Supporting Information

Enantioselective reduction of azaarene-based ketones via visible light-driven photoredox asymmetric catalysis

Baokun Qiao,^a Chunyang Li,^a Xiaowei Zhao,^a Yanli Yin,^{a,c} and Zhiyong Jiang^{*,a,b}

^aKey Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, School of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan, P. R. China 475004

^bSchool of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, P. R. China 453007

^cCollege of Bioengineering, Henan University of Technology, Zhengzhou, Henan, 450001, P. R. China

E-mail: chmjzy@henu.edu.cn

Table of Contents

1.	General information	
		S2–S3
2.	Optimization of reaction conditions	
2		S4–S7
3.	General experimental procedures	58 510
4.	Mechanism studies	50-510
		S11–S17
5.	Determination of the absolute configurations	
		S18–S19
6.	Characterization of adducts	530 553
7	Copies of NMR spectra	520-555
/.	espis of finite speedu	S54–S91
8.	References	
		S92

1. General information

General procedures and methods

Experiments involving moisture and/or air sensitive components were performed under a positive pressure of argon in oven-dried glassware equipped with a rubber septum inlet. Dried solvents and liquid reagents were transferred by oven-dried syringes or hypodermic syringe cooled to ambient temperature in a desiccator. Reactions mixtures were stirred in 10 mL sample vial with Teflon-coated magnetic stirring bars unless otherwise stated. Moisture in non-volatile reagents/compounds was removed in high *vacuo* by means of an oil pump and subsequent purging with nitrogen. Solvents were removed *in vacuo* under ~30 mmHg and heated with a water bath at 30–35 °C using rotary evaporator with aspirator. The condenser was cooled with running water at 0 °C.

All experiments were monitored by analytical thin layer chromatography (TLC). TLC was performed on pre-coated plates, 60 F_{254} . After elution, plate was visualized under UV illumination at 254 nm for UV active material. Further visualization was achieved by staining Ce(SO₄)₂ and phosphomolybdic acid solution. For those using the aqueous stains, the TLC plates were heated on a hot plate.

Columns for flash chromatography (FC) contained basified *silica gel* (with Et_3N) 200–300 mesh. Columns were packed as slurry of basified *silica gel* in petroleum ether and equilibrated solution using the appropriate solvent system. The elution was assisted by applying pressure of about 2 atm with an air pump.

Instrumentations

Proton nuclear magnetic resonance (¹H NMR) and carbon NMR (¹³C NMR) were recorded in CDCl₃ otherwise stated. Chemical shifts are reported in parts per million (ppm), using the residual solvent signal as an internal standard: CDCl₃ (¹H NMR: δ 7.26, singlet; ¹³C NMR: δ 77.0, triplet). Multiplicities were given as: *s* (singlet), *d* (doublet), *t* (triplet), *q* (quartet), *quintet*, *m* (multiplets), *dd* (doublet of doublets), *dt* (doublet of triplets), and *br* (broad). Coupling constants (*J*) were recorded in Hertz (Hz). The number of proton atoms (*n*) for a given resonance was indicated by *n*H. The number of carbon atoms (*n*) for a given resonance was indicated by *n*C. HRMS (Analyzer: TOF) was reported in units of mass of charge ratio (m/z). Mass samples were dissolved in CH₃CN (HPLC Grade) unless otherwise stated. Optical rotations were recorded on a polarimeter with a sodium lamp of wavelength 589 nm and reported as follows; $[\alpha]_{\lambda}^{T^{\circ C}}$ (*c* = g/100 mL, solvent). Melting points were determined on a melting point apparatus.

Enantiomeric excesses were determined by chiral High Performance Liquid Chromatography (HPLC) analysis. UV detection was monitored at 254 nm and 210 nm at the same time. HPLC samples were dissolved in HPLC grade isopropanol (IPA) unless otherwise stated.

Materials

All commercial reagents were purchased with the highest purity grade. The syntheses of material 1^1 has been previously reported. They were used without further purification unless specified. All solvents used, mainly petroleum ether (PE) and ethyl acetate (EtOAc) were distilled. Anhydrous dichloromethane (DCM) was freshly distilled from CaH₂ and stored under N₂ atmosphere. Toluene, CPME and its derivatives were freshly distilled from sodium/benzophenone before use. All compounds synthesized were stored in a 0 °C freezer and light-sensitive compounds were protected with aluminium foil.

2. Optimization of reaction conditions

Table S1. Screening of the chiral organocatalyst $(COC)^{a}$

Entry	COC	Conv. (%) ^b	ee (%) ^c
1		middle	0
2	C2	good	14
3	C3	excellent	7
4	C4	excellent	-49
5	C5	excellent	60
6	C6	excellent	44
7	C7	excellent	24
8	C8	excellent	68
9	С9	excellent	69
10	C10	excellent	8
11	C11	good	25
12	C12	middle	-49
13	C13	excellent	41
14	C14	excellent	25
15	C15	excellent	8
16	C16	excellent	20
17	C17	excellent	20
18	C17	excellent	35
19	C19	good	36
20	C29	excellent	23
21	C21	excellent	12

22	C22	excellent	14
23	C23	good	-35
24	C24	excellent	-13
25	C25	excellent	-14
26	C26	excellent	-12
27	C27	excellent	74

^{*a*}Reaction conditions: **1a** (0.05 mmol), **H** (0.06 mmol) in diethyl ether (1.0 mL) at 25 °C for 12 h. ^{*b*}Determined by TLC analysis: "excellent" for Conv. \geq 90%, "good" for 90% > Conv. \geq 70%, "middle" for 70% > Conv. \geq 40%, "low" for Conv. < 40%. "Determined by HPLC analysis on a chiral stationary phase.

Table S2. Screening of the solvent^a

Entry	Solvent	Conv. $(\%)^{b}$	ee (%) ^c
1	Toluene	good	11
2	CHCl ₃	0	N.P.
3	CH_2Cl_2	low	11
4	CH ₃ CN	excellent	N.D.
5	THF	excellent	74
6	Dioxane	good	47
7	DME	excellent	76
8	Anisole	good	56
9	<i>n</i> Bu ₂ O	good	64
10	<i>i</i> Pr ₂ O	good	66
11	CPME	excellent	79
12	MTBE	excellent	78

^{*a*}Reaction conditions: **1a** (0.05 mmol), **H** (0.06 mmol) in 1.0 mL solvent at 25 °C for 12 h. ^{*b*} Determined by TLC analysis: "excellent" for Conv. \ge 90%, "good" for 90% > Conv. \ge 70%, "middle" for 70% > Conv. \ge 40%, "low" for Conv. < 40%. "Determined by HPLC analysis on a chiral stationary phase. N.D. = not determined. N.P. = no product.

Table S3. Screening of the reductant^a

	DPZ (0.5 mol%) C1 (10 mol%) H (1.2 equiv), 3 W blue LED		D S N CN D PZ
$\langle N $ Ar	H1: n = 2, Ar = C_6H_5 H2: n = 0, Ar = C_6H_5 H3: n = 1, Ar = C_6H_5 H4: n = 3, Ar = C_6H_5 H5: n = 2, Ar = 2 -FC ₆ H ₄ H6: n = 2, Ar = 2 -MeC ₆ H ₄ H7: n = 2, Ar = 3 -MeC ₆ H ₄ H8: n = 2, Ar = 4 -MeC ₆ H ₄ H9: n = 2, Ar = 2 -tBuC ₆ H ₄	Ar O O O O H C1: Ar	= 2-CF ₃ C ₆ H ₄
entry	H (1.2 equiv)	Conv. (%) ^b	ee (%) ^c
1	Et ₃ N	low	64
2	DIPEA	middle	68
3	HZE	excellent	40
4	H2	excellent	55
5	Н3	excellent	74
6	H4	excellent	69
7	Н5	excellent	79
8	H6	excellent	78
9	H7	excellent	73
10	H8	excellent	70
11	Н9	excellent	78

^aReaction conditions: 1a (0.05 mmol), H (0.06 mmol) in 1.0 mL CPME at 25 °C for 12 h. ^bDetermined by TLC analysis: "excellent" for Conv. \geq 90%, "good" for 90% > Conv. \geq 70%, "middle" for 70% > Conv. ≥ 40%, "low" for Conv. < 40%. ^cDetermined by HPLC analysis on a chiral stationary phase.

Table S4. Screening of the amount of DPZ, Molecular Sieve, and temperature^a

entry	PC (mol%)	Molecular Sieve (25 mg)	Conv. (%) ^b	<i>T</i> (°C)	ee (%) ^c
1	DPZ (0.5)		excellent	10	82
2	DPZ (0.5)		good	0	83
3	DPZ (0.5)		good	-10	86
4	DPZ (0.5)		middle	-20	88
5	DPZ (0.5)		middle	-40	89
6	DPZ (0.5)	3 Å	good $(93)^d$	-40	91
7	DPZ (0.5)	4 Å	middle	-40	90
8	DPZ (0.5)	5 Å	middle	-40	88
9	DPZ (1.0)	3 Å	good	-40	89
10	DPZ (0.2)	3 Å	middle	-40	91
11	DPZ (0.1)	3 Å	low	-40	91

^{*a*}Reaction conditions: **1a** (0.05 mmol), **H** (0.06 mmol) in 1.0 mL CPME for 48 h. ^{*b*}Determined by TLC analysis: "excellent" for Conv. \geq 90%, "good" for 90% > Conv. \geq 70%, "middle" for 70% > Conv. \geq 40%, "low" for Conv. < 40%. "Determined by HPLC analysis on a chiral stationary phase. ^{*d*}0.10 mmol scale for 72 h, isolated yield based on the **1a**. N.P. = no product.

