Chiral iridium(III) complexes with four-membered Ir-S-P-S chelating ring for high-performance circularly polarized OLEDs

Zhi-Ping Yan, Kang Liao, Hua-Bo Han, Jian Su, You-Xuan Zheng,* Jing-Lin Zuo

State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P. R. China. E-mail: yxzheng@nju.edu.cn

- S1. Instruments and details
- S2. Experiment procedures
- S3. NMR spectra
- S4. X-ray crystallographic data
- S5. Photophysical and chiroptical measurement
- S6. Electrochemical measurement and theoretical calculation
- S7. Thermal stability
- S8. Devices fabrication of Δ/Λ -(tfpqz)₂Ir(R/S-L₁) and Δ/Λ -(tfpqz)₂Ir(R/S-L₂)
- S9. EL color coordinates on CIE (x,y) 1931 chromaticity diagram for devices based on Δ/Λ -(tfpqz)₂Ir(R/S-L₁) and Δ/Λ -(tfpqz)₂Ir(R/S-L₂)
- S10. Device characterization of the CP-OLEDs
- S11. References

S1. Instruments and details

All experiments were performed under nitrogen atmosphere. The starting reactants and solvents were used as commercial grade without further purifications.

NMR measurements were conducted on a Bruker AM 400 spectrometer. The mass spectra were recorded by Matrix Assisted Laser Desorption Ionization Time of Flight Mass Spectrometry (autoflex TOF/TOF, Bruker Daltonics), High-resolution mass spectra were recorded on a MICROTOF-Q III instrument. Absorption spectra were measured on a UV-3100 spectrophotometer and photoluminescence spectra were obtained from a Hitachi F-4600 photoluminescence spectrophotometer. The absolute photoluminescence quantum yields (Φ) and the decay lifetimes of the complex was measured with HORIBA FL-3 fluorescence spectrometer. Thermogravimetric analysis (TGA) was performed on a Pyris 1 DSC under nitrogen at a heating rate of 10 °C min⁻¹. The CD and CPL spectra were measured in the same condition with UV-Vis absorption spectra and photoluminescence spectra. The circular dichroism (CD) spectra were measured on a Jasco J-810 circular dichroism spectrometer with 'Low' sensitivity. The scan speed was set as 200 nm/min with 1 nm resolution and a respond time of 1.0 s. The circularly polarized photoluminescence (CPPL) and circularly polarized electroluminescence (CPEL) spectra were measured on a Jasco CPL-300 spectrophotometer based on 'Continuous' scanning mode at 200 nm/min scan speed. The test mode adopts "Slit" mode with the E_x and E_m Slit width 3000 µm and the digital integration time (D.I.T.) is 2.0 s with multiple accumulations (10 times or more).

S2. Experiment Procedures

The $[(C \land N)_2 Ir(\mu - Cl)]_2$ chloride-bridged dimmer and ancillary ligands L_1 and L_2 were prepared according to the reported method.¹

Scheme S1. Synthesize procedures of Δ/Λ -(tfpqz)₂Ir(*R*-L₁) and Δ/Λ -(tfpqz)₂Ir(*R*-L₂).

2.1 Preparation of ancillary ligand L₁ and L₂ enantiomers.

A mixture of (*R*)-5,5',6,6',7,7',8,8'-octahydro-[1,1'-binaphthalene]-2,2'-diol (5.72 g, 0.02 mol) and phosphorus pentasulfide (2.22 g, 0.01 mol) was refluxed in dry toluene (30 mL) for 24 h. Then the solution was cooled down to room temperature and solvent was removed under vacuum. The crude product was purified by column chromatography (silica gel, methanol: dichloromethane 1:20 (v/v)) to get the grey solid 5.2 g (70%) *R*-L₁. The other enantiopure isomers *S*-L₁, *R*-L₂ and *S*-L₂ were obtained by similar procedure.

