## **Supporting Information**

## Iron-Catalyzed Oxidative Functionalization of C(sp<sup>3</sup>)-H Bonds

## under Bromide-synergized Mild Conditions

Han Yu,<sup>1,2, \*,+</sup> Qixin Zhao<sup>1,+</sup> Zheyu Wei<sup>1,3+</sup>, Zhikang Wu<sup>1</sup>, Qi Li<sup>2</sup>, Sheng Han<sup>1, \*</sup> and Yongge Wei<sup>2,3,\*</sup>

<sup>1</sup>School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, P.R. China

<sup>2</sup>Key Lab of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, P.R. China

<sup>3</sup>State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, P.R. China

<sup>+</sup>Contributed equally to this work

\*Correspondenceto:yonggewei@mail.tsinghua.edu.cn;hanyu0020@mail.tsinghua.ed u.cn; hansheng654321@sina.com

### Table of contents

| I.   | General information2                                                       |
|------|----------------------------------------------------------------------------|
| II.  | Preparation and characterizations of catalyst2                             |
| III. | FT-IR and XRD spectra of catalyst 13                                       |
| IV.  | General procedure for catalytic oxidative activation of C-H bonds4         |
| v.   | Mechanism study of the catalytic C(sp <sup>3</sup> )-H selective oxidation |
| VI.  | Supplementary methods                                                      |
| VII. | Optimization of reaction conditions10                                      |
| VIII | .References14                                                              |
| IX.  | NMR data of products15                                                     |
| X.   | NMR spectra                                                                |

#### I. General information

The catalyst was prepared according to published literature methods.<sup>1</sup> All reagents were purchased from Sigma-Aldrich and Adamas-beta, which were used without further purification. <sup>1</sup>H and <sup>13</sup>C Nuclear Magnetic Resonance (NMR) spectra were recorded on Bruker AVANCE III 500 MHz (500 MHz for proton, 125MHz for carbon) spectrometer with tetramethylsilane as the internal reference using CDCl<sub>3</sub> as solvent in all cases, and chemical shifts were reported in parts per million (ppm,  $\delta$ ). FT-IR spectra were recorded on a Thermo Fisher Nicolet 6700. XRD were explored on D/max 2200PC of Japan. GC analyses were performed on Shimadzu GC-2014 with a flame ionization detector equipped with an Rtx-1 capillary column (internal diameter = 0.25 mm, length = 30 m) or a Stabil wax capillary column (internal diameter = 0.25 mm, length = 30 m). GC mass spectra were recorded on Shimadzu GCMS-QP2010 with RTX-5MS column (0.25 mm× 30 m). Column chromatography was performed using 200-300 mesh silica gel.



#### II. Preparation and characterizations of catalyst

#### Figure S1. The process of catalyst preparation.

 $(NH_4)_3$ [FeMo<sub>6</sub>O<sub>18</sub>(OH)<sub>6</sub>]·7H<sub>2</sub>O was synthesized according to a published procedure<sup>1</sup> with suitable modification:  $(NH_4)_6Mo_7O_{24}\cdot4H_2O$  (15.9 g) was dissolved in water (250 mL) and then heated to 100 °C. Fe<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub> (3.8 g) was dissolved in water (60mL), which was slowly added in the solution with stirring. The pH value of mixed solution was kept to about 2.5~3.0. The mixture was still being stirred for 1h after complete adding, and then the crude ammonium salt filtrate obtained from the hot solution. The brown block crystals were filtered off after the filtrate stewed for 12h at room temperature. The colourless aim product (11.8 g) was collected after recrystallized in hot water (80 °C) for two times. IR: 3165 ( $v_{as}$ NH, m), 1640.57 ( $\delta$ OH m), 1400.95 ( $\delta$ NH, s), 946.05(v Mo=O, vs), 845.10(v Mo=O, vs), 649.37 (v Mo-O-Mo, vs), 574.83 (vM-O-Mo, w) cm<sup>-1</sup>.

#### **III. FT-IR and XRD spectra of catalysts 1**



Figure S2. The FTIR spectra of (NH<sub>4</sub>)<sub>3</sub>[FeMo<sub>6</sub>O<sub>18</sub>(OH)<sub>6</sub>].



Figure S3. The XRD spectra of (NH<sub>4</sub>)<sub>3</sub>[FeMo<sub>6</sub>O<sub>18</sub>(OH)<sub>6</sub>].

#### IV. General procedure for catalytic oxidative activation of C-H bonds

**Methods Method A.** The Cat. **1** (0.3 mol%), aromatic ethylbenzene (1.0 mmol), 30% H<sub>2</sub>O<sub>2</sub> (3.5 equiv.) and TBAB (0.05 equiv.) were added into 0.6 mL 1,4-dioxane with stirring at 70 °C for 24 h in a tube. Afterwards, a small amount of ethyl acetate was added to the reaction mixture, which was then layered and removed from the water layer. The water layer was evaporated and the catalyst was recycled. Reaction mixture was analyzed by GC-MS analysis. Finally, the solvent was removed in vacuo, and the corresponding ketones was purified by washing through silica gel column. (Petroleum Ether: Ethyl acetate= 20: 1).

