of base equivalents ${ }^{\text {a }}$

Entry	Base Equivalent (X equiv.)	GC-MS Conversion 3a $(\%)$	Ratio 3a/3a'
$\mathbf{1}$	KOH (1.0 equiv.)	$\mathbf{8 1}(\mathbf{7 8})^{\text {b }}$	$\mathbf{5 . 7} \mathbf{: 1}$
2	KOH (0.75 equiv.)	65	$7.2: 1$
3	KOH (0.50 equiv.)	41	-
4	-	0	-

Reaction conditions: [a] Quinaldine 1a (0.25 mmol), Benzyl alcohol 2a (0.50 mmol), $\mathrm{NiBr}_{2}(5.0 \mathrm{~mol} \%)$, Phen $(6.0 \mathrm{~mol} \%), \mathrm{KOH}\left(\mathbf{X}\right.$ equiv.), toluene (2.0 mL), Schlenk tube under nitrogen atmosphere, $130^{\circ} \mathrm{C}$ oil bath, 36 h reaction time. [b] Isolated yield average of two run.

Table S6: Screening of catalyst and ligand loading ${ }^{\text {a }}$

Entry	$\begin{gathered} \text { Cat. } \\ (\mathbf{X ~ m o l} \%) \end{gathered}$	$\begin{gathered} \text { Ligand } \\ (\mathrm{Y} \text { mol \% }) \end{gathered}$	GC-MS Conversion $3 \mathbf{3}$ (\%)	$\begin{gathered} \text { Ratio } \\ \mathbf{3 a} / \mathbf{3 a}, \end{gathered}$
1	$\mathrm{NiBr}_{2} \mathbf{(5 . 0)}$	Phen (6.0)	81 (78) ${ }^{\text {b }}$	5.7 : 1
2	NiBr_{2} (2.5)	Phen (3.0)	76 (74) ${ }^{\text {b }}$	>20: 1
$3^{\text {c }}$	$\mathrm{NiBr}_{2} \mathbf{(5 . 0)}$	Phen (6.0)	$85(83){ }^{\text {b }}$	>20: 1
4	-	-	20	-

Reaction conditions: [a] Quinaldine 1a (0.25 mmol), Benzyl alcohol 2a (0.50 mmol), NiBr $\mathbf{N}_{\mathbf{2}} \mathbf{(X ~ m o l} \%$), Phen ($\mathbf{Y} \mathbf{~ m o l} \%$) , $\mathrm{KOH}(0.25 \mathrm{mmol})$, toluene (2.0 mL), Schlenk tube under nitrogen atmosphere, $130^{\circ} \mathrm{C}$ oil bath, 36 h reaction time. [b] Isolated yield average of two run. [c] $140^{\circ} \mathrm{C}, 24 \mathrm{~h}$ reaction time.

Table S7: Screening of alcohol equivalents ${ }^{\text {a }}$

Entry	Benzyl Alcohol Equivalent (X equiv.)	GC-MS Conversion 3a $(\%)$	Ratio 3a/3a'
$\mathbf{1}$	$\mathbf{2 . 0}$ equiv.	$\mathbf{8 5}(\mathbf{8 3})^{\mathrm{b}}$	$\mathbf{> 2 0} \mathbf{: 1}$
2	1.5 equiv.	65	-
3	1.0 equiv.	40	-

Reaction conditions: [a] Quinaldine 1a (0.25 mmol), Benzyl alcohol 2a (x mmol), NiBr_{2} ($5.0 \mathrm{~mol} \%$), Phen (6.0 $\mathrm{mol} \%$), KOH (1.0 equiv.), toluene (2.0 mL), Schlenk tube under nitrogen atmosphere, $140{ }^{\circ} \mathrm{C}$ oil bath, 24 h reaction time. [b] Isolated yield average of two run.

Deuterium incorporation experiments

Scheme S1:

Conversion was calculated by ${ }^{1} \mathrm{H}$-NMR integration value

		Deuterium incorporation in $\boldsymbol{\beta}$ position	Deuterium incorporation in $\boldsymbol{\alpha}$ position
Signal $\delta \mathrm{ppm}$	$8.63[1 \mathrm{H})]$	$7.74(1 \mathrm{H})$	$7.15(1 \mathrm{H})$
Integral Value	1.0	0.15	1.05
Calculated ratio		$\{(1-0.15) / 1\} \times 100=\mathbf{8 5 \%}$	$\{(1-1) / 1\} \times 100=\mathbf{0 \%}$

Scheme S2:

Conversion was calculated by ${ }^{1} \mathrm{H}$-NMR integration value

		Deuterium incorporation in $\boldsymbol{\beta}$ position	Deuterium incorporation in $\boldsymbol{\alpha}$ position
Signal $\delta \mathrm{ppm}$	$8.63[1 \mathrm{H})]$	$7.74(1 \mathrm{H})$	$7.15(1 \mathrm{H})$
Integral Value	1.0	0.55	1.11
Calculated ratio		$\{(1-0.55) / 1\} \times 100=\mathbf{4 5 \%}$	$\{(1-1) / 1\} \times 100=\mathbf{0 \%}$

Scheme S3:

Conversion was calculated by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ integration value

		Deuterium incorporation in $\boldsymbol{\beta}$ position	Deuterium incorporation in $\boldsymbol{\alpha}$ position
Signal $\delta \mathrm{ppm}$	$7.76[1 \mathrm{H})]$	$7.49(1 \mathrm{H})$	$7.32(1 \mathrm{H})$
Integral Value	1.0	1.0	0.35
Calculated ratio		$\{(1-1) / 1\} \times 100=\mathbf{0 \%}$	$\{(1-0.35) / 1\} \times 100=\mathbf{6 5 \%}$

Scheme S4: Time-conversion-plot for the reaction of 2-methylquinoline (1a) with benzyl alcohol (2a)

Reaction conditions: Quinaldine 1a (0.25 mmol), Benzyl alcohol 2a (0.50 mmol), NiBr_{2} ($5.0 \mathrm{~mol} \%$), Phen (6.0 $\mathrm{mol} \%), \mathrm{KOH}(0.25 \mathrm{mmol})$, toluene (2.0 mL), Schlenk tube under nitrogen atmosphere, $140{ }^{\circ} \mathrm{C}$ oil bath.

Scheme S5: Determination of rate and order of reaction

Run 1: Reaction was carried out in 2 mL of toluene and yield was calculated by GC

No.	$\mathbf{1 a}$ (mmol)	$\mathbf{2 a}$ (mmol)	NiBr_{2} (mmol)	Phen (mmol)	KOH (mmol)	toluene (mL)
Run 1	0.2	0.4	0.01	0.012	0.2	2.0

Sl. No.	Time (min)	Concentration of 3a (mM)
1	0	0
2	30	2
3	60	5
4	90	8
5	120	9.5
6	150	12
7	180	15
8	210	18
9	240	20
10	270	22
11	300	24

Run 2: Reaction was carried out in 2 mL of toluene and yield was calculated by GC

No.	$\mathbf{1 a}$ (mmol)	$\mathbf{2 a}$ (mmol)	NiBr_{2} (mmol)	Phen (mmol)	KOH (mmol)	toluene (mL)
Run 2	0.25	0.5	0.0125	0.015	0.25	2.0

Sl. No.	Time (min)	Concentration of 3a (mM)
1	0	0
2	30	3
3	60	7.5
4	90	12.5
5	120	16
6	150	20.6
7	180	25
8	210	28.7
9	240	31
10	270	34.4
11	300	37.5

Graphical representation for determination of rate and order of reaction
Considering steady state approximation for benzyl alcohol
From Run 1: Slope $=k$ [1a] ${ }^{x}$

$$
0.082=\mathrm{k}[0.20]^{\mathrm{x}}
$$

From Run 2: Slope $=\mathrm{k}[1 \mathrm{a}]^{\mathrm{x}}$

$$
\begin{aligned}
& 0.129=k[0.25]^{x} \\
& 0.129 / 0.082=[0.25]^{x} /[0.2]^{x} \\
& 1.57=[1.25]^{x} \\
& \log (1.57)=x . \log (1.25) \\
& x=0.195 / 0.0969 \\
&=2.01 \approx 2 \\
& \text { Rate }=k[1 \mathrm{a}]^{2}
\end{aligned}
$$

Scheme S6: Detection of H_{2} gas liberation.

