Supporting Information

Stereospecific assembly of tetrahydroquinolines via tandem ringopening/oxidative cyclization of donor-acceptor cyclopropanes with *N*-alkyl anilines

Bijay Ketan Das, Sourav Pradhan and Tharmalingam Punniyamurthy*

Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India

Table of Contents

1	General Information	S2
2	General Procedure for the Synthesis of Tetrahydroquinolines	S2
3	Procedure for the Enantiospecific Synthesis of Tetrahydroquinolines	S 3
4	Crystal Structure and Data of 4d and 4p'	S3-S5
5	ESI-MS of the reaction of 1a and 2a in the presence of BHT after 4 h	S 6
6	HPLC of the compounds 4a', 4p', 4r', 4u', 4z' and 4ab'	S7-S12
7	Characterization Data	S13-S30
8	NMR (¹ H, ¹³ C and ¹⁹ F) spectra	S31-S105

General Information. Cu(OTf)₂ (98%), Cu(OAc)₂ (98%), CuCl₂ (97%) and CuBr₂ (99.9%) were purchased from Aldrich and used as received. Cyclopropanes^{1,2} and N-alkyl anilines³ were prepared according to the reported procedure. Column chromatography was performed with Rankem silica gel (60-120 mesh). Bruker Avance III 400 and Bruker Avance III 600 spectrometers were used for recording NMR spectra using CDCl₃ as a solvent and Me₄Si as an internal standard. Chemical shifts (δ) and spin-spin coupling constants (J) are reported in ppm and Hz, respectively, and other data are reported as follows: s = singlet, d = doublet, t = triplet, m = multiplet, q = quartet, dd = doublet of doublet and br s = broad singlet. Melting points were determined with a Büchi B-540 apparatus and are uncorrected. Optical rotation was determined using Perkin Elmer-343 Polarimeter. HPLC analysis was carried out with Waters-2489 instrument using Daicel Chiralcel AD-H column using iso-propanol and hexane as eluent. FT-IR spectra were collected on Thermo Fisher Scientific IR spectrometer. Q-Tof ESI-MS instrument (model HAB 273) was used for recording mass spectra. Single crystal X-ray data were collected using Bruker SMART APEX-II CCD diffractometer, which is equipped with 1.75 kW sealed-tube Mo-K α irradiation ($\lambda = 0.71073$ Å) at 298(2) K. The crystal structure was solved by direct method using SHELXL-97 (Göttingen, Germany) and refined with full-matrix least squares on F^2 using SHELXL-97.

General Procedure for the Synthesis of Tetrahydroquinolines

N-Alkyl aniline **1** (0.2 mmol), cyclopropane **2** (0.24 mmol) and Cu(OTf)₂ (0.02 mmol, 7.2 mg) were stirred at room temperature for 6 h. Then, K_2CO_3 (0.2 mmol, 22 mg) and DMF (2 mL) were added and the resulting mixture was stirred at 100 °C for 12 h under air. The progress of the reaction was monitored using TLC with ethyl acetate and hexane as an eluent. After completion, the reaction mixture was cooled to room temperature and diluted with ethyl acetate (10 mL). The resultant mixture was washed with ice cold brine (5 mL) and cold water (5 mL). The aqueous solution was extracted with ethyl acetate (2 x 5 mL). Drying (Na₂SO₄) and evaporation of the solvent gave a residue that was purified on a silica gel column chromatography using hexane and ethyl acetate as an eluent to give analytically pure tetrahydroquinoline scaffolds.

Procedure for the Enantiospecific Synthesis of Tetrahydroquinolines

N-Alkyl aniline **1** (0.2 mmol), chiral cyclopropane (\mathbf{R})-**2a'** (0.24 mmol) and Cu(OTf)₂ (0.02 mmol, 7.2 mg) were subjected to the above described general procedure for the tetrahydroquinoline synthesis. The enantiomeric excess was determined using chiral HPLC.

Crystal Data and Structure Refinement

Figure S1. ORTEP diagram of dimethyl 1-benzyl-2-(4-chlorophenyl)-2,3-dihydroquinoline-4,4(1*H*)-dicarboxylate **4d** with 50% ellipsoid (CCDC 1902908).

Identification code	4d
Empirical formula	C ₂₆ H ₂₄ ClNO ₄
Formula weight	449.91
Crystal habit, colour	block /Colorless
Crystal size, mm ³	0.4 x 0.3 x 0.2
Temperature, <i>T</i> /K	296 K
Wavelength, $\lambda/Å$	0.71073
Crystal system	'Triclinic'
Space group	'P -1'
Unit cell dimensions	a =9.8937(9)Å
	b = 11.1906(10)Å
	c = 11.7431(8)Å
	$\alpha = 68.403(7)$
	$\beta = 71.507(7)$
	$\gamma = 82.528(7)$
Volume, V/Å ³	1146.32(18)

