Electronic Supplementary Information

Room temperature thiosulfate ion redox reaction-driven robust

and porous copper-cobalt-sulfur-oxygen nanowire coating on copper

foam for highly-efficient and low-cost oxygen evolution reaction

Yanqing Wang^a, Yuemeng Li^a, Liping Ding^b, Aaron Ong^a, Jun Ding^{a,*}

a Department of Materials Science & Engineering, National University of Singapore, 117575,

Singapore

b School of Chemistry and Chemical Engineering, Nantong University, Nantong 226007, China

Experimental Section

Materials

Cu foam(CF) conductive support was bought from Latech Scientific Supply Pte. Ltd. CoSO₄.7H₂O, Na₂S₂O₃.5H₂O, KOH, H₂SO₄(95-98wt%) and ethyl alcohol were purchased from Sigma-Aldrich Chemical Reagent Co.

Preparation of Cu-Co-S-O nanowire coating(Cu-Co-S-O NWC)

Cu-Co-S-O nanowire coating(Cu-Co-S-O NWC) was fabricated as follows. In a typical synthesis, a piece of CF(1×1 cm²) was dipped into ethyl alcohol at room temperature for 2 min to remove the oil. To remove the oxide of CF surface, then CF was immersed in 5 volume% H₂SO₄ for 2min at room temperature. Finally, CF was dipped into thiosulfate metal solution for 2h at room temperature. Thiosulfate metal solution contains 140g/L Na₂S₂O₃.5H₂O and 45g/L CoSO₄.7H₂O. Notably, CF was cleaned by deionized water for a few times among the above two processes. At last, the mass loading of catalyst is about 2.23 mg/cm².

Characterizations

ZEISS SEM Supra 40 was used to observe the microscopic morphology of samples. Transmission electron microscopy (TEM) of samples was measured on a JEOL-3010 (300 kV acceleration voltage). XRD patterns were carried out by Bruker D8 Advanced Diffractometer System. X-ray photoelectron spectroscopy (XPS, Kratos AXIS Ultra DLD) was employed to determine the element analysis of surface layer of samples. ICP (Perkin Elmer Optima 5300DV) test was conducted to detect the element analysis of the bulk phase of samples. The CHNS analyzer (Elementar vario MICRO cube) test was determined to detect the sulphur element analysis of the bulk phase of samples.

Electrochemical measurements

OER process was investigated in a typical three-electrode cell connected to a Bio-logic VMP 3. In this cell, the Cu-Co-S-O NWC/CF, Pt and Hg/HgO were used as the working electrode $(1 \times 1 \text{ cm}^2)$, a counter electrode and a reference electrode, respectively. The electrolyte is 1M KOH (pH=14). According to $E(RHE)=E_{Hg/HgO}+0.059pH+0.098$ V, the measured potentials were all converted to reversible hydrogen electrodes (RHE). LSV curves were measured with the scan rates of 1mV/s. All the tafel slopes of the experiments were derived from LSV curves. Please note that all the electrochemical datas were shown with 100% IR conpensation.

Element	Atomic/%		
Cu K	25.2		
Co K	12.1		
SK	5.1		
ок	57.6		
Total	100.00		

Table S1 element atomic content of the surface layer of Cu-Co-S-O NWC by XPS analysis.

Energy(keV)

Materials	Test type	Cu/ppm	Co/ppm	S/%
Cu-Co-S-O NWC	ICP	297	41	-
	CHNS	-	-	8.49

Table S2. ICP and CHNS test of the bulk phase of Cu-Co-S-O NWC $\,$

Figure S2 TGA test results of Cu-Co-S-O NWC

Figure S3 Nitrogen sorption isothermals with the corresponding pore size distribution curve for

Cu-Co-S-O NWC

Figure S4 The influence of different reaction time on the morphology of Cu-Co-S-O NWC (a)

0.25h (b) 0.5h (c) 1h (d) 2h (e) 4h

Figure S5 The tafel performance of Cu-Co-S-O NWC under different reaction time

Figure S6 The comparison of Nitrogen sorption isothermals with the corresponding adsorption desorption curve(a) and pore size distribution curve(b) for Cu-Co-S-O NWC under 2h and 4h

reaction time.

Figure S7 The comparison of the conductivity of copper foam, Cu-Co-S-O NWC under 2h and 4h

reaction time by EIS test at 300mV overpotential.

Figure S8 The ECAS performance of Cu-Co-S-0 coating under different reaction time (a) CV curves at different scan rates in the non-Faradaic capacitance current range for Cu-Co-S-O NWC under 4h (b) corresponding capacitive current differences at 0.18V vs. Hg/HgO as a function of scan rates for Cu-Co-S-O NWC under 2h and 4h.

Figure S9 The digital photographs of different catalytic electrode materials before (a) and after OER (b). Note: the catalytic electrode materials are copper foam, copper foam/Cu-Co-S-O coating under 2h, copper foam/Cu-Co-S-O coating under 4h from left to right direction, respectively.

