Supplementary Information for

A Reversibly Mechanochromic Conjugated Polymer

Jong Pil Lee,^a Hyemin Hwang,^a Songa Chae^a and Jong-Man Kim^{*, a, b}

[†]Department of Chemical Engineering, Hanyang University, Seoul 04763, Korea.[‡] Institute of Nano Science and Technology, Hanyang University, Seoul 04763, Korea

* E-mail: jmk@hanyang.ac.kr

Contents

1. Materials, Instrumentation, Synthesis of diacetylene monomers	S2-S5
. Figure S1	S6
3. Figure S2	S6
4. Figure S3	S7
5. Figure S4	S8
6. Figure S5	S9
7. Figure S6	S10
8. Figure S7	
9. Figure S8	
10. Figure S9	
11. Figure S10	S14
12. Figure S11	S14
13. NMR spectra of monomers (Figure S12~S16)	

Materials. 4-Aminophenyldisulfide (4APDS), 2-aminophenyldisulfide (2-APDS), 4hydroxyphenyldisulfide (4HPDS), 4,4'ethylenedianiline (4APET), and cystamine dihydrochloride were purchased from Aldirch-Korea. 10,12-pentacosadiynoic acid (PCDA) was obtained from GFS Chemicals. 2,5-Dioxopyrrolidin-1-yl pentacosa-10,12-diynoate (PCDA-NHS) was prepared according to the literature procedure.¹

Instrumentation. SEM images were obtained using a HORIBA EX-250. Raman spectra were recorded on a FT-Raman spectrometer (Bruker FRA 160/S). UV-vis absorption spectra were recorded on an USB2000 miniature fiber-optic spectrometer (Ocean optics). IR spectra were recorded on a Thermo Nicolet NEXUS 470 FTIR uisng an ATR accessory (Thermo Fisher Scientific, Inc.). ¹ H and ¹³C NMR spectra were recorded on a Varian Unitylnova (300 MHz) spectrometer at 298 K in CDCl₃. Mass spectra (MS) were recorded on a SYNAPT G2 (water, U.K.) using a time-of-flight (TOF) analyzer and MALDI-TOF using AXIMA (SHIMADZU)

Synthesis of diacetylene monomers. The syn thetic scheme for the preparation of diacetylene monomers investigated in this study is shown in Scheme S1. 10,12-Pentacosadiynoic acid (PCDA) was converted to the acid chloride form PCDA-Cl by treatment with oxalyl chloride. Coupling of the activated PCDA-Cl with 4-aminophenyldisulfide (4APDS), 2-aminophenyldisulfide (2-APDS), 4-hydroxyphenyldisulfide (4HPDS), and 4,4'ethylenedianiline (4APET) afforded corresponding diacetylenic monomer PCDA-4APDS, PCDA-4APET, PCDA-2APDS and PCDA-4HPDS, respectively. Direct coupling of PCDA-Cl with cystamine failed to generate the desired PCDA-AEDS due to the cleavage of the disulfide bond. Conversion of the PCDA to the neutral form of PCDA-NHS followed by reaction with cystamine yielded the desired monomer PCDA-AEDS in good yield.

Scheme S1. Synthesis of diacetylene monomers.

Synthesis of N,N'-(disulfanediylbis(4,1-phenylene))bis(pentacosa-10,12diynamide) (PCDA-4APDS). To a solution of 10,12-pentacosadiynoic acid (PCDA) (1.0 g, 2.7 mmol) in dichloromethane (20 mL) under Ar atmosphere were added oxalyl chloride (0.44 g. 3.5 mmol) and a pipette drop of N,N'-dimethylformamide. The mixture was stirred overnight at room temperature and concentrated *in vacuo*. Dichloromethane (10 mL) was added to the residue and to the solution was added dropwise a dichloromethane (10 mL) solution containing triethylamine (0.4 g, 4.0 mmol) and 4-aminophenyldisulfide (0.3 g, 1.2 mmol) at 0 °C. The reaction mixture was stirred overnight at room temperature. After concentration *in vacuo*, the residue was subjected to a silica gel column chromatography (dichloromethane/methanol, 90/10 vol%) to yield the desired product **PCDA-4APDS** (1.15 g, 90%).

m.p (143 °C); ¹H NMR (600 MHz, THF): 9.03 (s, 2H), 7.59 (d, J = 2.4 Hz, 4H), 7.37 (d, J = 4.8, 4H), 2.28 (t, J = 6.0 Hz, 4H), 2.24 (t, J = 4.8, 8H), 1.57-1.25 (m, 64H), 0.88 (t, J = 6.6, 6H); ¹³C NMR (75 MHz, THF): δ 171.6, 141.7, 131.8, 120.1, 77.8, 66.4, 37.9, 33.1, 30.6, 30.5 30.4 30.3, 30.2, 30.1, 30.0, 29.8, 29.4, 26.2, 23, 6 19.8, 14,4; IR (KBr) vcm⁻¹: 3294, 2920, 2848, 1659, 1585, 1526, 1491, 1461, 1392, 1301, 1250, 1178, 817, 724, 505; MS (MALDI-

TOF): calcd. for $C_{62}H_{92}N_2O_2S_2Na^+$ [M+Na]⁺ 982.64, found 983.15. By employing the similar protocol **PCDA-APET**, **PCDA-2APDS**, and **PCDA-4HPDS** were prepared.