In a 100 mL oven dried Ace Pressure tube, quinaldine (3.0 mmol), NiBr_{2} ($5 \mathrm{~mol} \%$), Phen (6 $\mathrm{mol} \%$), alcohols (6.0 mmol) and $\mathrm{KOH}(3.0 \mathrm{mmol})$, were added followed by toluene 10.0 mL under an atmosphere of N_{2} and the reaction mixture was sealed with septum and heated at $140{ }^{\circ} \mathrm{C}$ for 24 h . After completion of reaction H_{2} gas was detected by Centurion Scientific Gas Chromatograph (CS-5700+) through TCD Detector.

Date/Time: 2018-09-27, 12:50:42 PM
Data File: D: \CS200\TCD\genet \MARI. org
Method File: D: \CS200\TCD\genet \TCD NEW. mtd

Results

Peak No.	Peak ID	Ret Time	Height	Area	Conc.
1	H2	0.205	24767.684	56138.602	100.0000
Total					100.0000

Fig. 1: Crystallographic data for compound 3b

Platon-ellipsoid plot for compound 3b

Scheme S7: Gram Scale Reaction.

Gram Scale reaction was performed using quinaldine ($1.0 \mathrm{~g}, 6.99 \mathrm{mmol}$), benzyl alcohol ($1.509 \mathrm{~g}, 13.98 \mathrm{mmol}$), NiBr_{2} ($76 \mathrm{mg}, 5 \mathrm{~mol} \%$), Phen ($76 \mathrm{mg}, 6 \mathrm{~mol} \%$), KOH ($391 \mathrm{mg}, 6.99$ mmol), toluene (15.0 mL) in a 100 mL pressure tube under nitrogen atmosphere at $140^{\circ} \mathrm{C}$ in oil bath for 24 h . The reaction mixture was cooled to room temperature and 15.0 mL of ethyl acetate was added and concentrated in vacuo. The residue was purified by column chromatography using a gradient of hexane and ethyl acetate (eluent system) to afford the pure product $\mathbf{3 a}$ ($1.21 \mathrm{~g}, 75 \%$ yield).

Scheme S8: Detection of water in reaction mixture by ${ }^{1} \mathrm{H}-\mathrm{NMR}$

Reaction conditions: Quinaldine 1a (0.25 mmol), Benzyl alcohol 2a (0.50 mmol), $\mathrm{NiBr}_{2}(5.0 \mathrm{~mol} \%)$, Phen (6.0 $\mathrm{mol} \%), \mathrm{KOH}(0.25 \mathrm{mmol})$, toluene (2.0 mL), Schlenk tube under nitrogen atmosphere, $140{ }^{\circ} \mathrm{C}$ oil bath, 24 h .

In a 15 mL oven dried Schlenk tube, quinaldine 1a (0.25 mmol), NiBr_{2} ($5 \mathrm{~mol} \%$), Phen (6 $\mathrm{mol} \%$), benzyl alcohol $\mathbf{2 a}(0.50 \mathrm{mmol})$ and $\mathrm{KOH}(0.25 \mathrm{mmol})$, were added followed by toluene (dry) 2.0 mL under an atmosphere of N_{2} and the reaction mixture was heated at 140 ${ }^{\circ} \mathrm{C}$ for 24 h in a closed system. Then the reaction mixture was cooled to room temperature. Initially ${ }^{1} \mathrm{H}$ NMR of CDCl_{3} was measured and $1: 1$ ratio of $\mathrm{H}_{2} \mathrm{O}$ and TMS was found. Afterwards $20 \mu \mathrm{~L}$ of reaction mixture was added to the nmr tube and ${ }^{1} \mathrm{H}$ NMR was measured which shows increment in the ratio of $\mathrm{H}_{2} \mathrm{O}$. Further addition of reaction mixture shows enhancement in the ratio of $\mathrm{H}_{2} \mathrm{O}$ which proves that water was produced in the reaction.

Scheme S9: Evidence for the enamine intermediate formation

Reaction conditions: Quinaldine 1a $(0.25 \mathrm{mmol}), \mathbf{D}_{2} \mathbf{O}(0.2 \mathrm{~mL}), \mathrm{KOH}(0.5 \mathrm{mmol})$, toluene $(2.0 \mathrm{~mL})$, Schlenk tube under nitrogen atmosphere, $140^{\circ} \mathrm{C}$ oil bath, 12 h .

Conversion was calculated by ${ }^{1} \mathrm{H}$-NMR integration value

		1a	1a-d1	1a-d2	1a-d3
Signal δ ppm	7.15 $(1 \mathrm{H})$	$2.64(3 \mathrm{H})$	$2.62(2 \mathrm{H})$	$2.59-2.61$ $(1 \mathrm{H})$	
Integral Value	1.0	1.46	0.70	0.12	
Calculated ratio	$(1.46 / 3) \times 100$ $=\mathbf{4 9 \%}$	$(0.70 / 2) \times 100$ $=\mathbf{3 5 \%}$	$(0.12 / 1) \times 100$ $=\mathbf{1 2 \%}$	$100-(49+35+12)$ $=\mathbf{4 \%}$	

Scheme S10: Test for homogeneity experiments.

Reaction conditions: Quinaldine 1a (0.25 mmol), Benzyl alcohol 2a (0.50 mmol), Ni-Cat. ($5.0 \mathrm{~mol} \%$), Phen $(6.0 \mathrm{~mol} \%), \mathrm{KOH}(0.25 \mathrm{mmol})$, toluene $(2.0 \mathrm{~mL})$, Schlenk tube under nitrogen atmosphere, $140{ }^{\circ} \mathrm{C}$ oil bath, 24 h.

Moreover, to gain the additional proof for the homogeneous nature of the nickel-catalyst and exclude the involvement of the heterogeneous nickel-catalysts, such as, $\mathrm{Ni}(\mathrm{OH})_{2}, \mathrm{NiO}$ and Ni-based nanoparticles, we conducted several experiments using model reactions and observed only trace amount or poor product conversion to 3a. Notably, it is also evident that, presence of KOH base responsible for such poor product formation and there is no involvement of the heterogeneous Ni-catalysts. Thereafter, when the reaction was performed using mercury, commonly known as poison for heterogeneous catalysts, we observed 70% conversion to product 3a (Scheme S11). These experiments strongly support the homogeneous nature of the present catalytic system.