Figure S10 SEM image of Cu-Co-S-O NWC after OER stability test(50mA/cm²×10h).

Supplementary METHODS

Calculation of electrochemically active surface area (ECAS)

The electrochemical double-layer capacitance C_{dl} is calculated according to the below equation:

$$C_{dl} = J_c \div v \quad (1)$$

The charge current J_c was derived from CV curves in the non-Faradaic capacitance current range. v is the scan rate as shown in **Fig 3d**.

As shown in **Fig 3e**, C_{dl} value of Cu-Co-S-O NWC is 333.9mF.

The electrochemically active surface area *ECAS* is calculated as the below equation according to the previous reports:

$$ECAS = C_{dl} \div C_s \quad (2)$$

According to the literatures, the specific capacitance value of the sample C_s is 0.040 mF/cm², so the *ECAS* of Cu-Co-S-O NWC/CF electrode is 8348 cm².

	i	Overpotential [mV]	Tafel slope		
Catalyst	[mA	(a). i	(mV /dec)	Substrate	Ref
	/cm ²]	3	()	~	
	50	296			
Cu-Co-S-O NWC	100	318	67	CF	This work
	200	346			
	300	366			
Co@Co ₉ S ₈	10	350	55	Cobalt	Chem. Eur.
-				foam	J. 2017, 23,
					8749.
A-CoS _{4.6} O _{0.6} PNCs	10	290	67	GCE	Angew.
					Chem. Int.
					Ed. 2017,
					56, 4858.
N-doped graphene-CoO	10	340	71	GCE	Energy
					Environ.
					Sci. 2014, 7,
					609.
Co ₃ O ₄ /N-doped-graphene	10	310	67	NF	Nat. Mater.
					2011, 10,
					780.
Co-Bi NS/G nanosheet	10	290	53	GCE	Angew.
					Chem. Int.
					Ed. 2016,
					55, 2488.
Co-P	50	420	47	rotating	Angew.
				disk GCE	Chem. Int.
					Ed. 2015,
					54, 6251.
Co ₃ O ₄ /NiCo ₂ O ₄	50	~418	88	NF	J. Am.
DSNCs					Chem. Soc.
					2015, 137,
					5590.
Co ₃ O ₄ -MTA	150	360	84	NF	Angew.
					Chem. Int.
					Ed. 2017,
					56,
					1324.
Co ₃ O ₄ nanoparticles	50	~496	-	HOPG	ACS Catal.
		17			2013, 3,
					2497

 Table S3. Summary of OER catalysis activity of Cu-Co-S-O nanowire coating and as-reported

 Co-based or Cu-based catalysts in 1M KOH electrolyte

Co-B@CoO	50	290		78	TM	Small 2017,
	100	310				13,
						1700805.
Co ₃ O ₄ nanocrystal	/carbon			101	CFP	Chem.
paper	50	420				Commun.
						2015, 51,
						8066.
Co(OH) ₂ -TCN(Q/CF	25	276	101	CF	Adv. Mater.
	-	50	315			2018, 30,
						1705366
P-doped-Co@N	C-3/1	10	340	85	GCE	Adv. Energy
						Mater.
						2018, 8,
						1702048
$\mathrm{Co}_2\mathrm{V}_2\mathrm{O}_7$	-	10	340	62	GCE	Nano
		100	452			Energy,
		10	220			2017, 34, 1.
	-	10	320	- 55	CCE	Nano
CO/VIN	-	100	385	- 33	UCE	<i>Energy</i> ,
		200	412			2017, 34, 1.
HS-CuO/C NDs	NDs	10	286	66.3	Cu foil	ACS Appl.
	-					Mater.
	-	50	422	_		Interfaces
		100	482			2018, 10,
2D C0		10	250	50	<u></u>	23807.
2D CuO		10	330	39	Stamless	J. Maler.
nanosneet	-	50	303	-		2017 5
		50	595			12747
CuCo2O4/l	NrGO	10	360	64	GC-RDE	JPower
040020 1/1	100	10	200	0.	00102	Sources.
						2015. 281.
						243.
Cu0.3Co2.7	704	10	351	63.3	GC-RDE	ACS Appl.
nanochains (0.2)) -	50	422	-		Mater.
		30	432			Interfaces
						2017, 9,
						22378
CuCo284		10	310	86	GCE	ACS Catal.
nanosheets				-		2017, 7,
						5871.

Co-Cu7S4-0.07	10	270	130	Carbon	ACS Nano
				paper	2017, 11,
	50	397			12230
Fe(OH)3:	10	365	42	CF	Chem.
Cu(OH)2	50	399			Commun.,
	100	407			2016,
					52, 14470
CuO-TCNQ/CF	25	317	85	CF	Chem.
	50	355			Commun.,
					2018, 54,
					1425.
Cu2S/CF	10	290	101	CF	ACS Catal.
	20	336			2018, 8,
	50	378			3859.
IrO ₂ /C(52 wt%)	10	250	87	Cu foil	J. Am.
					Chem. Soc.,
					2014, 136,
					13925.