**Methed B.** The Cat. **1** (1.0 mol%), *N*-heterocyclic 2-benzylpyridine (1.0 mmol), 30% H<sub>2</sub>O<sub>2</sub> (4 equiv.) and BrCH<sub>2</sub>CO<sub>2</sub>CH<sub>2</sub>CH<sub>3</sub> (0.05 equiv.) were added into 1.0 mL 1,4-dioxane with stirring at 85 °C for 24 h in a tube. Afterwards, a small amount of ethyl acetate was added to the reaction mixture, which was then layered and removed from the water layer. The water layer was evaporated and the catalyst was recycled. Reaction mixture was analyzed by GC-MS analysis. Finally, the solvent was removed in vacuo, and the corresponding ketones was purified by washing through silica gel column. (Petroleum Ether: Ethyl acetate= 2: 1).

**Method C.** The Cat. 1 (1.0 mol%), aliphatic hexane (1.0 mmol), 50%  $H_2O_2$  (4 equiv.) and TBAB (0.1 equiv.) were added into 1.0 mL 1,4-dioxane/1M HCl (2:1) with stirring at 85 °C for 24 h in a tube. Afterwards, a small amount of ethyl acetate was added to the reaction mixture, which was then layered and removed from the water layer. The water layer was evaporated and the catalyst was recycled. Reaction

mixture was analyzed by GC-MS analysis. Finally, the solvent was removed in vacuo, and the corresponding ketones was purified by washing through silica gel column. (Petroleum Ether: Ethyl acetate= 20: 1).



#### V. Control experiments of the catalytic C(sp<sup>3</sup>)-H selective oxidation.

Figure S4. Control experiments using ethyl benzene as the model substrate were performed.

#### VI. Supplementary methods.

**1.Cyclic voltammogram.** Cyclic voltammograms obtained at the glassy carbon electrode and a 1.0 mM acetonitrile solution of the FeMo<sub>6</sub> in the presence of increasing amounts of TBAB at sweep rates of  $100 \text{ mV s}^{-1}$ .

**2.Preparation of the crystals of FeMo**<sub>6</sub>·**Br**<sub>2</sub>. Single crystals of Bromide ion/ POM complex FeMo<sub>6</sub>·Br<sub>2</sub> were obtained by evaporation of an aquous solution of  $[(C_4H_9)_4N]_3$ [FeMo<sub>6</sub>O<sub>18</sub>(OH)<sub>6</sub>] (10.0 mmol) with stoichiometric ratio of  $[(C_4H_9)_4N]$ Br (200.0 mmol) added.

**3.X-ray Crystallography.** Single-crystal X-ray diffraction analysis was performed on a Rigaku SuperNova diffractometer at 50 kV and 20 mA, using graphite

monochromatized Mo K $\alpha$  radiation ( $\lambda = 0.71073$  Å) at 100 K. Data collection, data reduction, cell refinement, and experimental absorption correction were performed with the software package of CrysAlisPro 1.171.39.46 (Rigaku Oxford Diffraction, 2018). Structures were solved by direct methods and refined against  $F^2$  by full matrix least squares. All non-hydrogen atoms were refined anisotropically. Hydrogen atoms were generated geometrically. All calculations were performed using the SHLEX976 in Olex2 program package<sup>7</sup>. (CCDC: 1882681) These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data request/cif.



Figure S5. Cluster structure of the bromide ion binded cluster.

Red: O. Brown: Br. Yellow: Fe. Blue: Mo. Gray: H.

| Identification code | FeMo <sub>6</sub> Br               |
|---------------------|------------------------------------|
| Empirical formula   | $C_{64}H_{157}Br_2FeMo_6N_4O_{27}$ |
| Formula weight      | 2206.24                            |
| Temperature/K       | 114.8(3)                           |
| Crystal system      | monoclinic                         |
| Space group         | <i>P</i> 2/n                       |
| a/Å                 | 22.2216(2)                         |
| b/Å                 | 18.70299(17)                       |
| c/Å                 | 22.4013(2)                         |
| $\alpha/^{\circ}$   | 90                                 |
| β/°                 | 92.7693(8)                         |

Table S1. Crystal data and structure refinement for FeMo6·2Br

| γ/°                                   | 90                                                                            |
|---------------------------------------|-------------------------------------------------------------------------------|
| Volume/Å <sup>3</sup>                 | 9299.35(14)                                                                   |
| Ζ                                     | 4                                                                             |
| $\rho_{calc}g/cm^3$                   | 1.576                                                                         |
| µ/mm <sup>-1</sup>                    | 9.203                                                                         |
| F(000)                                | 4532.0                                                                        |
| Crystal size/mm <sup>3</sup>          | 0.2 	imes 0.2 	imes 0.1                                                       |
| Radiation                             | $CuK\alpha (\lambda = 1.54184)$                                               |
| $2\Theta$ range for data collection/° | 7.232 to 142.94                                                               |
| Index ranges                          | $\text{-}27 \le h \le 24,  \text{-}20 \le k \le 22,  \text{-}23 \le l \le 27$ |
| Reflections collected                 | 37817                                                                         |
| Independent reflections               | 17662 [ $R_{int} = 0.0394$ , $R_{sigma} = 0.0483$ ]                           |
| Data/restraints/parameters            | 17662/69/1053                                                                 |
| Goodness-of-fit on F <sup>2</sup>     | 1.038                                                                         |
| Final R indexes [I>=2 $\sigma$ (I)]   | $R_1 = 0.0433, wR_2 = 0.1098$                                                 |
| Final R indexes [all data]            | $R_1 = 0.0504, wR_2 = 0.1163$                                                 |
| Largest diff. peak/hole / e Å-3       | 1.24/-1.62                                                                    |