2.2 Preparation of enantiomeric Ir(III) complexes Δ -(tfpqz)₂Ir(*R*-L₁) and Λ -(tfpqz)₂Ir(*R*-L₁).

A mixture of *R*-L₁ (0.8 g, 0.79 mmol), K₂CO₃ (0.1 g, 0.79 mmol) and $[(C \land N)_2 Ir(\mu-CI)]_2$ chloride-bridged dimmer (0.7 g, 1.67 mmol) were added to CHCl₃ (15 mL) and heated at 50 °C for 10 min. The solvent was evaporated at low pressure and the crude product was purified by column chromatography (silica gel, dichloromethane: petroleum ether 1:1 (v/v)) to get the luminous orange solid which is the racemic complex Δ/Λ -(tfpqz)₂Ir(*R*-L₁) with 1:1 ratio. And then the racemic complex was further purified by column chromatography (silica gel, ethyl

acetate: petroleum ether 1:4 (v/v)) to get the enantiopure isomers Δ -(tfpqz)₂Ir(*R*-L₁) and Λ -(tfpqz)₂Ir(*R*-L₁). The other enantiopure isomers Δ -(tfpqz)₂Ir(*S*-L₁), Λ -(tfpqz)₂Ir(*S*-L₁), Λ -(tfpqz)₂Ir(*R*-L₂), Λ -(tfpqz)₂Ir(*R*-L₂), Λ -(tfpqz)₂Ir(*R*-L₂) and Λ -(tfpqz)₂Ir(*R*-L₂) were prepared in the same way.

 Δ/Λ -(tfpqz)₂Ir(*R*-L₁): yield 65%. HR-MS Calculated: 1126.1551 for C₅₀H₃₆F₆IrN₄O₂PS₂, found: 1126.1593. MALDI-TOF-MS for Δ -(tfpqz)₂Ir(*R*-L₁), Calculated: 1126.16, founded: 1125.28. ¹H NMR (400 MHz, CDCl₃) δ 10.41 (s, 2H), 8.84 (d, J = 8.6 Hz, 2H), 8.44 (d, J = 8.4 Hz, 2H), 8.31 (d, J = 8.5 Hz, 2H), 8.04 (t, J = 8.4 Hz, 2H), 7.88 (t, J = 7.5 Hz, 2H), 7.28-7.19 (m, 2H), 6.87 (d, J = 8.3 Hz, 2H), 6.72 (s, 2H), 6.42 (dd, J = 8.2, 1.8 Hz, 2H), 2.83-2.70 (m, 4H), 2.64 (ddd, J = 12.7, 8.8, 4.4 Hz, 2H), 2.31-2.20 (m, 2H), 1.82-1.68 (m, 6H), 1.62-1.55 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 174.08, 157.05, 157.04, 154.75, 150.84, 146.86, 146.85, 145.25, 145.12, 138.52, 138.50, 135.83, 135.80, 135.08, 131.94, 131.59, 129.45, 129.35, 129.33, 129.01, 128.30, 128.26, 127.37, 126.92, 126.89, 125.86, 124.65, 121.93, 121.67, 119.21, 119.04, 119.01, 118.84, 118.80, 29.13, 27.84, 22.46, 22.27. MALDI-TOF-MS for Λ-(tfpqz)₂Ir(*R*-L₁), Calculated: 1126.16, founded: 1126.43. ¹H NMR (400 MHz, CDCl₃) δ 10.53 (s, 2H), 8.82 (d, J = 8.5 Hz, 2H), 8.43 (d, J = 8.4 Hz, 2H), 8.30 (d, J = 8.3 Hz, 2H), 8.00 (t, J = 8.5 Hz, 2H), 8.43 (d, J = 8.4 Hz, 2H), 8.44 (d8.5 Hz, 2H), 7.83 (t, J = 7.8 Hz, 2H), 7.35-7.20 (m, 4H), 7.14 (d, J = 8.3 Hz, 2H), 6.76 (s, 2H), 2.88-2.71 (m, 4H), 2.62 (ddd, J = 16.0, 8.4, 4.3 Hz, 2H), 2.26-2.16 (m, 2H), 1.77-1.69 (m, 6H), 1.54-1.44 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 174.02, 156.77, 156.76, 154.60, 150.87, 146.96, 146.95, 145.09, 144.96, 138.52, 138.50, 135.96, 135.93, 135.08, 131.90, 131.62, 129.65, 129.62, 129.42, 129.05, 128.35, 128.32, 127.39, 126.95, 126.93, 125.74, 124.67, 121.95, 121.76, 119.56, 119.53, 118.92, 118.88, 118.85, 29.16, 27.79, 22.46, 22.25.

