Supporting information for

Trisulfur Radical Anion (S3⁻) Involved Sulfur Insertion Reaction of 1,3-Enynes: Sulfide Sources Control Chemoselective Synthesis of 2,3,5-trisubstituted Thiophenes and 3-thienyl Disulfides

Jing-Hao Li,^a Qi Huang,^a Weidong Rao,^b Shun-Yi Wang,^{*,a} and Shun-Jun Ji^{*,a}

^aKey Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, China.

^bJiangsu Key Laboratory of Biomass-based Green Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.

E-mail: shunyi@suda.edu.cn; shunjun@suda.edu.cn

Table of Contents

1. General Information	S3
2. Synthesis of But-1-en-3-yne-1,2,4-triyltribenzene 1aa	S3
3. Synthesis of 2,3,5-triphenylthiophene 3aa	S3
4. Synthesis of 1,2-bis(2,4,5-triphenylthiophen-3-yl)disulfane 4aa	S4
5. Screenings of two Reactions' Conditions	S4
6. Deuterated Experiment	S5
7. Spectroscopic Data of Compounds	S6
8. Unsuccessful examples	S13
9. Copies of ¹ H NMR and ¹³ C NMR Spectra for Compounds	S 14
10. X-ray Structure of 4aa	S39
11. The reaction of 1,4-enynes	. S39
12. The reaction of 1aa under other conditions	. S40

1. General Information

Unless otherwise noted, all commercially available compounds were used as provided without further purification. Solvents for chromatography were analytical grade and used without further purification. Analytical thin-layer chromatography (TLC) was performed on silica gel, visualized by irradiation with UV light. For column chromatography, 200-300 mesh silica gel was used. ¹H-NMR and ¹³C-NMR were recorded on a BRUKER 400 MHz spectrometer in CDCl₃. Chemical shifts (δ) were reported referenced to an internal tetramethylsilane standard or the CDCl₃ residual peak (δ 7.26) for ¹H NMR. Chemical shifts of ¹³C NMR are reported relative to CDCl₃ (δ 77.16). Data are reported in the following order: chemical shift (δ) in ppm; multiplicities are indicated s (singlet), bs (broad singlet), d (doublet), t (triplet), m (multiplet); coupling constants (J) are in Hertz (Hz). Melting points were measured on an Electrothermal digital melting point apparatus and were uncorrected. IR spectra were recorded on a BRUKER VERTEX 70 spectrophotometer and are reported in terms of frequency of absorption (cm⁻¹). HRMS spectra were obtained by using BRUKER MICROTOF-Q III instrument with EI source.

2. Synthesis of But-1-en-3-yne-1,2,4-triyltribenzene 1aa

To a 50 mL Schlenk tube was added CuI (0.0286 g, 0.15 mmol), $Pd(PPh_3)_2Cl_2$ (0.0351 g, 0.05 mmol), and Et₃N (10 mL) under an Ar atmosphere. Then, ethynylbenzene (0.5107 g, 5.0 mmol, 1.0 equiv) was added. Benzoyl chloride (0.9137 g, 6.5 mmol, 1.3 equiv) was added dropwise to the reaction mixture. After stirred at r.t. for 14 hours, the mixture was quenched with H₂O (10 mL). The aqueous layer was extracted with AcOEt. The combined organic layer was washed with brine, and dried over Na₂SO₄, then, filtered. After concentration under vacuum, the crude mixture was subjected to silica gel column chromatography (hexane/AcOEt = 20:1) to obtain 1,3-diphenylprop-2-yn-1-one **1aa'**(4.25 mmol, 85%) as yellow solid.

A 50-mL two-necked flask, containing a magnetic stirring bar, was flame-dried under vacuum and filled with Argon after cooling to room temperature. To this flask were Benzyltriphenylphosphonium bromide (2.2533 g, 5.2 mmol, 1.3 equiv) and dry THF (10 mL). After cooling to -78 °C, n-BuLi (2.5 M, 1.92 mL, 4.8 mmol, 1.2 equiv) was added dropwise to the reaction mixture at -78 °C. The mixture was stirred at r.t. for 1 h. Then, a solution of 1,3-diphenylprop-2-yn-1-one **1aa'** (0.8250 g, 4.0 mmol, 1.0 equiv) in dry THF (5 mL) was added. And the mixture was further stirred at r.t. for 5 h. The reaction was quenched by adding saturated NH₄Cl aqueous solution. The mixture was extracted with CH₂Cl₂, dried over with Na₂SO₄, and concentrated under reduced pressure. The crude product was purified by flash column chromatography (hexane/AcOEt = 100:1) to afford But-1-en-3-yne-1,2,4-triyltribenzene **1aa** (3.2 mmol, 80%) as a light yellow solid.