Scheme S11: Test for catalyst poisoning experiment

In a 15 mL oven dried Schlenk tube, quinaldine (0.25 mmol), NiBr_{2} ($5 \mathrm{~mol} \%$), Phen (6 $\mathrm{mol} \%)$, benzyl alcohol $(0.50 \mathrm{mmol})$ and $\mathrm{KOH}(0.25 \mathrm{mmol})$, were added followed by toluene 2.0 mL . Then $\mathrm{Hg}\left(50 \mathrm{mg}, 100 \mathrm{~mol} \%\right.$) was added to the mixture and flushed with N_{2} four times, the reaction mixture was heated at $140{ }^{\circ} \mathrm{C}$ for 24 h in close system. The reaction mixture was cooled to room temperature and 3.0 mL of ethyl acetate was added and analyzed by GC-MS. Product 3a (70\%) and reduced product $\mathbf{3 a}^{\prime}(20 \%)$ was observed in GC-MS
analysis of crude reaction mixture which eliminates the probability of a heterogeneous reaction.

Scheme S12: Quantitative determination of hydrogen gas produced in the reaction
In a 10 mL oven dried Schlenk tube, quinaldine (0.5 mmol), $\mathrm{NiBr}_{2}(5 \mathrm{~mol} \%)$, Phen ($6 \mathrm{~mol} \%$), benzyl alcohol (1.0 mmol) and $\mathrm{KOH}(0.5 \mathrm{mmol})$, were added followed by toluene 4.0 mL and connected to the gas burette as shown in below figure. Then the reaction mixture was heated at $140^{\circ} \mathrm{C}$ until the production of hydrogen gas ceased. The procedure was repeated three times to get concordant reading.

Total volume of water displaced, $\mathrm{V}=0.0176 \mathrm{~L}$
Vapor pressure of water at $298 \mathrm{~K}, \mathrm{P}_{\mathrm{H} 2 \mathrm{O}}=23.7695$ Torr
Atmospheric pressure at $298 \mathrm{~K}, \mathrm{P}_{\mathrm{atm}}=758.3124$ Torr
Pressure of H_{2} gas, $\mathrm{P}_{\mathrm{H} 2}=\mathrm{P}_{\mathrm{atm}}-\mathrm{P}_{\mathrm{H} 2 \mathrm{O}}=(758.3124-23.7695)$ Torr $=$ 734.5429 Torr

$$
\begin{array}{rl}
\mathrm{P}_{\mathrm{H} 2} & * \mathrm{~V}=\mathrm{nH}_{2} * \mathrm{R} * \mathrm{~T} \\
\mathrm{nH}_{2} & =\mathrm{P}_{\mathrm{H} 2} * \mathrm{~V} / \mathrm{R} * \mathrm{~T} \\
& =734.5429 \mathrm{Torr} * 0.0176 \mathrm{~L} / 62.3635 \mathrm{~L} \mathrm{Torr} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} * 298 \mathrm{~K} \\
& =0.000696 \mathrm{~mol} \\
& \approx 0.70 \mathrm{mmol}
\end{array}
$$

Scheme S13: Control experiments for α-olefination.

We explored our interests towards the reaction mechanism for the olefination process. Therefore, a series of experiments were performed using 1a with 4-methoxy benzaldehyde as well as 4-methoxy benzylalcohol $2 \mathbf{f}$ in presence and absence of nickel catalyst for 15 h (Scheme S13). When 4-methoxybenzaldehyde subjected to olefination with 1a under standard conditions using nickel resulted $\mathbf{3 f}$ in 27% yield. However, under identical conditions in absence of nickel, $\mathbf{3 f}$ was obtained in 7% yield. Interestingly, under optimized conditions, similar reaction using 4-methoxybenzylalcohol $\mathbf{2 f}$ gave 36% of the product $\mathbf{3 f}$. These experimental outcomes are in agreement with the participation of nickel catalyst for alcohol dehydrogenation as well as crucial for C-C bond forming condensation process. Nevertheless, either in absence of catalyst and KOH or in absence of KOH , 4-methoxybenzaldehyde did not result any desired product.

[1.4] Spectroscopic and Analytical Data:

(\boldsymbol{E})-2-Styrylquinoline ($\mathbf{3 a})^{1}$: Following the general procedure, the title compound was
 isolated as a white solid (48 mg , Yield: 83%). ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 8.10(\mathrm{dd}, J=16.4,8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.78(\mathrm{dd}, J=8.1,1.1 \mathrm{~Hz}$, $1 \mathrm{H}), 7.71$ (dd, $J=6.5,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{ddd}, J=8.0,7.3,3.0 \mathrm{~Hz}$, $4 \mathrm{H}), 7.49$ (ddd, $J=8.1,6.9,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.43-7.38(\mathrm{~m}, 3 \mathrm{H}), 7.34-7.30(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 156.09,148.36,136.61,136.43,134.52,129.83,129.30,129.12,128.88$, 128.72, 127.58, 127.44, 127.35, 126.26, 119.35.
(\boldsymbol{E})-2-(4-Methylstyryl)quinoline ($\mathbf{3 b})^{1}$: Following the general procedure, the title compound
 was isolated as a white solid (53 mg , Yield: 86\%). ${ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.08(\mathrm{dd}, J=16.0,8.5 \mathrm{~Hz}, 2 \mathrm{H}$), 7.77 (d, $J=8.2$ $\mathrm{Hz}, 1 \mathrm{H}$), 7.68 (ddd, $J=23.1,11.5,4.1 \mathrm{~Hz}, 3 \mathrm{H}), 7.54(\mathrm{~d}, J=8.1$ $\mathrm{Hz}, 2 \mathrm{H}), 7.48(\mathrm{ddd}, J=8.0,7.0,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{~d}, J=16.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.20(\mathrm{~d}, J=7.9 \mathrm{~Hz}$, 2 H), 2.37 ($\mathrm{s}, 3 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 156.30,148.31,138.88,136.42,134.53$, 133.80, 129.83, 129.64, 129.19, 128.09, 127.60, 127.37, 127.31, 126.17, 119.28, 21.49.
(\boldsymbol{E})-2-(4-Ethylstyryl)quinoline (3c): Following the general procedure, the title compound
 was isolated as a white solid (36 mg , Yield: 56%). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.09$ (dd, $J=15.3,8.6 \mathrm{~Hz}, 2 \mathrm{H}$), 7.77 (d, J $=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.72-7.63(\mathrm{~m}, 3 \mathrm{H}), 7.56(\mathrm{dd}, J=8.2,2.0 \mathrm{~Hz}$, 2H), $7.50-7.46$ (m, 1H), 7.37 (dd, $J=16.3,2.3 \mathrm{~Hz}, 1 \mathrm{H}$), 7.23 (dd, $J=8.1,1.8 \mathrm{~Hz}, 2 \mathrm{H}$), 2.70 - $2.64(\mathrm{~m}, 2 \mathrm{H}), 1.26(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 155.22$, 147.25, $144.09,135.25,133.42,132.99,128.68,128.13,127.32,127.09,126.47,126.28,126.27$, 125.03, 118.16, 27.71, 14.41. HRMS (ESI): Calculated for $\left[\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{~N}\right]^{+}$260.1434; Found 260.1429 .
(\boldsymbol{E})-2-(4-Isopropylstyryl)quinoline (3d): Following the general procedure, the title
 compound was isolated as a white solid (46 mg , Yield: 67%). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.09(\mathrm{dd}, J=17.8,8.5 \mathrm{~Hz}, 2 \mathrm{H})$, 7.77 (dd, $J=8.1,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.71-7.63$ (m, 3H), 7.57 (d, J $=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.48(\mathrm{ddd}, J=8.0,6.9,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{~d}, J$ $=16.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.26(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.93(\mathrm{dt}, J=13.9,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.27(\mathrm{~d}, J=6.9 \mathrm{~Hz}$, $6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 156.26, 149.73, 148.30, 136.28, 134.44, 134.18, 129.71,
129.17, 128.18, 127.51, 127.34, 127.31, 126.93, 126.07, 119.18, 34.02, 23.90. HRMS (ESI): Calculated for $\left[\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~N}\right]^{+} 274.1590$; Found 274.1582.
(\boldsymbol{E})-2-(2-Methylstyryl)quinoline (3e) ${ }^{\mathbf{2}}$: Following the general procedure, the title compound
 was isolated as a colorless oil (48 mg , Yield: 78%). ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.10(\mathrm{dd}, J=13.8,8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.93(\mathrm{~d}, J=16.2$ $\mathrm{Hz}, 1 \mathrm{H}), 7.79-7.76(\mathrm{~m}, 1 \mathrm{H}), 7.75-7.66(\mathrm{~m}, 3 \mathrm{H}), 7.49(\mathrm{ddd}, J=$ $8.1,7.0,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{~d}, J=16.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.27-7.20(\mathrm{~m}, 3 \mathrm{H}), 2.52(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 156.30,148.32,136.69,136.47,135.56,132.18,130.69,130.26,129.86$, 129.31, 128.60, 127.61, 127.43, 126.44, 126.28, 125.89, 119.41, 20.16.
(\boldsymbol{E})-2-(4-Methoxystyryl)quinoline (3f) ${ }^{\mathbf{1}}$: Following the general procedure, the title
 compound was isolated as a white solid (49.5 mg , Yield: $76 \%) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.07(\mathrm{t}, J=9.4 \mathrm{~Hz}, 2 \mathrm{H}$), 7.76 (dd, $J=8.1,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.71-7.64(\mathrm{~m}, 2 \mathrm{H}), 7.62$ (d, J $=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.60-7.56(\mathrm{~m}, 2 \mathrm{H}), 7.47(\mathrm{ddd}, J=8.1,7.0,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{~d}, J=16.3 \mathrm{~Hz}$, $1 \mathrm{H}), 6.95-6.91(\mathrm{~m}, 2 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 160.18$, 156.43, $148.33,136.38,134.14,129.81,129.34,129.13,128.77,127.60,127.29,126.87,126.03$, 119.21, 114.30, 55.45.
(\boldsymbol{E})-2-(2-(Naphthalen-1-yl)vinyl)quinoline ($\mathbf{3 g})^{\mathbf{2}}$: Following the general procedure, the title compound was isolated as a yellow oil (50 mg , Yield: 71%). ${ }^{1} \mathrm{H}$
 NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.52$ (d, $\left.J=16.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 8.34$ (d, J $=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.14(\mathrm{dd}, J=12.5,8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.91-7.85(\mathrm{~m}$, 3 H), 7.80 (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}$), $7.76-7.70$ (m, 2H), $7.60-7.45$ $(\mathrm{m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 156.13,148.38,136.57,134.12,133.84,131.83$, 131.57, 131.46, 129.92, 129.39, 129.09, 128.80, 127.65, 127.52, 126.46, 126.36, 126.08, 125.84, 124.31, 123.85, 119.67.
(E)-2-(2-(Benzo[d][1,3]dioxol-5-yl)vinyl)quinoline (3h) ${ }^{\mathbf{1}}$: Following the general procedure,
 the title compound was isolated as a white solid (40 mg , Yield: $58 \%) .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.14(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H})$, 8.09 (d, $J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.80(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.75-7.71$ $(\mathrm{m}, 1 \mathrm{H}), 7.65(\mathrm{t}, J=12.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.53-7.49(\mathrm{~m}, 1 \mathrm{H}), 7.29(\mathrm{~s}, 1 \mathrm{H}), 7.22(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H})$, $7.11(\mathrm{dd}, J=8.0,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.03(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz ,
$\left.\mathrm{CDCl}_{3}\right) \delta 156.12,148.29,136.30,134.15,131.10,129.72,129.13,127.49,127.27,127.25$, 126.03, 122.81, 119.26, 115.00, 108.53, 106.06, 101.30.
(\boldsymbol{E})-2-(2-([1,1'-Biphenyl]-4-yl)vinyl)quinoline (3i) $\mathbf{2}^{\mathbf{2}}$: Following the general procedure, the
 title compound was isolated as a white solid (34.5 mg , Yield: $45 \%) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.13(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H})$, $8.08(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.78(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.75-7.68$ $(\mathrm{m}, 5 \mathrm{H}), 7.66-7.62(\mathrm{~m}, 3 \mathrm{H}), 7.60-7.56(\mathrm{~m}, 1 \mathrm{H}), 7.48-7.42$ ($\mathrm{m}, 4 \mathrm{H}$), 7.36 (ddd, $J=8.2,4.6,1.8 \mathrm{~Hz}, 1 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 156.01,148.32$, 141.37, 140.53, 136.37, 135.58, 133.97, 129.78, 129.23, 129.02, 128.85, 128.82, 127.74, 127.52, 127.48, 127.15, 126.99, 126.20, 119.34.
(\boldsymbol{E})-2-(2-Cyclohexylvinyl)quinoline (31) ${ }^{\mathbf{1}}$: : Following the general procedure, the title
 compound was isolated as a pale-yellow oil (18 mg , Yield: 31%). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.03(\mathrm{dd}, J=13.4,8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.73$ $(\mathrm{d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.68-7.62(\mathrm{~m}, 1 \mathrm{H}), 7.53(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H})$, $7.44(\mathrm{dd}, J=11.0,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.76(\mathrm{dd}, J=16.1,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.66(\mathrm{~d}, J=16.3 \mathrm{~Hz}, 1 \mathrm{H})$, $2.30-2.19(\mathrm{~m}, 1 \mathrm{H}), 1.93-1.66(\mathrm{~m}, 6 \mathrm{H}), 1.36-1.23(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 156.88,148.16,143.48,136.20,129.57,129.18,128.74,127.50,127.21,125.88,118.80$, 41.23, 32.63, 26.23, 26.10.
(\boldsymbol{E})-2-(2-Cyclopropylvinyl)quinoline ($\mathbf{3 m})^{\mathbf{1}}$: Following the general procedure, the title
 compound was isolated as a pale-yellow oil (14.5 mg , Yield: $30 \%) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.01$ (dd, $J=16.4,8.5 \mathrm{~Hz}$, 2 H), 7.72 (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}$), 7.64 (ddd, $J=8.4,6.9,1.3 \mathrm{~Hz}$, 1H), $7.46-7.40(\mathrm{~m}, 2 \mathrm{H}), 6.76(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.37(\mathrm{dd}, J=15.7,9.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.75-$ $1.65(\mathrm{~m}, 1 \mathrm{H}), 0.94-0.89(\mathrm{~m}, 2 \mathrm{H}), 0.70-0.63(\mathrm{~m}, 2 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $156.28,151.74,148.20,142.15,136.23,129.57,129.10,128.32,127.49,125.72,118.93$, 15.00, 8.13.
(\boldsymbol{E})-2-Styrylpyrazine (4a) ${ }^{\mathbf{1}}$: Following the general procedure, the title compound was
 isolated as a white solid (35 mg , Yield: 77%). ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 8.63(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.54-8.53(\mathrm{~m}, 1 \mathrm{H}), 8.39(\mathrm{~d}, J=2.5$
$\mathrm{Hz}, 1 \mathrm{H}), 7.74(\mathrm{~d}, J=16.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.41-7.37$ $(\mathrm{m}, 2 \mathrm{H}), 7.34-7.31(\mathrm{~m}, 1 \mathrm{H}), 7.15(\mathrm{~d}, J=16.1 \mathrm{~Hz}, 1 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (100
$\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 151.33,144.45,143.89,142.86,136.08,135.27,129.11,128.95,127.43$, 124.06.
(\boldsymbol{E})-2-(4-Methylstyryl)pyrazine (4b) ${ }^{\mathbf{1}}$: Following the general procedure, the title compound
 was isolated as a white solid (33.3 mg , Yield: 68%). ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.61(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.52-8.51(\mathrm{~m}, 1 \mathrm{H}), 8.37(\mathrm{~d}$, $J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.71(\mathrm{~d}, J=16.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H})$, $7.19(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.10(\mathrm{~d}, J=16.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta$ 151.57, 144.38, 143.76, 142.60, 139.27, 135.23, 133.36, 129.67, 127.37, 123.09, 21.48.
(\boldsymbol{E})-2-(4-Ethylstyryl)pyrazine (4c): Following the general procedure, the title compound
 was isolated as a white solid (38 mg , Yield: 72%). ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.62(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.52-8.51(\mathrm{~m}, 1 \mathrm{H})$, $8.37(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.72(\mathrm{~d}, J=16.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{~d}, J=$ $8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.22(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.10(\mathrm{~d}, J=16.1 \mathrm{~Hz}, 1 \mathrm{H})$, $2.66(\mathrm{q}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.24(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 151.59$, 145.62, 144.41, 143.73, 142.63, 135.27, 133.61, 128.42, 127.44, 123.12, 28.83, 15.50. HRMS (ESI): Calculated for [$\left.\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{~N}_{2}\right]^{+}$211.1230; Found 211.1233.
(\boldsymbol{E})-2-(4-Isopropylstyryl)pyrazine (4d) ${ }^{\mathbf{1}}$: Following the general procedure, the title
 compound was isolated as a white solid (40 mg , Yield: 71%). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.62(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.52(\mathrm{dd}, J=$ $2.4,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.36(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.72(\mathrm{~d}, J=16.1 \mathrm{~Hz}$, $1 \mathrm{H}), 7.53-7.51(\mathrm{~m}, 2 \mathrm{H}), 7.26-7.24(\mathrm{~m}, 2 \mathrm{H}), 7.11(\mathrm{~d}, J=16.1 \mathrm{~Hz}$, $1 \mathrm{H}), 2.92(\mathrm{dt}, J=13.8,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.26(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $151.57,150.25,144.40,143.79,142.61,135.22,133.72,127.48,127.06,123.15,34.11$, 23.97.
(\boldsymbol{E})-2-(4-Methoxystyryl)pyrazine (4e) ${ }^{\mathbf{3}}$: Following the general procedure, the title
 compound was isolated as a white solid (41.3 mg , Yield: 78%). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.60(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.51(\mathrm{~d}, J=$ $3.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.36(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.69(\mathrm{dd}, J=16.0,2.4 \mathrm{~Hz}$,
$1 \mathrm{H}), 7.55-7.52(\mathrm{~m}, 2 \mathrm{H}), 7.05-6.98(\mathrm{~m}, 1 \mathrm{H}), 6.93-6.91(\mathrm{~m}, 2 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 160.45,151.73,144.34,143.65,142.36,134.85,128.91,128.85,121.86$, 114.38, 55.45.
(\boldsymbol{E})-2-(2-(Naphthalen-1-yl)vinyl)pyrazine (4g) ${ }^{\mathbf{4}}$: Following the general procedure, the title
 compound was isolated as a white solid (38 mg , Yield: 65%). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.55(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.49(\mathrm{~d}, J=3.7$ $\mathrm{Hz}, 1 \mathrm{H}), 8.29(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.09(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.87(\mathrm{~d}, J$ $=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.79(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.58-7.52(\mathrm{~m}, 3 \mathrm{H}), 7.15(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 151.41,144.47$, 143.78, 142.72, 136.51, 133.86, 132.41, 131.32, 128.76, 128.56, 126.40, 125.96, 125.51, 125.35, 124.27, 123.79.
(\boldsymbol{E})-2-(Non-1-en-1-yl)pyrazine (4h): Following the general procedure, the title compound
 was isolated as a white solid (13 mg , Yield: 25%). ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 8.50(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.46-8.45(\mathrm{~m}, 1 \mathrm{H}), 8.34(\mathrm{~d}, J=2.5$ $\mathrm{Hz}, 1 \mathrm{H}), 6.87(\mathrm{dt}, J=15.7,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.47(\mathrm{dt}, J=15.8,1.4 \mathrm{~Hz}, 1 \mathrm{H})$, 2.28 (ddd, $J=14.8,7.3,1.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.53-1.46(\mathrm{~m}, 2 \mathrm{H}), 1.37-1.27(\mathrm{~m}, 8 \mathrm{H}), 0.86(\mathrm{~d}, J=$ $7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 150.90,144.05,142.86,142.22,139.15,126.27$, 33.02, 31.77, 29.19, 29.13, 28.75, 22.64, 14.10. HRMS (ESI): Calculated for $\left[\mathrm{C}_{13} \mathrm{H}_{21} \mathrm{~N}_{2}\right]^{+}$ 205.1699; Found 205.1696.