3. General experimental procedures

Reaction set-up

10 mL Schlenk tube is placed at the center of a stir plate. A 3 W blue LED lamp (HW-450-455LED-3W) is placed to one sidewall of reaction tube (at approximately 2 cm away from the light source). The transformations were conducted in a cryostat which allows a stable and certain temperature.

Side view

Emission spectrum of the 3 W LED light.

For the preparation of 2a-zc: To a flame dried Schlenk tube was sequentially added 1a-zc (0.10 mmol, 1.0 equiv), DPZ (0.0005 mmol, 0.005 equiv), C1 (0.01 mmol, 0.1 equiv), H1 (0.12 mmol, 1.2 equiv), 3 Å MS (50 mg), and degassed CPME (2.0 mL). Then degassed three times by freeze-pump-thaw method. The reaction mixture was stirred under an argon atmosphere at -40 °C (the temperature was maintained in an incubator) for 30 min without light, then irradiated by a 3 W blue LED for another 72 h. The reaction was monitored by TLC. After completion of the reaction, the reaction mixture was directly loaded onto a short

silica gel column, followed by gradient elution with petroleum ether/ethyl acetate (20/1 to 4/1 ratio). Removing the solvent in *vacuo*, afforded products 2a-zc.

For the preparation of 2zd: To a flame dried Schlenk tube was sequentially added **1zd** (0.10 mmol, 1.0 equiv), DPZ (0.0005 mmol, 0.005 equiv), **C1** (0.01 mmol, 0.1 equiv), **H1** (0.12 mmol, 1.2 equiv), 3 Å MS (50 mg), and degassed CPME (2.0 mL). Then degassed three times by freeze-pump-thaw method. The reaction mixture was stirred under an argon atmosphere at 25 °C with the irradiation by a 3 W blue LED for 24 h. The reaction was monitored by TLC. After completion of the reaction, the crude mixture was directly loaded onto a short *silica gel* column, followed by gradient elution with petroleum ether/ethyl acetate (50/1 to 10/1 ratio). Removing the solvent in *vacuo*, afforded product **2zd**.

For the preparation of 2ze and 2zg: To a flame dried Schlenk tube was sequentially added 1ze/1zg (0.10 mmol, 1.0 equiv), DPZ (0.0005 mmol, 0.005 equiv), C18/C26 (0.01 mmol, 0.1 equiv), H1 (0.12 mmol, 1.2 equiv), 3 Å MS (50 mg), and degassed CPME (2.0 mL). Then degassed three times by freeze-pump-thaw method. The reaction mixture was stirred under an argon atmosphere at -40 °C (the temperature was maintained in an incubator) for 30 min without light, then irradiated by a 3 W blue LED for another 72 h. The reaction was monitored by TLC. After completion of the reaction, the reaction mixture was directly loaded onto a short *silica gel* column, followed by gradient elution with petroleum ether/ethyl acetate (50/1 to 10/1 ratio). Removing the solvent in *vacuo*, afforded product 2ze/2zg.

For the preparation of 2zf: To a flame dried Schlenk tube was sequentially added 1zf (0.10 mmol, 1.0 equiv), DPZ (0.0005 mmol, 0.005 equiv), C3 (0.01 mmol, 0.1 equiv), H1 (0.12 mmol, 1.2 equiv), and degassed CPME (2.0 mL). Then degassed three times by freeze-pump-thaw method. The reaction mixture was stirred under an argon atmosphere at 25 °C with the irradiation by a blue 3 W LED for 24 h. The reaction was monitored by TLC. After completion of the reaction, the crude mixture was directly loaded onto a short *silica gel* column, followed by gradient elution with petroleum ether/ethyl acetate (50/1 to 12/1 ratio). Removing the solvent in *vacuo*, afforded product 2zf.

For the preparation of 2zj-l: To a flame dried Schlenk tube was sequentially added **1zj-l** (0.10 mmol, 1.0 equiv), DPZ (0.0005 mmol, 0.005 equiv), **C2** (0.01 mmol, 0.1 equiv), **H1** (0.12 mmol, 1.2 equiv), and degassed CPME (2.0 mL). Then degassed three times by freezepump-thaw method. The reaction mixture was stirred under an argon atmosphere at 25 °C with the irradiation by a 3 W blue LED for 15 h. The reaction was monitored by TLC. After completion of the reaction, the crude mixture was directly loaded onto a short *silica gel* column, followed by gradient elution with petroleum ether/ethyl acetate (30/1 to 5/1 ratio). Removing the solvent in *vacuo*, afforded products **2zj-l**.

We also explored the reduction of phenyl(pyridin-2-yl)methanol with modified reaction conditions.

The procedures in detail are as follows:

To a flame dried Schlenk tube was sequentially added phenyl(pyridin-2-yl)methanone (0.10 mmol, 1.0 equiv), DPZ (0.0005 mmol, 0.005 equiv), C1 (0.01 mmol, 0.1 equiv), H1 (0.12 mmol, 1.2 equiv), and degassed CPME (2.0 mL). Then degassed three times by freeze-pump-thaw method. The reaction mixture was stirred under an argon atmosphere at 25 °C with the irradiation by a 3 W blue LED for 48 h. The reaction was monitored by TLC. After completion of the reaction, the crude mixture was directly loaded onto a short *silica gel* column, followed by gradient elution with petroleum ether/ethyl acetate (20/1 to 4/1 ratio). Removing the solvent in *vacuo*, afforded product phenyl(pyridin-2-yl)methanol in 63% yield with 40% ee.

4. Mechanism studies

Emission quenching experiments

Excitation spectrum was recorded on an EDINBURGH FLS 980 fluorescence spectrophotometer equipped with a monochromated 325 W Xe-arc excitation source and a visible detector (Hamamatsu R928P). DPZ solution was excited at 448 nm and the emission intensity at 544 nm was observed. A solution of DPZ $(2.5 \times 10^{-4} \text{ M})$ in MeCN was added to the appropriate amount of quencher in 5.0 mL volumetric flask under N₂. The solution was transferred to a 1.5 mL quartz cell and the emission spectrum of the sample was collected.

Fig. S1. Stern–Volmer quenching experiment of DPZ and 1a. (No quenching observed.)

Fig. S2. Stern–Volmer quenching experiment of DPZ and [**1a**+10% ((PhO)₂P(O)OH)]. (No quenching observed.)

Fig. S3. Stern–Volmer quenching experiment of DPZ and H1. (Quenching observed.)

Electrochemistry. Cyclic voltammetry experiments were performed on a CHI600E Workstation. Measurements were performed for anhydrous acetonitrile solutions ([sample] =

1.0 mM, $[(NBu_4)PF_6] = 0.10$ M) with a radium glassy carbon (working electrode) and platinum wire (counter electrode), and a Ag/AgCl reference electrode under N₂ at room temperature. The scan rate was 50 mV/s. Ferrocene (Cp₂Fe) was used as a reference.

Fig. S4. Cyclic voltammogram of Ferrocene.

Fig. S5. Cyclic voltammogram of 1a. Ferrocene (Cp₂Fe) was used as a reference. $E_{p1} = -0.905$ V versus SCE in CH₃CN, $E_{p2} = -1.434$ V versus SCE in CH₃CN.

Fig. S6. Cyclic voltammogram of [1a + 10% C1]. Scan Rate: 50 mV/s. Ferrocene (Cp₂Fe) was used as a reference. $E_{p1} = -0.806$ V versus SCE in CH₃CN, $E_{p2} = -1.399$ V versus SCE in CH₃CN.

Fig. S7. Cyclic voltammogram of [1a + 0.5% DPZ]. Scan Rate: 50 mV/s. Ferrocene (Cp₂Fe) was used as a reference. $E_{p1} = -0.878$ V versus SCE in CH₃CN, $E_{p2} = -1.442$ V versus SCE in CH₃CN.

Fig. S8. Cyclic voltammogram of [1a + 120% H1]. Scan Rate: 50 mV/s. Ferrocene (Cp₂Fe) was used as a reference. $E_{p1} = -0.850$ V versus SCE in CH₃CN, $E_{p2} = -1.422$ V versus SCE in CH₃CN.

Fig. S9. Cyclic voltammogram of H1. Ferrocene (Cp₂Fe) was used as a reference. $E_p = +0.821$ V versus SCE in CH₃CN.

Fig. S10. Cyclic voltammogram of [1a + 10% C1 + 120% H1 + 0.5% DPZ]. Scan Rate: 50 mV/s. Ferrocene (Cp₂Fe) was used as a reference. $E_{p1} = -0.846$ V versus SCE in CH₃CN, $E_{p2} = -1.418$ V versus SCE in CH₃CN.

Determination of the proton source

To a flame dried Schlenk tube was sequentially added **1a** (0.10 mmol, 1.0 equiv), DPZ (0.0005 mmol, 0.005 equiv), diphenyl phosphate (0.01 mmol, 0.1 equiv), **H1** (0.12 mmol, 1.2 equiv), D_2O (20 mmol, 200 equiv) and CPME (2 mL). Then degassed three times by freezepump-thaw method. The reaction mixture was irradiated by a 3 W blue LED for 24 hours at rt. The reaction mixture was directly loaded onto a short basified *silica gel* column, followed by gradient elution with petroleum ether/ethyl acetate (20/1 to 4/1 ratio). Removing the solvent in *vacuo*, afforded [D]-*rac*-**2a** in 68% yield with 91% deuterium incorporation. The result suggests the protonation as a feasible process to form the product.

