Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2019

Supporting Information

Connecting a carbonyl and a π -conjugated group through a p-

phenylene linker by (5 + 1) benzene ring formation

Tatsuya Morofuji*, Hanae Kinoshita, Naokazu Kano*

[†] Department of Chemistry, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588, Japan

*tatsuya.morofuji@gakushuin.ac.	jp
---------------------------------	----

*naokazu.kano@gakushuin.ac.jp

1.	General	S2
2.	Synthesis of streptocyanines	
	2-1. Synthesis of 4-substituted pyridines	S3-S4
	2-2. General synthesis of streptocyanines	S4-S9
3.	Procedure of (5 + 1) annulation	S10-S16
4.	Procedure of gram scale (5 + 1) annulation	S16
5.	NMR spectra	S17-S101

1. General

Pyridine (7a), 4-phenylpyridine (7b), and 4-*tert*-butylpyridine (7i) were commercially available. 4-(2-Naphthyl)pyridine (7d), ¹ 4-(1-pyrenyl)pyridine (7f), ² 4-(diphenylamino)pyridine (7g), ³ N-(2,4-dinitrophenyl)pyridinium chloride (8a), ⁴ N-(2,4-dinitrophenyl)-4-phenylpyridinium chloride (8b), ⁵ and N-(2,4-dinitrophenyl)-4-*tert*-butylpyridinium chloride (8i)⁵ were synthesized according to the reported literature. 1-Methyl-3-acetylindole⁶ and 4,4',4"-triacetyltriphenylamine⁷ were synthesized according to the literature. Other methyl ketones were purchased and used. THF was purified by an MBraun solvent purification system (MB-SPS-compact). Unless otherwise noted, all materials were obtained from commercial suppliers and used without further purification. Flash chromatography was carried out on a silica gel (Kanto Chem. Co., Silica Gel N, spherical, neutral, 40-100 µm). (5 + 1) Annulation was carried out in a pressure tube with a Teflon screw cap (400 mL) (Figure S1). Gram scale (5 + 1) annulation was carried out in a pressure tube with a Teflon screw cap (400 mL) (Figure S2). All NMR spectra were measured on Unity Inova-400 instrument (Varian Inc., 400 MHz for ¹H, 100 MHz for ¹³C) at 22 °C using CDCl₃ as a solvent unless otherwise noted. Tetramethylsilane (TMS) ($\delta = 0$) or CHCl₃ ($\delta = 7.26$) served as an internal standard for ¹H NMR spectra, and CDCl₃ was used as an internal standard ($\delta = 77.0$) for ¹³C NMR spectra.

Figure S1. Pressure tube (40 mL), closed (left), open (right).

Figure S2. Pressure tube (400 mL).

¹ A. Asai, J. Sawada, K. Matsumoro, N. Ogo, J. Nishigaki, M. Kojima, JP2008120699 (A)

² J. Creus, R. Matheu, I. Peñafiel, D. Moonshiram, P. Blondeau, J. Benet-Buchholz, J. García-Antón, X. Sala, Angew. Chem. Int. Ed., 2016, 55, 15382–15386.

³ A. Morandeira, I. Lopez-Duarte, B. O'Regan, M. V. Martinez-Diaz, A. Forneli, E. Palomares, T. Torres, J. R. Durranta. J. Mater. Chem., 2009, 19, 5016–5026.

⁴ A. Y. Hong, C. D. Vanderwal, J. Am. Chem. Soc., 2015, **137**, 7306–7309.

⁵ K. K. Redda, K. N. Rao, A. S. Heiman, F. Y. Onayemi, J. B. Clark, *Chem. Pharm. Bull.*, 1991, 39, 786–791.

⁶ F. Zhang, Y. Zhao, L. Sun, L. Ding, Y. Gu, P. Gong, Eur. J. Med. Chem., 2011, 46, 3149–3157.

⁷ B. Adlilzzi, I. A. W. Filot, A. R. A. Palmans, E. W. Meijer, *Chem. Eur. J.*, 2017, **23**, 6103–6110.

Synthesis of streptocyanines

7c

7e

7h

2-1. Synthesis of 4-substituted pyridines

To a 100 mL flask equipped with a magnetic stirring bar and a reflux condenser, 4biphenylboronic acid (2.28 g, 12 mmol), 4-bromopyridine hydrochloride (1.92 g, 9.9 mmol), Cs₂CO₃ (6.45 g, 20 mmol), Pd(PPh₃)₄ (0.91 g, 8 mol%), and DME/H₂O (60 mL/15 mL) were added. The mixture was refluxed for overnight, and extracted with EtOAc (50 mL \times 3). Combined extracts were washed with brine (50 mL), and was dried over Na₂SO₄. After removal of the solvent under reduced pressure, the crude product was purified with flash chromatography to obtain the title compound (1.33 g, 58%) as white solid.

¹H NMR (400 MHz, CDCl₃): δ 8.68 (d, 2H, *J* = 6.0 Hz), 7.73 (s, 4H), 7.65 (d, 2H, *J* = 8.4 Hz), 7.56 (d, 2H, *J* = 6.0 Hz), 7.48 (t, 2H, *J* = 7.6 Hz), 7.39 (t, 1H, *J* = 7.4 Hz); ¹³C NMR (100 MHz, CDCl₃): δ 150.3, 147.8, 142.0, 140.2, 136.9, 128.9, 127.8, 127.7, 127.4, 127.1, 121.4.

4-(2-benzothiophenyl)pyridine (7e).'
-----------------------------------	-----

To a 100 mL flask equipped with a magnetic stirring bar and a reflux condenser, benzo[*b*]thiophene-2-boronic acid (1.96 g, 11 mmol), 4-bromopyridine hydrochloride (1.94 g, 10 mmol), K₂CO₃ (4.21 g, 30 mmol), Bu₄N⁺Br⁻ (3.23 g, 10 mmol), Pd(OAc)₂ (0.25 g, 10 mol%), and toluene/H₂O (45 mL/10 mL) were added. The mixture was refluxed for overnight. The organic layer was washed with H₂O (50 mL \times 3) and was dried over Na₂SO₄. After removal of the solvent under reduced pressure, the crude product was purified with flash chromatography to obtain the title compound (0.96 g, 46%) as pale yellow solid.