3. Synthesis of 2,3,5-triphenylthiophene 3aa

A mixture of But-1-en-3-yne-1,2,4-triyltribenzene **1aa** (0.3 mmol) and Na₂S 9H₂O **2b** (1.2 mmol) in 2.0 mL DMF was stirred under an Ar atmosphere at 130 °C for 7 h. After completion of the reaction, as indicated by TLC, water (15 mL) was added, and the solution was extracted with ethyl acetate (3 × 15 mL). The organic layers were combined, and dried over sodium sulfate. The pure product was obtained by flash column chromatography using n-hexane on silica gel to afford **3aa** in 87% yield. All remaining 2,3,5-trisubstituted thiophenes (except **3ag**) were prepared using a procedure similar to that used to synthesize **3aa**. The **3ag** was purified by flash column chromatography (hexane/EtOAc = 4:1).

4. Synthesis of 1,2-bis(2,4,5-triphenylthiophen-3-yl)disulfane 4aa

A mixture of But-1-en-3-yne-1,2,4-triyltribenzene **1aa** (0.5 mmol) and K₂S **2a** (2.0 mmol) in 2.0 mL DMF was stirred under an Ar atmosphere at 130 $\$ for 5 h. After completion of the reaction, as indicated by TLC, water (15 mL) was added, and the solution was extracted with ethyl acetate (3 × 15 mL). The organic layers were combined, and dried over sodium sulfate. The pure product was obtained by flash column chromatography using hexane/EtOAc (100:1) on silica gel to afford **4aa** in 73% yield. All remaining 3-thienyl disulfides (except **4ag**) were prepared using a procedure similar to that used to synthesize **4aa**. The **4ag** was purified by flash column chromatography (hexane/EtOAc = 3:1).

5. Screenings of two Reactions' Conditions

Ph	Ph Ph +	Na ₂ S•9H ₂ O –	solvent	Ph S Ph
1aa		2b	3aa	
Entry	Slovent	Tempurature	Time	$\mathbf{Yield}^{b}\left(\%\right)$
	(2.0 mL)	(°C)	(h)	3aa
1	DMF	130	8	87
2^c	DMF	130	8	70
3	DMSO	130	8	54
4	DMA	130	8	78
5	DMF	60	8	0

Table 1. Optimization for the Formation of 3aa

9	DMF	130	7	87
8	DMF	130	5	73
7	DMF	140	8	85
6	DMF	110	8	80

^{*a*}Reaction Conditions: **1aa** (0.3 mmol), **2b** (1.2 mmol), slovent (2.0 mL), under Ar. ^{*b*}Isolated yield. ^{*c*}Without Ar protecting.

Ph	Ph Ph + K ₂ 1aa 2	S solvent Ar, temp. a	Ph S Baa	Ph Ph Ph 4aa	h Ph Ph Ph
Entry	Slovent	Tempurature	Time	Yield ^b (%)	
	(2.0 mL)	(°C)	(h)	3 aa	4 aa
1	DMF	130	8	24	73
2^c	DMF	130	8	messy	56
3	DMSO	130	8	36	53
4	DMA	130	8	57	42
5	DMF	60	8	15	13
6	DMF	110	8	28	59
7	DMF	140	8	24	70
8	DMF	130	6	24	72
9	DMF	130	5	24	73

Table 2. Optimization for the Formation of 4aa

^{*a*}Reaction conditions: **1aa** (0.3 mmol), **2a** (1.2 mmol), slovent (2.0 mL), under Ar. ^{*b*}Isolated yield. ^{*c*}Without Ar protecting.