2,5-Di((E)-styryl)pyrazine (4i) ${ }^{\mathbf{5}}$: Following the general procedure, the title compound was $\mathrm{Ph} \quad \mathrm{N}$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.59(\mathrm{~s}, 2 \mathrm{H}), 7.73(\mathrm{~d}, J=16.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.60(\mathrm{~d}, J$ $=8.5 \mathrm{~Hz}, 4 \mathrm{H}), 7.39(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 7.33(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.18(\mathrm{~d}, J=16.1 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 154.98$, 149.17, 143.39, 136.33, 134.45, 128.94, 127.37, 124.15.
(\boldsymbol{E})-2-Phenethyl-5-styrylpyrazine ($\left.\mathbf{4 i}^{\prime}\right)^{\mathbf{1}}$: Following the general procedure, the title
 compound was isolated as a white solid (22 mg , Yield: 31%). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.57(\mathrm{~s}, 1 \mathrm{H}), 8.30(\mathrm{~s}, 1 \mathrm{H}), 7.67(\mathrm{~d}, J=$ $16.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.39(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.33-7.26(\mathrm{~m}, 3 \mathrm{H}), 7.21-$ $7.12(\mathrm{~m}, 4 \mathrm{H}), 3.14-3.04(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 154.57, 148.71, 143.94, $142.77,140.84,136.27,134.07,128.82,128.75,128.52$, $128.45,127.20$, 126.23, 124.10, 37.02, 35.48.
(\boldsymbol{E})-6-Methoxy-2-styrylquinoline (5a) ${ }^{\text {1 }}$: Following the general procedure, the title MeO compound was isolated as a white solid (50 mg , Yield: 77%). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.00$ (dd, $J=17.6,8.9 \mathrm{~Hz}, 2 \mathrm{H}$), 7.64 $-7.58(\mathrm{~m}, 4 \mathrm{H}), 7.40-7.28(\mathrm{~m}, 5 \mathrm{H}), 7.05(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.92(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 157.72,153.80,144.34,136.76,135.21,133.30,130.71,129.13,128.87$, 128.50, 128.38, 127.22, 122.44, 119.65, 105.31, 55.65.
(\boldsymbol{E})-6-bromo-2-styrylquinoline (5b) ${ }^{\mathbf{8}}$: Following the general procedure, the title compound
 was isolated as a white solid (25.5 mg , Yield: 33%). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.02(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.95-7.91(\mathrm{~m}, 2 \mathrm{H})$, 7.75 (dd, $J=9.0,2.2 \mathrm{~Hz}, 1 \mathrm{H}$), $7.72-7.61(\mathrm{~m}, 4 \mathrm{H}), 7.43-7.30(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 156.43,146.92,136.39,135.43,135.10,133.28,130.95,129.66,129.18$, 128.94, 128.59, 128.47, 127.42, 120.31, 120.00.
(\boldsymbol{E})-8-Methoxy-2-styrylquinoline (5c) ${ }^{\text {6 }}$: Following the general procedure, the title
 compound was isolated as a white solid (38 mg , Yield: 58%). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.07(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.74(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H})$, $7.64-7.61(\mathrm{~m}, 2 \mathrm{H}), 7.56(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.41-7.33(\mathrm{~m}, 5 \mathrm{H})$, $7.04(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.09(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 155.23$, 155.18, 140.10, 136.66, 136.39, 134.06, 129.77, 128.89, 128.62, 128.49, 128.46, 127.33, 126.48, 119.53, 119.27, 108.02, 56.20.