5. Determination of the absolute configurations

Determination of the absolute configurations of 2zj

Fig. S19. Absolute configuration of **2zj** (CCDC 1920199) Displacement ellipsoids are drawn at the 30% probability level. (sovlent: ethyl acetate:*n*hexane = 1:3)

l l	
Identification code	qbk4cl
Empirical formula	C ₂₀ H ₁₄ ClNO
Formula weight	319.77
Temperature/K	293(2)
Crystal system	Orthorhombic
Space group	$P2_{1}2_{1}2_{1}$
a/Å	5.15285(17)
b/Å	11.3914(5)
c/Å	26.4345(10)
α/	90
β/	90
γ/	90
Volume/Å ³	1551.66(10)
Z	4
$\rho_{calc}g/cm^3$	1.369
μ/mm^{-1}	2.197

Table S6. Crystal data and structure refinement for qbk4cl.

F(000)	664.0
Crystal size/mm ³	$0.15\times0.05\times0.04$
Radiation	$CuK\alpha (\lambda = 1.54184)$
2Θ range for data collection/°	8.452 to 134.11
Index ranges	$-3 \le h \le 6, -13 \le k \le 13, -31 \le l \le 31$
Reflections collected	10220
Independent reflections	2755 [R_{int} 0.0644, R_{sigma} = 0.0422]
Data/restraints/parameters	2755/0/197
Goodness-of-fit on F ²	1.045
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0669, wR_2 = 0.1777$
Final R indexes [all data]	$R_1 = 0.0759, wR_2 = 0.1906$
Largest diff. peak/hole / e Å ⁻³	0.33/-0.24
Flack parameter	-0.026(17)

Experimental

The crystal was kept at 293(2) K during data collection. Using Olex2, the structure was solved with the ShelXS structure solution program using Direct Methods and refined with the ShelXL refinement package using Least Squares minimisation.

Crystal structure determination

Crystal Data for C₂₀H₁₄ClNO (M = 319.77 g/mol): orthorhombic, space group P2₁2₁2₁ (no. 19), a = 5.15285(17) Å, b = 11.3914(5) Å, c = 26.4345(10) Å, V = 1551.66(10) Å³, Z = 4, T = 293(2) K, μ (CuK α) = 2.197 mm⁻¹, *Dcalc* = 1.369 g/cm³, 10220 reflections measured (8.452 $\leq 2\Theta \leq 134.11$), 2755 unique ($R_{int} = 0.0644$, $R_{sigma} = 0.0422$) which were used in all calculations. The final R_1 was 0.0669 (I > 2 σ (I)) and wR_2 was 0.1906 (all data).

6. Characterization of adducts

H

2a: white solid, Mp 59.2 – 60.4 °C, 21.9 mg, 93% yield, 92% ee, $[\alpha]_{\rm D}^{22}$ – 88.6 (c 1.0, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 8.16 (d, J = 8.4 Hz, 1H), 8.05 (d, J = 8.5 Hz, 1H), 7.77 (dd, J = 14.7, 7.6 Hz, 2H), 7.56 (t, J =

7.4 Hz, 1H), 7.43 (d, J = 6.9 Hz, 2H), 7.33 (dt, J = 8.5, 6.8 Hz, 3H), 7.19 (d, J = 8.5 Hz, 1H), 6.14 (d, J = 3.9 Hz, 1H), 5.88 (d, J = 3.6 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 160.4, 145.9, 142.7, 137.0, 129.9, 128.8, 128.6, 128.0, 127.6, 127.4, 126.6, 119.2, 75.1; HRMS (ESI) m/z 258.0901 (M+Na⁺), calc. for C₁₆H₁₃NONa 258.0895.

The ee was determined by HPLC analysis: CHIRAL INB (4.6 mm i.d. x 250 mm); Hexane/2propanol = 90/10; flow rate 1.0 mL/min; 25 °C; 230 nm; retention time: 9.5 min (minor) and 17.8 min (major).

1	9.533	27.8260	80.68	4.22
2	17.820	631.2709	1368.70	95.78

2b: colorless oil, 21.8 mg, 86% yield, 90% ee, $[\alpha]_{D}^{22}$ -235.1 (*c* 1.0, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 8.12 (dd, J = 16.6, 8.5 Hz, 2H), 7.78 (dd, JОН = 18.8, 7.8 Hz, 2H), 7.56 (t, J = 7.3 Hz, 1H), 7.38 (t, J = 7.5 Hz, 1H), 7.31 -7.23 (m, 2H), 7.09 (t, J = 8.4 Hz, 2H), 6.28 (s, 1H), 6.15 (s, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 160.4 (d, J = 246.2 Hz), 159.7, 145.9, 137.4, 130.0, 129.8, δ 129.4 (d, J = 8.3 Hz), 128.8 (d, J = 4.0 Hz), 128.7, 127.6, 127.6, 126.7, 124.5 (d, J = 3.5 Hz), 118.9 (d, J = 3.1 Hz), 115.5 (d, J = 21.9 Hz), 68.1 (d, J = 4.0 Hz); HRMS (ESI) m/z 276.0796 (M+Na⁺), calc. for C₁₆H₁₂FNONa 276.0801.

The ee was determined by HPLC analysis: CHIRAL INB (4.6 mm i.d. x 250 mm); Hexane/2-propanol = 90/10; flow rate 1.0 mL/min; 25 °C; 254 nm; retention time: 8.5 min (minor) and 14.6 min (major).

Entry	Retention Time	Area	Height	%Area
1	8.463	2.1477	8.22	5.15
2	14.573	39.5841	119.56	94.85

2c: white solid, Mp 82.1 – 83.7 °C, 20.2 mg, 81% yield, 97% ee, $[\alpha]_D^{22}$ +8.4 (*c* 1.0, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 8.16 (d, *J* = 8.4 Hz, 1H), 8.05 (d, *J* = 8.5 Hz, 1H), 7.79 (dd, *J* = 16.7, 7.9 Hz, 2H), 7.57 (t, *J* = 7.2 Hz,

1H), 7.24 – 7.13 (m, 4H), 7.08 (d, J = 8.5 Hz, 1H), 6.10 (s, 1H), 6.01 (s, 1H), 2.40 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 160.6, 145.9, 140.2, 137.0, 136.6, 131.0, 129.9, 128.7, 128.7, 128.0, 127.6, 127.4, 126.6, 126.2, 119.1, 73., 19.5; HRMS (ESI) m/z 272.1040 (M+Na⁺), calc. for C₁₇H₁₅NONa 272.1051.

н" Юн

MeO N H OH **2d**: white solid, Mp 120.6 – 121.8 °C, 18.8 mg, 71% yield, 83% ee, $[\alpha]_D^{22}$ +24.4 (*c* 1.0, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 8.05 (d, *J* = 8.4 Hz, 1H), 7.93 (d, *J* = 8.5 Hz, 1H), 7.66 (dd, *J* = 18.1, 7.8 Hz, 2H), 7.43 (t, *J* =

7.5 Hz, 1H), 7.26 – 7.13 (m, 3H), 6.83 (dd, J = 12.9, 7.8 Hz, 2H), 6.33 (d, J = 2.9 Hz, 1H), 5.96 (d, J = 3.7 Hz, 1H), 3.82 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 161.0, 156.7, 145.9, 136.8, 131.2, 129.6, 128.8, 128.7, 128.1, 127.5, 126.3, 120.9, 119.2, 110.7, 68.5, 55.5; HRMS (ESI) m/z 288.1006 (M+Na⁺), calc. for C₁₇H₁₅NO₂Na 288.1000.

The ee was determined by HPLC analysis: CHIRAL INB (4.6 mm i.d. x 250 mm); Hexane/2-propanol = 90/10; flow rate 1.0 mL/min; 25 °C; 254 nm; retention time: 10.6 min (minor) and 12.9 min (major).

Entry	Retention Time	Area	Height	%Area
1	10.563	5.8003	24.66	8.42
2	12.935	63.0846	255.45	91.58

2e: white solid, Mp 93.9 – 94.8 °C, 23.5 mg, 93% yield, 95% ee, $[\alpha]_D^{22}$ = -83.2 (*c* 1.0, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 8.06 (d, *J* = 8.4 Hz, 1H), 7.98 (d, *J* = 8.5 Hz, 1H), 7.69 (dd, *J* = 15.4, 7.6 Hz, 2H), 7.47 (t, *J* = 7.4 Hz, 1H), 7.25 – 7.00 (m, 4H), 6.94 – 6.84 (m, 1H), 6.12 (s, 1H), 5.79 (s, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 162.9 (d, *J* = 246.5 Hz), 159.6, 145.9, 145.3 (d, *J* = 6.6 Hz), 137.2, 130.1, 130.0, 128.7, 127.6, 127.5, 126.7, 123.0 (d, *J* = 2.9 Hz), 119.0, 114.9 (d, *J* = 21.2 Hz), 114.1 (d, *J* = 21.8 Hz), 74.5 (d, *J* = 1.7 Hz); HRMS (ESI) m/z 276.0801 (M+Na⁺), calc. for C₁₆H₁₂FNONa 276.0801.

The ee was determined by HPLC analysis: CHIRALCEL OZ-H (4.6 mm i.d. x 250 mm); Hexane/2-propanol = 94/6; flow rate 1.0 mL/min; 25 °C; 254 nm; retention time: 10.0 min (minor) and 12.7 min (major).