¹H NMR (400 MHz, CDCl₃): δ 8.63 (d, 2H, *J* = 4.8 Hz), 7.82-7.87 (m, 2H), 7.73 (s, 1H), 7.58 (m, 2H), 7.38-7.40 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 150.5, 141.4, 140.9, 140.1, 139.9, 125.5, 124.9, 124.3, 122.5, 122.1, 120.5.

4-(1-carbazolyl)pyridine (7h).¹⁰

To a 100 mL flask equipped with a magnetic stirring bar and a reflux condenser, carbazole (1.68 g, 10 mmol), 4-bromopyridine hydrochloride (2.93 g, 15 mmol), NaO'Bu (3.91 g, 41 mmol), 'Bu₃PH⁺ \cdot BF₄⁻ (0.29 g, 10 mol%), Pd(dba)₂(0.51 g, 10 mol%), and *o*-xylene/H₂O (60 mL/15 mL) were added. The mixture was stirred at 160 °C for 2 days, and extracted with EtOAc (50 mL×3). Combined extracts were washed with brine (50 mL), and was dried over Na₂SO₄. After removal of the solvent under reduced pressure, the crude product

⁸ O. Kobayashi, D. Uraguchi, T. Yamakawa, Org. Lett., 2009, 11, 2679–2682.

⁹ D. Ghosh, H. M. Lee, Org. Lett., 2012, 14, 5534-5537.

¹⁰ W-J. Yoo, T. Tsukamoto, S. Kobayashi, Org. Lett., 2015, **17**, 3640–3642.

was	purified with flash chromatography to obtain the title compound (2.08 g, 85%) as pale
yello	ow solid.
¹ H	NMR (400 MHz, CDCl ₃): δ 8.83 (d, 2H, $J = 6.0$ Hz), 8.13 (d, 2H, $J = 7.6$ Hz), 7.54-
7.58	(m, 4H), 7.43 (t, 2H, $J = 7.6$ Hz), 7.33 (t, 2H, $J = 7.2$ Hz); ¹³ C NMR (100 MHz,
CDO	Cl ₃): δ 151.7, 145.5, 139.5, 126.4, 124.2, 121.1, 120.6, 109.8. (one peak is missing)

2-2. General synthesis of streptocyanines

Synthetic procedure of streptocyanines 2 was described as follows (Figure S3).

Figure S3. Synthetic procedure of streptocyanines 2.

Synthetic procedure of N-(2,4-dinitrophenyl)pyridinium chlorides 8.

To a 100 mL flask equipped with a magnetic stirring bar and a reflux condenser, 4-substituted pyridine (7), 2,5dinitrochlorobenzene, and acetone were added. The mixture was refluxed for hours under argon atmosphere. The mixture was cooled to room temperature, and precipitate was collected by filtration and washed with hexane. The resulting solid was dried under vacuum to give the corresponding pyridinium salt **8**.

N-(2,4-dinitrophenyl)-4-(2-napthyl)pyridinium chloride (8d)

Reaction of 4-(2-naphthyl)pyridine (7d) (0.64 g, 3.1 mmol) and 2,5dinitrochlorobenzene (0.67 g, 3.1 mmol) in acetone (5 mL) with refluxing for 6 h gave the title compound (0.82 g, 71%, yellow solid).

¹H NMR (400 MHz, DMSO-*d*₆): δ 9.54 (s, 2H), 9.16 (d, 1H, *J* = 2.4 Hz), 9.01-9.06 (m, 4H), 8.54 (dd, 1H, *J* = 3.6, 8.8 Hz), 8.34 (d, 1H, *J* = 8.8 Hz), 8.24 (d, 1H, *J* = 8.8 Hz), 8.18 (d, 1H, *J* = 7.6 Hz), 8.10 (d, 1H, *J* = 8.0 Hz), 7.75 (m, 2H); ¹³C NMR (100 MHz, DMSO-*d*₆): δ 157.7, 149.5, 146.4, 143.7, 139.1, 135.2, 133.3, 132.7, 130.8, 130.7, 130.1, 130.0, 129.6, 128.3, 128.0, 124.7, 124.6, 121.9 (one peak was missing); IR (KBr): 2920, 1637, 1612, 1544, 1465, 1344, 1229, 835, 819, 474 cm⁻¹; HRMS (ESI): calcd. for [M–C1]⁺ C₂₁H₁₄N₃O₄, 372.09788, found: 372.0982; m.p. (decomp.) 226-228 °C.

N-(2,4-Dinitrophenyl)-4-(2-benzothiophenyl)pyridinium chloride (8e) Reaction of 4-(2-benzothiophenyl)pyridine (7e) (0.90 g, 4.3 mmol) and 2,5dinitrochlorobenzene (0.89 g, 4.3 mmol) in acetone (10 mL) with refluxing for 16 h gave the title compound (0.85 g, 48%, yellow solid).

¹H NMR (400 MHz, DMSO-*d*₆): δ 9.41 (d, 2H, *J* = 6.4 Hz), 9.14 (d, 1H, *J* = 2.0 Hz), 9.00 (dd, 1H, *J* = 2.0, 8.4 Hz), 8.93 (s, 1H), 8.80 (d, 2H, *J* = 6.8 Hz), 8.49 (d, 1H, *J* = 8.8 Hz), 8.23 (d, 1H, *J* = 8.0 Hz), 8.10 (d, 1H, *J* = 7.6 Hz), 7.55-7.64 (m, 2H); ¹³C NMR (100 MHz, DMSO-*d*₆): δ 151.3, 149.5, 146.5, 143.7, 142.4, 140.2, 139.0, 136.9, 132.6, 131.8, 130.7, 128.7, 126.6, 126.5, 123.8, 123.4, 121.9; IR (KBr): 1629, 1545, 1518, 1461, 1421, 1341, 1222, 835, 851, 723 cm⁻¹; HRMS (ESI): calcd. for [M–Cl]⁺ C₁₉H₁₂N₃O₄S₁, 378.05430, found: 378.0548; m.p. (decomp.) 207-211 °C.