N,N'-(Ethane-1,2-diylbis(4,1-phenylene))bis(pentacosa-10,12-diynamide) (PCDA-4APET) (yield: 85%). m.p (146 °C); ¹H NMR (300 MHz, THF): 8.77 (s, 2H), 7.49 (d, J = 8.7 Hz, 4H), 7.35 (d, J = 8.7, 4H), 2.80 (s, 4H), 2.27-2.20 (m, 12H), 1.69-1.29 (m, 64H), 0.88 (t, J = 6.9, 6H); ¹³C NMR (75 MHz, THF): δ 170.5, 157.7, 138.3, 136.6, 128.8, 119.2, 77.0, 37.95, 37.231, 32.41, 30.129, 30.00, 29.84, 29.81, 29.61, 29.50, 29.30, 28.95, 25.9, 23.10, 19.12, 13.97, 13.63; IR (KBr) vcm⁻¹: 3280, 2919, 2847, 1655, 1610, 1595, 1534, 1465, 1407, 1320, 1304, 1255, 1180, 830, 721; MS (MALDI-TOF): calcd. for C₆₄H₉₅N₂O₂Na⁺ [M+Na]⁺ 946.73, found 946.87.

N,N'-(Disulfanediylbis(2,1-phenylene))bis(pentacosa-10,12-diynamide) (PCDA-**2APDS)** (yield: 65%). m.p (87 °C); ¹H NMR (300 MHz, CDCl₃): 8.40 (d, J = 6.0 Hz, 2H), 7.96 (s, 2H), 7.40 (t, J = 7.8, 4H), 7.02 (t, J = 6.6 Hz, 2H), 2.23 (m, 8H), 2.15 (t, J = 6.9 Hz, 4H), 1.61 (m, 64H), 0.88 (t, J = 6.3, 6H); ¹³C NMR (75 MHz, CDCl₃): δ 171.9, 140.5, 137.1, 132.8, 124.7, 124.0, 121.5, 65.9, 65.8, 38.3, 32.5, 30.2, 30.1, 29.9, 29.8, 29.7, 29.5, 29.4 29.3, 28.9, 25.9, 23.3, 19.8, 14.7; IR (KBr) vcm⁻¹: 3274, 2920, 2848, 1666, 1578, 1532, 1465, 1439, 1421, 1290, 1248, 1176, 739.89; MS (MALDI-TOF): calcd. for C₆₂H₉₂N₂O₂S₂Na⁺ [M+Na]⁺ 982.64, found 982.86.

Disulfanediylbis(4,1-phenylene) bis(pentacosa-10,12-diynoate) (PCDA-4HPDS) (yield: 72%). m.p (69 °C); ¹H NMR (300 MHz, CDCl₃): 7.48 (d, J = 5.7 Hz, 4H), 7.03 (d, J = 8.7 Hz, 4H), 2.53 (t, J = 7.5, 4H), 2.24 (t, J = 6.3 Hz, 8H), 1.73-1.26 (m, 64H), 0.88 (t, J = 6.6, 6H); ¹³C NMR (75 MHz, CDCl₃): δ 172.2, 150.5, 134.1, 129.6, 122.5, 65.5, 65.4, 34.5, 32.1, 29.8, 29.6, 29.5, 29.3, 29.2, 29.0, 28.9, 28.5, 28.4, 25.0, 22.8, 19.4, 18.5, 14.3; IR (KBr) vcm⁻¹: 2917, 2849, 1747, 1487, 1469, 1418, 1379, 1326, 1248, 1208, 1166, 1144, 1096, 842, 829, 717; MS (MALDI-TOF): calcd. for C₆₂H₈₉O₄S₂Na⁺ [M+Na]⁺984.61, found 983.53.

Synthesis of N,N'-(disulfanediylbis(ethane-2,1-diyl))bis(pentacosa-10,12diynamide) (PCDA-4AEDS). To a solution of 2,5-dioxopyrrolidin-1-yl pentacosa-10,12diynoate (PCDA-NHS) (1.0 g, 2.1 mmol) in dichloromethane (20 mL) under Ar atmosphere were added dropwise a dichloromethane (10 mL) solution containing triethylamine (0.3 g, 2.5 mmol) and cystamine hydrochloride (0.2 g, 1.0 mmol) at 0 °C. The reaction mixture was stirred overnight at room temperature. After concentration *in vacuo*, the residue was subjected to a silica gel column chromatography (dichloromethane/methanol, 90/10 vol%) to yield the desired product **PCDA-4AEDS** (0.64 g, 72 %).

