Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2019

Electronic Supplementary Material (ESI)

La₃B₁₄⁻: An Inverse Triple-Decker Lanthanide Boron Cluster

Teng-Teng Chen,[‡]^a Wan-Lu Li,[‡]^b Wei-Jia Chen,^a Jun Li^{*bc} and Lai-Sheng Wang^{*a} ^a Department of Chemistry, Brown University, Providence, RI 02912 USA.

Email: Lai-Sheng_Wang@brown.edu

^b Department of Chemistry and Key Laboratory of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Tsinghua University, Beijing 100084 China.

> Email: junli@tsinghua.edu.cn ^c Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055 (China).

Table of Contents

Experimental and Computational Details	S2
Photoelectron Spectroscopy	S2
Computational Details	S2
References	S2
Supplementary Material	

Experimental and Computational Details

Photoelectron spectroscopy. The experiment was performed using a magnetic-bottle PES apparatus equipped with a laser vaporization supersonic cluster source, details of which have been published elsewhere.^{1, 2} Briefly, the La₃B₁₄⁻ cluster was produced by laser ablation of a La/¹¹B disc target using 532 nm from the second harmonic of a Nd:YAG laser. The La/¹¹B composite target (5/2 mass ratio) was prepared by mixing a La metal powder (Alfa Aesar, -40 mesh, 99.7% purity) with a ¹¹B-enriched powder (Alfa Aesar, 96% ¹¹B-enriched, -100 mesh, 99.9% metal basis) inside a glove box and cold-pressed into a 12 mm diameter round disc target. The nascent clusters were entrained in a helium carrier gas containing 5% Ar and underwent a supersonic expansion. Negatively charged clusters were extracted from the collimated cluster beam perpendicularly and then analyzed by a time-of-flight mass spectrometer. The La₃B₁₄⁻ cluster of interest was mass-selected and decelerated before being photodetached by the 193 nm radiation (6.424 eV) from an ArF excimer laser. The emitted photoelectrons were collected and analyzed by a magnetic-bottle electron analyzer. The energy resolution of the apparatus was about 2.5 %, that is, ~ 25 meV for 1 eV electrons.

Computational methods. Global minimum structure searches of $La_3B_{14}^-$ were performed using the TGMin 2.0 package,^{3, 4} with the initial seeds being constructed manually. The PBE density functional⁵ and Slater-type basis sets of triple- ζ plus one polarization function⁶ were used in the calculations. The scalar-relativistic effect was taken into account by the ZORA approximation⁷ from the ADF 2016.101 package.⁸ The frozen core approximation was applied to the inner cores of $[1s^2-4d^{10}]$ for La and $[1s^2]$ for B. The remaining valence electrons were treated variationally during the SCF procedure. Relative energies of low-lying isomers within 54 kcal/mol of the global minimum were further evaluated at the level of PBE0/TZP.⁹ The first vertical detachment energy (VDE) was computed from the difference of energy between the neutral and anion at the optimized anion geometry. Higher VDEs were computed using the Δ SCF-TDDFT method as employed previously.¹⁰ The SAOP model was used here in the TDDFT calculations for better describing the long-range interactions of excited states.¹¹ Chemical bonding analyses were done using the AdNDP method¹² with the density matrix generated from the PBE0 density functional and visualized by the VMD package.¹³

References

- 1. L. S. Wang, Int. Rev. Phys. Chem., 2016, 35, 69-142.
- 2. L. S. Wang, H. S. Cheng and J. Fan, J. Chem. Phys., 1995, 102, 9480-9493.
- 3. Y. F. Zhao, X. Chen and J. Li, *Nano Res.*, 2017, **10**, 3407-3420.
- 4. X. Chen, Y. F. Zhao, Y. Y. Zhang and J. Li, J. Comput. Chem., 2019, 40, 1105-1112.
- 5. J. P. Perdew, K. Burke and M. Ernzerhof, *Phys. Rev. Lett*, 1996, 77, 3865-3868.
- 6. ADF, 2016.101, SCM, Theoretical Chemistry, Vrijie Universiteit, Amsterdam, The Netherlands, (<u>http://www.scm.com</u>).
- 7. E. Van Lenthe and E. J. Baerends, J. Comput. Chem., 2003, 24, 1142-1156.
- 8. E. v. Lenthe, E.-J. Baerends and J. G. Snijders, J. Chem. Phys., 1993, 99, 4597-4610.
- 9. C. Adamo and V. Barone, J. Chem. Phys., 1999, 110, 6158-6170.
- 10. J. Li, X. Li, H. J. Zhai and L. S. Wang, Science, 2003, 299, 864-867.
- 11. O. V. Gritsenko, P. R. T. Schipper and E. J. Baerends, Chem. Phys. Lett., 1999, 302, 199-207.
- 12. D. Y. Zubarev and A. I. Boldyrev, Phys. Chem. Chem. Phys., 2008, 10, 5207-5217.
- 13. W. Humphrey, A. Dalke and K. Schulten, J. Mol. Graph., 1996, 14, 33-38.