Ζ	2
Calculated density, Mg·m ⁻³	1.303
Absorption coefficient, μ/mm^{-1}	0.199
<i>F</i> (000)	472
θ range for data collection	2.23 to 25°
Limiting indices	$-11 \le h \le 11, -13 \le k \le 13, -13 \le l \le 13$
Reflection collected / unique	4056/2736
Completeness to θ	99.90% ($\theta = 25^{\circ}$)
Absorption correction	Multi-scan
Max. and min. transmission	1.000 and 0.867
Refinement method	'SHELXL-2014/7 (Sheldrick, 2014)'
Data / restraints / parameters	4056/0/ 291
Goodness–of–fit on F^2	1.070
Final <i>R</i> indices [<i>I</i> >2sigma(<i>I</i>)]	R1 = 0.0521, wR2 = 0.1084
<i>R</i> indices (all data)	R1 = 0.0833, wR2 = 0.1386

Figure S2. ORTEP diagram of dimethyl (*S*)-1-benzyl-6-chloro-2-phenyl-2,3-dihydroquinoline-4,4(1*H*)-dicarboxylate **4p'** with 50% ellipsoid (CCDC 1902927).

Identification code	4p'
Empirical formula	C ₂₆ H ₂₄ ClNO ₄
Formula weight	449.91
Crystal habit, colour	block /colorless
Crystal size, mm ³	0.4 x 0.3 x 0.2
Temperature, <i>T</i> /K	296 K
Wavelength, $\lambda/Å$	0.71073

Crystal system	'monoclinic'
Space group	'P 21'
Unit cell dimensions	a =10.5583(10)Å
	b = 9.7573(7)Å
	c = 11.7032(11)Å
	$\alpha = 90$
	$\beta = 106.984(11)$
	$\gamma = 90$
Volume, $V/Å^3$	1153.09(19)
Ζ	2
Calculated density, Mg·m ⁻³	1.296
Absorption coefficient, μ/mm^{-1}	0.198
F(000)	472
θ range for data collection	2.28 to 28°
Limiting indices	$-14 \le h \le 10, -12 \le k \le 7, -8 \le l \le 15$
Reflection collected / unique	3728/2194
Completeness to θ	99.90% ($\theta = 28^{\circ}$)
Absorption correction	Multi-scan
Max. and min. transmission	1.000and 0.768
Refinement method	'SHELXT 2018/2 (Sheldrick, 2018)'
Data / restraints / parameters	3728/1/ 291
Goodness–of–fit on F^2	1.031
Final <i>R</i> indices [<i>I</i> >2sigma(<i>I</i>)]	R1 = 0.0713, WR2 = 0.1584
<i>R</i> indices (all data)	R1 = 0.1065, WR2 = 0.1989

ESI-MS of the reaction of mixture of 1a and 2a in the presence of BHT after 4 h

	RT	Height (µV)	% Area
1	8.820	2008296	49.82
2	16.648	989772	50.18

Peak Results

	RT	Height (µV)	% Area
1	8.681	44552	0.47
2	16.104	2396437	99.53

	RT	Height (µV)	% Area
1	5.926	2860023	49.53
2	9.596	2400387	50.47

Peak Results

	RT	Height (µV)	% Area
1	5.929	129262	1.36
2	9.510	2984269	98.64

	RT	Height (µV)	% Area
1	8.552	3141971	49.13
2	10.241	3098548	50.87

Peak Results

	RT	Height (µV)	% Area
1	16.328	1360558	49.21
2	34.482	683393	50.79

Peak Results

	RT	Height (µV)	% Area
1	16.655	63704	2.98
2	34.755	787287	97.02

Characterization Data

Dimethyl 2-(2-(benzyl(phenyl)amino)-2-phenylethyl) malonate 3. Analytical TLC on silica gel, 1:9 ethyl acetate/hexane $R_f = 0.42$; thick liquid; ¹H NMR (600 MHz, CDCl₃) δ 7.42-7.34 (m, 5H), 7.32-7.23 (m, 7H), 6.95 (d, J = 8.4 Hz, 2H), 6.86 (t, J = 7.2 Hz, 1H), 5.26 (t, J = 7.8, 1H), 4.43 (d, J = 16.8 Hz, 1H), 4.35 (d, J = 16.8 Hz, 1H), 3.81 (s, 3H), 3.76 (s, 3H), 3.76-3.74 (m, 1H), 2.77-2.69 (m, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 169.9, 169.8, 149.4, 139.5, 139.2, 129.2, 128.7, 128.5, 127.9, 127.7, 127.0, 126.6, 118.7, 116.2, 52.8, 52.8, 50.0, 49.1, 31.1; FT-IR (neat) 3061, 3029, 2953, 2847, 1731, 1628, 1598, 1501, 1452, 1436, 1265, 1223, 1155, 1064, 751, 697 cm⁻¹; HRMS (ESI) m/z [M+H]⁺ calcd for C₂₆H₂₈NO₄: 418.2013 found: 418.2011.