 Δ/Λ -(tfpqz)₂Ir(*S*-L₁): yield 65%. HR-MS Calculated: 1126.1551 for C₅₀H₃₆F₆IrN₄O₂PS₂, found: 1126.1623. MALDI-TOF-MS for Δ -(tfpqz)₂Ir(*S*-L₁), Calculated: 1126.16, founded: 1125.41. ¹H NMR (400 MHz, CDCl₃) δ 10.53 (s, 2H), 8.81 (d, *J* = 8.6 Hz, 2H), 8.43 (d, *J* = 8.4 Hz, 2H), 8.30 (d, *J* = 7.9 Hz, 2H), 8.01 (t, *J* = 8.3 Hz, 2H), 7.84 (t, *J* = 7.8 Hz, 2H), 7.30-7.22 (m, 4H), 7.14 (d, *J* = 8.3 Hz, 2H), 6.76 (s, 2H), 2.88-2.70 (m, 4H), 2.62 (ddd, *J* = 16.2, 8.5, 4.4 Hz, 2H), 2.25-2.16 (m, 2H), 1.80-1.68 (m, 6H), 1.55-1.43 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 174.01, 156.78, 156.77, 154.61, 150.89, 146.97, 146.96, 145.10, 144.98, 138.51, 138.49, 135.95, 135.92, 135.05, 131.88, 131.62, 129.63, 129.61, 129.43, 129.02, 128.36, 128.31,

127.39, 126.95, 126.93, 125.73, 124.67, 121.95, 121.77, 119.57, 119.53, 118.90, 118.86, 118.83, 29.16, 27.79, 22.45, 22.25. MALDI-TOF-MS for Λ-(tfpqz)₂Ir(*S*-L₁), Calculated: 1126.16, founded: 1126.35. ¹H NMR (400 MHz, CDCl₃) δ 10.41 (s, 2H), 8.87 (d, J = 8.5 Hz, 2H), 8.45 (d, J = 8.4 Hz, 2H), 8.33 (d, J = 8.0 Hz, 2H), 8.05 (t, J = 7.1 Hz, 2H), 7.90 (t, J = 7.2 Hz, 2H), 7.26-7.21 (m, 2H), 6.87 (d, J = 8.3 Hz, 2H), 6.71 (s, 2H), 6.42 (dd, J = 8.2, 1.9 Hz, 2H), 2.83-2.70 (m, 4H), 2.64 (ddd, J = 16.1, 8.7, 4.4 Hz, 2H), 2.31-2.21 (m, 2H), 1.79-1.71 (m, 6H), 1.62-1.50 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 174.08, 157.07, 157.06, 154.75, 150.85, 146.86, 146.85, 145.26, 145.13, 138.51, 138.49, 135.81, 135.79, 135.04, 131.92, 131.60, 129.47, 129.33, 129.30, 128.98, 128.30, 128.26, 127.37, 126.92, 126.89, 125.85, 124.65, 121.93, 121.68, 119.21, 119.05, 119.01, 118.82, 118.79, 29.13, 27.83, 22.45, 22.26.