Entry	Retention Time	Area	Height	%Area
1	10.023	2.7309	4.75	2.46
2	12.692	108.1689	172.50	97.54

2f: white solid, Mp 83.9 – 85.1 °C, 23.7 mg, 88% yield, 94% ee, $[\alpha]_D^{22}$ -123.7 (*c* 1.0, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 8.11 (dd, *J* = 19.2, 8.5 Hz, 2H), 7.78 (dd, *J* = 16.4, 8.0 Hz, 2H), 7.57 (t, *J* = 7.4 Hz, 1H), 7.41 (s, 1H), 7.36 – 7.25 (m, 3H), 7.18 (d, *J* = 8.5 Hz, 1H), 6.16 (s, 1H), 5.84 (s,

1H); ¹³C NMR (75 MHz, CDCl₃) δ 159.5, 145.9, 144.8, 137.3, 134.5, 130.1, 129.9, 128.8, 128.2, 127.6, 127.5, 127.5, 126.8, 125.6, 119.0, 74.5; HRMS (ESI) m/z 292.0495 (M+Na⁺), calc. for C₁₆H₁₂ClNONa 292.0505.

The ee was determined by HPLC analysis: CHIRAL INB (4.6 mm i.d. x 250 mm); Hexane/2-propanol = 90/10; flow rate 1.0 mL/min; 25 °C; 254 nm; retention time: 9.0 min (minor) and 15.1 min (major).

Entry	Retention Time	Area	Height	%Area
1	9.043	6.0046	25.17	3.02
2	15.060	193.0148	581.14	96.98

2g: white solid, Mp 115.4 – 117.2 °C, 28.8 mg, 92% yield, 95% ee, $[\alpha]_D^{22}$ -130.3 (*c* 1.0, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 8.14 (d, *J* = 8.4 Hz, 1H), 8.07 (d, *J* = 8.5 Hz, 1H), 7.78 (dd, *J* = 15.5, 7.6 Hz, 2H), 7.63 – 7.52 (m, 2H), 7.39 (dd, *J* = 14.3, 7.8 Hz, 2H), 7.25 – 7.15 (m, 2H), 6.20 (d, *J* =

3.1 Hz, 1H), 5.84 (s, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 159.5, 145.8, 145.0, 137.3, 131.0, 130.3, 130.2, 130.0, 128.7, 127.6, 127.5, 126.8, 126.0, 122.7, 119.0, 74.4; HRMS (ESI) m/z 335.9998 (M+Na⁺), calc. for C₁₆H₁₂BrNONa 336.0000.

The ee was determined by HPLC analysis: CHIRAL INB (4.6 mm i.d. x 250 mm); Hexane/2-propanol = 90/10; flow rate 1.0 mL/min; 25 °C; 230 nm; retention time: 9.2 min (minor) and 15.3 min (major).

Entry	Retention Time	Area	Height	%Area
1	9.973	38.2674	116.49	50.04
2	17.093	38.2118	84.80	49.96

1,250 1,250 1,250 1,250 250 250 -113 8.0 9.0	1.233 1 10.0 11.0 12	.0 13.0 14.0 时间[min]	2 - 15.313	min 17.0 18.0 19.0
Entry	Retention Time	Area	Height	%Area
1	9.233	9.4314	36.86	2.38
2	15.313	386.2212	1084.72	97.62

2h: white solid, Mp 79.2 – 80.8 °C, 30.0 mg, >99% yield, 94% ee, $[\alpha]_{\rm D}^{22}$ -76.1 (*c* 1.0, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 8.16 (d, *J* = 8.4 Hz, 1H), 8.08 (d, J = 8.5 Hz, 1H), 7.78 (dd, J = 14.9, 8.1 Hz, 3H), 7.66 - 7.52 (m, 3H), 7.45 (t, J = 7.7 Hz, 1H), 7.18 (d, J = 8.5 Hz, 1H), 6.26 (s, 1H),

5.94 (s, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 159.5, 146.0, 143.8, 137.5, 131.0 (q, *J* = 30.1 Hz), 130.8, 130.2, 129.2, 128.8, 127.7, 127.6, 126.9, 124.9 (q, *J* = 3.7 Hz), 124.2 (q, *J* = 3.8 Hz), 124.1 (q, J = 272.4 Hz), 119.0, 74.7; HRMS (ESI) m/z 326.0767 (M+Na⁺), calc. for C₁₇H₁₂F₃NONa 326.0769.

The ee was determined by HPLC analysis: CHIRAL INB (4.6 mm i.d. x 250 mm); Hexane/2propanol = 90/10; flow rate 1.0 mL/min; 25 °C; 254 nm; retention time: 7.7 min (minor) and 13.3 min (major).

 11.00		12.00	 13.
	时间[min]		

Entry	Retention Time	Area	Height	%Area
1	7.695	75.8652	343.28	50.01
2	13.357	75.8257	307.36	49.99

Entry	Retention Time	Area	Height	%Area
1	7.708	1.5527	7.86	3.20
2	13.342	46.9742	195.89	96.80

2i: white solid, Mp 82.2 – 83.8 °C, 20.4 mg, 82% yield, 91% ee, $[\alpha]_D^{22}$ -124.9 (*c* 1.0, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 8.15 (d, *J* = 8.4 Hz, 1H), 8.05 (d, *J* = 8.5 Hz, 1H), 7.77 (dd, *J* = 15.4, 7.5 Hz, 2H), 7.55 (t, *J* = 7.1 Hz, 1H), 7.30 (d, *J* = 7.9 Hz, 2H), 7.17 (t, *J* = 8.5 Hz, 3H), 6.11 (s, 1H),

5.86 (s, 1H), 2.33 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 160.6, 145.8, 139.8, 137.7, 137.0, 129.9, 129.3, 128.7, 127.6, 127.4, 127.4, 126.6, 119.3, 74.9, 21.1; HRMS (ESI) m/z 272.1051 (M+Na⁺), calc. for C₁₇H₁₅NONa 272.1051.

The ee was determined by HPLC analysis: CHIRALCEL OZ–H (4.6 mm i.d. x 250 mm); Hexane/2-propanol = 94/6; flow rate 1.0 mL/min; 25 °C; 254 nm; retention time: 15.6 min (minor) and 20.8 min (major).

Entry	Retention Time	Area	Height	%Area
1	15.603	5.0897	8.90	4.48
2	20.765	108.6178	123.00	95.52

2j: white solid, Mp 125.6 – 126.8 °C, 20.4 mg, 77% yield, 88% ee, $[\alpha]_D^{22}$ -81.4 (*c* 1.0, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 8.11 (d, *J* = 8.4 Hz, 1H), 8.00 (d, *J* = 8.5 Hz, 1H), 7.73 (dd, *J* = 14.7, 7.6 Hz, 2H), 7.51 (t, *J* = 7.5 Hz, 1H), 7.26 – 7.14 (m, 2H), 7.05 – 6.91 (m, 2H), 6.80 (dd, *J* = 8.2,

2.1 Hz, 1H), 6.12 (s, 1H), 5.83 (s, 1H), 3.73 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 160.2, 159.8, 145.9, 144.3, 137.0, 129.8, 129.6, 128.7, 127.5, 127.4, 126.5, 119.7, 119.1, 113.5, 112.6, 75.0, 55.1; HRMS (ESI) m/z 288.1008 (M+Na⁺), calc. for C₁₇H₁₅NO₂Na 288.1000. The ee was determined by HPLC analysis: CHIRALCEL OZ–H (4.6 mm i.d. x 250 mm);

Hexane/2-propanol = 94/6; flow rate 1.0 mL/min; 25 °C; 254 nm; retention time: 20.9 min (major) and 23.5 min (minor).

Entry	Retention Time	Area	Height	%Area
1	20.932	56.4126	117.36	93.90
2	23.478	3.6640	7.46	6.10

2k: white solid, Mp 74.1 – 75.2 °C, 24.3 mg, 96% yield, 94% ee, $[\alpha]_{D}^{22}$ –27.5 (*c* 1.0, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 8.14 (d, *J* = 8.4 Hz, 1H), 8.03 (d, *J* = 8.5 Hz, 1H), 7.81 – 7.68 (m, 2H), 7.54 (t, *J* = 7.5 Hz, 1z)

1H), 7.39 (dd, J = 8.5, 5.5 Hz, 2H), 7.16 (d, J = 8.5 Hz, 1H), 7.02 (t, J = 8.7 Hz, 2H), 6.23 (s, 1H), 5.89 (s, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 162.3 (d, J = 246.1 Hz), 160.3, 145.8, 138.5 (d, J = 3.1 Hz), 137.0, 129.8, 128.9 (d, J = 8.2 Hz), 128.6, 127.5, 127.3, 126.6, 118.9, 115.3 (d, J = 21.5 Hz), 74.4; HRMS (ESI) m/z 276.0795 (M+Na⁺), calc. for C₁₆H₁₂FNONa 276.0801.

The ee was determined by HPLC analysis: CHIRALCEL OZ-H (4.6 mm i.d. x 250 mm); Hexane/2-propanol = 94/6; flow rate 1.0 mL/min; 25 °C; 254 nm; retention time: 11.0 min (minor) and 14.4 min (major).