N-(2,4-dinitrophenyl)-4-(1-pyrenyl)pyridinium chloride (8f)

Reaction of 4-(1-pyrenyl)pyridine (**7f**) (1.43 g, 5.1 mmol) and 2,5dinitrochlorobenzene (1.11 g, 5.1 mmol) in acetone (10 mL) with refluxing for 16 h gave the title compound (2.29 g, 99%, red solid).

¹H NMR (400 MHz, DMSO-*d*₆): δ 9.62 (d, 2H, *J* = 6.4 Hz), 9.21 (d, 1H, *J* = 2.4 Hz), 9.09 (dd, 1H, *J* = 2.4, 8.6 Hz), 8.82 (d, 2H, *J* = 6.8 Hz), 8.56-8.62 (m, 2H), 8.31-8.50 (m, 7H), 8.22 (t, 1H, *J* = 7.6 Hz); ¹³C NMR (100 MHz, DMSO-*d*₆): δ 159.8, 149.6, 146.2, 143.7, 139.3, 133.3, 132.6, 131.3, 130.8, 130.7, 130.3, 130.1, 129.3, 128.5, 128.4, 127.7, 127.6, 127.3, 126.8, 125.9, 124.5, 124.0, 123.4, 122.0 (one peak is missing); IR (KBr): 2997, 1633, 1608, 1538, 1456, 1334, 1276, 1212, 901, 854, 844, 724 cm⁻¹; HRMS (ESI): calcd. for [M–Cl]⁺ C₂₇H₁₆N₃O₄, 446.11353, found: 446.1135; m.p. (decomp.) 210-214 °C.

Conversion of pyridinium salt 8 to streptocyanines 2.

To a 50 mL or 100 mL flask equipped with a magnetic stirring bar and a reflux condenser, pyridinium salt 8, EtOH, and piperidine were added. The resulting mixture was stirred at 80 °C for 2 hours under argon atmosphere. After the heating, the mixture was cooled to room temperature. Aqueous solution of NH_4PF_6 , KPF_6 , or $NaSbF_6$ (0.3 M) was added to the mixture, and yellow or orange solid was precipitated. The precipitate was collected by filtration and washed with H_2O and Et_2O . The resulting solid was dried under vacuum to give streptocyanine 2. Streptocyanines 2 were used for (5 + 1) annulation without further purification.

105.3, 57.0, 47.7, 26.8, 25.4, 23.6; IR (KBr): 1568, 1517, 1448, 1405, 1242, 1213, 1127, 1022, 838, 557 cm⁻¹; HRMS (ESI): calcd. for [M−PF₆]⁺ C₂₇H₃₃N₂, 385.2638, found: 385.2643; m.p. (decomp.) 212-214 °C.

1-[3-(3-naphthyl)-5-(1-piperidinyl)-2,4-pentadienylidene]piperidinium hexafluorophosphate (2d)

Reaction of pyridinium **8d** (0.75 g, 1.8 mmol) and piperidine (0.59 mL, 6.0 mmol) in EtOH (5 mL) and following salt exchange with KPF₆ (0.69 g, 3.75 mmol) gave the title compound (0.78 g, 84%, yellow solid).

¹H NMR (400 MHz, DMSO- d_6 , 100 °C): δ 8.04 (br, 3H), 7.91 (br, 1H), 7.64 (br, 2H), 7.46 (br, 1H), 7.29 (br, 2H), 6.25 (br, 2H), 3.59 (br, 8H), 1.70 (br, 12H); ¹³C NMR (100 MHz, CD₃CN): δ 173.1, 157.9, 134.3, 133.7, 133.3, 129.9, 129.2, 128.9, 128.6, 128.2, 127.9, 127.7, 105.0, 57.1, 48.1, 27.2, 26.1, 24.1; IR (KBr): 1627, 1565, 1518, 1447, 1402, 1237, 1128, 1000, 840, 557 cm⁻¹; HRMS (ESI): calcd. for [M–PF₆]⁺ C₂₅H₃₁N₂, 359.2482, found: 359.2499; m.p. (decomp.) 120-124 °C.

1-[3-(2-benzothiophenyl)-5-(1-piperidinyl)-2,4-pentadienylidene]piperidinium hexafluoroantimonate (2e)

Reaction of pyridinium **8e** (0.75 g, 1.8 mmol) and piperidine (0.53 mL, 5.4 mmol) in EtOH (8 mL) and following salt exchange with NaSbF₆ (0.92 g, 3.8 mmol) gave the title compound (0.87 g, 80%, orange solid).

¹H NMR (400 MHz, DMSO- d_6 , 100 °C): δ 7.94-8.02 (m, 2H), 7.68-7.74 (m, 3H), 7.46-7.50 (m, 2H), 6.15-6.22 (m, 2H), 3.64 (br, 8H), 1.70 (br, 12H); ¹³C NMR (100 MHz, CDCl₃, r.t.): δ 163.3, 161.6, 156.2, 155.0, 140.5, 139.2, 134.2, 127.5, 126.2, 125.7, 125.2, 124.7, 122.1, 105.2, 98.7, 57.2, 47.9, 26.8, 25.5, 23.5; ¹³C NMR (100 MHz, DMSO- d_6 , 160 °C): δ 160.9, 155.3, 139.7, 138.6, 138.1, 126.3, 124.8, 124.0, 123.7, 121.3 100.9, 50.9, 24.6, 21.9; IR (KBr): 1626, 1562, 1516, 1445, 1405, 1234, 943, 796, 657 cm⁻¹; HRMS (ESI): calcd. for [M–SbF₆]⁺ C₂₃H₂₉N₂S₁, 365.2046, found: 365.2047; m.p. (decomp.) 168-172 °C.

1-[3-(1-pyrenyl)-5-(1-piperidinyl)-2,4-pentadienylidene]piperidinium hexafluorophosphate (2f)

Reaction of pyridinium **8f** (1.40 g, 2.9 mmol) and piperidine (0.89 mL, 9.0 mmol) in EtOH (8 mL) and following salt exchange with KPF₆ (0.98 g, 5.3 mmol) gave the title compound (1.24 g, 74%, yellow solid).

¹H NMR (400 MHz, DMSO-*d*₆, 100 °C): δ 8.33-8.41 (m, 5H), 8.27-8.29 (m, 1H), 8.22-8.23 (m, 1H), 8.13 (br, 1H), 7.92-7.93 (m, 1H), 6.96 (br, 2H), 6.52 (br, 2H), 3.49 (br, 8H), 1.64 (br, 12H); ¹³C NMR (100 MHz, CD₃CN): δ 172.2, 158.1, 132.9, 132.3, 131.9, 130.9, 130.6, 129.5, 129.2, 128.6, 128.4, 127.7, 126.9, 126.7, 125.8, 125.7, 125.6, 125.3, 106.6, 57.1, 48.5, 27.4, 26.4, 24.2; IR (KBr): 1561, 1515, 1446, 1401, 1209, 1129, 1021, 998, 839, 557 cm⁻¹; HRMS (ESI): calcd. for $[M-PF_6]^+$ C₃₁H₃₃N₂, 433.2638, found: 433.2657; m.p.

	(decomp.) 149-155 °C.
	1-[3-diphenylamino-5-(1-piperidinyl)-2,4-pentadienylidene]piperidinium
	hexafluoroantimonate (2g)
	Reaction of pyridinium 8g (1.25 g, 2.78 mmol) and piperidine (0.89 mL, 9.0 mmol) in
N N	EtOH (8 mL) and following salt exchange with NaSbF ₆ (1.33 g, 5.1 mmol) gave the title
	compound (1.15 g, 65%, yellow solid).
	¹ H NMR (400 MHz, DMSO- <i>d</i> ₆ , 100 °C): δ 7.40-7.43 (m, 6H), 7.25-7.31 (m, 2H), 7.19-
∼	7.25 (m, 4H), 5.01 (d, 2H, $J = 11.6$ Hz), 3.33 (br, 8H), 1.54-1.61 (br, 12H); ¹³ C NMR (100
SbF ₆	MHz, CDCl ₃): δ 171.4, 155.0, 145.4, 129.6, 127.3, 126.8, 93.5, 55.6, 46.7, 26.5, 25.1, 23.7;
2g	IR (KBr): 2943, 1626, 1584, 1489, 1454, 1402, 1243, 993, 763, 699, 654 cm ⁻¹ ; HRMS
	(ESI): calcd. for [M-SbF ₆] ⁺ C ₂₇ H ₃₄ N ₃ , 400.2747, found: 400.2766; m.p. (decomp.) 171-174
	°C.
	1-[3-(N-carbarolyl)-5-(1-piperidinyl)-2,4-pentadienylidene]piperidinium
	hexafluoroantimonate (2h)
	Reaction of pyridinium 8h (1.34 g, 3 mmol) and piperidine (0.89 mL, 9.0 mmol) in EtOH
	(10 mL) and following salt exchange with NaSbF ₆ (1.53 g, 5.9 mmol) gave the title
∽N	compound (1.58 g, 83%, yellow solid).
	¹ H NMR (400 MHz, DMSO- d_6): δ 8.19 (d, 2H, $J = 8.0$ Hz), 7.45-7.46 (m, 5H), 7.29-7.33
	(m, 3H), 6.17 (br, 2H), 3.54 (br,8H), 1.65 (br, 12H); ¹³ C NMR (100 MHz, CDCl ₃): δ 161.7,
	153.8, 141.4, 140.6, 127.1, 126.7, 124.7, 123.4, 121.7, 121.2, 120.6, 120.4, 112.2, 110.5,
26	57.3, 57.1, 48.4, 27.0, 25.7, 25.6, 23.5, 23.4; ¹³ C NMR (100 MHz, DMSO- <i>d</i> ₆ , 100 °C): δ
211	160.3, 154.6, 140.4, 125.8, 123.4, 120.4, 119.8, 110.7, 96.4, 25.3, 25.2, 22.3; IR (KBr):
	1575, 1447, 1410, 1240, 998, 853, 760, 658 cm ⁻¹ ; HRMS (ESI): calcd. for [M-SbF ₆] ⁺
	C ₂₇ H ₃₂ N ₃ , 398.2591, found: 398.2590; m.p. (decomp.) 197-199 °C.
	1-[3-tert-butyl-5-(1-piperidinyl)-2,4-pentadienylidene]piperidinium
	hexafluoroantimonate (2i)
	Reaction of pyridinium 8i (1.66 g, 4.9 mmol) and piperidine (1.48 mL, 15 mmol) in EtOH
	(10 mL) and following salt exchange with $NaSbF_6$ (3.13 g, 12 mmol) gave the title
	compound (1.97 g, 76%, yellow solid).
→ /──N +	¹ H NMR (400 MHz, CDCl ₃): δ 7.03 (d, 2H, J = 10.8 Hz), 5.59 (d, 2H, J = 10.4 Hz), 3.64
	(br, 4H), 3.57 (br, 4H), 1.74 (br, 12H), 1.20 (s, 9H); ¹³ C NMR (100 MHz, CDCl ₃): δ 183.9,
2;	156.1, 100.4, 56.1, 48.2, 38.0, 30.3, 26.4, 25.1, 23.5; IR (KBr): 2946, 1625, 1561, 1488,
21	1447, 1414, 1235, 963, 854, 821, 659 cm ⁻¹ ; HRMS (ESI): calcd. for [M–SbF ₆] ⁺ C ₁₉ H ₃₃ N ₂ ,
	289.2638, found: 289.2652; m.p. (decomp.) 116-119 °C.

2. Procedure of (5 + 1) annulation

To a 40 mL pressure tube equipped with a magnetic stirring bar and a septum, NaO'Bu was added. The tube was dried under vacuum with heating. After the tube was cooled to room temperature, argon was purged into the tube. THF (4 mL), streptocyanine **2**, and methyl ketone **1** were added to the tube, and it was sealed by Teflon cap and heated at 120 °C with magnetic stirring for 10 hours. The reaction mixture was cooled to room temperature and the tube was opened to air. After removal of the solvent under vacuum, the crude product was purified with flash chromatography to obtain the desired product **6**.

	benzophenone (6a) ¹¹
	Reaction of acetophenone (2a) (57 µL, 0.49 mmol) and streptocyanine 2a (286
0	mg, 0.76 mmol) in the presence of NaO'Bu (81 mg, 0.84 mmol) gave the title
	compound (84 mg, 94%, white solid).
	¹ H NMR (400 MHz, CDCl ₃): δ 7.81 (dd, 4H, <i>J</i> = 1.2, 8.0 Hz), 7.60 (t, 2H, <i>J</i> = 7.4
6a	Hz), 7.49 (t, 4H, $J = 8.4$ Hz); ¹³ C NMR (100 MHz, CDCl3): δ 196.7, 137.6, 132.4,
	130.0, 128.3.
	4-methylbenzophenone (6b) ¹²
	Reaction of 4-methylacetophenone (67 mg, 0.50 mmol) and streptocyanine 2a
0, /=>	(282 mg, 0.75 mmol) in the presence of NaO'Bu (79 mg, 0.75 mmol) gave the
	title compound (91 mg, 93%, yellow solid).
	¹ H NMR (400 MHz, CDCl ₃): δ 7.79 (d, 2H, J = 8.0 Hz), 7.73 (d, 2H, J = 6.8
6b	Hz), 7.58 (t, 1H, $J = 6.8$ Hz), 7.48 (t, 2H, $J = 7.4$ Hz), 7.26-7.30 (m, 2H), 2.45 (s,
	3H); ¹³ C NMR (100 MHz, CDCl ₃); δ 196.3, 143.1, 137.8, 134.7, 132.0, 130.1,
	129.7, 128.8, 128.0, 21.5.
	4-methoxybenzonbenone (6c) ¹²
	Reaction of 4-methoxyacetonhenone (73 mg, 0.50 mmol) and streptocyanine $2a$
	(284 mg 0.75 mmol) in the presence of NaO/Bu (81 mg 0.75 mmol) gave the
	title compound (98 mg 95% vellow solid)
MeO	¹ H NMR (400 MHz CDCL): δ 7 84 (d 2H $I = 8.8$ Hz) 7 76 (d 2H $I = 8.0$
60	H7) 7 57 (t 1H $I = 7.2$ Hz) 7.48 (dt 2H $I = 2.0.7.4$ Hz) 6.07 (d 2H $I = 8.8$
ŬĊ.	Hz) $2.80 (c, 2H)$; ¹³ C NMP (100 MHz CDCL); $8.1051, 162.8, 127.0, 122.2$
	12), 5.69 (S, 511), °C NNR (100 M12, CDC13). 0 195.1, 102.6, 157.9, 152.2,
	151.5, 129.0, 129.5, 127.6, 115.2, 55.1.
	4-cyanobenzopnenone (6d)
	Reaction of 4-cyanoacetophenone ($/2 \text{ mg}$, 0.50 mmol) and streptocyanine 2a
CIN	(284 mg, 0.75 mmol) in the presence of NaO'Bu (76 mg, 0.75 mmol) gave the
6d	title compound (89 mg, 86%, yellow solid).

¹¹ P. Lei, G. Meng, S. Shi, Y. Ling, J. An, R. Szostak, M. Szostak, *Chem. Sci.*, 2017, **8**, 6525–6530.

	¹ H NMR (400 MHz, CDCl ₃): δ 7.88 (d, 2H, $J = 8.4$ Hz), 7.78-7.81 (m, 4H), 7.65
	(t, 1H, $J = 6.8$ Hz), 7.52 (t, 2H, $J = 7.8$ Hz); ¹³ C NMR (100 MHz, CDCl ₃): δ
	195.0, 141.2, 136.3, 133.3, 132.2, 130.2, 130.1, 128.6, 118.0, 115.6.
	4-iodobenzophenone (6e) ¹³
	Reaction of 4-iodoacetophenone (123 mg, 0.50 mmol) and streptocyanine 2a
	(284 mg, 0.75 mmol) in the presence of NaO'Bu (81 mg, 0.84 mmol) gave the
	title compound (140 mg, 91%, white solid).
	¹ H NMR (400 MHz, CDCl ₃): δ 7.83 (d, 2H, J = 8.0 Hz,), 7.76 (d, 2H, J = 8.0
6e	Hz,), 7.58 (t, 1H, <i>J</i> = 7.4 Hz,), 7.45-7.52 (m, 4H); ¹³ C NMR (100 MHz, CDCl ₃):
	δ 195.8, 137.6, 137.1, 136.9, 132.7, 131.5, 130.0, 128.5, 100.2.
	4-bromobenzophenone (6f) ¹²
	Reaction of 4-bromoacetophenone (99 mg, 0.49 mmol) and streptocyanine 2a
	(284 mg, 0.75 mmol) in the presence of NaO'Bu (78 mg, 0.81 mmol) gave the
	title compound (111 mg, 86%, white solid).
	¹ H NMR (400 MHz, CDCl ₃): δ 7.78 (dd, 2H, <i>J</i> = 1.2, 8.4 Hz), 7.68 (d, 2H, <i>J</i> =
61	8.8 Hz), 7.59-7.65 (m, 3H), 7.50 (t, 2H, $J = 7.6$ Hz); ¹³ C NMR (100 MHz,
	CDCl ₃): δ 195.6, 137.1, 136.3, 132.7, 131.60, 131.56, 129.9, 128.4, 127.5.
	ethyl 4-benzoylbenzoate (6g) ¹⁴
	Reaction of ethyl 4-acetylbenzoate (94 mg, 0.49 mmol) and streptocyanine 2a
0	(283 mg, 0.75 mmol) in the presence of NaO'Bu (80 mg, 0.83 mmol) gave the
	title compound (59 mg, 47%, yellow oil).
COOEt	¹ H NMR (400 MHz, CDCl ₃): δ 8.15 (d, 2H, J = 8.0 Hz), 7.79-7.84 (m, 4H), 7.61
6g	(t, 1H, J = 7.2 Hz), 7.49 (t, 2H, J = 7.4 Hz), 4.42 (q, 2H, J = 7.2 Hz), 1.42 (t, 3H, J = 7.2
	$J = 7.0$ Hz); ¹³ C NMR (100 MHz, CDCl ₃): δ 196.0, 165.8, 141.2, 137.0, 133.6,
	132.9, 130.1, 129.7, 129.5, 128.5, 61.4, 14.3.
	4-nitrobenzophenone (6h) ¹²
	Reaction of 4-nitroacetophenone (84 mg, 0.51 mmol) and streptocyanine 2a
0,	(284 mg, 0.75 mmol) in the presence of NaO'Bu (81 mg, 0.85 mmol) gave the
	title compound (66 mg, 57%, white solid).
NO ₂	¹ H NMR (400 MHz, CDCl ₃): δ 8.35 (d, 2H, J = 8.8 Hz), 7.94 (d, 2H, J = 8.8
6h	Hz), 7.81 (d, 2H, <i>J</i> = 8.4 Hz), 7.63 (t, 1H, <i>J</i> = 7.6 Hz), 7.53 (t, 2H, <i>J</i> = 7.8 Hz);
	¹³ C NMR (100 MHz, CDCl ₃): δ 194.8, 149.8, 142.8, 136.2, 133.5, 130.7, 130.1,
	128.7, 123.5.

 ¹³ H. Kim, A. Nagaki, J. Yoshida, *Nat. Commun.*, 2011, **2**, 264.
¹⁴ R. Shang, Y. Fu, J.-B. Li, S.-L. Zhang, Q.-X. Guo, L. Liu, *J. Am. Chem. Soc.*, 2009, **131**, 5738–5739.

¹⁵ D. J. Fox, D. S. Pedersen, S. Warren, Org. Biomol. Chem., 2006, 4, 3102–3107.

¹⁶ D. Paul, S. Rudra, P. Rahman, S. Khatua, M. Pradhan, P. N. Chatterjee, J. Organomet. Chem., 2018, 871, 96–102.

 ¹⁷ S. Gobbi, A. Cavalli, M. Negri, K. E. Schewe, F. Belluti, L. Piazzi, R. W. Hartmann, M. Recanatini, A. Bisi, *J. Med. Chem.*, 2007, **50**, 3420–3422.
¹⁸ H. Wu, B. Xu, Y. Li, F. Hong, D. Zhu, J. Jian, X. Pu, Z. Zeng, *J. Org. Chem.*, 2016, **81**, 2987–2992.

¹⁹ Z. Zhao, B. He, H. Nie, B. Chen, P. Lu, A. Qina, B. Z. Tang, *Chem. Commun.*, 2014, **50**, 1131–1133.

²⁰ W. K. Chow, C. M. So, C. P. Lau, F. Y. Kwong, J. Org. Chem., 2010, **75**, 5109–5112.

²¹ M.-A. Tehfe, F. Dumur, B. Graff, F. Morlet-Savary. D. Gigmes, J.-P. Fouassier, J. Lalevée, *Polym. Chem.*, 2013, 4, 2313–2324.

²² A. T. Jensen, X. Liang, D. Tanner, N. Skjaerbaek, J. Org. Chem., 2004, **69**, 4936–4947.

²³ Z. Yang, Z. Mao, X. Zhang, D. Ou, Y. Mu, Y. Zhang, C. Zhao, S. Liu, Z. Chi, J. Xu, Y.-C. Wu, P.-Y. Lu, A. Lien, M. R. Bryce, Angew. Chem. Int. Ed., 2016, 55, 2181–2185.

4-tert-butylbenzophenone (6t)²⁴

Reaction of acetophenone (1a) (58 μ L, 0.50 mmol) and streptocyanine 2i (396 mg, 0.75 mmol) in the presence of NaO'Bu (199 mg, 2.1 mmol) gave the title compound (91 mg, 77%, orange oil).

¹H NMR (400 MHz, CDCl₃): δ 7.80 (d, 2H, *J* = 7.2 Hz), 7.77 (d, 2H, *J* = 8.8 Hz), 7.58 (t, 1H, *J* = 7.6 Hz), 7.46-7.51 (m, 4H), 1.37 (s, 9H); ¹³C NMR (100 MHz, CDCl₃): δ 196.4, 156.1, 137.9, 134.8, 132.2, 130.1, 130.0, 128.2, 125.2, 35.1, 31.2.

4, 4'-di{[4-(diphenylamino)phenyl)]carbonyl}biphenyl (6u)

Reaction of 4,4'-diacetylbiphenyl (46 mg, 0.19 mmol) and streptocyanine **2g** (499 mg, 0.78 mmol) in the presence of NaO'Bu (295 mg, 3.1 mmol) gave the title compound (70 mg, 52%, yellow solid).

¹H NMR (400 MHz, CDCl₃): δ 7.88 (d, 4H, *J* = 6.8 Hz), 7.72-7.75 (m, 8H), 7.33 (t, 8H, *J* = 6.6 Hz), 7.13-7.20 (m, 12H), 7.03 (d, 4H, *J* = 8.4 Hz); ¹³C NMR (100 MHz, CDCl₃): δ 194.6, 152.0, 146.4, 143.3, 137.8, 131.9, 130.4, 129.6, 129.4, 127.0, 126.0, 124.7, 119.5; IR (KBr): 1648, 1583, 1488, 1274, 1175, 927, 849, 754, 696 cm⁻¹; HRMS (ESI): calcd. for [M+Na]⁺ C₅₀H₃₆N₂Na₁O₂, 719.26745, found: 719.2659; Anal. Calcd for C₅₀H₃₆N₂O₂: C, 86.18; H, 5.21, N, 4.02. Found: C, 85.96; H, 5.24; N, 3.96%.; m.p. (decomp.) 202-207 °C.

4, 4', 4"-tris(4-biphenylylcarbonylphenyl)amine (6v)

Reaction of 4,4',4"-triacetyltriphenylamine (71 mg, 0.19 mmol) and streptocyanine **2b** (404 mg, 0.89 mmol) in the presence of NaO'Bu (98 mg, 1.0 mmol) gave the title compound (130 mg, 87%, yellow solid).

¹H NMR (400 MHz, CDCl₃): δ 7.89 (d, 6H, J = 8.4 Hz), 7.84 (d, 6H, J = 8.4 Hz), 7.69 (d, 6H, J = 8.4 Hz), 7.63 (d, 6H, J = 7.2 Hz), 7.46 (t, 6H, J = 7.4 Hz), 7.38 (t, 3H, J = 7.6 Hz), 7.26 (d, 6H, J = 8.8 Hz); ¹³C NMR (100 MHz, CDCl₃): δ 194.8, 150.0, 145.1, 139.9, 136.4, 133.2, 132.0, 130.5, 129.0, 128.2, 127.3, 127.0, 123.9; IR (KBr): 1652, 1587, 1504, 1312, 1268, 1176, 930, 856, 751, 696 cm⁻¹; HRMS (ESI): calcd. for [M+Na]⁺ C₅₇H₃₉N₁Na₁O₃, 808.2828 found: 808.2822; Anal. Calcd for C₅₇H₃₉N₁O₃: C, 87.11; H, 5.00, N, 1.78. Found: C, 86.80; H, 5.13; N, 1.79%.; m.p. (decomp.)186-187 °C.

6u

1,3,5-tris[4-(diphenylamino)phenylcarbonyl]benzene (6w)²⁵

Reaction of 1,3,5-triacetylbenzene (43 mg, 0.21 mmol) and streptocyanine **2g** (776, 1.2 mmol) in the presence of NaO'Bu (359 mg, 3.7 mmol) gave the title compound (132 mg, 70%, yellow solid).

¹H NMR (400 MHz, CDCl₃): δ 8.28 (s, 3H), 7.71 (d, 6H, J = 8.8 Hz), 7.33 (t, 12H, J = 7.8 Hz), 7.11-7.20 (m, 18H), 7.00 (d, 6H, J = 8.8 Hz); ¹³C NMR (100 MHz, CDCl₃): δ 193.6, 152.4, 146.2, 138.8, 132.8, 132.1, 129.7, 128.4, 126.2, 125.0, 119.2.

4. Procedure of gram scale (5 + 1) annulation

To a 400 mL sealed tube equipped with a magnetic stirring bar and a septum, NaO'Bu (1.19 g, 12.3 mmol) was added. The tube was dried under vacuum with heating. After the tube was cooled to room temperature, argon was purged into the tube. THF (50 mL), streptocyanine **2b** (5.28 g, 10.2 mmol), and acetophenone (**1a**) (0.90 mL, 7.74 mmol) were added to the tube, and it was sealed by Teflon cap and heated at 120 °C with magnetic stirring for 10 hours. The reaction mixture was cooled to room temperature and transferred to a 200 mL round-bottom flask. After removal of the solvent under vacuum, the crude product was purified with flash chromatography to obtain the desired product **6j** (1.73 g, 87 %).

Figure S4. Gram scale synthesis of 6j.

²⁵ A. Qin, J. W. Y. Lam, H. Lu, W. Dong, C. K. W. Jim, Y. Dong, M. Halussler, H. Y. H. Sung, I. D. Williams, G. K. L. Wong, B. Z. Tang, *Macromolecules*, 2007, **40**, 4879–4886.

5. NMR spectra

Figure S5. ¹H NMR spectrum of 7c in CDCl₃.

Figure S6. ¹³C NMR spectrum of 7c in CDCl₃.

Figure S7. ¹H NMR spectrum of 7e in CDCl₃.

Figure S8. ¹³C NMR spectrum of 7e in CDCl₃.

Figure S9. ¹H NMR spectrum of 7h in CDCl₃.

Figure S10. ¹³C NMR spectrum of 7h in CDCl₃.

8c

Figure S11. ¹H NMR spectrum of 8c in DMSO-*d*₆.

Figure S12. ¹³C NMR spectrum of 8c in DMSO- d_6 .

Figure S13. ¹H NMR spectrum of 8d in DMSO-*d*₆.

Figure S14. ¹³C NMR spectrum of 8d in DMSO-d₆.

Figure S15. ¹H NMR spectrum of 8e in DMSO-d₆.

Figure S16. ¹³C NMR spectrum of 8e in DMSO-d₆.

Figure S17. ¹H NMR spectrum of 8f in DMSO-*d*₆.

Figure S18. ¹³C NMR spectrum of 8f in DMSO-*d*₆.

Figure S19. ¹H NMR spectrum of 8g in DMSO-*d*₆.

Figure S20. ¹³C NMR spectrum of 8g in DMSO-*d*₆.

Figure S21. ¹H NMR spectrum of 8h in DMSO-*d*₆.

Figure S22. ¹³C NMR spectrum of 8h in DMSO-*d*₆.

Figure S23. ¹H NMR spectrum of 2a in CDCl₃.

Figure S24. ¹³C NMR spectrum of 2a in CDCl₃.

Figure S25. ¹H NMR spectrum of 2b in DMSO-*d*₆.

Figure S26. ¹³C NMR spectrum of 2b in CDCl₃.

Figure S27. ¹H NMR spectrum of 2c in DMSO-*d*₆.

Figure S28. ¹³C NMR spectrum of 2c in CDCl₃.

Figure S29. ¹³C NMR spectrum of 2c in DMSO- d_6 at 100 °C.

Figure S30. ¹H NMR spectrum of 2d in DMSO-*d*₆.

Figure S31. ¹³C NMR spectrum of 2d in CD₃CN.

Figure S32. ¹H NMR spectrum of 2e in DMSO-*d*₆.

Figure S33. ¹³C NMR spectrum of 2e in CDCl₃.

Figure S34. ¹³C NMR spectrum of 2e in DMSO- d_6 at 160 °C.

Figure S35. ¹H NMR spectrum of 2f in DMSO- d_6 .

Figure S36. ¹³C NMR spectrum of 2f in CD₃CN.

Figure S38. ¹³C NMR spectrum of 2g in CDCl₃.

Figure S39. ¹H NMR spectrum of 2h in DMSO-*d*₆.

Figure S40. ¹³C NMR spectrum of 2h in CDCl₃.

Figure S41. ¹³C NMR spectrum of 2h in DMSO-d₆ at 100 °C

Figure S42. ¹H NMR spectrum of 2i in CDCl₃.

Figure S43. ¹³C NMR spectrum of 2i in CDCl₃.

Figure S44. ¹H NMR spectrum of 6a in CDCl₃.

Figure S45. ¹³C NMR spectrum of 6a in CDCl₃.

Figure S46. ¹H NMR spectrum of 6b in CDCl₃.

Figure S47. ¹³C NMR spectrum of 6b in CDCl₃.

Figure S48. ¹H NMR spectrum of 6c in CDCl₃.

Figure S49. ¹³C NMR spectrum of 6c in CDCl₃.

Figure S50. ¹H NMR spectrum of 6d in CDCl₃.

Figure S51. ¹³C NMR spectrum of 6d in CDCl₃.

Figure S52. ¹H NMR spectrum of 6e in CDCl₃.

Figure S53. ¹³C NMR spectrum of 6e in CDCl₃.

Figure S54. ¹H NMR spectrum of 6f in CDCl₃.

Figure S55. ¹³C NMR spectrum of 6f in CDCl₃.

Figure S56. ¹H NMR spectrum of 6g in CDCl₃.

Figure S57. ¹³C NMR spectrum of 6g in CDCl₃.

Figure S58. ¹H NMR spectrum of 6h in CDCl₃.

Figure S59. ¹³C NMR spectrum of 6h in CDCl₃.

kinoshita-alkyl

Figure S60. ¹H NMR spectrum of 6i in CDCl₃.

Figure S61. ¹³C NMR spectrum of 6i in CDCl₃.

Figure S62. ¹H NMR spectrum of 6j in CDCl₃.

Figure S63. ¹³C NMR spectrum of 6j in CDCl₃.

Figure S64. ¹H NMR spectrum of 6k in CDCl₃.

Figure S65. ¹³C NMR spectrum of 6k in CDCl₃.

Figure S66. ¹H NMR spectrum of 6l in CDCl₃.

Figure S67. ¹³C NMR spectrum of 6l in CDCl₃.

6m

Figure S68. ¹H NMR spectrum of 6m in CDCl₃.

Figure S69. ¹³C NMR spectrum of 6m in CDCl₃.

6n

Figure S70. ¹H NMR spectrum of 6n in CDCl₃.

Figure S71. ¹³C NMR spectrum of 6n in CDCl₃.

8.079 7.320 7.380 7.380 7.384 7.384 7.382 7.782 7.732 7.732 7.753 7.754 7.753 7.754 7.754 7.753 7.753 7.754 7.753 7.753 7.753 7.754 7.754 7.754 7.754 7.754 7.754 7.754 7.754 7.754 7.754 7.754 7.754 7.7553 7.7553 7.7553 7.7553 7.7553 7.7553 7.7553 7.7553 7.7553 7.7553 7.7553 7.7553 7.7553 7.7554 7.7553 7.7553 7.7553 7.7553 7.7554 7.7553 7.7553 7.7553 7.7553 7.7553 7.7553 7.7553 7.7553 7.7553 7.7553 7.7553 7.7553 7.7553 7.7553 7.7554 7.7553 7.7554

Figure S72. ¹H NMR spectrum of 60 in CDCl₃.

Figure S73. ¹³C NMR spectrum of 60 in CDCl₃.

6р

НК-03-231 Н

Figure S74. ¹H NMR spectrum of 6p in CDCl₃.

Figure S75. ¹³C NMR spectrum of 6p in CDCl₃.

Figure S76. ¹H NMR spectrum of 6q in CDCl₃.

Figure S77. ¹³C NMR spectrum of 6q in CDCl₃.

Figure S78. ¹H NMR spectrum of 6r in CDCl₃.

Figure S79. ¹³C NMR spectrum of 6r in CDCl₃.

Figure S80. ¹H NMR spectrum of 6s in CDCl₃.

ppm

Figure S81. ¹³C NMR spectrum of 6s in CDCl₃.

Figure S82. ¹H NMR spectrum of 6t in CDCl₃.

Figure S83. ¹³C NMR spectrum of 6t in CDCl₃.

Figure S84. ¹H NMR spectrum of 6u in CDCl₃.

Figure S85. ¹³C NMR spectrum of 6u in CDCl₃.

Figure S86. ¹H NMR spectrum of 6v in CDCl₃.

Figure S87. ¹³C NMR spectrum of 6v in CDCl₃.

Figure S88. ¹H NMR spectrum of 6w in CDCl₃.

Figure S89. ¹³C NMR spectrum of 6w in CDCl₃.