Table S2. Hydrogen bonds in FeMo<sub>6</sub>·2Br.

| D-H      | d(D-H) | d(HA) | <dha< th=""><th>d(DA)</th><th>А</th></dha<> | d(DA) | А                        |
|----------|--------|-------|---------------------------------------------|-------|--------------------------|
| O1-H1    | 0.980  | 2.460 | 142.55                                      | 3.292 | Br1 [ -x+1, -y, -z ]     |
| O13-H13  | 0.980  | 2.449 | 144.05                                      | 3.293 | Br2                      |
| O15-H15  | 0.980  | 2.585 | 138.59                                      | 3.383 | Br2                      |
| О3-Н3    | 0.980  | 2.470 | 143.20                                      | 3.307 | Br1                      |
| O2-H2    | 0.980  | 2.540 | 140.60                                      | 3.355 | Br1 [ -x+1, -y, -z ]     |
| O14-H14  | 0.980  | 2.440 | 142.95                                      | 3.276 | Br2 [ -x+1, -y+1, -z+1 ] |
| O25-H25C | 0.850  | 2.506 | 172.00                                      | 3.349 | Br2                      |
| O26-H26C | 0.850  | 2.155 | 147.22                                      | 2.906 | O23                      |
| O26-H26D | 0.851  | 1.991 | 163.27                                      | 2.817 | O25                      |
| O16-H16  | 0.850  | 1.848 | 177.14                                      | 2.697 | O25                      |
| O6-H6 a  | 0.850  | 1.868 | 176.76                                      | 2.717 | O28 a                    |

4. Cyclic voltammograms.



#### **Figure S6. Control experiments.**

Cyclic voltammograms (298 K, scan rate 100mV s<sup>-1</sup>) of a 1.0 mM dioxane/H<sub>2</sub>O<sub>2</sub> (2:1) solution of the FeMo<sub>6</sub> (black line), a 1.0 mM dioxane/H<sub>2</sub>O<sub>2</sub>/TBAB (2:1:0.05) solution of the FeMo<sub>6</sub> (red line), a 1.0 mM dioxane/H<sub>2</sub>O<sub>2</sub>/TBAB (2:1:0.05) solution of the FeMo<sub>6</sub> drip into the HCl (1M) (blue line).

#### 5. Procedure for catalyst recycling:

The Cat. 1 was separated by centrifugation, washed in turn with water, acetone and ethyl acetate. Then, the dried catalyst was reused without any further purification. Finally, the recycled catalyst was characterized by FTIR (Figure 7) and XRD (Figure 8). The reaction conditions are the same as those of entry 30 in Table 1.



Figure S7. Recycling of iron catalyst for oxidative activation of C-H bonds.



Figure S8. The FTIR spectra of the catalyst before and after the sixth reaction.



Figure S9. XRD of recycled Cat. 1

### VII. Optimization of reaction conditions

Table S3. Reaction optimization of the C(sp3)-H oxidation of ethylbenzene with catalyst 1<sup>a,b</sup>

Cat. 1 (x mol%) 30%H<sub>2</sub>O<sub>2</sub> (x equiv.) \_Н H. Additive(0.05 equiv) 55 °C, 24h, 1,4-dioxane

| Entry | Catalyst (mol%) | Oxidant [equiv]                     | Additive [equiv]   | Solvent (0.6 mL)   | Yield[%] |
|-------|-----------------|-------------------------------------|--------------------|--------------------|----------|
| 1     | 0.3             | H <sub>2</sub> O <sub>2</sub> (2.0) | -                  | 1,4-dioxane        | 41       |
| 2     | 0.3             | H <sub>2</sub> O <sub>2</sub> (2.0) | KCl                | 1,4-dioxane        | 43       |
| 3     | 0.3             | H <sub>2</sub> O <sub>2</sub> (2.0) | ZnCl <sub>2</sub>  | 1,4-dioxane        | 42       |
| 4     | 0.3             | H <sub>2</sub> O <sub>2</sub> (2.0) | NH <sub>4</sub> Cl | 1,4-dioxane        | 41       |
| 5     | 0.3             | H <sub>2</sub> O <sub>2</sub> (2.0) | NaCl               | 1,4-dioxane        | 44       |
| 6     | 0.3             | H <sub>2</sub> O <sub>2</sub> (2.0) | NaBr               | 1,4-dioxane        | 50       |
| 7     | 0.3             | H <sub>2</sub> O <sub>2</sub> (2.0) | NH <sub>4</sub> Br | 1,4-dioxane        | 51       |
| 8     | 0.3             | H <sub>2</sub> O <sub>2</sub> (2.0) | KBr                | 1,4-dioxane        | 53       |
| 9     | 0.3             | H <sub>2</sub> O <sub>2</sub> (2.0) | TBAB               | 1,4-dioxane        | 69       |
| 10    | 0.3             | H <sub>2</sub> O <sub>2</sub> (2.0) | TBAB(1.0)          | 1,4-dioxane        | 55       |
| 11    | 0.3             | H <sub>2</sub> O <sub>2</sub> (2.0) | TBAB(0.02)         | 1,4-dioxane        | 46       |
| 12    | 0.3             | H <sub>2</sub> O <sub>2</sub> (2.0) | TBAB               | THF                | 44       |
| 13    | 0.3             | H <sub>2</sub> O <sub>2</sub> (2.0) | TBAB               | acetone            | 40       |
| 14    | 0.3             | H <sub>2</sub> O <sub>2</sub> (2.0) | TBAB               | DMF                | 23       |
| 15    | 0.3             | H <sub>2</sub> O <sub>2</sub> (2.0) | TBAB               | DMSO               | 24       |
| 16    | 0.3             | $H_2O_2(2.0)$                       | TBAB               | CH <sub>3</sub> CN | 39       |
| 17    | 0.1             | H <sub>2</sub> O <sub>2</sub> (2.0) | TBAB               | 1,4-dioxane        | 23       |