6. Deuterated Experiment

7. Spectroscopic Data of Compounds

2,3,5-triphenylthiophene (3aa)

Yield = 87% (81.5 mg). White solid. Mp: 135.2-136.0 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.67 – 7.62 (m, 2H), 7.44 – 7.23 (m, 14H). ¹³C NMR (100 MHz, CDCl₃) δ 142.7, 139.1, 138.1, 136.7, 134.3, 134.2, 129.3, 129.2, 129.1, 128.6, 128.5, 127.8, 127.6, 127.2, 126.6, 125.7. IR (ATR): v = 1597, 1484, 1071, 846, 756, 695, 464 cm⁻¹; HRMS (EI): calcd. for C₂₂H₁₆S [M+H]⁺: 313.1051, found: 313.1044.

5-(4-chlorophenyl)-2,3-diphenylthiophene (3ab)

Yield = 73% (76.0 mg). White solid. Mp: 161.4-162.1 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.52 – 7.44 (m, 2H), 7.33 – 7.17 (m, 13H). ¹³C NMR (100 MHz, CDCl₃) δ 141.2, 139.2, 138.4, 136.5, 134.1, 133.4, 132.6, 129.2, 129.2, 129.1, 128.6, 128.5, 127.7, 127.2, 126.9, 126.8. **IR (ATR)**: v = 2357, 1443, 1090, 1013, 828, 759, 695, 499 cm⁻¹; **HRMS** (EI): calcd. for C₂₂H₁₅ClS [M+H]⁺: 347.0661, found: 347.0670.

2,3-diphenyl-5-(p-tolyl)thiophene (3ac)

Yield = 74% (72.5 mg). White solid. **Mp**: 109.3-110.2 °C. ¹**H NMR** (400 MHz, CDCl₃) δ 7.52 (d, *J* = 8.2 Hz, 2H), 7.42 – 7.10 (m, 13H), 2.34 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 142.9, 139.0, 137.6, 137.5, 136.8, 134.4, 131.4, 129.7, 129.2, 129.2, 128.6, 128.5, 127.5, 127.1, 126.1, 125.6, 21.3. **IR** (**ATR**): v = 1597, 1487, 1069, 809, 757, 691, 481 cm⁻¹; **HRMS** (EI): calcd. for C₂₃H₁₆S [M+H]⁺: 327.1207, found: 327.1202.

S6

5-(4-(tert-butyl)phenyl)-2,3-diphenylthiophene (3ad)

Yield = 72% (79.6 mg). Light yellow solid. Mp: 100.5-101.1 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.61 – 7.54 (m, 2H), 7.44 – 7.39 (m, 2H), 7.37 – 7.22 (m, 11H), 1.36 – 1.32 (m, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 150.9, 142.8, 139.0, 137.6, 136.8, 134.5, 131.5, 129.3, 129.2, 128.6, 128.5, 127.5, 127.1, 126.3, 126.0, 125.5, 34.8, 31.4. **IR (ATR)**: v = 2949, 1490, 823, 755, 695, 532, 507 cm⁻¹; **HRMS** (EI): calcd. for C₂₆H₂₄S [M+H]⁺: 369.1677, found: 369.1674.

5-(4-methoxyphenyl)-2,3-diphenylthiophene (3ae)

Yield = 81% (83.2 mg). White solid. Mp: 116.7-117.2 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.56 (d, *J* = 8.8 Hz, 2H), 7.34 – 7.20 (m, 11H), 6.92 (d, *J* = 8.8 Hz, 2H), 3.81 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 159.5, 142.7, 139.0, 137.1, 136.8, 134.4, 129.2(3), 129.1(9), 128.6, 128.5, 127.4, 127.0(7), 127.0(6), 127.0(1), 125.7, 114.5, 55.5. **IR** (**ATR**): v = 1599, 1488, 1251, 1029, 827, 693, 499 cm⁻¹; **HRMS** (EI): calcd. for C₂₃H₁₈OS [M+H]⁺: 343.1157, found: 343.1151.

2,3-diphenyl-5-(m-tolyl)thiophene (3af)

Yield = 78% (76.4 mg). Light yellow solid. Mp: 64.9-66.0 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.45 – 7.39 (m, 2H), 7.34 – 7.27 (m, 5H), 7.27 – 7.16 (m, 7H), 7.05 (d, *J* = 7.6 Hz, 1H), 2.33 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 142.8, 139.0, 138.6, 137.9, 136.7, 134.4, 134.1, 129.2, 129.2, 128.9, 128.5(4), 128.4(8), 127.5, 127.1, 126.5, 126.4, 122.8, 21.6. **IR** (ATR): v = 1599, 1481, 1442, 1068, 781, 692, 500, 438 cm⁻¹; **HRMS** (EI): calcd. for C₂₃H₁₈S [M+H]⁺: 327.1207, found: 327.1205.