(*S*)-Dimethyl 1-benzyl-2-phenyl-2,3-dihydroquinoline-4,4(1*H*)-dicarboxylate 4a'. Analytical TLC on silica gel, 1:9 ethyl acetate/hexane $R_f = 0.43$; sticky liquid; yield 81% (67 mg); ¹H NMR (600 MHz, CDCl₃) δ 7.22-7.03 (m, 10H), 7.01 (d, *J* = 7.8 Hz, 2H), 6.66-6.64 (m, 2H), 4.58 (d, *J* = 16.8 Hz, 1H), 4.47-4.45 (m, 1H), 3.98 (d, *J* = 16.8 Hz, 1H), 3.68 (s, 3H), 3.45 (s, 3H), 2.90-2.87 (m, 1H), 2.64-2.60 (m, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 171.7, 171.3, 145.0, 141.9, 138.1, 129.5, 129.0, 128.7, 128.5, 127.6, 127.4, 127.09, 127.01, 119.8, 117.0, 113.5, 59.1, 57.1, 53.2, 52.8, 52.7, 38.3; FT-IR (neat) 3062, 3028, 2952, 1733, 1602, 1495, 1451, 1240, 1099 cm⁻¹; HRMS (ESI) *m*/*z* [M+H]⁺ calcd for C₂₆H₂₆NO4: 416.1856, found: 416.1860; [α]_D²⁵ = +42.00 (c= 0.1, CHCl₃); HPLC: >99% ee [CHIRALCEL AD-H, hexane/^{*i*}PrOH = 90:10, flow rate: 1 mL /min, λ = 254 nm, tR = 24.34 min (major), 11.83 min (minor)].

Dimethyl 1-benzyl-2-(*o*-tolyl)-2,3-dihydroquinoline-4,4(1*H*)-dicarboxylate 4b. Analytical TLC on silica gel, 1:9 ethyl acetate/hexane $R_f = 0.42$; sticky liquid; yield 67% (56 mg); ¹H NMR (600 MHz, CDCl₃) δ 7.17-7.09 (m, 5H), 7.07-7.02 (m, 4H), 6.96 (d, J =7.8 Hz, 2H), 6.73 (d, J = 8.4 Hz, 1H), 6.66 (t, J = 7.8, 1H), 4.62-4.58 (m, 2H), 3.92 (d, J = 16.2Hz, 1H), 3.67 (s, 3H), 3.47 (s, 3H), 2.80 (dd, J = 13.8, 4.8 Hz, 1H), 2.51 (dd, J = 13.8, 9.0 Hz, 1H), 2.07 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 171.7, 171.4, 145.6, 139.7, 137.9, 135.9, 130.83, 130.81, 129.5, 129.1, 128.6, 127.4, 127.3, 127.1, 126.4, 119.8, 116.9, 113.6, 57.2, 53.2, 52.9, 52.8, 36.5, 18.8; FT-IR (neat) 3027, 2951, 1734, 1602, 1495, 1453, 1240, 1135, 1101, 1025, 748, 699 cm⁻¹; HRMS (ESI) *m*/z [M+H]⁺ calcd for C₂₇H₂₈NO₄: 430.2013, found: 430.2014.

Dimethyl 1-benzyl-2-(3-bromophenyl)-2,3-dihydroquinoline-

4,4(1*H***)-dicarboxylate 4c.** Analytical TLC on silica gel, 1:9 ethyl acetate/hexane $R_f = 0.43$; sticky liquid; yield 76% (75 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.31-7.27 (m, 2H), 7.19-7.02 (m, 7H), 7.00-6.97 (m, 2H), 6.72-6.65 (m, 2H), 4.61 (d, J = 16.4 Hz, 1H), 4.42-4.38 (m, 1H), 3.96 (d, J = 16.4 Hz, 1H), 3.67 (s, 3H), 3.53 (s, 3H), 2.85 (dd, J = 13.6, 5.2 Hz, 1H), 2.55 (dd, J = 13.6, 9.2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 171.5, 171.2, 144.9, 144.7, 137.8, 130.9, 130.5, 130.3, 129.6, 129.1, 128.6, 127.25, 127.22, 126.1, 122.8, 120.0, 117.5, 113.8, 58.7, 57.1, 53.2, 52.9, 38.3; FT-IR (neat) 3028, 2951, 2924, 2853, 1733, 1601, 1572, 1496, 1450, 1434, 1342, 1240, 1067, 1026, 749, 697 cm⁻¹; HRMS (ESI) m/z [M+H]⁺ calcd for C₂₆H₂₅BrNO₄: 494.0961, found: 494.0962.