| 18                       | 0.2                                                                      | $H_2O_2(2.0)$                       | TBAB | 1,4-dioxane | 46 |
|--------------------------|--------------------------------------------------------------------------|-------------------------------------|------|-------------|----|
| 19                       | 0.5                                                                      | $H_2O_2(2.0)$                       | TBAB | 1,4-dioxane | 61 |
| 20                       | NH <sub>4</sub> Mo <sub>7</sub> O <sub>24</sub> '4H <sub>2</sub> O (0.3) | $H_2O_2(2.0)$                       | TBAB | 1,4-dioxane | 23 |
| 21                       | Fe <sub>2</sub> (SO <sub>4</sub> ) <sub>3</sub> (0.3)                    | $H_2O_2(2.0)$                       | TBAB | 1,4-dioxane | 30 |
| 22 <sup>[c]</sup>        | 0.3                                                                      | $H_2O_2(2.0)$                       | TBAB | 1,4-dioxane | 59 |
| 23 <sup>[d]</sup>        | 0.3                                                                      | $H_2O_2(2.0)$                       | TBAB | 1,4-dioxane | 68 |
| 24                       | 0.3                                                                      | H <sub>2</sub> O <sub>2</sub> (1.5) | TBAB | 1,4-dioxane | 54 |
| 25                       | 0.3                                                                      | H <sub>2</sub> O <sub>2</sub> (2.5) | TBAB | 1,4-dioxane | 72 |
| 26                       | 0.3                                                                      | H <sub>2</sub> O <sub>2</sub> (3.5) | TBAB | 1,4-dioxane | 76 |
| 27                       | 0.3                                                                      | H <sub>2</sub> O <sub>2</sub> (4.0) | TBAB | 1,4-dioxane | 73 |
| 28 <sup>[e]</sup>        | 0.3                                                                      | H <sub>2</sub> O <sub>2</sub> (3.5) | TBAB | 1,4-dioxane | 82 |
| 29 <sup>[f]</sup>        | 0.3                                                                      | $H_2O_2(3.5)$                       | TBAB | 1,4-dioxane | 90 |
| <b>30</b> <sup>[g]</sup> | 0.3                                                                      | H <sub>2</sub> O <sub>2</sub> (3.5) | TBAB | 1,4-dioxane | 98 |
| 31 <sup>[h]</sup>        | 0.3                                                                      | H <sub>2</sub> O <sub>2</sub> (3.5) | TBAB | 1,4-dioxane | 92 |
| 32                       | 0.3                                                                      | O <sub>2</sub> (1.0bar)             | TBAB | 1,4-dioxane | 23 |

<sup>a</sup>Reaction conditions: Cat. 1 (x mol%), substrate (1.0 mmol),  $30\%H_2O_2$  (x equiv), 1,4-dioxane (0.6 mL), additive (0.05 equiv.) at 55 °C for 24h.<sup>b</sup>The yield was determined by GC-Ms analysis. TBAB = tetrabutylammonium bromide. °12 h. <sup>d</sup>30 h. °60 °C. <sup>f</sup>65 °C. <sup>g</sup>70 °C. <sup>h</sup>75 °C.

# Table S4. Reaction optimization of the C(sp3)-H oxidation of 2-benzylpyridine with catalyst $1^{a,b}$

|       | H<br>N          | Cat. <b>1</b> (1.0 mol%<br>H 30%H <sub>2</sub> O <sub>2</sub> (4.0 eq<br>Additives(0.05 eq | 6)<br>uiv.) O<br>uiv) N             |        |           |
|-------|-----------------|--------------------------------------------------------------------------------------------|-------------------------------------|--------|-----------|
|       |                 | T °C, 24h, 1,4-dio                                                                         | xane                                |        |           |
| Entry | Catalyst (mol%) | Additive [equiv]                                                                           | oxidant [equiv]                     | T [°C] | Yield [%] |
| 1     | 0.3             | TBAB                                                                                       | $H_2O_2(4.0)$                       | 80     | 10        |
| 2     | 0.3             | ClCH <sub>2</sub> CO <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub>                          | $H_2O_2(4.0)$                       | 80     | 22        |
| 3     | 0.3             | BrCH <sub>2</sub> CO <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub>                          | $H_2O_2(4.0)$                       | 80     | 27        |
| 4     | 0.3             | BrCH <sub>2</sub> CO <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> (0.1)                    | $H_2O_2(4.0)$                       | 80     | 18        |
| 5     | 0.6             | BrCH <sub>2</sub> CO <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub>                          | $H_2O_2(4.0)$                       | 80     | 40        |
| 6     | 1.0             | BrCH <sub>2</sub> CO <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub>                          | $H_2O_2(4.0)$                       | 80     | 70        |
| 7     | 1.0             | BrCH <sub>2</sub> CO <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub>                          | H <sub>2</sub> O <sub>2</sub> (4.0) | 85     | 92        |
| 8     | 1.0             | BrCH <sub>2</sub> CO <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub>                          | $H_2O_2(3.0)$                       | 85     | 76        |
| 9     | 1.0             | BrCH <sub>2</sub> CO <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub>                          | $H_2O_2(5.0)$                       | 85     | 80        |
| 9     | 1.0             | BrCH <sub>2</sub> CO <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub>                          | $O_2(1.0 \text{ bar})$              | 85     | 17        |