3-(4,5-diphenylthiophen-2-yl)pyridine (3ag)

Yield = 83% (78.0 mg). White solid. Mp: 97.9-98.6 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.93 (s, 1H), 8.54 (s, 1H), 7.93 – 7.88 (m, 1H), 7.41 (s, 1H), 7.38 – 7.26 (m, 11H). ¹³C NMR (100 MHz, CDCl₃) δ 148.5, 146.6, 139.3(1), 139.2(8), 138.5, 136.2, 133.8, 132.6, 130.2, 129.2, 129.1, 128.6, 128.5, 127.8, 127.6, 127.3, 123.7. **IR** (ATR): v = 1474, 1416, 1021, 812, 767, 700, 613, 496 cm⁻¹; **HRMS** (EI): calcd. for C₂₁H₁₅NS [M+H]⁺: 314.1003, found: 314.1002.

5-cyclopentyl-2,3-diphenylthiophene (3ah)

Yield = 82% (74.9 mg). Yellow oil. ¹**H NMR** (400 MHz, CDCl₃) δ 7.32 – 7.17 (m, 10H), 6.87 (d, *J* = 1.0 Hz, 1H), 3.25 (d, *J* = 8.3 Hz, 1H), 2.15 (td, *J* = 6.7, 6.0, 4.0 Hz, 1H), 1.90 – 1.63 (m, 6H). ¹³**C NMR** (100 MHz, CDCl₃) δ 149.6, 137.6, 137.1, 135.6, 134.9, 129.3, 129.2, 128.5, 128.4, 127.1, 126.8, 126.4, 41.4, 35.5, 25.3. **IR** (**ATR**): v =2950, 1599, 1496, 1068, 837, 755, 693, 548 cm⁻¹; **HRMS** (EI): calcd. for C₂₁H₂₀**S** [M+H]⁺: 305.1364, found: 305.1369.

2,5-diphenyl-3-(p-tolyl)thiophene (3ba)

Yield = 87% (85.2 mg). White solid. Mp: 90.1-91.3 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.67 – 7.56 (m, 2H), 7.42 – 7.31 (m, 5H), 7.30 – 7.17 (m, 6H), 7.09 (d, *J* = 7.8 Hz, 2H), 2.33 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 142.5, 139.1, 137.7, 136.8, 134.5, 134.3, 133.8, 129.2(6), 129.2(5), 129.1, 129.0, 128.6, 127.7, 127.5, 126.7, 125.7, 21.3. **IR (ATR)**: v = 1593, 1485, 1025, 813, 760, 684, 548, 463 cm⁻¹; **HRMS** (EI): calcd. for C₂₃H₁₈S [M+H]⁺: 327.1207, found: 327.1201.

3-(4-methoxyphenyl)-2,5-diphenylthiophene (3bb)

Yield = 74% (76.0 mg). White solid. Mp: 80.6-81.2 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.71 – 7.52 (m, 2H), 7.44 – 7.30 (m, 5H), 7.30 – 7.20 (m, 6H), 6.86 – 6.76 (m, 2H), 3.77 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 158.8, 142.5, 138.7, 137.3, 134.5, 134.3, 130.3, 129.2, 129.1, 129.0, 128.6, 127.7, 127.4, 126.6, 125.7, 114.0, 55.31. **IR** (**ATR**): v = 1595, 1486, 1286, 1173, 1031, 818, 692, 462 cm⁻¹; **HRMS** (EI): calcd. for C₂₃H₁₈OS [M+H]⁺: 343.1157, found: 343.1161.