 Δ/Λ -(tfpqz)₂Ir(*R*-L₂): yield 70%. HR-MS Calculated: 1118.0925 for C₅₀H₂₈F₆IrN₄O₂PS₂, found: 1118.1032. MALDI-TOF-MS for Δ -(tfpqz)₂Ir(*R*-L₂), Calculated: 1118.09, founded: 1117.19. ¹H NMR (400 MHz, CDCl₃) δ 10.46 (s, 2H), 8.88 (d, J = 8.6 Hz, 2H), 8.46 (d, J = 8.5 Hz, 2H), 8.35 (d, J = 8.3 Hz, 2H), 8.06 (t, J = 7.6 Hz, 2H), 7.93-7.83 (m, 4H), 7.77 (d, J = 8.8 Hz, 2H), 7.46-7.35 (m, 4H), 7.26 (m, 4H), 6.93 (d, J = 8.8 Hz, 2H), 6.74 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 174.10, 156.60, 156.58, 154.70, 150.93, 146.87, 146.86, 146.54, 146.40, 135.21, 132.47, 132.45, 132.34, 132.00, 131.82, 131.81, 131.72, 131.40, 130.51, 130.50, 129.51, 129.14, 128.47, 128.34, 128.30, 127.36, 127.17, 126.63, 125.87, 125.75, 124.64, 122.56, 122.53, 121.92, 121.72, 121.40, 121.38, 119.20, 118.99, 118.96. MALDI-TOF-MS for Λ -(tfpqz)₂Ir(*R*-L₂), Calculated: 1118.09, founded: 1117.18 . ¹H NMR (400 MHz, CDCl₃) δ 10.63 (s, 2H), 8.77 (d, J = 8.6 Hz, 2H), 8.41 (d, J = 8.4 Hz, 2H), 8.30 (d, J = 8.4 Hz, 2H), 8.10- $7.94 \text{ (m, 4H)}, 7.91 \text{ (d, } J = 8.2 \text{ Hz, 2H)}, 7.85-7.73 \text{ (m, 4H)}, 7.42 \text{ (t, } J = 7.4 \text{ Hz, 2H)}, 7.33 \text{ (d, } J = 7.4 \text{ Hz, 2H)}, 7.33 \text{$ 8.5 Hz, 2H), 7.28-7.19 (m, 4H), 6.76 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 174.04, 156.26, 156.25, 154.58, 150.88, 147.00, 147.00, 146.37, 146.24, 135.19, 132.48, 132.46, 132.33, 132.00, 131.89, 131.87, 131.71, 131.40, 130.84, 130.83, 129.40, 129.15, 128.51, 128.33, 128.29, 127.40, 127.09, 126.63, 125.78, 125.73, 124.68, 122.61, 122.58, 121.96, 121.81, 121.78, 121.77, 119.24, 119.04, 119.00.

 Δ/Λ -(tfpqz)₂Ir(*S*-L₂): yield 60%. HR-MS Calculated: 1118.0925 for C₅₀H₂₈F₆IrN₄O₂PS₂, found: 1118.1063. MALDI-TOF-MS for Δ -(tfpqz)₂Ir(*S*-L₂), Calculated: 1118.09, founded: 1117.32. ¹H NMR (400 MHz, CDCl₃) δ 10.61 (s, 2H), 8.82 (d, *J* = 8.6 Hz, 2H), 8.44 (d, *J* = 8.4

Hz, 2H), 8.34 (d, J = 8.2 Hz, 2H), 8.10-7.97 (m, 4H), 7.94 (d, J = 8.1 Hz, 2H), 7.88-7.75 (m, 4H), 7.45 (t, J = 7.4 Hz, 2H), 7.35 (d, J = 8.5 Hz, 2H), 7.30-7.22 (m, 4H), 6.78 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 174.02, 156.24, 156.23, 154.59, 150.91, 147.01, 147.00, 146.37, 146.24, 135.18, 132.48, 132.46, 132.32, 131.99, 131.89, 131.87, 131.70, 131.39, 130.84, 130.82, 129.42, 129.14, 128.51, 128.33, 128.29, 127.40, 127.10, 126.63, 125.78, 125.73, 124.68, 122.61, 122.58, 121.96, 121.81, 121.78, 121.77, 119.24, 119.03, 119.00. MALDI-TOF-MS for Λ-(tfpqz)₂Ir(*S*-L₂), Calculated: 1118.09, founded:1117.33. ¹H NMR (400 MHz, CDCl₃) δ 10.46 (s, 2H), 8.88 (d, J = 8.5 Hz, 2H), 8.46 (d, J = 8.4 Hz, 2H), 8.35 (d, J = 8.3 Hz, 2H), 8.06 (t, J = 7.5 Hz, 2H), 7.96-7.82 (m, 4H), 7.77 (d, J = 8.8 Hz, 2H), 7.50-7.32 (m, 4H), 7.26 (m, 4H), 6.93 (d, J = 8.7 Hz, 2H), 6.74 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 174.11, 156.60, 156.59, 154.68, 150.90, 146.85, 146.85, 146.53, 146.39, 135.22, 132.46, 132.44, 132.34, 132.01, 131.82, 131.80, 131.72, 131.40, 130.51, 130.50, 129.49, 129.14, 128.47, 128.33, 128.30, 127.35, 127.16, 126.63, 125.87, 125.74, 124.63, 122.55, 122.52, 121.91, 121.71, 121.39, 121.37, 119.19, 119.00, 118.96.