<sup>a</sup>Reaction conditions: Cat. **1** (x mol%), (1.0 mmol), 1,4-dioxane (1.0 mL),  $30\%H_2O_2$  ( x equiv), TBAB ( 0.05 equiv.) at T °C for 24h. <sup>b</sup>The yield was determined by GC-MS analysis. TBAB = tetrabutylammonium bromide.

# Table S5. Reaction optimization of the C(sp3)-H oxidation of cyclohexane with catalyst $1^{a,b}$

|       |                 | $ \begin{array}{c} H \\ H \\ \hline $ | Cat. <b>1</b> (x mol%)<br>%H <sub>2</sub> O <sub>2</sub> (x equiv.)<br>Iditive(0.1 equiv)<br>°C, 24h, Solvent |                                     |        |           |
|-------|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|-------------------------------------|--------|-----------|
| Entry | Catalyst (mol%) | Additive [equiv]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Solvent (1.0mL)                                                                                               | oxidant [equiv]                     | T [ºC] | Yield [%] |
| 1     | 1.0             | NaBr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1,4-dioxane                                                                                                   | H <sub>2</sub> O <sub>2</sub> (4.0) | 80     | 62        |
| 2     | 1.0             | $\mathrm{NH}_4\mathrm{Br}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1,4-dioxane                                                                                                   | H <sub>2</sub> O <sub>2</sub> (4.0) | 80     | 65        |
| 3     | 1.0             | KBr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1,4-dioxane                                                                                                   | H <sub>2</sub> O <sub>2</sub> (4.0) | 80     | 61        |
| 4     | 1.0             | TBAB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1,4-dioxane                                                                                                   | H <sub>2</sub> O <sub>2</sub> (4.0) | 80     | 68        |
| 5     | 0.5             | TBAB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1,4-dioxane                                                                                                   | H <sub>2</sub> O <sub>2</sub> (4.0) | 80     | 47        |
| 6     | 1.5             | TBAB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1,4-dioxane                                                                                                   | H <sub>2</sub> O <sub>2</sub> (4.0) | 80     | 67        |
| 7     | 1.0             | TBAB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CH <sub>3</sub> CN                                                                                            | H <sub>2</sub> O <sub>2</sub> (4.0) | 80     | 35        |
| 8     | 1.0             | TBAB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1,4-dioxane/1M<br>HCl(1:1)                                                                                    | H <sub>2</sub> O <sub>2</sub> (4.0) | 80     | 78        |
| 9     | 1.0             | TBAB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1,4-dioxane/1M<br>HCl(2:1)                                                                                    | H <sub>2</sub> O <sub>2</sub> (4.0) | 80     | 82        |
| 10    | 1.0             | TBAB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1,4-dioxane/1M<br>HCl(2:1)                                                                                    | H <sub>2</sub> O <sub>2</sub> (4.0) | 85     | 85        |
| 11    | 1.0             | TBAB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1,4-dioxane/1M<br>HCl(2:1)                                                                                    | H <sub>2</sub> O <sub>2</sub> (3.0) | 85     | 77        |
| 12    | 1.0             | TBAB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1,4-dioxane/1M<br>HCl(2:1)                                                                                    | H <sub>2</sub> O <sub>2</sub> (5.0) | 85     | 84        |
| 13    | 1.0             | TBAB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1,4-dioxane/1M<br>HCl(2:1)                                                                                    | O <sub>2</sub> (1.0 bar)            | 85     | 10        |

<sup>a</sup>Reaction conditions: Cat. **1** (x mol%), cyclohexane (1.0 mmol), solvent (1.0 mL), 50%H<sub>2</sub>O<sub>2</sub> ( x equiv), TBAB ( 0.1 equiv.) for 24h. <sup>b</sup>The yield was determined by GC-Ms analysis. TBAB = tetrabutylammonium bromide.

#### VIII. References

- [1] K. Nomiya, T. Takahashi, T. Shirai, M. Miwa. Polyhedron. 1987, 6, 213-218.
- [2] B. Mühldorf, R. Wolf, Angew .Chem. Int. Ed. 2016, 55, 427-430.
- [3] A. Al-Hunaiti, M. Räisänen and T. Repo. Chem. Commun. 2016, 52, 2043-2046
- [4] Jianming Liu, Xin Zhang, Hong Yi, Chao Liu, Ren Liu, Heng Zhang, Kelei Zhuo, and Aiwen Lei. Angew. Chem. Int. Ed. 2015, 54, 1261–1265.
- [5] Damian P. Hruszkewycz, Kelsey C. Miles, Oliver R. Thiel and Shannon S. Stahl. Chem. Sci. 2017, 8, 1282-1287.
- [6] G. M. Sheldrick, Acta Cryst. Sect. A, 2008, 64, 112.
- [7] O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, H. Puschmann, J. Appl. Cryst., 2009, 42, 339.