Dimethyl 1-benzyl-2-(4-chlorophenyl)-2,3-dihydroquinoline-4,4(1*H***)-dicarboxylate 4d.** Analytical TLC on silica gel, 1:9 ethyl acetate/hexane $R_f = 0.46$; colorless crystal; mp 122-123 °C; yield 75% (67 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.27-7.05 (m, 11H), 6.76-6.73 (m, 2H), 4.65 (d, J = 16.4 Hz, 1H), 4.50-4.47(m, 1H), 4.01 (d, J = 16.4 Hz, 1H), 3.75 (s, 3H), 3.57 (s, 3H), 2.93 (dd, J = 13.6, 5.2 Hz, 1H), 2.62 (dd, J = 13.6, 8.2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 171.5, 171.3, 145.0, 140.6, 137.8, 133.4, 129.6, 129.1, 128.93, 128.91, 128.6, 127.23, 127.20, 120.0, 117.4, 113.7, 58.5, 57.1, 53.2, 52.95, 52.90, 38.4; FT-IR (KBr) 3028, 2951, 1733, 1601, 1575, 1495, 1493, 1450, 1343, 1240, 1089, 1014, 937, 835, 751, 699 cm⁻¹; HRMS (ESI) m/z [M+H]⁺ calcd for C₂₆H₂₅ClNO4: 450.1467, found: 450.1468.

Dimethyl 1-benzyl-2-(4-fluorophenyl)-2,3-dihydroquinoline-4,4(1H)-

dicarboxylate 4e. Analytical TLC on silica gel, 1:9 ethyl acetate/hexane $R_f = 0.36$; sticky liquid; yield 74% (64 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.18-7.04 (m, 7H), 7.00-6.97 (m, 2H), 6.90-6.86 (m, 2H), 6.68-6.64 (m, 2H), 4.57 (d, J = 16.8 Hz, 1H), 4.44-4.40 (m, 1H), 3.95 (d, J = 16.8 Hz, 1H), 3.67 (s, 3H), 3.51 (s, 3H), 2.86 (dd, J = 13.6, 5.2 Hz, 1H), 2.56 (dd, J = 13.6, 9.2 Hz, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 171.6, 171.3, 163.1 ($J_{C-F} = 244.2$ Hz), 145.0, 138.0, 137.7 ($J_{C-F} = 3.1$ Hz), 129.6, 129.15, 129.13 ($J_{C-F} = 7.8$ Hz), 128.6, 127.18, 127.14, 119.9, 117.3, 115.6 ($J_{C-F} = 21.3$ Hz), 113.7, 58.5, 57.2, 53.2, 52.9, 52.8, 38.5; ¹⁹F NMR (377 MHz, CDCl₃) δ -114.91; FT-IR (neat) 3030, 2952, 2922, 2852, 1733, 1644, 1602, 1502, 1451, 1345, 1235, 1161, 1100, 1059, 841, 749, 699 cm-1;HRMS (ESI) m/z [M+H]⁺ calcd for C₂₆H₂₅FNO4: 434.1762, found: 434.1763.

1-benzyl-2-(p-tolyl)-2,3-dihydroquinoline-4,4(1H)-

dicarboxylate 4f. Analytical TLC on silica gel, 1:9 ethyl acetate/hexane $R_f = 0.47$; sticky liquid; yield 68% (58 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.18-6.98 (m, 11H), 6.66-6.62 (m, 2H), 4.57 (d, J = 16.8 Hz, 1H), 4.43-4.39 (m, 1H), 3.98 (d, J = 16.8 Hz, 1H), 3.67 (s, 3H), 3.49 (s, 3H), 2.87-2.83 (m, 1H), 2.61-2.55 (m, 1H), 2.24 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 171.7, 171.4, 145.2, 139.0, 138.2, 137.3, 129.49, 129.42, 129.0, 128.5, 127.4, 127.1, 126.9, 120.0, 117.0, 113.6, 59.0, 57.3, 53.1, 52.8, 52.6, 38.6, 21.2; FT-IR (neat) 3025, 2952, 2923, 2853, 1733, 1602, 1496, 1451, 1346, 1240, 1126, 1103, 1026, 824, 753, 699, 667 cm⁻¹; HRMS (ESI) *m/z* [M+H]⁺ calcd for C₂₇H₂₈NO₄: 430.2013, found: 430.2014.

Dimethyl 1-benzyl-2-(4-methoxyphenyl)-2,3-dihydroquinoline-

4,4(1*H***)-dicarboxylate 4g.** Analytical TLC on silica gel, 1:9 ethyl acetate/hexane $R_f = 0.50$; brown sticky liquid; yield 62% (60 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.18-6.99 (m, 9H), 6.75-6.73 (m, 2H), 6.67-6.63 (m, 2H), 4.56 (d, J = 16.8 Hz, 1H), 4.41-4.37 (m, 1H), 3.98 (d, J = 16.8 Hz, 1H), 3.70 (s, 3H), 3.68 (s, 3H), 3.52 (s, 3H), 2.85 (dd, J = 13.6, 4.8 Hz, 1H), 2.58 (dd, J = 13.6, 9.2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 171.7, 171.5, 159.1, 145.3, 138.3, 133.9, 129.5, 129.1, 128.6, 128.5, 127.1, 126.9, 119.9, 117.0, 114.1, 113.6, 58.6, 57.3, 55.5, 53.2, 52.9, 52.6, 38.6; FT-IR (neat) 3027, 2952, 2849, 1733, 1603, 1509, 1451, 1302, 1245, 1173, 1030, 836, 751,699 cm⁻¹; HRMS (ESI) *m*/z [M+H]⁺ calcd for C₂₇H₂₈NO₅: 446.1962, found: 481. 446.1985.

