Electronic Supplementary Information

Phase Competition Driven Formation of Hierarchical FeNiZn-MIL-88B on MOF-5 Octapods with High Selectivity for RWGS Reaction

Qinwei Zhang, Zuobo Yang, Biaohua Chen*, Xin Liang*

EXPERIMENTAL SECTION

Materials. Iron(III) acetylacetonate (Fe(acac)₃) and Nickel(II) acetylacetonate (Ni(acac)₂) were bought from Aladdin Industrial Corp. Zinc nitrate hexahydrate $(Zn(NO_3) \cdot 6H_2O)$ and polyvinylpyrrolidone (PVP, Kw=30) were purchased from Sinopharm Chemical Reagent Co., Ltd. Benzenedicarboxylic acid (H₂BDC), N,N-Dimethylformamide (DMF) and ethanol were purchased from Beijing Chemical Reagent Factory. All chemical reagents were at analytical purity level without additional purification.

Synthesis. For a typical synthesis of octapods-FeNiZn MOF materials, Fe(acac)₃ (120 mg), Ni(acac)₂ (60 mg), Zn(NO₃)·6H₂O (92.8 mg), H₂BDC (38.4 mg) and PVP (650 mg) were dissolved in the DMF-ethanol mixture ($V_{DMF}/V_{ethanol} = 32 \text{ mL}/19.2 \text{ mL}$) with magnetic stirring for 30 min to form a uniform solution. The Fe³⁺/Ni²⁺ molar ratio was 1.5/1. Then, the mixture solutions were transferred into a 100 mL Teflon-lined stainless-steel autoclave and heated at 100 °C for 6 h. After cooling naturally at room temperature, the products were collected and washed with DMF and ethanol via centrifugation at 10000 rpm for several times. The products were dried in a vacuum oven at 70 °C for 12 h. Meanwhile, when tuning Fe³⁺/Ni²⁺ molar ratio with 2/1 $(Fe(acac)_3/Ni(acac)_2 = 164 \text{ mg}/60 \text{ mg})$, flower-FeNiZn MOFs were successfully prepared. Adjusting Fe^{3+}/Ni^{2+} molar ratio with 1/2 ($Fe(acac)_3/Ni(acac)_2 = 82$ mg/120 mg), cube-FeNiZn MOFs were synthesized. Other reaction conditions were in agreement with octapods-FeNiZn MOFs synthesis procedure. As for the synthesis of the contrast samples, the preparation of FeZn MOFs and NiZn MOFs were carried out without adding Ni(acac)₂ or Fe(acac)₃ based on the octapods-FeNiZn MOFs synthesis. The FeNiZnOx materials were prepared by calcining the mixture of $Fe(acac)_3$ (120 mg), Ni(acac)₂ (60 mg), Zn(NO₃)·6H₂O (92.8 mg) and PVP (650 mg) in the Muffle furnace at 350 °C for 2 h.

Characterization. The phase composition information of as-prepared materials were collected from powder X-ray diffraction (XRD) measurements on a Bruker D8 diffractometer with Cu K α source. The shape and size of materials were observed on Transmission electron microscope (TEM) (HT7700) and Scanning electron microscope (SEM) (Hitachi S4700). The elemental mapping images were obtained on JEOL-JEM-2100F transmission electron microscope equipped with energy dispersive X-ray spectrometer (EDS) system. The surface compositions of samples were gathered from X-ray photoelectron spectroscopy (XPS) results, recorded on a Thermo Fisher ESCALAB XPS system at Al K α X-ray source. The Fourier transform infrared (FT-IR) spectra were performed using Bruker TENSOR27 FTIR Spectrometric analyzer at room temperature. The thermogravimetric (TG) analysis were measured under nitrogen flows with a heating rate of 10°/min from 30 °C to 800 °C using TGA Q500.

Activity test of catalysts. The RWGS reactions were conducted in a continuous fixed-bed flow reactor. Inside, the catalyst bed was packed up at a constant temperature section with quartz sand supported. Reaction gas mixture were composed of 14.9% CO_2 , 60.2% H_2 and 24.9% Ar. Before reactions, all the catalysts were activated under H_2 (99.999%) flow of 25 mL/min at 350 °C for 2 h. After pretreatments, with the temperature cooling below 200 °C, the gas mixture was switched with 10 mL/min in the reaction system. The catalytic performance of as-prepared samples were measured every 50 °C based on 200 °C until 400 °C. Finally, the gas products were monitored on line using Varian CP-3800 with thermal conductivity detector (TCD) using an internal standard method. The analyzing conditions were as follows: column temperature, 100 °C; detector temperature, 150 °C; carrier gas, helium.

Fig. S1 XPS spectra of octapods-FeNiZn MOFs. (a) the survey spectrum; (b) Fe 2p spectrum; (c) Ni 2p spectrum and (d) Zn 2p spectrum.