#### IX. NMR data of products



acetophenone(2)<sup>[3-5]</sup>: <sup>1</sup>H NMR (501 MHz, CDCl<sub>3</sub>) δ 7.82 (s, 2H), 7.42 (s, 1H), 7.31 (s, 2H), 2.44 (s, 3H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>) δ 197.84, 137.00, 132.99, 128.20, 26.41.



**1-(p-tolyl)ethan-1-one(3)**<sup>[3-5]</sup>: <sup>1</sup>H NMR (501 MHz, CDCl<sub>3</sub>) δ 7.85 (s, 2H), 7.27 (s, 2H), 2.57 (s, 3H), 2.41 (s, 3H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>) δ 197.98, 143.90, 134.72, 129.25, 128.47, 26.45, 21.59.



**1-(4-methoxyphenyl)ethan-1-one(4)**<sup>[3-5]</sup>: <sup>1</sup>H NMR (501 MHz, CDCl<sub>3</sub>) δ 7.95 (s, 2H), 6.95 (s, 2H), 3.89 (s, 3H), 2.58 (s, 3H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>) δ 196.77, 163.52, 130.59, 130.41, 113.70, 55.46, 26.30.



**1-(4-ethylphenyl)ethan-1-one(5)**<sup>[3-5]</sup>: <sup>1</sup>H NMR (501 MHz, CDCl<sub>3</sub>) δ 7.89 (s, 2H), 7.29 (s, 2H), 2.71 (s, 2H), 2.57 (s, 3H), 1.26 (s, 3H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>) δ 197.87, 150.05, 134.92, 128.55, 128.06, 28.93, 26.51, 15.19.

**1-(4-fluorophenyl)ethan-1-one(6)**<sup>[3-5]</sup>: <sup>1</sup>H NMR (501 MHz, CDCl<sub>3</sub>) δ 7.86 (s, 2H), 7.00 (s, 2H), 2.46 (s, 3H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>) δ 196.25, 166.61, 133.49, 130.87, 115.54, 26.26.



**1-(4-bromophenyl)ethan-1-one(7)**<sup>[3-5]</sup>: <sup>1</sup>H NMR (501 MHz, CDCl<sub>3</sub>)  $\delta$  7.84 (d, J = 8.5 Hz, 2H), 7.63 (d, J = 8.5 Hz, 2H), 2.61 (s, 3H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  197.11, 135.81, 131.92, 129.87, 128.34, 26.60.



**1-(4-nitrophenyl)ethan-1-one(8)**<sup>[3-5]</sup>: <sup>1</sup>H NMR (501 MHz, CDCl<sub>3</sub>) δ 8.33 (d, *J* = 8.5 Hz, 2H), 8.13 (d, *J* = 8.5 Hz, 2H), 2.70 (s, 3H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>) δ 196.38, 150.36, 141.38, 129.34, 123.89, 27.03.



**1-(2-bromophenyl)ethan-1-one(9)**<sup>[3-5]</sup>: <sup>1</sup>H NMR (501 MHz, CDCl<sub>3</sub>) δ 7.63 (s, 1H), 7.48 (s, 1H), 7.39 (s, 1H), 7.32 (s, 1H), 2.65 (s, 3H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>) δ 201.33, 141.54, 133.86, 131.77, 128.91, 127.44, 118.92, 30.31.



**1-(3-bromophenyl)ethan-1-one(10)**<sup>[3-5]</sup>: <sup>1</sup>H NMR (501 MHz, CDCl<sub>3</sub>) δ 8.16 (s, 1H), 7.94 (s, 1H), 7.76 (s, 1H), 7.42 (s, 1H), 2.67 (s, 3H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>) δ 196.65, 138.89, 136.01, 131.45, 130.25, 126.90, 123.03, 26.63.



**1-([1,1'-biphenyl]-4-yl)ethan-1-one(11)**<sup>[3-5]</sup>: <sup>1</sup>H NMR (501 MHz, CDCl<sub>3</sub>)  $\delta$  8.05 (s, 2H), 7.68 (d, *J* = 35.8 Hz, 4H), 7.46 (d, *J* = 34.7 Hz, 3H), 2.66 (s, 3H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  197.80, 145.80,

139.88, 135.87, 128.99, 128.27, 127.29, 26.68.



**1-(naphthalen-1-yl)ethan-1-one (12)**<sup>[3-5]</sup>: <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 8.81, 7.96, 7.90, 7.85, 7.62, 7.53, 7.47, 2.73. <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 201.79, 135.36, 134.00, 133.06, 130.18, 128.78, 128.46, 128.08, 126.46, 126.06, 124.38, 29.96.



**propiophenone(13)**<sup>[3-5]: 1</sup>H NMR (501 MHz, CDCl<sub>3</sub>) δ 7.98 (s, 2H), 7.57 (s, 1H), 7.47 (s, 2H), 3.02 (s, 2H), 1.25 (s, 3H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>) δ 200.84, 136.97, 132.86, 128.55, 127.98, 31.78, 8.25.



**2-methyl-1-phenylpropan-1-one(14)**<sup>[3-5]</sup>: <sup>1</sup>H NMR (501 MHz, CDCl<sub>3</sub>) δ 7.97 (s, 2H), 7.57 (s, 1H), 7.48 (s, 2H), 3.58 (s, 1H), 1.23 (s, 6H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>) δ 204.56, 136.23, 132.80, 128.61, 35.37, 19.15.