Figure S1. Relative energies in kcal/mol of the low-lying isomers of $La_3B_{14}^-$ within 54 kcal/mol of the global minimum at PBE/TZP and PBE0/TZP levels in brackets.

Figure S2. Frontier canonical Kohn-Sham molecular orbitals and the corresponding energies of $La_3B_{14}^-$ at the PBE0/TZP level of theory, where 24b₂ is the HOMO and 35b₁ is the LUMO.

Figure S3. Bond lengths (in Å) of the titled inverse triple-decker global minimum of $La_3B_{14}^-$ at the PBE0/TZP level of theory.

Table S1. Experimental VDEs compared with theoretical VDEs, and the corresponding electronic states and configurations of the global minimum of $La_3B_{14}^-$ using the Δ SCF-TDDFT method. The bold-face indicates the primary orbitals from which an electron is detached.

	VDE	Final State Symmetry and Floatyon Configuration	VDE
	(Exp)	Final State Symmetry and Electron Configuration	(Theo)
v	2 25(2)	${}^{2}B_{2}, \{ \dots 15a_{2}{}^{2}21b_{2}{}^{2}31b_{1}{}^{2}41a_{1}{}^{2}42a_{1}{}^{2}22b_{2}{}^{2}32b_{1}{}^{2}43a_{1}{}^{2}23b_{2}{}^{2}33b_{1}{}^{2}44a_{1}{}^{2}16a_{2}{}^{2}34b_{1}{}^{2}17a_{2}{}^{2}45a_{1}{}^{2}18a_{2}{}^{2}\textbf{2}4b_{2}{}^{1}\}$	2.18
Λ	2.23(2)	${}^{2}A_{2}, \{ \dots 15a_{2}{}^{2}21b_{2}{}^{2}31b_{1}{}^{2}41a_{1}{}^{2}42a_{1}{}^{2}22b_{2}{}^{2}32b_{1}{}^{2}43a_{1}{}^{2}23b_{2}{}^{2}33b_{1}{}^{2}44a_{1}{}^{2}16a_{2}{}^{2}34b_{1}{}^{2}17a_{2}{}^{2}45a_{1}{}^{2}18a_{2}{}^{1}24b_{2}{}^{2}\}$	2.36
Δ	3 15(3)	$ \sum_{i=1}^{2} A_{1,i} \{ \dots 15a_{2}^{2} 21b_{2}^{2} 31b_{1}^{2} 41a_{1}^{2} 42a_{1}^{2} 22b_{2}^{2} 32b_{1}^{2} 43a_{1}^{2} 23b_{2}^{2} 33b_{1}^{2} 44a_{1}^{2} 16a_{2}^{2} 34b_{1}^{2} 17a_{2}^{2} 45a_{1}^{1} 18a_{2}^{2} 24b_{2}^{2} \} $	3.05
11	5.15(5)	${}^{2}A_{2}, \{ \dots 15a_{2}{}^{2}21b_{2}{}^{2}31b_{1}{}^{2}41a_{1}{}^{2}42a_{1}{}^{2}22b_{2}{}^{2}32b_{1}{}^{2}43a_{1}{}^{2}23b_{2}{}^{2}33b_{1}{}^{2}44a_{1}{}^{2}16a_{2}{}^{2}34b_{1}{}^{2}17a_{2}{}^{1}45a_{1}{}^{2}18a_{2}{}^{2}24b_{2}{}^{2}\}$	3.17
		${}^{2}B_{1}, \{ \dots 15a_{2}{}^{2}21b_{2}{}^{2}31b_{1}{}^{2}41a_{1}{}^{2}42a_{1}{}^{2}22b_{2}{}^{2}32b_{1}{}^{2}43a_{1}{}^{2}23b_{2}{}^{2}33b_{1}{}^{2}44a_{1}{}^{2}16a_{2}{}^{2}\textbf{34b_{1}}{}^{1}17a_{2}{}^{2}45a_{1}{}^{2}18a_{2}{}^{2}24b_{2}{}^{2}\}$	3.58
в	3 71(7)	${}^{2}A_{2}, \{ \dots 15a_{2}{}^{2}21b_{2}{}^{2}31b_{1}{}^{2}41a_{1}{}^{2}42a_{1}{}^{2}22b_{2}{}^{2}32b_{1}{}^{2}43a_{1}{}^{2}23b_{2}{}^{2}33b_{1}{}^{2}44a_{1}{}^{2}\mathbf{16a_{2}}{}^{1}34b_{1}{}^{2}17a_{2}{}^{2}45a_{1}{}^{2}18a_{2}{}^{2}24b_{2}{}^{2}\}$	3.69