Fig. S1 ¹³C NMR spectrum (100 MHz, CDCl₃) of Δ -(tfpqz)₂Ir(*R*-L₁).

Fig. S2 ¹³C NMR spectrum (100 MHz, CDCl₃) of Λ -(tfpqz)₂Ir(*R*-L₁).

Fig. S3 ¹³C NMR spectrum (100 MHz, CDCl₃) of Δ -(tfpqz)₂Ir(S-L₁).

Fig. S4 ¹³C NMR spectrum (100 MHz, CDCl₃) of Λ -(tfpqz)₂Ir(S-L₁).

Fig. S5 ¹H NMR spectrum (400 MHz, CDCl₃) of Δ -(tfpqz)₂Ir(*R*-L₂).

Fig. S6 ¹³C NMR spectrum (100 MHz, CDCl₃) of Δ -(tfpqz)₂Ir(*R*-L₂).

Fig. S7 ¹H NMR spectrum (400 MHz, CDCl₃) of Λ -(tfpqz)₂Ir(*R*-L₂).

Fig. S8 ¹³C NMR spectrum (100 MHz, CDCl₃) of Λ -(tfpqz)₂Ir(*R*-L₂).

Fig. S9 ¹H NMR spectrum (400 MHz, CDCl₃) of Δ -(tfpqz)₂Ir(S-L₂).

Fig. S10 ¹³C NMR spectrum (100 MHz, CDCl₃) of Δ -(tfpqz)₂Ir(S-L₂).

Fig. S11 ¹H NMR spectrum (400 MHz, CDCl₃) of Λ -(tfpqz)₂Ir(S-L₂).

Fig. S12 ¹³C NMR spectrum (100 MHz, CDCl₃) of Λ -(tfpqz)₂Ir(S-L₂).