3-(3-bromophenyl)-2,5-diphenylthiophene (3bc)

Yield = 67% (78.7 mg). White solid. Mp: 91.2-92.4 °C. ¹**H** NMR (400 MHz, CDCl₃) δ 7.65 – 7.57 (m, 2H), 7.51 (t, *J* = 1.8 Hz, 1H), 7.40 – 7.33 (m, 3H), 7.33 – 7.23 (m, 7H), 7.18 – 7.14 (m, 1H), 7.09 (t, *J* = 7.8 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 143.0, 138.9, 138.6, 137.3, 134.0, 133.8, 131.9, 130.1, 130.0, 129.2, 129.1, 128.7, 127.9(3), 127.8(9), 127.8(6), 126.1, 125.7, 122.6. IR (ATR): v = 1590, 1476, 1069, 788, 689, 615, 486, 438 cm⁻¹; HRMS (EI): calcd. for C₂₂H₁₅BrS [M+H]⁺: 391.0156, found: 391.0145.

2,5-diphenyl-3-(m-tolyl)thiophene (3bd)

Yield = 77% (75.4 mg). White solid. Mp: 75.9-76.8 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.69 – 7.59 (m, 2H), 7.41 – 7.30 (m, 5H), 7.27 – 7.02 (m, 8H), 2.29 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 142.5, 139.2, 138.1, 138.0, 136.6, 134.4, 134.2, 129.8, 129.2, 129.1, 128.5, 128.4, 127.9, 127.7, 127.5, 126.7, 126.4, 125.7, 21.56. **IR (ATR)**: v = 1597, 1481, 1031, 789, 755, 689, 463,440 cm⁻¹; **HRMS** (EI): calcd. for C₂₃H₁₈S [M+H]⁺: 327.1207, found: 327.1213.

2',5'-diphenyl-2,3'-bithiophene (3be)

Yield = 89% (85.0 mg). White solid. Mp: 91.4-92.5 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.64 – 7.53 (m, 2H), 7.47 – 7.21 (m, 9H), 7.15 – 7.10 (m, 1H), 6.95 – 6.84 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 142.8, 138.3, 138.1, 134.0, 133.9, 131.7, 129.8, 129.1, 128.6, 128.1, 127.9, 127.3, 125.9, 125.8, 125.7, 124.9. **IR (ATR)**: ν = 1485, 1216, 827, 762, 694, 486 cm⁻¹; **HRMS** (EI): calcd. for C₂₀H₁₄S₂ [M+H]⁺: 319.0615, found: 319.0613.

S9

3-cyclohexyl-2,5-diphenylthiophene (3bf)

Yield = 76% (72.6 mg). White solid. Mp: 82.6-84.1 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.66 – 7.56 (m, 2H), 7.47 – 7.24 (m, 9H), 2.84 – 2.69 (m, 1H), 1.94 – 1.60 (m, 6H), 1.58 – 1.30 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 145.3, 142.6, 136.8, 134.7, 131.7, 129.6, 129.0, 128.7, 127.5, 127.4, 125.7, 123.5, 38.1, 34.8, 26.8, 26.3. **IR** (**ATR**): v =2921, 1594, 1486, 1442, 838, 755, 495 cm⁻¹; **HRMS** (EI): calcd. for C₂₂H₂₂S [M+H]⁺: 319.1520, found: 319.1529.

3,5-diphenyl-2-(p-tolyl)thiophene (3ca)

Yield = 74% (72.5 mg). White solid. **Mp**: 99.9-101.0 °C. ¹**H NMR** (400 MHz, CDCl₃) δ 7.71 (d, *J* = 7.6 Hz, 2H), 7.49 – 7.27 (m, 11H), 7.16 – 7.10 (m, 2H), 2.39 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 142.3, 138.7, 137.4, 136.9, 134.3, 131.4, 129.3, 129.2, 129.1, 129.0, 128.5, 127.6, 127.0, 126.6, 125.7, 21.34. **IR** (**ATR**): v = 1485, 1028, 816, 755, 695, 517, 475 cm⁻¹; **HRMS** (EI): calcd. for C₂₃H₁₈S [M+H]⁺: 327.1207, found: 327.1214.

2-(4-methoxyphenyl)-3,5-diphenylthiophene (3cb)

Yield = 71% (72.9 mg). White solid. Mp: 78.3-79.2 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.69 – 7.55 (m, 2H), 7.42 – 7.21 (m, 11H), 6.87 – 6.70 (m, 2H), 3.77 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 159.2, 141.9, 138.4, 138.1, 136.8, 134.3, 130.5, 129.2, 129.0, 128.5, 127.6, 127.0, 126.8, 126.5, 125.6, 114.1, 55.34. **IR (ATR)**: v = 1599, 1501, 1179, 1029, 825, 754, 528, 477 cm⁻¹; **HRMS** (EI): calcd. for C₂₃H₁₈OS [M+H]⁺: 343.1157, found: 343.1159.