**1,1'-(1,4-phenylene)bis(ethan-1-one)(15)**<sup>[3-5]: 1</sup>H NMR (501 MHz, CDCl<sub>3</sub>)  $\delta$  8.04 (s, 3H), 2.66 (s, 6H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  197.62, 140.17, 128.52, 26.90.



**benzil(16)**<sup>[3-5]</sup>: <sup>1</sup>H NMR (501 MHz, CDCl<sub>3</sub>)  $\delta$  8.00 (d, J = 7.4 Hz, 4H), 7.68 (t, J = 7.4 Hz, 2H), 7.54 (t, J = 7.7 Hz, 4H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  194.58, 134.89, 133.04, 129.92, 129.04.



**benzophenone(17)**<sup>[3-5]</sup>: <sup>1</sup>H NMR (501 MHz, CDCl<sub>3</sub>)  $\delta$  7.83 (d, J = 7.2 Hz, 4H), 7.61 (t, J = 7.4 Hz, 2H), 7.50 (t, J = 7.6 Hz, 4H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  196.79, 137.62, 132.44, 130.08, 128.30.



**9H-fluoren-9-one(18)**<sup>[3-5]</sup>: <sup>1</sup>H NMR (501 MHz, CDCl<sub>3</sub>)  $\delta$  7.66 (d, J = 7.3 Hz, 2H), 7.49 (dt, J = 14.7, 7.2 Hz, 4H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  193.98, 144.43, 134.72, 134.13, 129.09, 124.32, 120.34.



**2,3-dihydro-1H-inden-1-one(19)**<sup>[3-5]</sup>: <sup>1</sup>H NMR (501 MHz, CDCl<sub>3</sub>) δ 7.78 (s, 1H), 7.61 (s, 1H), 7.51 (s, 1H), 7.39 (s, 1H), 3.17 (s, 2H), 2.73 (s, 2H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>) δ 207.09, 155.18, 137.07, 134.61, 126.71, 123.69, 36.21, 25.81.



**3,4-dihydronaphthalen-1(2H)-one(20)**<sup>[3-5]</sup>: <sup>1</sup>H NMR (501 MHz, CDCl<sub>3</sub>) δ 8.04 (s, 1H), 7.46 (s, 1H), 7.30 (s, 2H), 2.96 (s, 2H), 2.65 (s, 2H), 2.13 (s, 2H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>) δ 198.30, 144.49, 133.38, 132.63, 128.78, 127.14, 126.61, 39.16, 29.70, 23.29.

**benzofuran-2(3H)-one(21)**<sup>[3-5]</sup>: <sup>1</sup>H NMR (501 MHz, CDCl<sub>3</sub>) δ 7.29 (s, 2H), 7.14 (s, 1H), 7.10 (s, 1H), 3.73 (s, 2H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>) δ 174.15, 154.70, 128.87, 124.67, 124.11, 123.13, 110.74, 32.96.



isochroman-1-one(22)<sup>[3-5]</sup>: <sup>1</sup>H NMR (501 MHz, CDCl<sub>3</sub>) δ 8.08 (s, 1H), 7.55 (d, *J* = 7.3 Hz, 1H), 7.40 (s, 1H), 7.26 (d, *J* = 20.7 Hz, 1H), 4.54 (s, 2H), 3.08 (s, 2H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>) δ 165.14, 139.68, 133.73, 130.30, 127.68, 127.36, 125.28, 67.38, 27.77.



**9H-xanthen-9-one(23)**<sup>[3-5]</sup>: <sup>1</sup>H NMR (501 MHz, CDCl<sub>3</sub>) δ 8.33 (d, *J* = 7.9 Hz, 2H), 7.71 (dd, *J* = 11.2, 4.2 Hz, 2H), 7.47 (d, *J* = 8.4 Hz, 2H), 7.36 (t, *J* = 7.5 Hz, 2H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>) δ 177.16, 156.15, 134.78, 126.70, 123.89, 121.84, 117.96.



**1-(furan-2-yl)ethan-1-one (24)**<sup>[3-5]</sup>: <sup>1</sup>H NMR (501 MHz, CDCl<sub>3</sub>) δ 7.60, 7.20, 7.19, 6.55, 6.55, 6.54, 2.49. <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>) δ 152.88, 146.45, 117.28, 112.27, 26.04.



**1-(thiophen-2-yl)ethan-1-one (25)**<sup>[3-5]</sup>: <sup>1</sup>H NMR (501 MHz, CDCl<sub>3</sub>) δ 7.55, 7.49, 6.97, 2.39. <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>) δ 190.57, 144.43, 133.79, 132.63, 128.19, 26.73.



**1-(pyridin-2-yl)ethan-1-one(26)**<sup>[3-5]</sup>: <sup>1</sup>H NMR (501 MHz, CDCl<sub>3</sub>) δ 8.65 (s, 1H), 8.00 (s, 1H), 7.81 (s, 1H), 7.44 (s, 1H), 2.70 (s, 3H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>) δ 200.09, 153.54, 148.96, 136.82, 127.08, 121.61, 25.75.



phenyl(pyridin-2-yl)methanone(27)<sup>[3-5]</sup>: <sup>1</sup>H NMR (501 MHz, CDCl<sub>3</sub>) δ 8.74 (s, 1H), 8.07 (s, 3H), 7.92 (s, 1H), 7.61 (s, 1H), 7.50 (s, 3H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>) δ 193.90, 155.12, 148.57, 137.07, 136.29, 132.94, 131.00, 128.18, 126.18, 124.64.