m.p (113 °C) ¹H NMR (300 MHz, CDCl₃): 6.25 (s, 2H), 3.57 (q, J = 6.0 Hz, 4H), 2.82 (t, J = 4.8, 4H), 2.20 (m, 12H), 1.65-1.26 (m, 64H), 0.88 (t, J = 6.0, 6H); ¹³C NMR (75 MHz, CDCl₃): δ 173.4, 109.7, 65.0, 64.9, 38.1, 37.6, 36.3, 31.6, 29.4, 29.2, 29.1, 28.9, 28.8, 28.7, 28.6, 28.5, 28.1, 28.0, 25.4, 22.4, 18.9, 13.9; IR (ATR) vcm⁻¹: 3350, 3295, 2918, 2849, 1637, 1543, 1469, 1420, 1256, 1219, 1193, 720; MS (MALDI-TOF): calcd. for C₅₄H₉₁N₂O₂S₂Na⁺ [M+Na]⁺ 886.64, found 886.45

Polymerization of each monomer. PCDA-4APDS and **PCDA-4APET** were polymerized by heating the monomer powder in a glass petri dish sealed with aluminum foil on a hot plate at 140 °C for 12 h. Polymers of **PCDA-2APDS** and **PCDA-4AEDS** were obtained by 254 nm UV irradiation (1 mW/cm²) of the monomer powder. In order to increase the degree of polymerization, repeated UV irraiation was conducted with stirring and mixing of the monomer. Polymers obtained with **PCDA-4APDS**, **PCDA-4APET**, **PCDA-2APDS** and **PCDA-4AEDS** displayed an intense blue color suitable for the mechanochromic test. The diacetylene monomer **PCDA-4HDPS** showed no sign of polymerization eithe by themal treatment or by UV irradiation.

Mechanochromic test. Polymerized **PCDA-4APDS** powder was placed in a ceramic crucible and mechanically ground with hand. Temperature of the sample during the grinding process was monitored with an infrared thermometer and a metal resistant thermometer to keep the sample temperature below the thermochromic temperature of the polymer. Annealing of the polymer was carried out by placing the mechanically ground sample in a glass petri dish sealed with aluminum foil on a hot plate at 140 °C for 6 h. The red-colored sample turned blue immediately upon cooling back to 25 °C.

References

(1) J.-M. Kim; E.-K. Ji; S.M. Woo; H. Lee; D.J. Ahn, Adv. Mater. 2003, 15, 1118

Figure S1. FTIR spectra of PCDA-4APDS in the carbonyl absorption region in the solution (black line, tetrahydrofuran) and solid (red line) state.

Figure S2. UV-vis absorption spectra of PCDA-4APDS before (black line) and after (blue line) polymerization (140 °C, 24 h). Images in the insets show the color change taking place in the PCDA-4APDS powder.

Figure S3. Raman spectra of PCDA-4APDS powder before (black line) and after heating (blue line) at 140 °C for 24 h.

Figure S4. (a) Residual monomer (%) as a function of heating time for PCDA-4APDS. (b) Degree of Polymerization (%) for PCDA-4APDS, PCDA-4APET, PCDA-2APDS and PCDA-AEDS.

Figure S5. Photographs of polymerized PCDA-4APDS (a), PCDA-4APET (b), PCDA-2APDS (c) and PCDA-4AEDS (d) upon heating and cooling.

Figure S6. Photographs (above) and fluorescence (bottom) images of a polymerized PCDA-4APDS powder as prepared (i), after grinding (ii) after thermal treatment of the ground sample at 140 °C for 6 h (iii) and subsequent cooling to 25 °C (iv).

Figure S7. FTIR spectra of the PCDA-4APDS-derived polymer as prepared (a), after grinding (b) and after annealing at 140 °C for 6 h (c).

Figure S8. Powder X-ray diffraction spectra of the PCDA-4APDS-derived polymer as prepared (a), after grinding (b) and after annealing at 140 °C for 6 h (c).

Figure S9. SEM images of the PCDA-4APDS-derived polymer as prepared (a), after grinding (b) and after annealing at 140 °C for 6 h (c).

Figure S10. Photographs of the polymerized PCDA-4APET during the mechanochromicannealing cycles.

Figure S11. Photographs of the polymerized PCDA-AEDS during the mechanochromicannealing cycles.

Figure S12. ¹H (top, 600 MHz) and ¹³C (bottom, 150 MHz) NMR spectra of **PCDA-4APDS** in THF-d₈.

Figure S13. ¹H (top, 300 MHz) and ¹³C (bottom, 75 MHz) NMR spectra of PCDA-4APET in THF- d_8

Figure S14. ¹H (top, 300 MHz) and ¹³C (bottom, 75 MHz) NMR spectra of **PCDA-2APDS** in CDCl_{3.}

Figure S15. ¹H (top, 300 MHz) and ¹³C (bottom, 75 MHz) NMR spectra of **PCDA-4HPDS** in CDCl_{3.}

Figure S16. ¹H (top, 300 MHz) and ¹³C (bottom, 75 MHz) NMR spectra of **PCDA-4AEDS** in CDCl_{3.}