S4. X-ray crystallographic data

Identification code	Δ -(tfpqz) ₂ Ir(<i>R</i> -L ₁)	Λ -(tfpqz) ₂ Ir(S-L ₁)	Δ -(tfpqz) ₂ Ir(<i>R</i> -L ₂)	Λ -(tfpqz) ₂ Ir(S-L ₂)	
CCDC	1913548	1913549	1913550	1913551	
Empirical formula	$C_{50.04}H_{35.42}F_6IrN_4O_2PS_2$	$C_{50}H_{36}F_6IrN_4O_2PS_2$	$C_{50}H_{28}F_6IrN_4O_2PS_2$	$C_{50}H_{28}F_6IrN_4O_2PS_2$	
Formula weight	1126.07	1126.18	1118.12	1118.12	
Temperature/K	192.98	296.15	296.15	296.15	
Crystal system	Monoclinic	Monoclinic	Orthorhombic	Orthorhombic	
Space group	P2 ₁	P2 ₁	P212121	P212121	
a/Å	9.0479(9)	9.0612(5)	11.0991(11)	11.1820(6)	
b/Å	10.7246(11)	10.7892(6)	15.4078(16)	15.6943(8)	
c/Å	25.204(3)	25.3691(14)	31.051(3)	30.6950(16)	
$\alpha/^{\circ}$	90	90	90	90	
β/°	98	98	90	90	
$\gamma/^{\circ}$	90	90	90	90	
Volume/Å ³	2421.3(4)	2457.6(2)	5310.1(9)	5386.8(5)	
Ζ	2	2	4	4	
$\rho_{calc}g/cm^3$	1.545	1.52	1.398	1.3786	
μ/mm^{-1}	4.798	2.889	2.683	2.645	
F(000)	1115	1115	2197	2197	
Theta range for data collection/ deg	2.147 to 26.99	1.62 to 24.99	1.31 to 27.54	1.46 to 27.49	
Index ranges	-10 \leq h \leq 10, -12 \leq k \leq	$\text{-}11 \leq h \leq 11, \text{-}13 \leq k \leq$	$0 \leq h \leq 14, 0 \leq k \leq$	$0 \leq h \leq 14, 0 \leq k \leq$	
	12, $-30 \le 1 \le 17$	14, $-25 \le l \le 32$	20, $0 \le l \le 40$	20, $0 \le l \le 39$	
Reflections collected	16720	16988	6759	6824	
Independent reflections	7820 [$R_{int} = 0.0557$]	7978 [$R_{int} = 0.0411$]	$6759 [R_{int} = 0]$	6824 [R _{int} =0]	
Data/restraints/parameters	7820/2456/655	7978/81/595	6759/14/595	6824/1/595	
Goodness-of-fit on F ²	1.025	0.9963	1.02	0.9142	
Final R indexes [I>=2o	$R_1 = 0.0456, wR_2 =$	$R_1 = 0.0435, wR_2 =$	$R_1 = 0.0525, wR_2 =$	$R_1 = 0.0434,$	
(I)]	0.1140	0.0940	0.1385	$wR_2 = 0.0971$	
Final R indexes [all data]	$R_1 = 0.0513$, $wR_2 =$	$R_1 = 0.0567, wR_2 =$	$R_1 = 0.0697, wR_2 =$	$R_1 = 0.0760,$	
	0.1188	0.0997	0.1479	$wR_2 = 0.1077$	
Largest diff. peak/hole / e Å ⁻³	0.82/-1.20	0.86/-0.71	1.22/-1.24	1.31/-2.19	

 $\textbf{Table S1. Crystal data and structure refinement for \Delta-(tfpqz)_2 Ir(R-L_1), \ \Delta-(tfpqz)_2 Ir(S-L_1), \ \Delta-(tfpqz)_2 Ir(R-L_2), \ \Delta-(tfpqz)_2 Ir(S-L_2). \ \Delta-(tfpqz)_2 Ir(S-L_2), \ \Delta-(tfpqz)_2 Ir($

 $R_1^a = \Sigma ||F_o| - |F_c|| / \Sigma F_o|$. w $R_2^b = [\Sigma w (F_o^2 - F_c^2)^2 / \Sigma w (F_o^2)]^{1/2}$

S5. Photophysical and chiroptical measurement

The 3D excitation-emission correlation spectra of Δ/Λ -(tfpqz)₂Ir(*R*-L₁) and Δ/Λ -(tfpqz)₂Ir(*R*-L₂) were measured in CH₂Cl₂ solution at a concentration of 5×10⁻⁶ mol/L under 298 K. Sample for emission measurement were contained within quartz cuvettes of 1 cm pathlength. Degassing was achieved by three freeze-pump-thaw cycles whilst connected to the vacuum manifold. And the phosphorescence lifetime and absolute quantum yields were measured under an argon atmosphere.

Fig. S13 3D excitation-emission correlation spectra of (a) Δ/Λ -(tfpqz)₂Ir(*R/S*-L₁) and (b) Δ/Λ -(tfpqz)₂Ir(*R/S*-L₂).

Fig. S14 Absolute photoluminescence quantum yields of (a) Δ/Λ -(tfpqz)₂Ir(R/S-L₁) and (b) Δ/Λ -(tfpqz)₂Ir(R/S-L₂).