8-((E)-Prop-1-en-1-yloxy)-2-((E)-styryl)quinoline (5d): Following the general procedure,
 the title compound was isolated as a white solid (53 mg , Yield: 74%). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.12(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H})$, 7.76 (d, $J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.71-7.64$ (m, 3H), 7.56 (d, $J=16.4$ Hz, 1H), $7.48-7.42$ (m, 4H), 7.35 (dd, $J=10.5,4.1 \mathrm{~Hz}, 1 \mathrm{H}$), 7.23 (dd, $J=7.5,1.3 \mathrm{~Hz}, 1 \mathrm{H})$, 6.61 (dq, $J=5.7,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.17-5.12(\mathrm{~m}, 1 \mathrm{H}), 1.91(\mathrm{dd}, J=6.9,1.7 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 155.47,153.32,141.43,140.18,136.65,136.20,134.25,129.66,128.79$, 128.67, 128.55, 127.32, 126.09, 121.29, 119.45, 112.95, 109.55, 9.87. Elemental Analysis calculated: C, 83.59; H, 5.96; Found: C, 83.13; H, 6.07.
(\boldsymbol{E})-1-Styrylisoquinoline (5e) ${ }^{\mathbf{2}}$: Following the general procedure, the title compound was
 isolated as a white solid (26 mg , Yield: 45%). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.56(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.37(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.00(\mathrm{t}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H})$, $7.82(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.71-7.60(\mathrm{~m}, 4 \mathrm{H}), 7.56(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.43$ $-7.39(\mathrm{~m}, 2 \mathrm{H}), 7.35-7.31(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 154.62,142.55,136.98$, $136.82,135.91,130.03,128.88,128.73,127.55,127.43,127.31,126.84,124.56,122.89$, 120.10.
(E)-7-Chloro-2-styrylquinoline (5f) ${ }^{9}$: Following the general procedure, the title compound
 was isolated as a yellow solid (39 mg , Yield: 58%). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.01(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.64(\mathrm{~d}, J=8.6$ $\mathrm{Hz}, 1 \mathrm{H}), 7.61(\mathrm{~s}, 1 \mathrm{H}), 7.56(\mathrm{dd}, J=7.9,2.8 \mathrm{~Hz}, 3 \mathrm{H}), 7.34$ (dd, $J=15.2,7.2 \mathrm{~Hz}, 3 \mathrm{H}), 7.27(\mathrm{t}, J=3.7 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 155.89$, $147.65,135.30,135.09,134.51,134.15,127.81,127.64,127.46,127.38,127.18,126.33$, 126.06, 124.64, 118.61.
(\boldsymbol{E})-2-Methyl-6-styrylpyrazine ($\mathbf{5 g})^{\mathbf{2}}$: Following the general procedure, the title compound
 was isolated as a white solid (22.5 mg , Yield: 46%). ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 8.44(\mathrm{~s}, 1 \mathrm{H}), 8.28(\mathrm{~s}, 1 \mathrm{H}), 7.71(\mathrm{~d}, J=16.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{~d}, J$ $=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.38(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.33(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{~d}$, $J=16.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.58(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 153.43,150.16,142.66$, 140.60, 136.27, 134.73, 128.91, 128.90, 127.36, 124.49, 21.84.
(\boldsymbol{E})-2-Styrylbenzo[d]oxazole (5h) ${ }^{\mathbf{2}}$: Following the general procedure, the title compound was
 isolated as a white solid (25 mg , Yield: 45%). ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.80(\mathrm{dd}, J=16.3,11.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.75-7.66(\mathrm{~m}, 1 \mathrm{H}), 7.63-$ $7.59(\mathrm{~m}, 2 \mathrm{H}), 7.56-7.51(\mathrm{~m}, 1 \mathrm{H}), 7.41(\mathrm{dd}, J=11.5,4.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.37-7.25(\mathrm{~m}, 3 \mathrm{H}), 7.09$ (dd, $J=16.4,11.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 162.90,150.51,142.27,139.57$, 135.24, 129.87, 129.07, 127.65, 125.31, 124.61, 119.97, 114.05, 110.42.
(\boldsymbol{E})-2-Styrylpyridine (5i) ${ }^{\mathbf{1}}$: Following the general procedure, the title compound was isolated
 as a white solid (41 mg , Yield: 90%). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $8.61-8.59(\mathrm{~m}, 1 \mathrm{H}), 7.66-7.64(\mathrm{~m}, 1 \mathrm{H}), 7.63-7.61(\mathrm{~m}, 1 \mathrm{H}), 7.59-$ 7.56 (m, 2H), $7.38-7.35(\mathrm{~m}, 3 \mathrm{H}), 7.29$ (ddd, $J=7.2,3.7,1.2 \mathrm{~Hz}, 1 \mathrm{H})$,
$7.18(\mathrm{~s}, 1 \mathrm{H}), 7.12(\mathrm{ddd}, J=4.8,2.4,1.2 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 155.71, 149.76, 136.74, 136.63, 132.82, 128.82, 128.43, 128.04, 127.20, 122.18, 122.15.
(\boldsymbol{E})-2-(4-Methoxystyryl)pyridine (5j) ${ }^{7}$: Following the general procedure, the title compound
 was isolated as a white solid (48 mg , Yield: 91%). ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.58-8.56(\mathrm{~m}, 1 \mathrm{H}), 7.64-7.55(\mathrm{~m}, 2 \mathrm{H}), 7.53-$ 7.49 (m, 2H), 7.33 (d, $J=7.9 \mathrm{~Hz}, 1 \mathrm{H}$), 7.09 (ddd, $J=7.3,4.8,1.0$ $\mathrm{Hz}, 1 \mathrm{H}), 7.03(\mathrm{~d}, J=16.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.91-6.88(\mathrm{~m}, 2 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 159.93,156.01,149.67,136.62,132.35,129.48,128.53,125.86,121.90,121.79$, 114.26, 55.42.
$\boldsymbol{(E)}$-4-Styrylquinoline ($\mathbf{5 k})^{1}$: Following the general procedure, the title compound was
 isolated as a yellow oil (32 mg , Yield: 55%). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 8.93 (d, $J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.24(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.17(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H})$, $7.84(\mathrm{~d}, J=16.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.76(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.68-7.60(\mathrm{~m}, 4 \mathrm{H}), 7.46$ $(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.38(\mathrm{t}, J=12.9 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $150.23,148.75,142.97,136.61,135.16,130.17,129.31,128.91,128.80$, 127.13, 126.51, 126.45, 123.49, 122.96, 117.10.
(\boldsymbol{E})-4-(4-Isopropylstyryl)quinoline (5I) ${ }^{10}$: Following the general procedure, the title
 compound was isolated as a yellow oil (20 mg , Yield: 29\%). ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.88(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.21(\mathrm{dd}, J=8.5,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.12$ (dd, $J=8.5,0.6 \mathrm{~Hz}, 1 \mathrm{H}$), 7.74 (ddd, $J=12.5,10.8,8.5 \mathrm{~Hz}, 2 \mathrm{H}$), 7.57 (ddd, J $=8.2,3.3,1.7 \mathrm{~Hz}, 4 \mathrm{H}), 7.30(\mathrm{dd}, J=13.9,12.1 \mathrm{~Hz}, 3 \mathrm{H}), 2.95(\mathrm{dq}, J=13.8$, $6.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.28(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $150.30,150.04,148.78,143.25,135.18,135.16,134.31,130.19,129.37$, $127.27,127.09,126.53,123.58,122.02,117.02,34.10,23.99$.
(E)-4-(4-Methoxystyryl)quinoline $(\mathbf{5 m})^{10}$: Following the general procedure, the title
 compound was isolated as a yellow oil (23 mg , Yield: 35%). ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.87(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.21(\mathrm{dd}, J=8.5,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.12$ (dd, $J=8.5,0.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.74-7.64(\mathrm{~m}, 2 \mathrm{H}), 7.59-7.55(\mathrm{~m}, 4 \mathrm{H}), 7.29(\mathrm{~d}, ~ J$ $=16.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.95(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 160.31,150.23,148.73,143.39,134.78,130.10,129.46,129.36$, $128.62,126.51,126.47,123.57,120.56,116.80,114.43,55.48$.
(E)-4-(2-(Naphthalen-1-yl)vinyl)quinoline (5n) ${ }^{\text {8 }}$: Following the general procedure, the title
 compound was isolated as a yellow solid (42 mg , Yield: 60%). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.87(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.15(\mathrm{t}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H})$, 8.06 (dd, $J=20.3,12.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.84-7.75(\mathrm{~m}, 4 \mathrm{H}), 7.67$ (ddd, $J=$ $8.3,6.8,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.62(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.53-7.46(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 150.38,148.83,143.24,134.38,133.84$, $132.52,131.47,130.24,129.48,129.26,128.86,126.71,126.65,126.55,126.21,125.75$, 124.49, 123.67, 123.65, 117.47. GC-MS (EI) m/z $=281.1$
(E)-2-(2-([1,1'-Biphenyl]-4-yl)vinyl)-6-methoxyquinoline (6a) ${ }^{1}:(E)$-2-(2-([1,1'-Biphenyl]4 -yl)vinyl)-6-methoxyquinoline (6a) ${ }^{1}$: Following the
 general procedure, the title compound was isolated as a white solid (34 mg , Yield: 40%). ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 8.00(\mathrm{dd}, J=16.5,8.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.66(\mathrm{ddd}, J=$ $6.6,5.5,2.6 \mathrm{~Hz}, 8 \mathrm{H}), 7.49-7.40(\mathrm{~m}, 3 \mathrm{H}), 7.37$ (ddd, $J=7.6,5.3,3.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.06(\mathrm{~d}, J=$ $2.8 \mathrm{~Hz}, 1 \mathrm{H}$), $3.93(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 156.63$, 152.68, 143.27, 140.06, 139.52, 134.71, 134.10, 131.70, 129.61, 128.01, 127.81, 127.29, 126.55, 126.44, 126.41, 125.94, 121.34, 118.60, 104.23, 54.54.
(\boldsymbol{E})-2-(4,8-Dimethylnona-1,7-dien-1-yl)quinoline ($\mathbf{6 b})^{\mathbf{2}}$: Following the general procedure,
 the title compound was isolated as a colorless oil (32 mg , Yield: 46%). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.03$ (dd, $J=$ $15.0,8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.74(\mathrm{dd}, J=8.1,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.66$ (ddd, $J=8.4,6.9,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.53$ (d, $J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{ddd}, J=8.0,7.0,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.77(\mathrm{ddd}, J=36.6,21.8,11.5 \mathrm{~Hz}, 2 \mathrm{H})$, 5.10 (dddd, $J=7.1,5.7,2.7,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.36-2.31(\mathrm{~m}, 1 \mathrm{H}), 2.16$ (ddd, $J=11.0,8.1,4.0$ $\mathrm{Hz}, 1 \mathrm{H}$), $2.15-1.97(\mathrm{~m}, 2 \mathrm{H}), 1.71-1.68(\mathrm{~m}, 1 \mathrm{H}), 1.67(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.60(\mathrm{~s}, 3 \mathrm{H})$, $1.49-1.38(\mathrm{~m}, 1 \mathrm{H}), 1.23$ (dddd, $J=13.7,9.3,7.0,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 0.96(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 156.52,148.13,136.75,136.25,132.37,131.41,129.63,129.17$, $127.51,127.23,125.94,124.76,118.75,40.72,36.91,32.78,25.84,25.71,19.72,17.78$.