Lifting	Recention Time	7 HCa	ineight	707 HCd
1	10.998	1.8127	4.09	2.72
2	14.390	64.9014	103.93	97.28

2I: white solid, Mp 105.7 – 106.8 °C, 26.4 mg, 98% yield, 93% ee, $[\alpha]_D^{22}$ -11.4 (*c* 1.0, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 8.14 (d, *J* = 8.4 Hz, 1H), 8.06 (d, *J* = 8.5 Hz, 1H), 7.77 (dd, *J* = 15.3, 7.7 Hz, 2H), 7.56 (t, *J*

= 7.5 Hz, 1H), 7.33 (q, J = 8.5 Hz, 4H), 7.15 (d, J = 8.5 Hz, 1H), 6.18 (d, J = 2.8 Hz, 1H), 5.86 (s, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 159.9, 145.9, 141.2, 137.2, 133.7, 130.0, 128.7,

128.7, 127.6, 127.4, 126.7, 119.0, 74.4; HRMS (ESI) m/z 292.0512 (M+Na⁺), calc. for $C_{16}H_{12}CINONa$ 292.0505.

The ee was determined by HPLC analysis: CHIRAL INB (4.6 mm i.d. x 250 mm); Hexane/2-propanol = 90/10; flow rate 1.0 mL/min; 25 °C; 230 nm; retention time: 9.2 min (minor) and 14.3 min (major).

Entry	Retention Time	Area	Height	%Area
1	9.150	6.6336	24.63	3.55
2	14.303	180.1893	577.52	96.45

2m: white solid, Mp 108.9 – 109.8 °C, 29.4 mg, 94% yield, 96% ee, $[\alpha]_{D}^{22}$ –107.0 (*c* 1.0, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 8.14 (d, *J* = 8.4 Hz, 1H), 8.06 (d, *J* = 8.5 Hz, 1H), 7.77 (dd, *J* = 15.6, 7.7 Hz, 2H),

7.56 (t, J = 7.4 Hz, 1H), 7.46 (d, J = 8.3 Hz, 2H), 7.30 (d, J = 8.3 Hz, 2H), 7.15 (d, J = 8.5 Hz, 1H), 6.18 (s, 1H), 5.84 (s, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 159.7, 145.9, 141.8, 137.2, 131.7, 130.0, 129.0, 128.7, 127.6, 127.4, 126.7, 121.9, 119.0, 74.5; HRMS (ESI) m/z 336.0002 (M+Na⁺), calc. for C₁₆H₁₂BrNONa 336.0000.

The ee was determined by HPLC analysis: CHIRAL INB (4.6 mm i.d. x 250 mm); Hexane/2-propanol = 90/10; flow rate 1.0 mL/min; 25 °C; 254 nm; retention time: 10.4 min (minor) and 16.5 min (major).

Entry	Retention Time	Area	Height	%Area
1	10.413	1.0166	3.53	2.16
2	16.507	46.0037	109.15	97.84

2n: white solid, Mp 120.3 – 121.8 °C, 29.7 mg, 98% yield, 95% ee, $[\alpha]_{D}^{22}$ –143.8 (*c* 1.0, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 8.12 (dd, *J* = 20.2, 8.5 Hz, 2H), 7.79 (dd, *J* = 15.1, 7.7 Hz, 2H), 7.58 (q, *J* = 8.2

Hz, 5H), 7.18 (d, J = 8.5 Hz, 1H), 6.21 (s, 1H), 5.94 (s, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 159.4, 146.7, 146.0, 137.4, 130.1, 130.1 (q, J = 32.4 Hz), 128.7, 127.6, 127.6, 127.5, 126.9, 125.6 (q, J = 3.8 Hz), 124.0 (q, J = 272.1 Hz), 118.9, 74.6; HRMS (ESI) m/z 326.0766 (M+Na⁺), calc. for C₁₇H₁₂F₃NONa 326.0769.

н" Юн

The ee was determined by HPLC analysis: CHIRAL INB (4.6 mm i.d. x 250 mm); Hexane/2propanol = 90/10; flow rate 1.0 mL/min; 25 °C; 254 nm; retention time: 8.8 min (minor) and 14.6 min (major).

Entry	Retention Time	Area	Height	%Area
1	8.827	1.1684	4.77	2.30
2	14.627	49.5512	166.22	97.70

20: white solid, Mp 67.2 – 68.8 °C, 21.9 mg, 88% yield, 91% ee, $[\alpha]_D^{22}$ –114.5 (*c* 1.0, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 8.07 (d, *J* = 8.3 Hz, 1H), 7.96 (d, *J* = 8.4 Hz, 1H), 7.69 (dd, *J* = 15.8, 8.1 Hz, 2H), 7.47

(t, J = 7.3 Hz, 1H), 7.13 (t, J = 12.3 Hz, 4H), 7.02 (s, 1H), 6.05 (s, 1H), 5.75 (s, 1H), 2.23 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 160.4, 145.9, 142.6, 138.3, 137.0, 129.9, 128.8, 128.5, 128.0, 127.6, 126.6, 124.6, 119.3, 75.1, 21.4; HRMS (ESI) m/z 272.1044 (M+Na⁺), calc. for C₁₇H₁₅NONa 272.1051.

The ee was determined by HPLC analysis: CHIRAL INB (4.6 mm i.d. x 250 mm); Hexane/2-propanol = 94/6; flow rate 1.0 mL/min; 25 °C; 254 nm; retention time: 15.6 min (minor) and 20.8 min (major).

Entry	Retention Time	Area	Height	%Area
1	15.587	54.3776	93.09	50.24
2	20.870	53.8486	64.64	49.76

199 150 100 50		1 - 15.603	,2 - 20.765	
-32 -32 10.24 11.25 12	.50 13.75 15.00	16.25 17.50 1	8.75 20.00 21.25	22.50 23.75 24.49
Entry	Retention Time	Area	Height	%Area
1	15.603	5.0858	8.90	4.48
2	20.765	108.4811	122.96	95.52

2p: white solid, Mp 83.7 – 85.2 °C, 24.7 mg, 85% yield, 93% ee, $[\alpha]_D^{22}$ -125.6 (*c* 1.0, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 8.16 (d, *J* = 8.4 Hz, 1H), 8.02 (d, *J* = 8.5 Hz, 1H), 7.82 – 7.69 (m, 2H), 7.55 (dd, *J* =

11.1, 3.9 Hz, 1H), 7.42 – 7.32 (m, 4H), 7.22 (d, J = 8.5 Hz, 1H), 6.08 (s, 1H), 5.90 (s, 1H), 1.32 (s, 9H); ¹³C NMR (75 MHz, CDCl₃) δ 160.7, 150.7, 145.9, 139.7, 136.8, 129.7, 128.7, 127.5, 127.4, 127.0, 126.4, 125.5, 119.3, 74.9, 34.4, 31.2; HRMS (ESI) m/z 314.1513 (M+Na⁺), calc. for C₂₀H₂₁NONa 314.1521.

The ee was determined by HPLC analysis: CHIRAL INB (4.6 mm i.d. x 250 mm); Hexane/2-propanol = 90/10; flow rate 1.0 mL/min; 25 °C; 254 nm; retention time: 8.2 min (minor) and 13.8 min (major).

Entry	Retention Time	Area	Height	%Area
1	8.210	3.5132	14.63	3.73
2	13.753	90.7328	305.04	96.27

2q: white solid, Mp 65.1 – 65.9 °C, 21.5 mg, 81% yield, 95% ee, $[\alpha]_D^{22}$ -84.3 (*c* 1.0, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 8.15 (d, *J* = 8.4 Hz, 1H), 8.02 (d, *J* = 8.5 Hz, 1H), 7.82 – 7.69 (m, 2H), 7.54 (t, *J* =

7.2 Hz, 1H), 7.33 (d, J = 8.6 Hz, 2H), 7.17 (d, J = 8.5 Hz, 1H), 6.88 (d, J = 8.6 Hz, 2H), 6.11 (s, 1H), 5.85 (s, 1H), 3.77 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 160.7, 159.2, 145.8, 136.8, 134.9, 129.8, 128.6, 128.6, 127.5, 127.3, 126.4, 119.2, 113.9, 74.6, 55.1; HRMS (ESI) m/z 266.1182 (M+H⁺), calc. for C₁₇H₁₆NO₂ 266.1181.

The ee was determined by HPLC analysis: CHIRAL INB (4.6 mm i.d. x 250 mm); Hexane/2-propanol = 90/10; flow rate 1.0 mL/min; 25 °C; 254 nm; retention time: 11.8 min (minor) and 17.4 min (major).

2r: white solid, Mp 82.2 – 83.6 °C, 20.8 mg, 79% yield, 90% ee, $[\alpha]_D^{22}$ –158.1 (*c* 1.0, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 8.17 (d, *J* = 8.4 Hz, 1H), 8.05 (d, *J* = 8.5 Hz, 1H), 7.78 (dd, *J* = 15.9, 7.7 Hz, 2H), 7.56 (t, *J* = 7.2 Hz, 1H), 7.21 (d, *J* = 8.5 Hz, 1H), 7.03 (s, 2H), 6.93 (s, 1H), 6.10 (d, *J* = 3.4 Hz, 1H), 5.81 (d, *J* = 2.8 Hz, 1H), 2.30 (s, 6H); ¹³C NMR (75 MHz, CDCl₃) δ 160.6, 145.9, 142.6, 138.1, 136.9, 129.8, 129.6, 128.8, 127.6, 127.4, 126.5, 125.2, 119.3, 75.2, 21.2; HRMS (ESI) m/z 286.1194 (M+Na⁺), calc. for C₁₈H₁₇NONa 286.1208.

The ee was determined by HPLC analysis: CHIRAL INB (4.6 mm i.d. x 250 mm); Hexane/2propanol = 90/10; flow rate 1.0 mL/min; 25 °C; 254 nm; retention time: 9.9 min (minor) and 20.1 min (major).

2		20.093	145.6684	27
\land	\sim	2s : white solid,	Mp 167.5 – 168.5	°C, 21.7

2s: white solid, Mp 167.5 – 168.5 °C, 21.7 mg, 76% yield, 96% ee, $[\alpha]_D^{22}$ -122.5 (*c* 1.0, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 8.22 (t, *J* = 7.1 Hz, 2H), 7.99 (d, *J* = 8.5 Hz, 1H), 7.92 – 7.75 (m, 4H), 7.62 – 7.37 (m,

5H), 7.11 (d, *J* = 8.5 Hz, 1H), 6.53 (s, 1H), 6.15 (s, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 160.8, 146.1, 137.7, 137.1, 134.3, 131.5, 130.0, 129.0, 128.8, 128.7, 127.6, 127.5, 127.0, 126.7,
126.3, 125.6, 125.3, 124.3, 119.1, 73.9; HRMS (ESI) m/z 286.1219 (M+H⁺), calc. for $C_{20}H_{16}NO$ 286.1232.

The ee was determined by HPLC analysis: CHIRALPAK IE (4.6 mm i.d. x 250 mm); Hexane/2-propanol = 90/10; flow rate 1.0 mL/min; 25 °C; 254 nm; retention time: 18.4 min (major) and 20.6 min (minor).

Entry	Retention Time	Area	Height	%Area
1	18.437	52.9129	114.04	97.91
2	20.567	1.1302	2.45	2.09

2t: white solid, Mp 131.8 – 132.5 °C, 27.6 mg, 97% yield, 90% ee, $[\alpha]_{D}^{22}$ –77.7 (*c* 1.0, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 8.19 (d, *J* = 8.4 Hz, 1H), 8.03 (d, *J* = 8.5 Hz, 1H), 7.96 (s, 1H), 7.89 – 7.73 (m,

5H), 7.62 – 7.40 (m, 4H), 7.21 (d, J = 8.5 Hz, 1H), 6.23 (s, 1H), 6.05 (s, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 160.3, 146.0, 140.1, 137.0, 133.3, 133.2, 130.0, 128.8, 128.6, 128.0, 127.7, 127.6, 127.5, 126.7, 126.7, 126.2, 126.0, 125.0, 119.3, 75.3; HRMS (ESI) m/z 308.1058 (M+Na⁺), calc. for C₂₀H₁₅NONa 308.1051.

The ee was determined by HPLC analysis: CHIRALCEL OZ-H (4.6 mm i.d. x 250 mm); Hexane/2-propanol = 94/6; flow rate 1.0 mL/min; 25 °C; 254 nm; retention time: 12.2 min (minor) and 15.2 min (major).

Епиу	Retention Time	Alea	neight	70Alea
1	12.158	11.2472	24.87	4.91
2	15.233	217.9318	343.19	95.09

2u: white solid, Mp 118.1 – 118.8 °C, 23.9 mg, 98% yield, 90% ee, $[\alpha]_D^{22}$ -16.6 (*c* 1.0, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 8.14 (dd, *J* = 8.4, 4.9 Hz, 2H), 7.88 – 7.72 (m, 2H), 7.57 (t, *J* = 7.5 Hz, 1H), 7.34 (d, *J* = 8.5 Hz,

1H), 7.12 (d, J = 3.3 Hz, 1H), 6.98 (dd, J = 4.9, 3.7 Hz, 1H), 6.18 (s, 1H), 6.10 (s, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 159.5, 146.7, 145.8, 137.4, 130.1, 128.7, 127.6, 127.6, 126.9, 126.6, 125.9, 125.6, 119.0, 70.8; HRMS (ESI) m/z 264.0464 (M+Na⁺), calc. for C₁₄H₁₁NOSNa 264.0459.

н" Он

The ee was determined by HPLC analysis: CHIRAL INB (4.6 mm i.d. x 250 mm); Hexane/2-propanol = 90/10; flow rate 1.0 mL/min; 25 °C; 254 nm; retention time: 12.3 min (minor) and 21.8 min (major).

Entry Retention Time Area Height % 1 12.195 8852.8 413.8 49 2 21.893 8930.6 296.1 50					
1 12.195 8852.8 413.8 49 2 21.893 8930.6 296.1 50	Entry	Retention Time	Area	Height	%Area
2 21.893 8930.6 296.1 50	1	12.195	8852.8	413.8	49.781
AU 1 175 150 122 122 100 75 50	2	21.893	8930.6	296.1	50.219
	040 175 180 180 72 80 25 0	o core t			

Entry	Retention Time	Area	Height	%Area
1	12.260	299.9	13.9	4.841
2	21.851	5894.7	192.4	95.159

N H OH

2v: yellow solid, Mp 84.2 – 84.6 °C, 17.1 mg, 76% yield, 91% ee, $[\alpha]_D^{22}$ +78.8 (*c* 1.0, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 8.14 (d, *J* = 8.4 Hz, 2H), 7.91 – 7.69 (m, 2H), 7.57 (t, *J* = 7.3 Hz, 1H), 7.42 – 7.28 (m, 2H),

6.34 (s, 2H), 5.96 (s, 1H), 5.86 (s, 1H); 13 C NMR (75 MHz, CDCl₃) δ 157.6, 154.7, 146.1, 142.8, 137.2, 130.0, 128.8, 127.7, 127.6, 126.8, 118.9, 110.3, 108.0, 68.6; HRMS (ESI) m/z 226.0857 (M+H⁺), calc. for C₁₄H₁₂NO₂ 226.0868.

The ee was determined by HPLC analysis: CHIRAL INB (4.6 mm i.d. x 250 mm); Hexane/2propanol = 90/10; flow rate 1.0 mL/min; 25 °C; 210 nm; retention time: 9.8 min (minor) and 17.9 min (major).

Entry	Retention Time	Area	Height	%Area
1	9.760	9.3841	60.55	4.59
2	17.940	195.2839	471.82	95.41

2w: white solid, Mp 126.3 – 127.8 °C, 20.5 mg, 81% yield, 93% ee, $[\alpha]_D^{22}$ –112.0 (*c* 1.0, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 8.21 (dd, *J* = 9.1, 5.3 Hz, 1H), 8.06 (d, *J* = 8.6 Hz, 1H), 7.58 (td, *J* = 8.9, 2.7 Hz, 1H), 7.47

(dd, J = 6.5, 4.8 Hz, 3H), 7.38 (m, 3H), 7.30 (d, J = 7.0 Hz, 1H), 6.05–5.60 (s, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 160.6 (d, J = 248.2 Hz), 160.0 (d, J = 2.6 Hz), 142.9, 142.5, 136.5 (d, J = 5.1 Hz), 131.1 (d, J = 9.0 Hz), 128.7, 128.1 (d, J = 10.0 Hz), 128.1, 127.4, 120.1, 120.1 (d, J = 25.5 Hz), 110.8 (d, J = 21.8 Hz), 75.1; HRMS (ESI) m/z 254.0981 (M+H⁺), calc. for C₁₆H₁₃FNO 254.0981.

The ee was determined by HPLC analysis: CHIRAL INB (4.6 mm i.d. x 250 mm); Hexane/2-propanol = 90/10; flow rate 1.0 mL/min; 25 °C; 254 nm; retention time: 9.2 min (minor) and 10.0 min (major).

Entry	Retention Time	Area	Height	%Area
1	9.288	33.6752	121.40	50.21
2	10.023	33.3970	345.08	49.79

Entry	Retention Time	Area	Height	%Area
1	9.228	1.9593	8.64	3.70
2	9.963	51.0475	581.83	96.30

2x: white solid, Mp 81.9 – 82.9 °C, 23.7 mg, 88% yield, 93% ee, $[\alpha]_D^{22}$ $-26.7 (c 1.0, CHCl_3)$; ¹H NMR (300 MHz, CDCl_3) δ 8.08 (d, J = 8.9 Hz, 1H), 7.96 (d, J = 8.6 Hz, 1H), 7.78 (d, J = 2.1 Hz, 1H), 7.69 (dd, J = 8.9, 2.2 Hz, 1H), 7.34 (tt, J = 13.2, 5.4 Hz, 5H), 7.22 (d, J = 8.6 Hz, 1H), 5.87 (s, 2H); ¹³C NMR (75 MHz, CDCl_3) δ 160.9, 144.4, 142.4, 136.1, 132.4, 130.8, 130.4, 128.7, 128.1, 128.1, 127.4, 126.3, 120.2, 75.2; HRMS (ESI) m/z 270.0695 (M+H⁺), calc. for C₁₆H₁₃ClNO 270.0686.

The ee was determined by HPLC analysis: CHIRAL INB (4.6 mm i.d. x 250 mm); Hexane/2-propanol = 90/10; flow rate 1.0 mL/min; 25 °C; 230 nm; retention time: 9.2 min (minor) and 12.0 min (major).