2-(3-chlorophenyl)-3,5-diphenylthiophene (3cc)

Yield = 66% (68.7 mg). White solid. **Mp**: 74.5-76.1 °C. ¹**H NMR** (400 MHz, CDCl₃) δ 7.64 – 7.56 (m, 2H), 7.40 – 7.23 (m, 10H), 7.20 – 7.09 (m, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 143.3, 139.9, 136.2, 136.1(1), 136.1(0), 134.4, 133.9, 129.7, 129.1, 129.0, 128.6, 127.9, 127.5, 127.4(1), 127.3(8), 126.6, 125.7. **IR** (**ATR**): v = 1588, 1478, 1095, 788, 752, 693, 542, 440 cm⁻¹; **HRMS** (EI): calcd. for C₂₂H₁₅ClS [M+H]⁺: 347.0661, found: 347.0655.

2-methyl-3,5-diphenylthiophene (3cd)

Yield = 31% (23.3 mg). Light yellow solid. **Mp**: 56.7-57.4 °C. ¹**H NMR** (400 MHz, CDCl₃) δ 7.61 – 7.54 (m, 2H), 7.45 – 7.29 (m, 7H), 7.28 – 7.19 (m, 2H), 2.50 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 140.1, 139.8, 136.8, 134.5, 134.0, 129.0, 128.7, 128.6, 127.3, 127.0, 125.6, 125.2, 14.46. **IR** (**ATR**): v = 2921, 1598, 1445, 1073, 844, 755, 590, 468 cm⁻¹; **HRMS** (EI): calcd. for C₁₇H₁₄S [M+H]⁺: 251.0894, found: 251.0891.

1,2-bis(2,4,5-triphenylthiophen-3-yl)disulfane (4aa)

Yield = 73% (75.2 mg). White solid. **Mp**: 119.8-120.1 °C. ¹**H NMR** (400 MHz, CDCl₃) δ 7.36 – 7.29 (m, 10H), 7.20 (m, 12H), 7.14 – 7.09 (m, 4H), 7.01 – 6.88 (m, 4H). ¹³**C NMR** (100 MHz, CDCl₃) δ 147.9, 142.3, 138.9, 136.0, 133.9, 133.4, 131.2, 129.9, 129.0, 128.4, 128.3, 128.2, 127.9, 127.5, 127.2. **IR** (**ATR**): v = 1444, 1029, 748, 692, 521, 409 cm⁻¹.

1,2-bis(2-(4-chlorophenyl)-4,5-diphenylthiophen-3-yl)disulfane (4ab)

Yield = 35% (39.7 mg). Pale yellow solid. **Mp**: 140.9-141.3 °C. ¹**H NMR** (400 MHz, CDCl₃) δ 7.33 – 7.28 (m, 8H), 7.24 – 7.18 (m, 12H), 7.12 – 7.07 (m, 4H), 6.93 (d, *J* = 4.8 Hz, 4H). ¹³**C NMR** (100 MHz, CDCl₃) δ 146.2, 142.4, 139.3, 135.8, 134.3, 133.5, 131.8, 131.1, 130.9, 129.0, 128.6, 128.0, 127.8, 127.3. **IR** (**ATR**): v = 1497, 1090, 1013, 829, 696, 498, 416 cm⁻¹.

4ad

1,2-bis(2-(4-methoxyphenyl)-4,5-diphenylthiophen-3-yl)disulfane (4ad)

Yield = 62% (69.5 mg). Pale yellow solid. **Mp**: 180.3-181.2 °C. ¹**H NMR** (400 MHz, CDCl₃) δ 7.31 – 7.27 (m, 4H), 7.23 – 7.16 (m, 12H), 7.14 – 7.09 (m, 4H), 7.02 – 6.94 (m, 4H), 6.88 – 6.84 (m, 4H), 3.72 (s, 6H). ¹³**C NMR** (100 MHz, CDCl₃) δ 159.7, 147.9, 142.3, 138.1, 136.2, 133.9, 131.2, 131.0, 128.9, 128.4, 128.0, 127.8, 127.4, 127.1, 126.0, 113.8, 55.4. **IR** (**ATR**): v = 1515, 1249, 1031, 830, 692, 510 cm⁻¹.