D	5.71(7)	${}^{2}A_{1}, \{ \dots 15a_{2}{}^{2}21b_{2}{}^{2}31b_{1}{}^{2}41a_{1}{}^{2}42a_{1}{}^{2}22b_{2}{}^{2}32b_{1}{}^{2}43a_{1}{}^{2}23b_{2}{}^{2}33b_{1}{}^{2}44a_{1}{}^{1}16a_{2}{}^{2}34b_{1}{}^{2}17a_{2}{}^{2}45a_{1}{}^{2}18a_{2}{}^{2}24b_{2}{}^{2}\}$	3.82
		${}^{2}B_{1}, \{ \dots 15a_{2}{}^{2}21b_{2}{}^{2}31b_{1}{}^{2}41a_{1}{}^{2}42a_{1}{}^{2}22b_{2}{}^{2}32b_{1}{}^{2}43a_{1}{}^{2}23b_{2}{}^{2}\textbf{3}\textbf{b}_{1}{}^{1}44a_{1}{}^{2}16a_{2}{}^{2}34b_{1}{}^{2}17a_{2}{}^{2}45a_{1}{}^{2}18a_{2}{}^{2}24b_{2}{}^{2}\}$	3.98
		² B ₂ , {15a ₂ ² 21b ₂ ² 31b ₁ ² 41a ₁ ² 42a ₁ ² 22b ₂ ² 32b ₁ ² 43a ₁ ² 23b₂¹ 33b ₁ ² 44a ₁ ² 16a ₂ ² 34b ₁ ² 17a ₂ ² 45a ₁ ² 18a ₂ ² 24b ₂ ² }	4.20
C	4.08(6)	${}^{2}A_{1}, \{ \dots 15a_{2}{}^{2}21b_{2}{}^{2}31b_{1}{}^{2}41a_{1}{}^{2}42a_{1}{}^{2}22b_{2}{}^{2}32b_{1}{}^{2}4\mathbf{3a_{1}}{}^{1}23b_{2}{}^{2}33b_{1}{}^{2}44a_{1}{}^{2}16a_{2}{}^{2}34b_{1}{}^{2}17a_{2}{}^{2}45a_{1}{}^{2}18a_{2}{}^{2}24b_{2}{}^{2}\}$	4.25
		${}^{2}B_{1}, \{ \dots 15a_{2}{}^{2}21b_{2}{}^{2}31b_{1}{}^{2}41a_{1}{}^{2}42a_{1}{}^{2}22b_{2}{}^{2}\textbf{32b}_{1}{}^{1}43a_{1}{}^{2}23b_{2}{}^{2}33b_{1}{}^{2}44a_{1}{}^{2}16a_{2}{}^{2}34b_{1}{}^{2}17a_{2}{}^{2}45a_{1}{}^{2}18a_{2}{}^{2}24b_{2}{}^{2}\}$	4.29
D	4.35(6)	${}^{2}B_{2}, \{\dots 15a_{2}{}^{2}21b_{2}{}^{2}31b_{1}{}^{2}41a_{1}{}^{2}42a_{1}{}^{2}\mathbf{22b_{2}}{}^{1}32b_{1}{}^{2}43a_{1}{}^{2}23b_{2}{}^{2}33b_{1}{}^{2}44a_{1}{}^{2}16a_{2}{}^{2}34b_{1}{}^{2}17a_{2}{}^{2}45a_{1}{}^{2}18a_{2}{}^{2}24b_{2}{}^{2}\}$	4.49
E	~ 5.04(5)	${}^{2}A_{1}, \{\dots 15a_{2}{}^{2}21b_{2}{}^{2}31b_{1}{}^{2}41a_{1}{}^{2}42a_{1}{}^{1}22b_{2}{}^{2}32b_{1}{}^{2}43a_{1}{}^{2}23b_{2}{}^{2}33b_{1}{}^{2}44a_{1}{}^{2}16a_{2}{}^{2}34b_{1}{}^{2}17a_{2}{}^{2}45a_{1}{}^{2}18a_{2}{}^{2}24b_{2}{}^{2}\}$	5.00
F	~ 5.27(4)	${}^{2}A_{1}, \{\dots 15a_{2}{}^{2}21b_{2}{}^{2}31b_{1}{}^{2}41a_{1}{}^{1}42a_{1}{}^{2}22b_{2}{}^{2}32b_{1}{}^{2}43a_{1}{}^{2}23b_{2}{}^{2}33b_{1}{}^{2}44a_{1}{}^{2}16a_{2}{}^{2}34b_{1}{}^{2}17a_{2}{}^{2}45a_{1}{}^{2}18a_{2}{}^{2}24b_{2}{}^{2}\}$	5.40
G	~ 5.55(5)	${}^{2}B_{1}, \{ \dots 15a_{2}{}^{2}21b_{2}{}^{2}\mathbf{31b_{1}}{}^{1}41a_{1}{}^{2}42a_{1}{}^{2}22b_{2}{}^{2}32b_{1}{}^{2}43a_{1}{}^{2}23b_{2}{}^{2}33b_{1}{}^{2}44a_{1}{}^{2}16a_{2}{}^{2}34b_{1}{}^{2}17a_{2}{}^{2}45a_{1}{}^{2}18a_{2}{}^{2}24b_{2}{}^{2}\}$	5.68
Η	~5.8	${}^{2}B_{2}, \{ \dots 15a_{2}{}^{2}\mathbf{21b_{2}}{}^{1}31b_{1}{}^{2}41a_{1}{}^{2}42a_{1}{}^{2}22b_{2}{}^{2}32b_{1}{}^{2}43a_{1}{}^{2}23b_{2}{}^{2}33b_{1}{}^{2}44a_{1}{}^{2}16a_{2}{}^{2}34b_{1}{}^{2}17a_{2}{}^{2}45a_{1}{}^{2}18a_{2}{}^{2}24b_{2}{}^{2}\}$	6.51