**(4-chlorophenyl)(pyridin-2-yl)methanone(28)**<sup>[3-5]</sup>: <sup>1</sup>H NMR (501 MHz, CDCl<sub>3</sub>) δ 8.72 (s, 1H), 8.07 (s, 3H), 7.91 (s, 1H), 7.49 (d, *J* = 16.5 Hz, 3H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>) δ 192.42, 154.67, 148.52, 139.40, 137.22, 134.59, 132.51, 128.47, 126.44, 124.69.



**7,8-dihydroquinolin-5(6H)-one(29)**<sup>[3-5]</sup>: <sup>1</sup>H NMR (501 MHz, CDCl<sub>3</sub>) δ 8.67 (s, 1H), 8.28 (s, 1H), 7.28 (s, 1H), 3.16 (s, 2H), 2.69 (s, 2H), 2.20 (s, 2H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>) δ 197.95, 163.65, 153.46, 135.05, 128.16, 122.26, 38.53, 32.49, 21.83.



**6,7-dihydro-5H-cyclopenta[b]pyridin-5-one(30)**<sup>[3-5]</sup>: <sup>1</sup>H NMR (501 MHz, CDCl<sub>3</sub>) δ 8.80 (s, 1H), 8.00 (s, 1H), 7.32 (s, 1H), 3.27 (s, 2H), 2.78 (s, 2H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>) δ 204.98, 174.32, 155.67, 132.01, 130.35, 122.52, 35.76, 28.68.

(5S,8aR,9aR)-3,5,8a-trimethyl-6,7,9,9a-tetrahydronaphtho[2,3-b]furan-2,8(5H,8aH)-dione(41)[3-5]:

(3S,5R,5aS,6R,9R,9aS,10R)-6-acetoxy-2,2,5a,9-tetramethyl-4,7-dioxooctahydro-2H-3,9amethanobenzo[b]oxepine-5,10-diyl dibenzoate(42)<sup>[3-5]</sup>:





<sup>13</sup>C NMR spectra of 2 (126 MHz, CDCl<sub>3</sub>)



<sup>13</sup>C NMR spectra of **3** (126 MHz, CDCl<sub>3</sub>)



<sup>13</sup>C NMR spectra of 4 (126 MHz, CDCl<sub>3</sub>)



<sup>13</sup>C NMR spectra of **5** (126 MHz, CDCl<sub>3</sub>)



<sup>13</sup>C NMR spectra of **6** (126 MHz, CDCl<sub>3</sub>)



<sup>13</sup>C NMR spectra of 7 (126 MHz, CDCl<sub>3</sub>)



<sup>13</sup>C NMR spectra of 8 (126 MHz, CDCl<sub>3</sub>)



<sup>13</sup>C NMR spectra of **9** (126 MHz, CDCl<sub>3</sub>)



<sup>13</sup>C NMR spectra of **10** (126 MHz, CDCl<sub>3</sub>)



<sup>13</sup>C NMR spectra of **11** (126 MHz, CDCl<sub>3</sub>)



<sup>13</sup>C NMR spectra of **12** (126 MHz, CDCl<sub>3</sub>)



<sup>13</sup>C NMR spectra of 13 (126 MHz, CDCl<sub>3</sub>)



<sup>13</sup>C NMR spectra of 14 (126 MHz, CDCl<sub>3</sub>)



<sup>13</sup>C NMR spectra of **15** (126 MHz, CDCl<sub>3</sub>)





210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

<sup>13</sup>C NMR spectra of **16** (126 MHz, CDCl<sub>3</sub>)



220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

<sup>13</sup>C NMR spectra of **17** (126 MHz, CDCl<sub>3</sub>)



<sup>13</sup>C NMR spectra of **18** (126 MHz, CDCl<sub>3</sub>)



<sup>13</sup>C NMR spectra of **19** (126 MHz, CDCl<sub>3</sub>)







<sup>13</sup>C NMR spectra of **21** (126 MHz, CDCl<sub>3</sub>)



<sup>13</sup>C NMR spectra of **22** (126 MHz, CDCl<sub>3</sub>)



<sup>13</sup>C NMR spectra of **23** (126 MHz, CDCl<sub>3</sub>)



<sup>13</sup>C NMR spectra of **24** (126 MHz, CDCl<sub>3</sub>)



<sup>13</sup>C NMR spectra of **25** (126 MHz, CDCl<sub>3</sub>)



<sup>13</sup>C NMR spectra of **26** (126 MHz, CDCl<sub>3</sub>)



<sup>13</sup>C NMR spectra of **27** (126 MHz, CDCl<sub>3</sub>)



<sup>13</sup>C NMR spectra of **28** (126 MHz, CDCl<sub>3</sub>)



<sup>13</sup>C NMR spectra of **29** (126 MHz, CDCl<sub>3</sub>)



<sup>13</sup>C NMR spectra of **30** (126 MHz, CDCl<sub>3</sub>)



<sup>1</sup>H NMR spectra of **41** (500 MHz, CDCl<sub>3</sub>)



<sup>13</sup>C NMR spectra of **41** (126 MHz, CDCl<sub>3</sub>)



<sup>1</sup>H NMR spectra of **42** (500 MHz, CDCl<sub>3</sub>)



<sup>13</sup>C NMR spectra of **42** (126 MHz, CDCl<sub>3</sub>)