1,2-bis(4,5-diphenyl-2-(pyridin-3-yl)thiophen-3-yl)disulfane (4ag)

Yield = 43% (44.4 mg). Pale yellow solid. **Mp**: 173.4-174.1 °C. ¹**H** NMR (400 MHz, CDCl₃) δ 8.62 (d, J = 2.4 Hz, 2H), 8.58 – 8.52 (m, 2H), 7.67 – 7.62 (m, 2H), 7.31 – 7.19 (m, 14H), 7.14 – 7.08 (m, 4H), 7.00 – 6.85 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 145.0, 149.0, 143.6, 142.3, 140.1, 136.8, 135.5, 133.3, 131.0, 129.5, 129.0, 128.5, 128.0, 127.9, 127.4, 123.0. **IR** (**ATR**): v = 1443, 1025, 760, 695, 628, 403 cm⁻¹.

1,2-bis(5-methyl-2,4-diphenylthiophen-3-yl)disulfane (4cd)

Yield = 38% (32.1 mg). yellow solid. **Mp**: 116.5-117.3 °C. ¹**H NMR** (400 MHz, CDCl₃) δ 7.36 – 7.26 (m, 12H), 7.24 – 7.18 (m, 4H), 6.95 – 6.87 (m, 4H), 2.18 (s, 6H). ¹³**C NMR** (100 MHz, CDCl₃) δ 145.5, 142.9, 135.9, 134.4, 133.7, 130.7, 129.9, 128.1, 127.7, 127.6, 127.0, 14.18. **IR** (**ATR**): v = 1482, 1072, 750, 691, 504 cm⁻¹.

4ce

1,2-bis(5-butyl-2,4-diphenylthiophen-3-yl)disulfane (4ce)

Yield = 61% (59.6 mg). pale brown oil. ¹**H NMR** (400 MHz, CDCl₃) δ 7.34 – 7.19 (m, 16H), 7.06 – 6.73 (m, 4H), 2.53 (t, *J* = 7.8 Hz, 4H), 1.54 – 1.46 (m, 4H), 1.26 (q, *J* = 7.7 Hz, 4H), 0.82 (t, *J* = 7.4 Hz, 6H). ¹³**C NMR** (100 MHz, CDCl₃) δ 145.3, 142.7, 140.9, 136.2, 133.9, 130.8, 129.9, 128.2, 127.8, 127.7, 127.1, 127.0, 33.84, 28.49, 22.40, 13.89. **IR (ATR)**: ν = 1600, 1442, 1071, 750, 692, 503 cm⁻¹.

8. Unsuccessful examples

9. Copies of ¹H NMR and ¹³C NMR Spectra for Compounds

fl (ppm)

-0.00

S18

S29

- 0.00

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 fl (ppm)

---0.00

10. X-ray Structure of 4aa

CCDC 1901393 (**4aa**) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre.

11. The reaction of 1,4-enynes

The following two reactions have been done to test the reactivity of 1,4-enynes. The results show that 1,4-enynes are not suitable for the sulfur insertion reaction under the optimized conditions.

12. The reaction of 1aa under other conditions

We have tried the reactions of **1aa** in the presence of S_8 . It was found that **3aa** and **4aa** were both observed in <10% yields, respectively.

S₈ alone:

We have also tried the reactions of **1aa** under Prof. Li's conditions (Y. Liu, J.-L. Zhang, R.-J. Song and J.-H. Li, *Org. Lett.* 2014, **16**, 5838–5841). The reaction of K₂S with **1aa** catalysed by CuCl₂ afforded **3aa** and **4aa** in 18% and 43% yields, respectively. The reaction of Na₂S·9H₂O with **1aa** catalysed by CuCl₂ furnished **3aa** in 82% yield and **4aa** was not observed. The reaction of KSCN with **1aa** under Prof. Li's another reaction conditions (J.-X. Yu, S. Niu, M. Hu, J.-N. Xiang and J.-H. Li, *Chem. Commun.* 2019, DOI: 10.1039/c9cc02242b.) failed to give the desired products.

Li's condition:

