Supporting Information

Detection of AAG repeats through DNA triplex-induced G-cluster formation

Ha Jung Lee and Byeang Hyean Kim*

Department of Chemistry, Division of Advanced Materials Science, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea

Contents

- **S1** Experimental details
- **S2 Table S1.** Oligonucleotide sequences for the ^{Py}A-modified G-cluster system.
- **S3 Figure S1.** (A) Fluorescence emission spectra and (B) photograph of solutions of the GC1+GC2, GC3+GC4, and GC5+GC6 duplexes.
- **S4 Figure S2.** 20% Native polyacrylamide gel electrophoresis (PAGE) images of GC1-GC6: (A) stained with Stains-All; (B) under UV irradiation.
- **Figure S3.** Circular dichroism (CD) spectra of GC1+GC2, GC3+GC4, and GC5+GC6.
- **S6 Table S2.** Oligonucleotide sequences for the G-cluster triplex-forming probe.
- **S7 Figure S4.** 15% Native PAGE images of T4G4a and T4G4b: (A) stained with Stains-All; (B) under UV irradiation.
- **S8 Figure S5.** Fluorescence emission spectra of triplex probes featuring various numbers of base pairs.
- **S9 Table S3.** Fluorescence emission spectral analysis of the probes.
- **S10** Figure S6. Fluorescence emission spectra of T4G4a+T4G4b recorded at acidic and neutral pH.
- **S11 Figure S7.** 15% Native PAGE images of T4G4a and T4G4b: (A) stained with Stains-All; (B) under UV irradiation.
- **S12** Figure S8. Fluorescence emission spectra of T4G4a-m+T4G4b-m in the absence and presence of AAG4-m.
- **S13 Figure S9.** 15% Native PAGE images of T4G4a-m and T4G4b-m: (A) stained with Stains-All; (B) under UV irradiation.
- Figure S10. 15% Native PAGE images of T4G4a-m and T4G4b-m: (A) stained with Stains-All;(B) under UV irradiation.
- **S15** Figure S11. CD spectra of (A) T4G4a+T4G4b and (B) T4G4H recorded in the presence and absence of d(AAG)₄ and T4G4b, respectively.
- **S16** Figure S12. (A) Schematic representation and (B) fluorescence emission spectra of the hairpin-type triplex probe T4G4H.
- **S17** Figure S13. 15% Native PAGE images of T4G4H and T4G4b: (A) stained with Stains-All; (B) under UV irradiation.

- **S18 Figure S14.** (A) Schematic representation of the FAM-/BHQ-modified triplex-forming probe; (B) fluorescence emission spectra of T4N4a-F+T4N4b-Q in the absence and presence of d(AAG)₄.
- **Figure S15.** 15% Native PAGE images of T4N4a-F and T4N4b-Q: (A) stained with Stains-All;(B) under UV irradiation.
- **S20** Figure S16. Fluorescence emission spectra of T4A4a+T4A4b recorded in the absence and presence of d(AAG)₄.
- **S21** Figure S17. 15% Native PAGE images of T4A4a and T4A4b: (A) stained with Stains-All; (B) under UV irradiation.
- **S22** Figure S18. Selectivity of the probe T4G4a+T4G4b toward the excess amount of various repeat and random sequences. (A) Fluorescence emission spectra; (B) fluorescence intensity at 580 nm.
- **S23 Figure S19.** Fluorescence emission spectra of T4G4a+T4G4b recorded in the absence and presence of repeat and random sequence mixture.
- **S24 Figure S20.** Concentration-dependent fluorescence emission spectra and analyses of T4G4a+T4G4b in response to d(AAG)₄.

Experimental details

Synthesis of oligonucleotides

Natural DNA and FAM- and BHQ-modified oligonucleotides (ODNs) were purchased from Integrated DNA Technologies (IDT). ^{Py}A-modified ODNs were synthesized on a CPG support (scale: 1 µmol; pore size: 1000 Å) using standard phosphoramidite methods and an automated DNA synthesizer (POLYGEN DNA-Synthesizer). The synthesized ODNs were cleaved from the solid support through treatment with 28–30% aqueous NH₄OH (1.0 mL) for 13 h at 55 °C. After filtration of the CPG, the crude products from the automated ODN synthesis were lyophilized and diluted with distilled water (1 mL). The ODNs were purified through reversed-phase HPLC (Merck LichoCART C18 column; 10×250 mm; 10μ m; pore size: 100 Å). The HPLC mobile phase was held isocratically for 10 min with 5% MeCN/0.1 M triethylammonium acetate (TEAA) (pH 7.2) at a flow rate of 2.5 mL/min. The gradient was then increased linearly over 10 min from 5 to 50% MeCN/0.1 M TEAA at the same flow rate. The fractions containing the purified ODNs were cooled and lyophilized. 80% Aqueous AcOH was added to the ODNs. After 1 h at ambient temperature, the AcOH was evaporated under reduced pressure. The residue was diluted with water (1 mL); this solution was then purified through HPLC using the same conditions as those described above. The ODNs were analyzed through reversed-phase HPLC using almost the same eluent system (detection: 254 nm). The products were characterized using MALDI-TOF mass spectrometry.

ODN sample preparation

For fluorescence spectroscopy and circular dichroism (CD) measurements, 1.5 μ M (fluorescence spectroscopy) or 3.0 μ M (CD) of the ODN was added to a solution of 1 M Tris-HCl buffer (pH 7.2, 50 μ L), 1 M NaCl (100 μ L), 200 mM MgCl₂ (50 μ L), and water (in a 1.5-mL microtube) to give a total volume of 1 mL, followed by vortex-mixing. To prepare annealed samples, the mixtures in a buffer solution were heated at 90 °C for 3 min, then cooled slowly under ambient conditions for 4 h.

Fluorescence spectra

Fluorescence spectra were recorded using an Eclipse spectrometer (Varian). Samples for fluorescence spectroscopy were prepared in a quartz cell (path length: 1 cm). Parameters for fluorescence spectra: excitation wavelength, 385 nm; scanning range, 400–750 nm; excitation and emission slits, 2.5 nm/10 nm; data interval, 1.0 nm.

CD spectroscopy

CD spectra of the ODNs were recorded using a J-810 apparatus (JASCO) equipped with a temperature controller. For each sample, five spectral scans were accumulated at 20 °C over the wavelength range from 200 to 450 nm.

Native polyacrylamide gel electrophoresis (PAGE)

30% Acrylamide (5 mL), 5X TBE buffer (2 mL), 200 mM MgCl₂ (0.5 mL), and distilled water (2.5 mL) were mixed for the 15% non-denaturing gel. 40% Acrylamide (5 mL), 5X TBE buffer (2 mL), and distilled water (3 mL) were mixed for the 20% non-denaturing gel. Ammonium persulfate (12 mg) was added to the solution. To initiate gel formation, *N*,*N*,*N*,*N*-tetramethylethylenediamine (TEMED, 10 μ L) was added. Aliquots of the samples (200 pmol) were used for PAGE. Dried samples were dissolved in a buffer/formamide mixture (1:1, v/v; 10 μ L) for sample loading. 15% PAGE was performed at 90 V, 26 mA, 3 W, and 4 °C for 4 h. 20% PAGE was performed at 90 V, 26 mA, 3 W, and 4 °C for 4 h. 20% PAGE was performed at 90 V, 26 mA, 3 W, and 4 °C for 4 h. 20% PAGE was performed at 90 V, 26 mA, 3 W, and 4 °C for 4 h. 20% PAGE was performed at 90 V, 26 mA, 3 W, and 4 °C for 4 h. 20% PAGE was performed at 90 V, 26 mA, 3 W, and 4 °C for 4 h. 20% PAGE was performed at 90 V, 26 mA, 3 W, and 4 °C for 4 h. 20% PAGE was performed at 90 V, 26 mA, 3 W, and 4 °C for 4 h. 20% PAGE was performed at 90 V, 26 mA, 3 W, and 4 °C for 4 h. 20% PAGE was performed at 90 V, 26 mA, 3 W, and room temperature for 3.5 h. After running, the gels were mixed with Stains-All (Sigma–Aldrich) in formamide for 30 min. The gels were dried and exposed to light for visualization of the DNA bands.

Name	Sequence	Calculated <i>m</i> / <i>z</i>	Observed <i>m/z</i>
GC1	5'-GCT TCC AT ^{Py} A ACT ACC TT-3'	5301.9828	5301.1760
GC2	5′-AAG GTA GT ^{Py} A AT GGA AGC-3′	5529.0183	5529.2477
GC3	5'-GCT TCC AT G ^{Py} AG A CTA CCT T-3'	5960.0590	5960.7996
GC4	5'-AAG GTA GT G ^{Py} AG A TGG AAG C-3'	6187.1245	6186.3937
GC5	5'-GCT TCC AT GG ^{Py} AGG AC TAC CTT-3'	6618.1652	6618.6078
GC6	5'-AAG GTA GT GG ^{Py} AGG AT GGA AGC-3'	6845.2307	6845.1692

Table S1. Oligonucleotide sequences for the ^{Py}A-modified G-cluster system

Figure S1. (A) Fluorescence emission spectra and (B) photograph of solutions of the GC1+GC2, GC3+GC4, and GC5+GC6 duplexes.

Figure S2. 20% Native polyacrylamide gel electrophoresis (PAGE)^a images of GC1–GC6 (A) stained with Stains-All and (B) under UV irradiation. Lane 1: GC1; lane 2: GC2; lane 3: GC1+GC2; lane 4: GC3; lane 5: GC4; lane 6: GC3+GC4; lane 7: GC5; lane 8: GC6; lane 9: GC5+GC6.

Figure S3. Circular dichroism (CD) spectra of GC1+GC2, GC3+GC4, and GC5+GC6.

Name	Sequence	Calculated <i>m</i> / <i>z</i>	Observed <i>m/z</i>	
T4G0a	5'-CTT CTT CTT GG ^{Py} AGG-3'	5379.9372	5379.5981	
T4G0b	5'- GG ^{Py} AGG TTC TTC TTC TTC-3'	5379.9372	5379.2251	
T4G1a	5'-CTT CTT CTT CTT GG ^{Py} AGG T-3'	5683.9838	5686.9084	
T4G1b	5'-A GG ^{Py} AGG TTC TTC TTC TTC-3'	5692.9953	3 5694.7967	
T4G2a	5'-CTT CTT CTT CTT GG ^{Py} AGG AT-3'	5997.0419	5999.9090	
T4G2b	5'-AT GG ^{Py} AGG TTC TTC TTC TTC-3'	5997.0419	5999.6725	
T4G3a	5'-CTT CTT CTT CTT GG ^{Py} AGG AAT-3'	6310.1000	.1000 6313.6634	
T4G3b	5'-ATT GG ^{Py} AGG TTC TTC TTC TTC-3'	6301.0885	6306.7623	
T4G4a	5'-CTT CTT CTT CTT GG ^{Py} AGG C AAT-3'	6599.1469	6599.5795	
T4G4b	5'-ATT G GG ^{Py} AGG TTC TTC TTC TTC-3'	6630.1416	6630.0248	
T4G5a	5'-CTT CTT CTT CTT GG ^{Py} AGG A CAA T-3'	6912.2050	6916.1330	
T4G5b	5'-ATT GT GG ^{Py} AGG TTC TTC TTC TTC-3'	6934.1882	6937.7014	
T4G6a	5'-CTT CTT CTT CTT GG ^{Py} AGG T ACA AT-3'	7216.2516	7221.5794	
T4G6b	5'-ATT GTA GG ^{Py} AGG TTC TTC TTC TTC-3'	7247.2463	7253.0972	
T4G4a-m	5'-CTT <u><i>TC</i></u> T CTT CTT GG ^{Py} AGG C AAT-3'	6599.1469	6601.2239	
T4G4b-m	5′-ATT G GG ^{Py} AGG TTC TTC T <u>C7</u> TTC-3′	6630.1416	6630.9850	
T4A4a	5'-CTT CTT CTT CTT AA ^{Py} AAA C AAT-3'	6535.1669	6537.9799	
T4A4b	5'-ATT G AA ^{Py} AAA TTC TTC TTC TTC-3'	6566.1616	6567.7619	
T4G4H	5'-AAG AAG AAG AAG TTT CTT CTT CTT CTT	11331.9639	11330.8783	
	GG ^{Py} AGG C AAT-3'			

Table S2. Oligonucleotide sequences for the G-cluster triplex-forming probe.

Target sequences

d(AAG)₄: 5´-AAG AAG AAG AAG-3´ AAG4-m: 5´-AAG AAG A<u>GA</u> AAG-3´ R12: 5´-TAC CAG TCA ATG-3´ **Figure S4.** 15% Native PAGE images of T4G4a and T4G4b (A) stained with Stains-All and (B) under UV irradiation. Lane 1: T4G4a; lane 2: T4G4b; lane 3: T4G4a+T4G4b; lane 4: T4G4a+T4G4b+d(AAG)₄; lane 5: T4G4a+d(AAG)₄; lane 6: T4G4b+d(AAG)₄; lane 7: d(AAG)₄.

Figure S5. Fluorescence emission spectra of triplex probes featuring various numbers of base pairs, recorded in the absence and presence of d(AAG)₄. (A) T4G0a+T4G0b, (B) T4G1a+T4G1b, (C) T4G2a+T4G2b, (D) T4G3a+T4G3b, (E) T4G4a+T4G4b, (F) T4G5a+T4G5b, and (G) T4G6a+T4G6b.

Sample	1 st Area (A ₁) ^a	2 nd Area (<i>A</i> ₂) ^b	1 st Area (%)	2 nd Area (%)	Ratio (<i>A</i> ₂ / <i>A</i> ₁)
T4G0a+T4G0b+d(AAG) ₄	49.3	111.4	30.7	69.3	2.26
T4G1a+T4G1b+d(AAG) ₄	53.3	148.3	26.4	73.6	2.78
T4G2a+T4G2b+d(AAG) ₄	58.0	95.5	37.7	62.3	1.65
T4G3a+T4G3b+d(AAG) ₄	55.2	112.8	32.9	67.1	2.04
T4G4a+T4G4b+d(AAG) ₄	53.2	169.0	24.0	76.0	3.17
T4G5a+T4G5b+d(AAG) ₄	51.6	158.1	24.6	75.4	3.06
T4G6a+T4G6b+d(AAG) ₄	51.6	152.2	25.3	74.7	2.95
T4A4a+T4A4b+d(AAG) ₄	-	-	-	_	-
T4G4a-m+T4G4b-m+AAG4-m	52.1	189.8	21.5	78.5	3.64
T4G4H+T4G4b	35.2	85.4	29.2	70.8	2.43

 Table S3. Fluorescence emission spectral analysis of the probes.

^a Area of the fluorescence emission peak at 455 nm.

^b Area of the fluorescence emission peak at 580 nm.

Figure S6. Fluorescence emission spectra of T4G4a+T4G4b recorded at acidic and neutral pH. Buffer: 10 mM sodium phosphate, 10 mM MgCl₂.

Figure S7. 15% Native PAGE images of T4G4a and T4G4b (A) stained with Stains-All and (B) under UV irradiation. Lane 1: T4G4a; lane 2: T4G4b; lane 3: T4G4a+T4G4b; lane 4: T4G4a+T4G4b+d(AAG)₄ (0.5 eq.); lane 5: T4G4a+T4G4b+d(AAG)₄ (1.0 eq.); lane 6: T4G4a+T4G4b+d(AAG)₄ (1.5 eq.); lane 7: T4G4a+T4G4b+d(AAG)₄ (2.0 eq.); lane 8: d(AAG)₄.

Figure S8. Fluorescence emission spectra of T4G4a-m+T4G4b-m in the absence and presence of AAG4-m.

Figure S9. 15% Native PAGE images of T4G4a-m and T4G4b-m (A) stained with Stains-All and (B) under UV irradiation. Lane 1: T4G4a-m; lane 2: T4G4b-m; lane 3: T4G4a-m+T4G4b-m; lane 4: T4G4a-m+T4G4b-m+AAG4-m; lane 5: T4G4a-m+AAG4-m; lane 6: T4G4b-m+AAG4-m; lane 7: AAG4-m.

Figure S10. 15% Native PAGE images of T4G4a-m and T4G4b-m (A) stained with Stains-All and (B) under UV irradiation. Lane 1: T4G4a-m; lane 2: T4G4b-m; lane 3: T4G4a-m+T4G4b-m; lane 4: T4G4a-m+T4G4b-m+AAG4-m (0.5 eq.); lane 5: T4G4a-m+T4G4b-m+AAG4-m (1.0 eq.); lane 6: T4G4a-m+T4G4b-m+AAG4-m (1.0 eq.); lane 8: AAG4-m.

Figure S11. CD spectra of (A) T4G4a+T4G4b and (B) T4G4H recorded in the presence and absence of d(AAG)₄ and T4G4b, respectively.

Figure S12. (A) Schematic representation and (B) fluorescence emission spectra of the hairpin-type triplex probe T4G4H.

Figure S13. 15% Native PAGE images of T4G4H and T4G4b (A) stained with Stains-All and (B) under UV irradiation. Lane 1: T4G4H; lane 2: T4G4b; lane 3: T4G4H+T4G4b.

Figure S14. (A) Schematic representation of the FAM-/BHQ-modified triplex-forming probe; (B) fluorescence emission spectra of T4N4a-F+T4N4b-Q in the absence and presence of d(AAG)₄. Excitation wavelength: 495 nm; Ex/Em slit: 2.5/5 nm.

Name	Sequence
T4N4a-F	5′- FAM -CTT CTT CTT CTT GCG CGC AAT-3′
T4N4b-Q	5′-ATT GCG CGC TTC TTC TTC TTC- Q -3′

FAM: 6-fluorescein

Q: blackhole quencher

Figure S15. 15% Native PAGE images of T4N4a-F and T4N4b-Q (A) stained with Stains-All and (B) under UV irradiation. Lane 1: T4N4a-F; lane 2: T4N4b-Q; lane 3: T4N4a-F+T4N4b-Q; lane 4: T4N4a-F+T4N4b-Q; lane 5: d(AAG)₄; lane 5: d(AAG)₄.

Figure S16. Fluorescence emission spectra of T4A4a+T4A4b recorded in the absence and presence of d(AAG)₄. Excitation wavelength: 385 nm; Ex/Em slit: 2.5/5 nm.

Figure S17. 15% Native PAGE images of T4A4a and T4A4b (A) stained with Stains-All and (B) under UV irradiation. Lane 1: T4A4a; lane 2: T4A4b; lane 3: T4A4a+T4A4b; lane 4: T4A4a+T4A4b+d(AAG)₄; lane 5: T4A4a+d(AAG)₄; lane 6: T4A4b+d(AAG)₄; lane 7: d(AAG)₄.

Figure S18. Selectivity of the probe T4G4a+T4G4b toward the excess amount of various repeat and random sequences. (A) Fluorescence emission spectra; (B) fluorescence intensity at 580 nm. Sample concentration: 1.5 μ M of T4G4a and T4G4b and 4.5 μ M of repeat or random sequences.

Figure S19. Fluorescence emission spectra of T4G4a+T4G4b recorded in the absence and presence of repeat and random sequence mixture. Sample concentration: 1.5 μ M of T4G4a, T4G4b, d(AAG)₄, d(AG)₆, d(AAGG)₃, dA₁₂, dG₁₂, dT₁₂, dC₁₂ and R12.

Figure S20. Concentration-dependent fluorescence emission spectra and analyses of T4G4a+T4G4b in response to d(AAG)₄. Sample concentration: 100 nM of T4G4a and T4G4b and 200 nM of d(AG)₆, d(AAGG)₃, dA₁₂, dG₁₂, dT₁₂, dC₁₂ and R12 mixture; Ex./Em. Slit: 10/10 nm.

Limit of detection (LOD) : 7.1 nM