Entry	Retention Time	Area	Height	%Area
1	9.150	6.4377	26.93	3.73
2	12.033	165.9802	485.67	96.27

2y: white solid, Mp 97.6 – 99.2 °C, 29.1 mg, 93% yield, 95% ee, $[\alpha]_{D}^{22}$ Ph -41.2 (*c* 1.0, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 8.05 – 7.90 (m, 3H), H^{\circ} OH 7.81 (44, *L* = 8.0, 2.1 Hz, 1H), 7.25 (444, *L* = 22.7, 10.7, (.8 Hz, 5H))

7.21 (d, J = 8.6 Hz, 1H), 5.86 (s, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 161.1, 144.6, 142.4, 136.0, 133.4, 130.5, 129.6, 128.7, 128.6, 128.1, 127.4, 120.4, 120.2, 75.2; HRMS (ESI) m/z 314.0180 (M+H⁺), calc. for C₁₆H₁₃BrNO 314.0181.

The ee was determined by HPLC analysis: CHIRAL INB (4.6 mm i.d. x 250 mm); Hexane/2-propanol = 90/10; flow rate 1.0 mL/min; 25 °C; 230 nm; retention time: 8.8 min (minor) and 12.2 min (major).

1	8.857	4.8913	34.41	2.52
2	12.250	189.3481	532.81	97.48

2za: white solid, Mp 122.3 – 124.8 °C, 22.7 mg, 91% yield, 83% ee, $[\alpha]_D^{22}$ Ph -171.8 (*c* 1.0, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 8.04 (d, *J* = 8.4 Hz, OH

H

1H), 7.96 (d, J = 8.5 Hz, 1H), 7.58 (d, J = 10.8 Hz, 2H), 7.41 (d, J = 7.3 Hz, 2H), 7.32 (dt, J = 8.4, 6.8 Hz, 3H), 7.14 (d, J = 8.5 Hz, 1H), 6.12 (s, 1H), 5.86 (s, 1H), 2.54 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 159.4, 144.4, 142.9, 136.5, 136.4, 132.1, 128.6, 128.4, 127.9, 127.5, 127.4, 126.5, 119.2, 75.0, 21.5; HRMS (ESI) m/z 272.1043 (M+Na⁺), calc. for C₁₇H₁₅NONa 272.1051.

The ee was determined by HPLC analysis: CHIRAL INB (4.6 mm i.d. x 250 mm); Hexane/2-propanol = 90/10; flow rate 1.0 mL/min; 25 °C; 254 nm; retention time: 6.7 min (minor) and 9.8 min (major).

Entry	Retention Time	Area	Height	%Area
1	6.759	4403.9	308.5	49.876
2	9.851	4425.7	262.5	50.124

Entry	Retention Time	Area	Height	%Area
1	6.73	633.1	43.8	8.544
2	9.821	6776.1	401	91.456

2zb: white solid, Mp 106.3 – 107.4 °C, 26.0 mg, 83% yield, 94% ee, $[\alpha]_{D}^{22}$ -66.4 (*c* 1.0, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 8.34 (s, 1H), 8.02 (d, J = 8.5 Hz, 1H), 7.64 (m, 2H), 7.34 (tt, J = 10.5, 5.7 Hz, 5H), 7.21 (d, J =

8.5 Hz, 1H), 6.12–5.62 (m, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 161.6, 146.5, 142.4, 137.0, 131.1, 130.2, 128.8, 128.7, 128.1, 127.4, 126.1, 124.1, 119.6, 75.2; HRMS (ESI) m/z 314.0183 (M+H⁺), calc. for C₁₆H₁₃BrNO 314.0181.

The ee was determined by HPLC analysis: CHIRAL INB (4.6 mm i.d. x 250 mm); Hexane/2propanol = 90/10; flow rate 1.0 mL/min; 25 °C; 254 nm; retention time: 9.6 min (minor) and 12.0 min (major).

Entry	Retention Time	Area	Height	%Area
1	9.706	1944	100.3	50.162
2	12.213	1931.4	90.6	49.838

Entry	Retention Time	Area	Height	%Area
1	9.621	248.7	14.1	3.116
2	12.035	7734.7	365.9	96.884

2zc: white solid, Mp 119.8 – 121.3 °C, 22.2 mg, 89% yield, 83% ee, $[\alpha]_D^{22}$ -173.8 (*c* 1.0, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 8.00 (d, *J* = 8.5 Hz, 1H), 7.94 (s, 1H), 7.69 (d, *J* = 8.3 Hz, 1H), 7.34 (m, 6H), 7.11 (d, *J* = 8.5

Hz, 1H), 6.15 (s, 1H), 5.86 (s, 1H), 2.60 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 160.3, 146.1, 142.9, 140.4, 136.8, 128.8, 128.6, 127.9, 127.8, 127.4, 127.2, 125.5, 118.4, 75.0, 21.9; HRMS (ESI) m/z 272.1055 (M+Na⁺), calc. for C₁₇H₁₅NONa 272.1051.

The ee was determined by HPLC analysis: CHIRAL INB (4.6 mm i.d. x 250 mm); Hexane/2-propanol = 80/20; flow rate 1.0 mL/min; 25 °C; 230 nm; retention time: 6.1 min (minor) and 14.2 min (major).

N Me H OH **2zd**: yellow solid, Mp 84.0 – 85.2 °C, 10.2 mg, 59% yield, 68% ee, $[\alpha]_D^{22}$ +18.1 (*c* 1.0, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 8.16 (d, *J* = 8.5 Hz, 1H), 8.08 (d, *J* = 8.5 Hz, 1H), 7.83 (d, *J* = 8.1 Hz, 1H), 7.73 (dd, *J* = 11.2, 4.2 Hz,

1H), 7.54 (t, J = 7.4 Hz, 1H), 7.35 (d, J = 8.5 Hz, 1H), 5.16 – 4.96 (m, 2H), 1.58 (d, J = 6.5 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 162.8, 146.3, 137.0, 129.8, 128.7, 127.6, 127.4, 126.4, 118.0, 68.7, 24.1; HRMS (ESI) m/z 196.0740 (M+Na⁺), calc. for C₁₁H₁₁NONa 196.0738. The ee was determined by HPLC analysis: CHIRAL INB (4.6 mm i.d. x 250 mm); Hexane/2-propanol = 90/10; flow rate 1.0 mL/min; 25 °C; 210 nm; retention time: 6.9 min (minor) and 11.3 min (major).

N H OH

2ze: yellow solid, Mp 64.3 – 66.4 °C, 13.2 mg, 62% yield, 88% ee, $[\alpha]_D^{22}$ –26.3 (*c* 1.0, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 8.14 (d, *J* = 8.5 Hz, 1H), 8.08 (d, *J* = 8.5 Hz, 1H), 7.82 (d, *J* = 8.1 Hz, 1H), 7.72 (t, *J* = 7.7

Hz, 1H), 7.54 (t, J = 7.5 Hz, 1H), 7.34 (d, J = 8.5 Hz, 1H), 5.87 (ddt, J = 16.9, 10.2, 6.6 Hz, 1H), 5.21 – 4.82 (m, 4H), 2.40 – 2.12 (m, 2H), 2.11 – 1.97 (m, 1H), 1.90 – 1.74 (m, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 161.9, 146.3, 138.2, 137.0, 129.8, 128.6, 127.6, 127.4, 126.4, 118.3, 114.8, 72.0, 37.4, 29.4; HRMS (ESI) m/z 214.1241 (M+H⁺), calc. for C₁₄H₁₆NO 214.1232. The ee was determined by HPLC analysis: CHIRAL INB (4.6 mm i.d. x 250 mm); Hexane/2-propanol = 90/10; flow rate 1.0 mL/min; 25 °C; 254 nm; retention time: 6.8 min (minor) and 11.4 min (major).

351				
200 -			,2 - 11.427	
100 -	. 1 - 6.763			
0- -47				
5.02 6.00	7.00 8.00	9.00 10.00	11.00 12.00	13.00 13.81
Entry	Retention Time	Area	Height	%Area
1	6.763	1.9223	7.70	5.96
2	11.427	30.3479	158.09	94.04

2zf: yellow oil, 13.9 mg, 69% yield, 88% ee, $[\alpha]_D^{22}$ +13.8 (*c* 1.0, CHCl₃); ¹H r NMR (300 MHz, CDCl₃) δ 8.12 (dd, *J* = 14.6, 8.5 Hz, 2H), 7.83 (d, *J* = 8.1 Hz, 1H), 7.77 - 7.67 (m, 1H), 7.54 (t, *J* = 7.1 Hz, 1H), 7.33 (d, *J* = 8.5 Hz,

1H), 4.91 (s, 1H), 4.77 (s, 1H), 2.18 (dtd, J = 13.6, 6.8, 3.8 Hz, 1H), 1.14 (d, J = 6.9 Hz, 3H), 0.75 (d, J = 6.8 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 161.5, 146.2, 136.7, 129.8, 128.7, 127.6, 127.4, 126.4, 118.8, 34.8, 19.9, 15.5; HRMS (ESI) m/z 202.1237 (M+H⁺), calc. for C₁₃H₁₆NO 202.1232.

The ee was determined by HPLC analysis: CHIRAL INB (4.6 mm i.d. x 250 mm); Hexane/2propanol = 90/10; flow rate 1.0 mL/min; 25 °C; 210 nm; retention time: 6.5 min (major) and 9.2 min (minor).

1	6.471	7751.1	645.7	49.059
2	9.069	8048.4	446.1	50.941
mAU 800 700 600 500 400 300 200		1		
		- · · · · ·		· · ·

Entry	Retention Time	Area	Height	%Area
1	6.51	10107.4	751.4	94.070
2	9.226	637.2	39.2	5.930

2zg: yellow solid, Mp 65.4 – 66.5 °C, 12.9 mg, 65% yield, 80% ee, $[\alpha]_D^{22}$ +23.8 (*c* 1.0, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 8.11 (dd, *J* = 20.1, 8.5

Hz, 2H), 7.81 (d, J = 8.1 Hz, 1H), 7.71 (t, J = 7.4 Hz, 1H), 7.52 (t, J = 9.1 Hz, 2H), 5.21 (s, 1H), 4.30 (d, J = 7.9 Hz, 1H), 1.14 (dd, J = 13.1, 5.7 Hz, 1H), 0.73 – 0.52 (m, 4H); ¹³C NMR (75 MHz, CDCl₃) δ 161.6, 146.2, 136.9, 129.7, 128.7, 127.6, 127.5, 126.3, 118.6, 75.7, 17.8, 2.7, 2.4; HRMS (ESI) m/z 200.1073 (M+H⁺), calc. for C₁₃H₁₅NO 200.1070. The ee was determined by HPLC analysis: CHIRAL INB (4.6 mm i.d. x 250 mm); Hexane/2-propanol = 90/10; flow rate 1.0 mL/min; 25 °C; 230 nm; retention time: 7.8 min (minor) and 17.5 min (major).

Entry	Retention Time	Area	Height	%Area
1	7.807	351.3053	1363.15	90.07
2	17.543	38.7258	112.43	9.93

2zh: white solid, Mp 120.6 – 122.1 °C, 28.2 mg, 99% yield, 90% ee, $[\alpha]_D^{22}$ -46.8 (*c* 1.0, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 8.64 (dd, *J* = 13.2, 8.3 Hz, 2H), 8.33 (d, *J* = 7.6 Hz, 1H), 8.07 (d, *J* = 8.2 Hz, 1H), 7.80 (m, 3H), 7.59 (t, *J* = 7.6 Hz, 1H), 7.44 (d, *J* = 6.7 Hz, 2H), 7.33 (td, *J* = 8.7, 4.2 Hz, 3H), 6.64 (s, 1H), 6.46 (s, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 159.0, 142.9, 141.6, 133.4, 130.9, 129.5, 129.0, 128.8, 128.0, 127.8, 127.4, 127.3, 126.0, 124.4, 123.4, 122.5, 122.1, 72.7; HRMS (ESI) m/z 308.1061 (M+Na⁺), calc. for C₂₀H₁₅NONa 308.1051.

The ee was determined by HPLC analysis: CHIRALPAK IE (4.6 mm i.d. x 250 mm); Hexane/2-propanol = 80/20; flow rate 1.0 mL/min; 25 °C; 210 nm; retention time: 11.7 min (major) and 14.1 min (minor).

2zi: white solid, Mp 139.3 – 140.8 °C, 27.3 mg, 86% yield, 88% ee, $[\alpha]_{D}^{22}$ –100.2 (*c* 1.0, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 8.50 (dd, *J* = 15.5, 8.2 Hz, 2H), 8.15 (d, *J* = 7.9 Hz, 1H), 7.85 (d, *J* = 8.2 Hz, 1H),

7.66 (dt, J = 23.9, 7.2 Hz, 3H), 7.46 (t, J = 7.6 Hz, 1H), 7.19 (dd, J = 21.8, 8.4 Hz, 4H), 6.47 (s, 1H), 6.28 (s, 1H). ¹³C NMR (75 MHz, CDCl₃) δ 158.5, 141.6, 141.4, 133.8, 133.4, 130.9,

129.6, 129.2, 129.0, 129.0, 127.4, 127.4, 125.7, 124.4, 123.2, 122.6, 122.1, 72.0. HRMS (ESI) m/z 342.0653 (M+Na⁺), calc. for $C_{20}H_{14}$ NOCINa 342.0656.

The ee was determined by HPLC analysis: CHIRALPAK IE (4.6 mm i.d. x 250 mm); Hexane/2-propanol = 60/40; flow rate 1.0 mL/min; 25 °C; 210 nm; retention time: 8.3 min (major) and 9.9 min (minor).

Entry	Retention Time	Area	Height	%Area
1	8.302	28960.4	1699.2	94.171
2	9.938	1792.5	105.9	5.829

2zj: yellow solid, Mp 132.3 – 134.8 °C, 21.9 mg, 91% yield, 90% ee, $[\alpha]_D^{22}$ -13.8 (*c* 1.0, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 7.98 (d, *J* = 8.0 Hz, 1H), 7.83 (d, *J* = 7.9 Hz, 1H), 7.53 (d, *J* = 6.5 Hz, 2H), 7.50 – 7.31 (m, 5H),

6.15 (s, 1H), 3.29 (s, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 175.0, 152.4, 140.9, 135.2, 128.8, 128.7, 126.7, 126.2, 125.2, 123.0, 121.8, 74.4; HRMS (ESI) m/z 242.0629 (M+H⁺), calc. for C₁₄H₁₂NOS 242.0634.

The ee was determined by HPLC analysis: CHIRAL INB (4.6 mm i.d. x 250 mm); Hexane/2-propanol = 90/10; flow rate 1.0 mL/min; 25 °C; 254 nm; retention time: 6.4 min (minor) and 10.7 min (major).

Entry	Retention Time	Area	Height	%Area
1	6.325	18336.5	1086.3	49.929
2	10.686	18389	1019.8	50.071
mAU 300 250 200 150 100 0	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		

Entry	Retention Time	Area	Height	%Area
1	6.351	294	22.5	5.175
2	10.69	5387.5	324.2	94.825

2zk: white solid, Mp 140.0 – 141.5 °C, 17.6 mg, 78% yield, 90% ee, $[\alpha]_D^{22}$ –33.8 (*c* 1.0, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 7.73 (dd, *J* = 6.2, 2.8 Hz, 1H), 7.54 (d, *J* = 6.7 Hz, 2H), 7.49 (dd, *J* = 6.3, 3.0 Hz, 1H), 7.42 – 7.32 (m, 5H), 6.06 (s, 1H), 2.72 (s, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 166.7, 151.0, 139.7, 138.6, 128.9, 128.9, 126.8, 125.5, 124.8, 120.0, 111.0, 70.5; HRMS (ESI) m/z 226.0863 (M+H⁺), calc. for C₁₄H₁₂NO₂ 226.0857.

The ee was determined by HPLC analysis: CHIRAL INB (4.6 mm i.d. x 250 mm); Hexane/2-propanol = 90/10; flow rate 1.0 mL/min; 25 °C; 254 nm; retention time: 8.4 min (minor) and 11.4 min (major).

Lifti y	Recention Thile	<i>i</i> neu	Height	707 HCa
1	8.373	2.7186	10.43	5.20
2	11.428	49.5751	116.36	94.80

2zl: white solid, Mp 167.7 – 167.9 °C, 22.0 mg, 68% yield, 87% ee, $[\alpha]_D^{22}$ +23.4 (*c* 1.0, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 7.54 (d, *J* = 3.0 Hz, 2H), 7.47 (d, *J* = 5.4 Hz, 2H), 7.31 (d, *J* = 5.4 Hz, 3H), 7.26 – 7.19 (m, 2H), 6.93 (s, 1H), 1.44 (d, *J* = 1.6 Hz, 9H); ¹³C NMR (75 MHz, CDCl₃) δ 152.1, 151.5, 136.7, 128.9, 128.8, 127.0, 122.9, 83.6, 74.6, 27.6; HRMS (ESI) m/z 325.1549 (M+H⁺), calc. for C₁₉H₂₁N₂O₃ 325.1547.

The ee was determined by HPLC analysis: Cellulose-4 (4.6 mm i.d. x 250 mm); Hexane/2-propanol = 80/20; flow rate 1.0 mL/min; 25 °C; 254 nm; retention time: 11.6 min (minor) and 15.3 min (major).

321 300 - 200 -				
100- -123 9.94 11.00	1 - 11.652 12.00	13'00 14'00	15.00	5 16.00 17.04
Entry	Retention Time	Area	Height	%Area
1	11.652	2.8860	9.28	6.38
2	15.265	42.3220	88.51	93.62

2zm: white solid, Mp 137.2 – 138.1 °C, 11.6 mg, 63% yield, 40% ee, $[\alpha]_{D}^{22}$ +13.4 (*c* 1.0, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 8.65 (d, *J* = 4.5 Hz, 1H), 7.71 (m, 1H), 7.41 (m, 5H), 7.27 (dd, *J* = 14.8, 7.0 Hz, 2H), 5.85 (s, 1H), 5.04 (s, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 160.8, 147.7, 143.2, 136.9, 128.5, 127.8, 127.0, 122.4, 121.4, 74.9; HRMS (ESI) m/z 186.0904 (M+H⁺), calc. for C₁₂H₁₂NO 186.0913.

The ee was determined by HPLC analysis: CHIRAL AD-H (4.6 mm i.d. x 250 mm); Hexane/2-propanol = 93/07; flow rate 0.8 mL/min; 25 °C; 220 nm; retention time: 17.7 min (major) and 22.6 min (minor).

1	17.663	77.8796	108.09	69.82
2	22.618	33.6587	43.57	30.18

7. Copies of NMR spectra

S72

S74

S75

S82

8. References

1. (a) S. Sultan, M. A. Rizvi, J. Kumar, B. A. Shah *Chem. Eur. J.* 2018, **24**, 10617; (b) X. Wu, X. Geng, P. Zhao, J. Zhang, X. Gong, Y.-D. Wu, A.-X. Wu *Org. Lett.* 2017, **19**, 1550.