Fig. S2 SEM image of octapods-FeNiZn MOFs

Fig. S3 TG curve of octapods-FeNiZn MOFs.

Fig. S4 TEM images of octapods-FeNiZn MOFs prepared under different reaction times. (a) 0.5 h, (b) 1 h, (c) 1.5 h, (d) EDX mapping analysis of 1.5 h samples, (e) 3 h, (f) 6 h.

Fig. S5 (a) XRD patterns of octapods under different reaction times. (b) the schematic model of structure evolution.

Fig. S6 TEM and SEM images of samples preprared with different Fe³⁺/Ni²⁺ molar ratio (a-b) 1/1, (c-d) 1/1.5.

Fig. S7 XRD pattern of FeNiZnOx sample.

Fig. S8 TEM images after H₂ pretreatment at 350 °C for 2 h (a) flower-FeNiZn MOFs.
(b) octapods-FeNiZn MOFs. (c) cube-FeNiZn MOFs.

Fig. S9 XRD patterns of samples after H_2 reduction at 350 °C for 2 h.

Fig. S10 Long-term stability tests of octapods-FeNiZn MOFs at 350 °C for 22 h.

Fig. S11 XRD patterns of octapods after H_2 reduction, reacting 1 h at 350 °C and long-term tests for 22 h at 350 °C.

Fig. S12 TEM images (a) octapods-FeNiZn MOFs after reacting 1 h at 350 °C, (b) octapods-FeNiZn MOFs after long-term tests for 22 h at 350 °C.

Table S1. Comparison of RWGS catalytic performance of the reported catalysts.						
Catalyst	T (°C)	P (MPa)	H_2/CO_2	CO ₂ conversion (%)	CO selectivity (%)	Ref.
CuSiO/CuOx	350	0.1	3/1	2.2	/	1
Pt/MOF-74	350	2	3/1	1.9	100	2
4-Pt/Au@Pd@1Co	350	2	3/1	9.38	76.3	3
1.6%Ru@mSiO ₂ -N	350	/	4/1	9.4	88.1	4
CuOx/CeO ₂	400	0.1	1/1	16	100	5
10%Pd/Al ₂ O ₃	400	/	3/1	35	11.4	6
10%Co/CeO ₂	400	/	1/1	10	93	7
Pt/Au@Pd@UIO-66	400	2	3/1	27.3	73	8
Au@UIO-67-H ₂	408	0.1	3/1	3	/	9
Co/Mo ₂ C	300	/	2/1	9.5	/	10
Octapods-	350	0.1	3/1	16.51	100	this work
FeNiZn MOF	400	0.1	3/1	29.9	81.05	this work
Cube-	350	0.1	3/1	11.29	95.46	this work
FeNiZn MOF	400	0.1	3/1	23.93	90.24	this work
Flower-	350	0.1	3/1	6.9	100	this work
FeNiZn MOF	400	0.1	3/1	14.74	79.69	this work
	350	0.1	3/1	38.13	24.16	this work
FeNiZnOx	400	0.1	3/1	41.58	30.17	this work

Table S1. Comparison of RWGS catalytic performance of the reported catalysts.

References

- 1. Y. Yu, R. Jin, J. Easa, W. Lu, M. Yang, X. Liu, Y. Xing and Z. Shi, *Chem. Commun.*, 2019, **55**, 4178-4181.
- 2. Y. Han, H. Xu, Y. Su, Z.-l. Xu, K. Wang and W. Wang, *J. Catal.*, 2019, **370**, 70-78.
- 3. X. Zhao, H. Xu, X. Wang, Z. Zheng, Z. Xu and J. Ge, *ACS Appl. Mater. Interfaces*, 2018, **10**, 15096-15103.
- 4. J. Dou, Y. Sheng, C. Choong, L. Chen and H. C. Zeng, *Appl. Catal.*, *B*, 2017, **219**, 580-591.
- 5. M. Ronda-Lloret, S. Rico-Francés, A. Sepúlveda-Escribano and E. V. Ramos-Fernandez, *Appl. Catal.*, *A*, 2018, **562**, 28-36.
- 6. J. H. Kwak, L. Kovarik and J. n. Szanyi, *ACS Catal.*, 2013, **3**, 2094-2100.
- 7. L. Wang, H. Liu, Y. Chen and S. Yang, *Int. J. Hydrogen Energy*, 2017, **42**, 3682-3689.
- 8. Z. Zheng, H. Xu, Z. Xu and J. Ge, *Small*, 2018, 14, 1702812.
- 9. H. Xu, Y. Li, X. Luo, Z. Xu and J. Ge, Chem. Commun., 2017, 53, 7953-7956.
- 10. M. D. Porosoff, X. Yang, J. A. Boscoboinik and J. G. Chen, *Angew. Chem.*, *Int. Ed.*, 2014, **53**, 6705-6709.