2-((1E,10Z)-Nonadeca-1,10-dien-1-yl)quinoline (6c): Following the general procedure, the
 title compound was isolated as a colorless oil (51 mg , Yield: 52%). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.03$ (dd, $J=13.4,8.5$ $\mathrm{Hz}, 2 \mathrm{H}), 7.75(\mathrm{t}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.66$ (ddd, $J=8.3,5.3,1.2$ $\mathrm{Hz}, 1 \mathrm{H}), 7.51(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{dt}, J=15.8,6.6 \mathrm{~Hz}, 1 \mathrm{H})$,
$6.70(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.34(\mathrm{dd}, J=9.5,4.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.32(\mathrm{p}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.00(\mathrm{~d}, J=$ $2.9 \mathrm{~Hz}, 4 \mathrm{H}), 1.54(\mathrm{dt}, J=14.9,7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.28(\mathrm{dd}, J=14.9,9.8 \mathrm{~Hz}, 20 \mathrm{H}), 0.86(\mathrm{t}, J=6.8$ $\mathrm{Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 156.62, 148.17, 138.12, 136.20, 131.11, 130.04, $129.90,129.57,129.20,127.47,127.22,125.88,118.77,33.13,31.97,29.85,29.83,29.59$, 29.48, 29.40, 29.38, 29.34, 29.30, 28.98, 27.30, 27.28, 22.75, 14.17. Elemental Analysis calculated: C, 85.87; H, 10.55; Found: C, 85.52; H, 10.27.
(E)-2-(3-(6-Methoxynaphthalen-2-yl)but-1-en-1-yl)quinoline (6d): Following the general