Fig. S15 Transient PL decay spectra of (a) Δ/Λ -(tfpqz)₂Ir(R/S-L₁) and (b) Δ/Λ -(tfpqz)₂Ir(R/S-L₂) in N₂ and air.

Fig. S16 Normalized PL spectra of (a) Δ/Λ -(tfpqz)₂Ir(R/S-L₁) (new preparation) and (b) Δ/Λ -(tfpqz)₂Ir(R/S-L₁) (after 24 h deposition); (c) Δ/Λ -(tfpqz)₂Ir(R/S-L₂) (new preparation) and (d) Δ/Λ -(tfpqz)₂Ir(R/S-L₂) (after 24 h deposition).

Fig. S17 ECD spectra for the stereoisomers and enantiomeric monomers of (a) Δ/Λ -(tfpqz)₂Ir(*R/S*-L₁) and (b) Δ/Λ -(tfpqz)₂Ir(*R/S*-L₂).

Fig. S18 ECD spectra for Δ -(tfpqz)₂Ir(*R*-L₂) and Λ -(tfpqz)₂Ir(*S*-L₂) after device fabrication (dash).

Fig. S19 g_{PL} curves of the stereoisomers and enantiomeric monomers of (a) Δ/Λ -(tfpqz)₂Ir(R/S-L₁) and (b) Δ/Λ -(tfpqz)₂Ir(R/S-L₂).

Fig. S20 PL spectra of Δ/Λ -(tfpqz)₂Ir(R/S-L₁) and Δ/Λ -(tfpqz)₂Ir(R/S-L₂)in doped film (4 wt% in 26DCzPPy).

Fig. S21 (a) CPL spectra and (b) g_{PL} curves of Δ -(tfpqz)₂Ir(*R*-L₂) and Λ -(tfpqz)₂Ir(*S*-L₂) in doped film (4 wt% in 26DCzPPy).

Complete racemic complex	Compound λ_{abs} nn	2	Emission 298 K		Emission 77 K		$g_{\rm PL}(10^{-3})$			
		λ_{abs} nm	$\lambda_{PL} \ nm$	FWHM nm	$\lambda_{PL} \ nm$	FWHM nm	solution	flim	Φ	τµs
Δ/Λ -(tfpqz) ₂ lr(R/S -L ₁) —	Δ -(tfpqz) ₂ Ir(<i>R</i> -L ₁)	225, 280, 412	597	57	607	36	0.7	-	0.92	0.52
	Λ -(tfpqz) ₂ Ir(R-L ₁)	224, 280, 413	597	57	605	31	-0.4	-		
	Δ -(tfpqz) ₂ Ir(S-L ₁)	226, 281, 410	598	57	606	32	0.5	-		
	Λ -(tfpqz) ₂ Ir(S-L ₁)	225, 280, 411	599	56	607	35	-0.6	-		
Δ/Λ -(tfpqz) ₂ lr(R/S -L ₂)	Δ -(tfpqz) ₂ Ir(R-L ₂)	231, 282, 406	601	55	606	34	0.9	1.1		
	Λ -(tfpqz) ₂ Ir(<i>R</i> -L ₂)	233, 282, 405	599	56	607	34	-0.4	-	0.88	0.50
	Δ -(tfpqz) ₂ Ir(S-L ₂)	231, 283, 407	600	55	607	31	0.5	-		

Table S2. Photophysical and chiroptical properties for all the isomers.

S6. Electrochemical measurement and theoretical calculation

Cyclic-voltammetry measurement system at room temperature in deaerated CH₃CN, employing a polished Pt plate as the working electrode, and tetra-*n*-butylammonium perchlorate (0.1M) as the supporting electrolyte, Fc⁺/Fc was used as the reference, with the scan rate of 0.1 V/s. The energy levels were calculated using the following equations: $E_{\text{HOMO}} = -(4.8 + E_{\text{ox}}) \text{ eV}$, $E_{\text{LUMO}} = E_{\text{HOMO}} + E_{\text{g}}$, E_{g} were calculated from the UV-vis spectra.

