Electronic Supplementary Information

Topochemical Synthesis of Phase-Pure Mo₂AlB₂ through Staging Mechanism

Kijae Kim,‡^a Chi Chen,‡^a Daisuke Nishio-Hamane,^b Masashi Okubo,^{ac} and Atsuo Yamada,*^{ac}

- ^{a.} Department of Chemical System Engineering, School of Engineering, The University of Tokyo, 7-
- 3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- ^{b.} Institute for Solid State Physics, The University of Tokyo, Kashiwanoha 5-1-5, Kashiwa, Chiba

277-8581, Japan

^{c.} Elemental Strategy Initiative for Catalysts & Batteries (ESICB), Kyoto University, Nishikyo-ku,

Kyoto 615-8510, Japan

‡ Authors contributed equally to this manuscript.

*E-mail: yamada@chemsys.t.u-tokyo.ac.jp

EXPERIMENTAL SECTION

Synthesis of MoAlB. The mixture of MoB (High Purity Chemicals, Japan) and Al (High Purity Chemicals, Japan) was pelletized under 40 MPa pressure and heated to 1200 °C for 1 h under Ar atmosphere using a high-frequency induction furnace. The heated pellet was powdered by milling with zirconia balls.

Synthesis of Mo₂AlB₂. 500 mg of MoAlB powder was slowly poured into a solution consisting of 2.3 g (3 M) of LiF (Wako Chemicals, Japan) and 30 mL of 10 M HCl (Kanto Chemicals, Japan). The mixture was continuously stirred for 48 h at 40 °C. The resulting precipitate was stirred in a 1 M HCl solution, then filtered, washed with deionized water until the pH reaches to neutral. The separated powder was dried at 60 °C for 12 h under vacuum.

Material Characterization. Crystal structures of the obtained materials were analyzed by X-ray diffraction (Rigaku, RINT-TTR III) in the 2θ range of 3–80° with a step size of 0.02° using Cu *K* α radiation. SEM and TEM images of the obtained materials were collected using a scanning electron microscope (Hitachi, S-4800) and transmission electron microscopy (JEOL, JEM-2100 and JEM-2800), respectively. Chemical composition was determined with energy-dispersive X-ray spectroscopy (JEOL, JEM-6510LA and Oxford X-Max).

Calculation. First-principle calculations were performed using Vienna Ab-initio Simulation Package (VASP),¹ based on density-functional theory (DFT).^{2,3} The exchange–correlation energy is calculated using general gradient approximation (GGA) with the Perdue–Burke–Ernzerhof (PBE) exchange–correlation functional.⁴ The plane wave cutoff energy is 500 eV. The convergence condition for the energy is 10^{-4} eV, and the structures were relaxed until the force on each atom was less than 0.01 eV/Å. Spin polarization was considered in all calculations. A 3×3 slab was chosen to calculate the formation energies of Al removal from MoAlB phase. The *c* axis parameter was set as 40 Å to ensure

enough vacuum to avoid interactions between two periods, and the *k*-point meshes of $3 \times 3 \times 1$ and $6 \times 6 \times 1$ in the Monkhorst Pack⁵ sampling scheme were used for geometry optimization and electronic self-consistent computation, respectively. The crystal structures were drawn using VESTA.⁶ For the first three steps in **Figure 3**, the energy to generate an Al defect from MoAlB phase is defined as, $E = E_f - E_i + E_{Al}$, where E_f , E_i , and E_{Al} are the formation energies of the phase after Al removal, the phase before Al removal, and an elemental Al atom, respectively. For the Stage I and Stage II in **Figure 3**, the energy to remove an Al layer from MoAlB is defined as, $E = (E_s - E_i + N \cdot E_{Al})/N$, where E_s and E_i are the formation energies of the phase N is the number of Al atoms in an Al layer.

References

- 1 G. Kresse and J. Hafner, *Phys. Rev. B*, 1944, **49**, 14251.
- 2 P. Hohenberg, *Phys. Rev.*, 1964, **136**, B864.
- 3 W. Kohn and L. J. Sham, *Phys. Rev.*, **140**, A1133.
- J. P. Perdew, K. Burke and M. Ernzerhof, *Phys. Rev. Lett.*, 1996, 77, 3865.
- 5 H. J. Monkhorst and J. D. Pack, *Phys. Rev. B*, 1976, **13**, 5188.
- 6 K. Momma and F. Izumi, J. Appl. Cryst., 2008, 41, 653.

	Мо	Al	0
	atomic%	atomic%	atomic%
MoAlB	46.0±3	43.7±2	10.3±2
Mo ₂ AlB ₂	58 9+5	27 1+5	14 0+4
(LiF/HCl)	56.7±5	27.145	17.044

Table S1. EDX results for MoAlB and Mo_2AlB_2 .

Figure S1. TEM images for (a) MoAlB and (b-d) Mo₂AlB₂.

Fig. S2 Powder X-ray diffraction patterns for MoAlB, the sample after 24 h etching, and the sample after 48 h etching. After 24 h etching, a new diffraction peak appears at $2\theta = 13^{\circ}$, corresponding to the interlayer distance of $d_{\text{inter}} = 6.8$ Å (presumably, Mo₄Al₃B₄). Based on the calculation results, staging transformation from MoAlB through Mo₄Al₃B₄ to Mo₂AlB₂ should occur.