GCE: glassy carbon electrode, NF: nickel foam, HOPG: highly-ordered pyrolytic graphite, CFP: Carbon fiber paper TM: Ti mesh CF: copper foam

REFERENCES

- D. Xiong, Q. Zhang, S. M. Thalluri, J. Xu, W. Li, X. Fu and L. Liu, *Chem. Eur. J.* 2017, 23, 8749.
- 2. P. Cai, J. Huang, J. Chen and Z. Wen, Angew. Chem. Int. Ed. 2017, 56, 4858.
- 3. S. Mao, Z. Wen, T. Huang, Y. Hou and J. Chen, Energy Environ. Sci., 2014, 7, 609.
- Y. Liang, Y. Li, H. Wang, J. Zhou, J. Wang, T. Regier and H. Dai, *Nat Mater*, 2011, 10, 780.
- P. Chen, K. Xu, T. Zhou, Y. Tong, J. Wu, H. Cheng, X. Lu, H. Ding, C. Wu and Y. Xie, *Angew. Chem. Int. Ed.*, 2016, 55, 2488.
- 6. N. Jiang, B. You, M. Sheng and Y. Sun, Angew. Chem. Int. Ed., 2015, 54, 6251.
- 7. H. Hu, B. Guan, B. Xia and X. W. (D.) Lou, J. Am. Chem. Soc., 2015, 137, 5590.
- 8. Y. P. Zhu, T. Y. Ma, M. Jaroniec and S. Z. Qiao, Angew. Chem. Int. Ed., 2017, 56,

1324.

- J. D. Blakemore, H. B. Gray, J. R. Winkler and A. M. Müller, *ACS Catal.*, 2013, 3, 2497.
- W. Lu, T. Liu, L. Xie, C. Tang, D. Liu, S. Hao, F. Qu, G. Du, Y. Ma, A. M. Asiri, and X. Sun, *small*, 2017, 13, 1700805.
- S. Du, Z. Ren, J. Zhang, J. Wu, W. Xi, J. Zhu and H. Fu, *Chem. Commun.*, 2015, 51, 8066.
- D. Wu, Y. Wei, X. Ren, X. Ji, Y. Liu, X. Guo, Z. Liu, A. M. Asiri, Q. Wei and X. Sun, *Adv. Mater.*, 2018, **30**, 1705366.
- Y. Li, B. Jia, Y. Fan, K. Zhu, G. Li and C. -Y. Su, *Adv. Energy Mater.*, 2018, 8, 1702048.
- 14. X. Peng, L. Wang, L. Hu, Y. Li, B. Gao, H. Song, C. Huang, X. Zhang, J. Fu, K. Huo and P. K. Chu, *Nano Energy*, 2017, 34, 1.
- 15. T. Y. Ma, S. Dai, M. Jaroniec and S. Z. Qiao, J. Am. Chem. Soc., 2014, 136, 13925.
- 16. B. Zhang, C. Li, G. Yang, K. Huang, J. Wu, Z. Li, X. Cao, D. Peng, S. Hao and Y. Huang, ACS Appl. Mater. Interfaces, 2018, 10, 23807.
- S. M. Pawar, B. S. Pawar, B. Hou, J. Kim, A. T. A. Ahmed, H. S. Chavan, Y. Jo,
 S. Cho, A. I. Inamdar, J. L. Gunjakar, H. Kim, S. Cha and H. Im, *J. Mater. Chem. A*, 2017, 5, 12747.
- 18. S. K. Bikkarolla and P. Papakonstantinou, J Power Sources, 2015, 281, 243.
- 19. A. Karmakar and S. K. Srivastava, ACS Appl. Mater. Interfaces, 2017, 9, 22378.
- 20. M. Chauhan, K. P. Reddy, C. S. Gopinath and S. Deka, ACS Catal., 2017, 7, 5871.
- Q. Li, X. Wang, K. Tang, M. Wang, C. Wang and C. Yan, ACS Nano, 2017, 11, 12230.
- 22. C. -C. Hou, C. -J. Wang, Q. -Q. Chen, X. -J. Lv, W. -F. Fu and Y. Chen, *Chem. Commun.*, 2016, **52**, 14470.
- 23. X. Ren, X. Ji, Y. Wei, D. Wu, Y. Zhang, M. Ma, Z. Liu, A. M. Asiri, Q. Wei and X. Sun, *Chem. Commun.*, 2018, 54, 1425.
- L. He, D. Zhou, Y. Lin, R. Ge, X. Hou, X. Sun and C. Zheng, ACS Catal., 2018, 8, 3859.