All the DFT and TD-DFT calculations were carried out using Gaussian 16 software package. The initial structures were created according to the crystal structure. The ground state geometry optimizations with frequent calculations for all the complexes were performed using B3LYP exchange-correlation functional. On the basis of the optimized structures, vertical transition energy calculations were carried out with m06x functional. For all the calculations, a combination of basis sets that Lanl2dz for platinum and 6-31G (d,p) for the others were employed and the solvent effect are considered by C-PCM model in CH₂Cl₂.

Fig. S22 (a) The cyclic voltammogram curve of (a) Δ/Λ -(tfpqz)₂Ir(R/S-L₁) and (b) Δ/Λ -(tfpqz)₂Ir(R/S-L₂).

Table S3. Electrochemical properties of the racemic Ir(III) complexes Δ/Λ -(tfpqz)₂Ir(*R*/*S*-L₁) and Δ/Λ -(tfpqz)₂Ir(*R*/*S*-L₂).

Complex $E_{\text{ox,onset (Ir)}}^{a} V = E_{\text{ox,onset (Fe)}}^{b} V = E_{g,\text{opt}}^{c} e V = E_{\text{HOMO}}^{d} e V = E_{\text{LUMO}}^{c} e V$

Δ/Λ -(tfpqz) ₂ Ir(<i>R</i> / <i>S</i> -L ₁)	1.13	0.13	2.10	-5.80	-3.70
Δ/Λ -(tfpqz) ₂ Ir(<i>R</i> / <i>S</i> -L ₂)	1.11	0.09	2.12	-5.82	-3.70

^a: The onset of oxidation curves of racemic Ir(III) complexes; ^b: The onset of oxidation curves of Ferrocene; ^c: Optical gap (= $1240/\lambda_{onset}$); ^d: $E_{HOMO} = -[E_{ox} - E_{(Fc/Fc+)} + 4.8]$ eV; ^e: $E_{LUMO} = E_{HOMO} + E_{g}$.

Fig. S23 (a) The geometry optimization of Δ -(tfpqz)₂Ir(*R*-L₁) and Λ -(tfpqz)₂Ir(*S*-L₂).

Fig. S24 Electronic clouds distribution of Δ -(tfpqz)₂Ir(*R*-L₁) in selected transitions.

Fig. S25 Electronic clouds distribution of Λ -(tfpqz)₂Ir(*S*-L₂) in selected transitions.

S7. Thermal stability

Fig. S26 TGA curves of Δ/Λ -(tfpqz)₂Ir(*R/S*-L₁) and Δ/Λ -(tfpqz)₂Ir(*R/S*-L₂).

Fig. S27 (a) The schematic energy diagrams of OLED device; (b) Device configuration of OLEDs; (c) Chemical structures of adopted materials.

Fig. S28 External quantum efficiency-luminance (EQE-L) curves of S1 and S2.

S9. EL color coordinates on CIE (x,y) 1931 chromaticity diagram for devices based on Δ/Λ -(tfpqz)₂Ir(R/S-L₁) and Δ/Λ -(tfpqz)₂Ir(R/S-L₂)

Fig. S29 EL color coordinates on CIE (x,y) 1931 chromaticity diagram for S1 and S2.

S10. Device performance characterization of the CP-OLEDs

Fig. S30 Normalized EL spectra of S3 and S4 at 8 V.

Fig. S31 g_{EL} curves of EL performances of S3 and S4.

S11. References

(a) W. Perlikowska, M. Gouygou, M. Mikolajczyk, J. C. Daran, *Asmmetry*, 2004, **15**, 3519-3529; (b) G. Pousse, A. Devineau, V. Dalla,
L. Humphreys, M. C. Lasne, J. Rouden, J. Blanchet, *Tetrahedron*, 2009, **65**, 10617-10622; (c) G. Z. Lu, N. Su, H. Q. Yang, Q. Zhu,
W. W. Zhang, Y. X. Zheng, L. Zhou, J. L. Zuo, Z. X. Chen, H. J. Zhang, *Chem. Sci.*, 2019, **10**, 3535-3542.