Table S2: Cartesian coordinates of the C_{2v} (¹A₁) global minimum tilted inverse triple-decker structure of La₃B₁₄⁻ at the PBE0/TZP level of theory.

1.B	-2.819237	-0.794873	1.561375
2.B	2.819237	-0.794873	1.561375
3.B	-2.097215	-1.878356	0.758391
4.B	-0.853293	1.897244	-0.243491
5.B	0.000000	0.887847	-1.230163
6.B	0.853293	-1.897244	-0.243491
7.B	0.000000	-0.887847	-1.230163
8.B	0.853293	1.897244	-0.243491
9.B	-2.097215	1.878356	0.758391
10.B	2.097215	1.878356	0.758391
11.B	-2.819237	0.794873	1.561375
12.B	2.819237	0.794873	1.561375
13.La	-2.554884	0.000000	-1.092416
14.La	0.000000	0.000000	1.738465
15.La	2.554884	0.000000	-1.092416
16.B	-0.853293	-1.897244	-0.243491
17.B	2.097215	-1.878356	0.758391

Table S3. Bond order indices from different approaches, density of electrons (ρ), energy density (E), Laplacian of electron density ($\nabla^2 \rho$) and η index of different La-B and bridged B-B bonding at the PBE0/TZP level. The BCP and the corresponding paths are shown in the inserted figure.

	Bond Order			O(r)	$\mathbf{F}(\mathbf{r})$	$\nabla^2 \mathbf{o}(\mathbf{r})$	n
-	Mayer	G-J	N-M (3)	ρ(r)	E (I)	• h(l)	"
La ^c -B (1)	0.23	0.27	0.23	0.031	-0.0035	0.051	0.24
La ^b -B (2)	0.39	0.36	0.39	0.048	-0.0092	0.068	0.28
La ^b -B (3)	0.36	0.38	0.41	0.048	-0.0089	0.070	0.31
B-B bridge	0.78	0.75	0.82	0.139	-0.0933	-0.191	3.95

Table S4: Cartesian coordinates of the extended 1D lanthanide-boron nanostructures, C_{2v} (¹A₁) $La_5B_{26}^-$ and C_s (¹A') $La_7B_{38}^-$ at the PBE/TZP level of theory (see Figure 5).