procedure, the title compound was isolated as a pale blue oil (38 mg , Yield: 45%). ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 8.40(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.00(\mathrm{~d}, J=8.5$ $\mathrm{Hz}, 2 \mathrm{H}), 7.85(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.76(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.68(\mathrm{dd}, J=17.9,9.8 \mathrm{~Hz}, 1 \mathrm{H})$, $7.36-7.25(\mathrm{~m}, 4 \mathrm{H}), 7.16(\mathrm{dd}, J=26.9,13.1 \mathrm{~Hz}, 3 \mathrm{H}), 3.94(\mathrm{~s}, 3 \mathrm{H}), 3.93-3.89(\mathrm{~m}, 1 \mathrm{H}), 2.69$ (d, $J=1.3 \mathrm{~Hz}, 3 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 160.01,159.78,137.30,132.65,131.13$, 130.08, 129.18, 127.84, 127.11, 124.69, 119.78, 119.75, 115.00, 105.77, 55.44, 29.71, 26.56. Elemental Analysis calculated: C, 84.92; H, 6.22; Found: C, 84.47; H, 5.97.

Procedure for the synthesis of 2-(2-(benzo[d][1,3]dioxol-5-yl)ethyl)-1,2,3,4-
 tetrahydroquinoline ($\mathbf{3 h a})^{1 \mathbf{1 1}}$: Compound $\mathbf{3 h}(0.073 \mathrm{mmol})$ and $\mathrm{NiCl}_{2} .6 \mathrm{H}_{2} \mathrm{O}(0.0146 \mathrm{mmol})$ were taken in a 50 mL RB and dissolved in 3 mL of methanol. Then $\mathrm{NaBH}_{4}(0.3 \mathrm{mmol})$ was added in portion at $0{ }^{\circ} \mathrm{C}$ and stirred for 30 min at RT. After completion of the reaction methanol was evaporated and black ppt. was dissolved in $10 \% \mathrm{HCl}$, the acidic solution was basified by adding conc. ammonium hydroxide solution and then extracted with ether. The extract was dried over MgSO_{4}, evaporated and purified by column chromatography to yield the desired product as yellow oil ($19.5 \mathrm{mg}, 95 \%$ yield).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.96(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.72(\mathrm{dd}, J=14.1,4.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.66-$ $6.58(\mathrm{~m}, 2 \mathrm{H}), 6.46(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.92(\mathrm{~s}, 2 \mathrm{H}), 3.74(\mathrm{~s}, 1 \mathrm{H}), 3.28(\mathrm{dtd}, J=9.4,6.3,3.0$ $\mathrm{Hz}, 1 \mathrm{H}), 2.77$ (tdd, $J=16.2,11.0,4.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.68-2.63(\mathrm{~m}, 2 \mathrm{H}), 2.01-1.95(\mathrm{~m}, 1 \mathrm{H}), 1.78$ (ddd, $J=8.7,8.1,3.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.70-1.61(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 147.76$, $145.80,144.52,135.72,129.35,126.83,121.43,121.11,117.20,114.27,108.87,108.32$, 100.90, 51.07, 38.54, 31.96, 28.04, 26.29.

Procedure for the synthesis of 2-(2-(benzo[d][1,3]dioxol-5-yl)ethyl)-1-methyl-1,2,3,4tetrahydroquinoline ($\mathbf{3 h b})^{11}$: In a 25 mL RB compound 3ha (
 $0.0391 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{CO}_{3}$ (0.06 mmol), MeI (0.235 mmol) and THF (3 mL) were taken, sealed and refluxed for 20 h . The reaction mixture was cooled to rt , then $\mathrm{H}_{2} \mathrm{O}(3 \mathrm{~mL})$ was added and the aqueous phase was extracted with EtOAc. The combined organic extracts were washed with brine, dried over MgSO_{4} then concentrated in vacuo. Purification afforded the desired products $\mathbf{3 h b}$ ($10 \mathrm{mg}, 85 \%$ yield).
${ }^{1} \mathrm{H}^{\mathrm{N}} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.96(\mathrm{dd}, J=36.2,7.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.64(\mathrm{t}, J=9.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.52$ (dd, $J=32.1,19.1 \mathrm{~Hz}, 3 \mathrm{H}), 5.85(\mathrm{~s}, 2 \mathrm{H}), 3.21(\mathrm{t}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.84(\mathrm{~s}, 3 \mathrm{H}), 2.76(\mathrm{dd}, J=$ $17.5,10.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.65-2.54(\mathrm{~m}, 2 \mathrm{H}), 2.44(\mathrm{dd}, J=19.4,10.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.27(\mathrm{dd}, J=15.7$, $8.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.90-1.83(\mathrm{~m}, 2 \mathrm{H}), 1.63(\mathrm{dd}, J=12.0,7.0 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 147.35,145.33,144.97,135.96,127.94,127.20,121.31,120.86,115.71,110.26$, $107.84,107.68,100.94,58.50,38.07,33.25,31.17,24.56,23.05$.

[1.5] References:

(1) M. K. Barman, S. Waiba and B. Maji, Angew. Chem. Int. Ed. 2018, 57, 9126.
(2) G. Zhang, T. Irrgang, T. Dietel, F. Kallmeier and R. Kempe, Angew. Chem. Int. Ed. 2018, 57, 9131.
(3) K. Hoffert, R. J. Durand, S. Gauthier, F. R. Guen and S. Achelle, Eur. J. Org. Chem. 2017, 523-529.
(4) A. Ohta, K. Hasegawa, K. Amano, C. Mori, A. Ohsawa, K. Ikeda and T. Watanabe, Chem. Pharm. Bull. 1979, 27, 2596.
(5) R. W. Hogue, S. Dhers, R. M. Hellyer, J. Luo, G. S. Hanan, D. S. Larsen, A. L. Garden and S. Brooker, Chem. Eur. J. 2017, 23, 14193.
(6) D. Pi, K. Jiang, H. Zhou, Y. Sui, Y. Uozumi, K. Zou, RSC Adv. 2014, 4, 57875.
(7) H. B. Hepburna and P. Melchiorre, Chem. Commun. 2016, 52, 3520.
(8) Y. Yan, K. Xu, Y. Fang and Z. Wang, J. Org. Chem. 2011, 76, 6849.
(9) K. N. Campbell, C. H. Helbing and J. F. Kerwin, J. Am. Chem. Soc. 1946, 68, 1840.
(10) S. A. Ahmed, T. Hartmann, Huch, Volker, H. Durr and A. -M. A. Abdel-Wahab, J. Phys. Org. Chem. 2000, 13, 539.
(11) W. Liu, B. Sahoo, K. Junge and M. Beller, Acc. Chem. Res. 2018, 51, 1858.
[1.6] Copies of ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR and HRMS Spectra for selected compounds

(