C_{2v} (¹ A ₁) La ₅ B ₂₆ ⁻ :					
1.B	0.778231	5.710435	-1.401119		
2.B	1.849181	4.965130	-0.604843		
3.B	-1.889049	3.741106	0.393252		
4.B	-0.854586	2.869797	1.315278		
5.B	1.848404	2.067315	0.301473		
6.B	0.854586	2.869797	1.315278		
7.B	-1.848404	2.067315	0.301473		
8.B	-1.849181	4.965130	-0.604843		
9.B	-1.850692	0.826933	-0.683590		
10.B	-0.778231	5.710435	-1.401119		
11.La	0.000000	5.409118	1.289767		
12.La	0.000000	2.861323	-1.604438		
13.B	1.889049	3.741106	0.393252		
14.B	1.850692	0.826933	-0.683590		
15.B	0.831290	0.000000	-1.648713		
16.B	0.778231	-5.710435	-1.401119		
17.B	1.850692	-0.826933	-0.683590		
18.B	-1.848404	-2.067315	0.301473		
19.B	-0.854586	-2.869797	1.315278		
20.B	1.889049	-3.741106	0.393252		
21.B	0.854586	-2.869797	1.315278		
22.B	-1.889049	-3.741106	0.393252		
23.B	-1.850692	-0.826933	-0.683590		

24.B	-1.849181	-4.965130	-0.604843	
25.B	-0.831290	0.000000	-1.648713	
26.B	-0.778231	-5.710435	-1.401119	
27.La	0.000000	0.000000	1.182715	
28.La	0.000000	-2.861323	-1.604438	
29.La	0.000000	-5.409118	1.289767	
30.B	1.848404	-2.067315	0.301473	
31.B	1.849181	-4.965130	-0.604843	

 $C_{s}(^{1}A^{'}) La_{7}B_{38}^{-}$

1.B	1.339834	0.752896	8.584218
2.B	0.523688	1.831415	7.872155
3.B	-0.481274	-1.906498	6.631125
4.B	-1.360113	-0.855603	5.769311
5.B	-0.325395	1.885363	4.996212
6.B	-1.349427	0.833355	5.747158
7.B	-0.315381	-1.848407	4.962886
8.B	0.529506	-1.876832	7.846493
9.B	0.607092	-1.840399	3.698037
10.B	1.338547	-0.803626	8.576689
11.La	-1.351000	-0.019085	8.301335
12.La	1.550800	-0.002875	5.760121
13.B	-0.483352	1.885620	6.649044
14.B	0.631296	1.879108	3.741948
15.B	1.599672	0.850627	2.933851
16.B	1.599672	0.850627	-2.933851
17.B	0.623718	1.874447	2.094262
18.B	-0.355313	-1.820074	0.845145
19.B	-1.351736	-0.872122	0.000000
20.B	-0.325027	1.817981	-0.830489
21.B	-1.288946	0.797652	0.000000
22.B	-0.355313	-1.820074	-0.845145
23.B	0.661801	-1.881887	2.062872
24.B	0.661801	-1.881887	-2.062872
25.B	1.572180	-0.784418	2.828364
26.B	1.572180	-0.784418	-2.828364
27.La	-1.256680	0.031234	2.847892
28.La	1.567617	-0.011547	0.000000
29.La	-1.256680	0.031234	-2.847892
30.B	-0.325027	1.817981	0.830489
31.B	0.623718	1.874447	-2.094262
32.B	1.339834	0.752896	-8.584218
33.B	0.631296	1.879108	-3.741948
34.B	-0.315381	-1.848407	-4.962886
35.B	-1.360113	-0.855603	-5.769311
36.B	-0.483352	1.885620	-6.649044
37.B	-1.349427	0.833355	-5.747158
38.B	-0.481274	-1.906498	-6.631125
39.B	0.607092	-1.840399	-3.698037
40.B	0.529506	-1.876832	-7.846493
41.B	1.338547	-0.803626	-8.576689
42.La	1.550800	-0.002875	-5.760121
43.La	-1.351000	-0.019085	-8.301335
44.B	-0.325395	1.885363	-4.996212
45.B	0.523688	1.831415	-7.872155