Dimethyl 2-([1,1'-biphenyl]-4-yl)-1-benzyl-2,3-dihydroquinoline-4,4(1*H*)-dicarboxylate 3h. Analytical TLC on silica gel, 1:9 ethyl acetate/hexane $R_f = 0.41$; sticky liquid; yield 73% (71 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.58-7.51 (m, 4H), 7.45-7.41 (m, 2H), 7.36-7.32 (m, 1H), 7.28-7.10 (m, 9H), 6.78-6.72 (m, 2H), 4.71 (d, J = 16.8 Hz, 1H), 4.61-4.57 (m, 1H), 4.13 (d, J = 16.8 Hz, 1H), 3.77 (s, 3H), 3.54 (s, 3H), 3.01 (dd, J = 13.6, 5.2 Hz, 1H), 2.74 (dd, J = 13.6, 8.8 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 171.7, 171.4, 145.1, 141.1, 140.9, 140.6, 138.1, 129.5, 129.1, 129.0, 128.6, 127.9, 127.5, 127.4, 127.2, 127.2, 127.0, 119.9, 117.1, 113.6, 59.0, 57.2, 53.2, 52.8, 38.4; FT-IR (neat) 3027, 2951, 2852, 1733, 1601, 1495, 1450, 1347, 1103, 1026, 843, 698, 667 cm⁻¹; HRMS (ESI) m/z [M+H]⁺ calcd for C₃₂H₃₀NO₄: 492.2169, found: 492.2170.

Dimethyl 1-benzyl-2-(4-(tert-butyl) phenyl)-2,3-dihydroquino-

line-4,4(1*H*)-**dicarboxylate 3i**. Analytical TLC on silica gel, 1:9 ethyl acetate/hexane $R_f = 0.56$; sticky liquid; yield 67% (63 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.22-7.01 (m, 11H), 6.65-6.62 (m, 2H), 4.57 (d, *J* = 16.8 Hz, 1H), 4.48-4.44 (m, 1H), 4.02 (d, *J* = 16.8 Hz, 1H), 3.67 (s, 3H), 3.40 (s, 3H), 2.89 (dd, *J* = 13.6, 5.2 Hz, 1H), 2.64 (dd, *J* = 13.6, 8.4 Hz, 1H), 1.21 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 171.7, 171.3, 150.4, 145.0, 138.7, 138.3, 129.4, 129.1, 128.5, 127.1, 127.0, 126.9, 125.5, 119.5, 116.9, 113.3, 58.9, 57.1, 53.1, 52.7, 38.1, 34.6, 31.5; FT-IR (neat) 3028, 2954, 2868, 1733, 1602, 1496, 1451, 1435, 1345, 1240, 1026, 839, 750, 697 cm⁻¹; HRMS (ESI) *m/z* [M+H]⁺ calcd for C₃₀H₃₄NO₄: 472.2482, found: 472.2491.

Dimethyl 1-benzyl-2-(naphthalen-2-yl)-2,3-dihydroquinoline-4,4(1*H***)-dicarboxylate 4j. Analytical TLC on silica gel, 1:9 ethyl acetate/hexane R_f = 0.37; semi solid; yield 71% (66 mg); ¹H NMR (400 MHz, CDCl₃) \delta 7.74-7.66 (m, 3H), 7.54 (s, 1H), 7.40-7.37 (m, 2H), 7.28-7.26 (m, 1H), 7.18-7.05 (m, 5H), 7.01-6.98 (m, 2H), 6.73-6.66 (m, 2H), 4.65-4.59 (m, 2H), 4.03 (d,** *J* **= 16.8 Hz, 1H), 3.70 (s, 3H), 3.38 (s, 3H), 2.93 (dd,** *J* **= 13.6, 5.2 Hz, 1H), 2.70 (dd,** *J* **= 13.6, 9.2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃ \delta 171.7, 171.4, 145.2, 139.5, 138.1, 133.4, 133.1, 129.6, 129.0, 128.7, 128.6, 128.0, 127.8, 127.2, 127.0, 126.6, 126.4, 126.1, 125.1, 120.1, 117.2, 113.7, 59.3, 57.4, 53.2, 52.8, 52.7, 38.4; FT-IR (neat) 3026, 2951, 2923, 2852, 1733, 1601, 1496, 1450, 1436, 1351, 1239, 1129, 1100, 1058, 1026, 751, 698 cm⁻¹; HRMS (ESI)** *m***/***z* **[M+H]⁺ calcd for C₃₀H₂₈NO₄: 466.2013, found: 466.2015.**

Dimethyl 1-benzyl-2-(thiophen-2-yl)-2,3-dihydroquinoline-4,4(1H)-

dicarboxylate 4k. Analytical TLC on silica gel, 1:9 ethyl acetate/hexane $R_f = 0.36$; brown sticky liquid; yield 61% (51 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.20-7.03 (m, 8H), 6.82-6.80 (m, 1H), 6.77-6.76 (m, 1H), 6.70-6.64 (m, 2H), 4.73 (dd, J = 8.8, 4.8 Hz, 1H), 4.60 (d, J = 16.4 Hz, 1H), 4.08 (d, J = 16.8 Hz, 1H), 3.67 (s, 3H), 3.59 (s, 3H), 2.97 (dd, J = 13.6, 4.8 Hz, 1H), 2.69 (dd, J = 13.6, 9.2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 171.5, 171.4, 146.1, 144.7, 138.2, 129.5, 129.1, 128.6, 127.2, 127.1, 126.5, 126.0, 125.1, 120.3, 117.7, 114.4, 57.3, 55.0, 53.2, 53.0, 52.9, 39.4; FT-IR (neat) 3028, 2952, 2922, 2851, 1733, 1602, 1494, 1435, 1355, 1242, 1199, 1023, 851, 750, 700 cm⁻¹; HRMS (ESI) m/z [M+H]⁺ calcd for C₂₄H₂₄NO₄S: 422.1421, found: 422.1423.

$Die thyl \quad 1-benzyl-2-phenyl-2, 3-dihydroquinoline-4, 4 (1H)-dicarboxy-late$

41. Analytical TLC on silica gel, 1:9 ethyl acetate/hexane $R_f = 0.41$; sticky liquid; yield 81% (71 mg); ¹H NMR (600 MHz, CDCl₃) δ 7.22-7.10 (m, 9H), 7.07-7.04 (m, 1H), 7.02-7.00 (m, 2H), 6.67-6.64 (m, 2H), 4.57 (d, J = 16.8 Hz, 1H), 4.49-4.46 (m, 1H), 4.25-4.20 (m, 1H), 4.13-4.07 (m, 1H), 4.02-3.96 (m, 2H), 3.88-3.82 (m, 1H), 2.87-2.84 (m,1H), 2.61-2.56 (m, 1H), 1.19-1.17 (m, 3H), 1.12-1.09 (m, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 171.1, 171.0, 145.2, 142.2, 138.2, 129.3, 129.2, 128.7, 128.5, 127.7, 127.5, 127.1, 126.9, 119.9, 117.0, 113.5, 62.0, 61.9, 59.4, 57.1, 52.8, 38.3, 14.2, 14.1; FT-IR (neat) 3029, 2981, 1730, 1602, 1495, 1451, 1299, 1237, 1094, 1059, 1029, 862, 747, 701 cm⁻¹; HRMS (ESI) *m/z* [M+H]⁺ calcd for C₂₈H₃₀NO₄: 444.2169, found: 444.2177.

Dimethyl 1-benzyl-7-chloro-2-phenyl-2,3-dihydroquinoline-4,4(1*H***)-dicarboxylate. 4m** Analytical TLC on silica gel, 1:9 ethyl acetate/hexane $R_f = 0.47$; sticky liquid; yield 64% (57 mg); ¹H NMR (600 MHz, CDCl₃) δ 7.23-7.13 (m, 6H), 7.07 (d, J = 7.8 Hz, 2H), 7.00-6.95 (m, 3H), 6.65-6.60 (m, 2H), 4.55 (d, J = 16.8 Hz, 1H), 4.48-4.45 (m, 1H), 3.98 (d, J =16.8 Hz, 1H), 3.67 (s, 3H), 3.40 (s, 3H), 2.88-2.85 (m, 1H), 2.63-2.59 (m, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 171.3, 170.9, 146.1, 141.2, 137.2, 135.3, 130.2, 128.8, 128.7, 127.8, 127.38, 127.32, 127.0, 118.0, 116.9, 113.0, 58.9, 56.5, 53.3, 52.9, 52.6, 37.7; FT-IR (neat) 3028, 2951, 1734, 1597, 1562, 1494, 1451, 1432, 1357, 1240, 1105, 1055, 1027, 849, 754, 700 cm⁻¹; HRMS (ESI) m/z [M+H]⁺ calcd for C₂₆H₂₅ClNO₄: 450.1467, found: 450.1469.

Dimethyl 1-benzyl-7-methyl-2-phenyl-2,3-dihydroquinoline-4,4(1*H***)-dicarboxylate 4n.** Analytical TLC on silica gel, 1:9 ethyl acetate/hexane $R_f = 0.51$; sticky liquid; yield 62% (53 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.22-7.08 (m, 8H), 7.02-6.99 (m, 2H), 6.95 (d, J = 8.0 Hz, 1H), 6.52-6.47 (m, 2H), 4.62 (d, J = 16.4 Hz, 1H), 4.42 (dd, J = 8.4, 4.8 Hz, 1H), 3.97 (d, J = 16.8 Hz, 1H), 3.67 (s, 3H), 3.43 (s, 3H), 2.86 (dd, J = 13.6, 5.2 Hz, 1H), 2.61 (dd, J = 13.6, 8.4 Hz, 1H), 2.16 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 171.8, 171.5, 145.1, 142.0, 139.4, 138.3, 129.0, 128.69, 128.60, 127.6, 127.5, 127.2, 127.0, 118.1, 116.9, 114.0, 59.0, 56.9, 53.2, 52.8, 52.7, 38.3, 21.9; FT-IR (neat) 3026, 2949, 2924, 2852, 1734, 1609, 1505, 1449, 1238, 1135, 1026, 940, 754, 700 cm⁻¹; HRMS (ESI) m/z [M+H]⁺ calcd for C₂₇H₂₈NO₄: 430.2013, found: 430.2014.

Dimethyl 1-benzyl-6-bromo-2-phenyl-2,3-dihydroquinoline-4,4(1*H***)-dicarboxylate 40.** Analytical TLC on silica gel, 1:9 ethyl acetate/hexane $R_f = 0.47$; semi solid; yield 71% (70 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.24-7.07 (m, 10H), 7.99-6.97 (m, 2H), 6.53-6.50 (m, 1H), 4.52-4.45 (m, 2H), 3.99 (d, J = 16.8 Hz, 1H), 3.70 (s, 3H), 3.47 (s, 3H), 2.90-2.85 (m, 1H), 2.62-2.56 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 171.1, 170.8, 144.1, 141.5, 137.5, 132.2, 131.7, 128.8, 128.7, 127.8, 127.4, 127.2, 127.0, 121.6, 115.1, 108.9, 59.3, 56.9, 53.4, 53.1, 52.8, 38.1; FT-IR (neat) 3029, 2952, 2922, 2852, 1734, 1594, 1493, 1452, 1347, 1239, 1132, 1025, 802, 754, 700 cm⁻¹; HRMS (ESI) m/z [M+H]⁺ calcd for C₂₆H₂₅BrNO₄: 494.0961, found: 494.0962.

(*S***)-Dimethyl 1-benzyl-6-chloro-2-phenyl-2,3-dihydroquinoline-4,4(1***H***)-dicarboxylate 4p'. Analytical TLC on silica gel, 1:9 ethyl acetate/hexane R_f = 0.44; crystalline solid; mp 165-166 °C; yield 72% (65 mg); ¹H NMR (400 MHz, CDCl₃) \delta 7.23-7.07 (m, 8H), 7.03-6.97 (m, 4H), 6.57 (d,** *J* **= 8.8 Hz, 1H), 4.52-4.45 (m, 2H), 3.99 (d,** *J* **= 16.8 Hz, 1H), 3.69 (s, 3H), 3.46 (s, 3H), 2.88 (dd,** *J* **= 13.6, 5.2 Hz, 1H), 2.60 (dd,** *J* **= 13.6, 8.8 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) \delta 171.1, 170.8, 143.7, 141.5, 137.6, 129.4, 128.9, 128.8, 128.7, 127.8, 127.4, 127.2, 127.0, 121.8, 121.2, 114.6, 59.2, 56.9, 53.3, 53.0, 52.9, 38.2; FT-IR (KBr) 3028, 2951, 1734, 1599, 1494, 1452, 1346, 1239, 1134, 1061, 1025, 803, 753, 700 cm⁻¹; HRMS (ESI)** *m/z* **[M+H]⁺ calcd for C₂₆H₂₅ClNO₄: 450.1467, found: 450.1465; [\alpha]_D²⁵ = +32.00 (c= 0.1, CHCl₃); HPLC: >99%** *ee* **[CHIRALCEL AD-H, hexane/^{***i***}PrOH = 90:10, flow rate: 1 mL /min, \lambda = 254 nm,** *t***_R = 16.10 min (major), 8.68 min (minor)].**

BB

Dimethyl 1-benzyl-6-fluoro-2-phenyl-2,3-dihydroquinoline-4,4(1*H*)-

dicarboxylate 4q. Analytical TLC on silica gel, 1:9 ethyl acetate/hexane $R_f = 0.40$; sticky liquid; yield 68% (58 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.23-7.07 (m, 8H), 7.00-6.98 (m, 2H), 6.84-6.76 (m, 2H), 6.56 (dd, J = 9.2, 4.8 Hz, 1H), 4.49-4.41 (m, 2H), 3.97 (d, J = 16.8 Hz, 1H), 3.69 (s, 3H), 3.49 (s, 3H), 2.89 (dd, J = 13.6, 5.2 Hz, 1H), 2.58 (dd, J = 13.6, 9.2 Hz, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 171.1, 170.8, 155.8 ($J_{C-F} = 234.3$ Hz), 141.8, 141.6, 137.9, 128.7,128.6 127.7, 127.4, 127.1, 121.0 ($J_{C-F} = 7.2$ Hz), 116.2, 116.0, 115.8 ($J_{C-F} = 23.55$ Hz), 114.4 ($J_{C-F} = 7.9$ Hz), 59.3, 57.1, 53.3, 53.2, 53.0, 38.5; ¹⁹F NMR (377 MHz, CDCl₃) δ -127.87; FT-IR (neat) 3028, 2953, 1733, 1602, 1499, 1453, 1434, 1243, 1166, 1024, 803, 755, 701 cm⁻¹; HRMS (ESI) m/z [M+H]⁺ calcd for C₂₆H₂₅FNO4: 434.1762, found: 434.1764.

(*S*)-Dimethyl 1-benzyl-6-isopropyl-2-phenyl-2,3-dihydroquino-line-4,4(1*H*)-dicarboxylate 4r'. Analytical TLC on silica gel, 1:9 ethyl acetate/hexane $R_f = 0.58$; brown oil; yield 66% (60 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.20-7.09 (m, 8H), 7.02-7.00 (m, 2H), 6.95-6.92 (m, 1H), 6.90-6.89 (m, 1H), 6.60 (d, J = 8.4 Hz,1H), 4.54 (d, J = 16.4 Hz, 1H), 4.41 (dd, J = 9.2, 4.8 Hz, 1H), 3.96 (d, J = 16.4 Hz, 1H), 3.68 (s, 3H), 3.46 (s, 3H), 2.86 (dd, J = 13.6, 5.2 Hz, 1H), 2.78-2.68 (m, 1H), 2.60 (dd, J = 13.6, 8.8 Hz, 1H), 1.14 (d, J = 7.6 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 171.7, 171.5, 143.3, 142.2, 138.5, 137.2, 128.6, 128.5, 127.6, 127.5, 127.35, 127.30, 127.1, 126.9, 119.4, 113.4, 59.2, 57.3, 53.1, 53.0, 52.7, 38.5, 33.1, 24.2; FT-IR (neat) 3028, 2958, 2871, 1733, 1615, 1505, 1452, 1351, 1239, 1089, 1061, 1026, 949, 814, 752, 700 cm⁻¹; HRMS (ESI) m/z [M+H]⁺ calcd for C₂₉H₃₂NO₄: 458.2326, found: 458.2331; $[\alpha]_D^{25} = +32.00$ (c= 0.1, CHCl₃); HPLC: >99% *ee* [CHIRALCEL AD-H, hexane/*i*PrOH = 97:03, flow rate: 1 mL /min, $\lambda = 254$ nm, $t_R = 11.31$ min (major), 10.03 min (minor)].

6-Ethyl 4,4-dimethyl 1-benzyl-2-phenyl-2,3-dihydroquino-line-

4,4,6(1*H***)-tricarboxylate 4s.** Analytical TLC on silica gel, 1:9 ethyl acetate/hexane $R_f = 0.35$; sticky liquid; yield 62% (58 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.76-7.74 (m, 2H), 7.25-7.14 (m, 6H), 7.10-7.07 (m, 2H), 7.00-6.97 (m, 2H), 6.66 (d, J = 8.8 Hz, 1H), 4.67 (d, J = 16.8 Hz, 1H), 4.56 (dd, J = 8.0, 5.2 Hz, 1H), 4.23 (q, J = 7.2 Hz, 2H), 4.07 (d, J = 17.2 Hz, 1H), 3.70 (s, 3H), 3.43 (s, 3H), 2.92-2.88 (m, 1H), 2.67 (dd, J = 13.6, 8.8 Hz, 1H), 1.26 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 171.3, 170.8, 166.7, 148.5, 141.0, 137.1, 131.3, 131.2, 128.9, 128.8, 127.9, 127.39, 127.37, 126.9, 118.8, 118.7, 112.4, 60.4, 59.4, 56.7, 53.3, 53.0, 52.6, 37.6, 14.6; FT-IR (neat) 3027, 2981, 2953, 2852, 1734, 1705, 1608, 1512, 1451, 1308, 1241, 1171, 1061, 1026, 929, 756, 700 cm⁻¹; HRMS (ESI) *m*/*z* [M+H]⁺ calcd for C₂₉H₃₀NO₆: 488.2068, found: 488.2069.

Dimethyl 1-benzyl-2-phenyl-6-(trifluoromethyl)-2,3-dihydroquinoline-4,4(1H)-dicarboxylate 4t. Analytical TLC on silica gel, 1:9 ethyl acetate/hexane $R_f = 0.37$; colorless solid; mp 116-117 °C; yield 77% (74 mg); ¹H NMR (600 MHz, CDCl₃) δ 7.30-7.27 (m, 2H), 7.24-7.14 (m, 6H), 7.08 (d, J = 7.2 Hz, 2H), 7.01 (d, J = 7.2 Hz, 2H), 6.67 (d, J = 9.0 Hz, 1H), 4.62-4.56 (m, 2H), 4.07 (d, J = 16.8 Hz, 1H), 3.70 (s, 3H), 3.40 (s, 3H), 2.92 (dd, J = 13.8, 5.4 Hz, 1H), 2.68 (dd, J = 13.8, 9.0 Hz, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 171.0, 170.6, 147.4, 140.9, 137.1, 128.89, 128.87, 128.0, 127.4, 127.3, 126.8, 126.7 (q, J = 3.5 Hz), 126.6 (q, J = 3.8 Hz), 125.8 (q, J = 268.9 Hz), 118.8, 118.6 (q, J = 32.2 Hz), 112.7, 59.3, 56.5, 53.4, 53.0, 52.8, 37.4; ¹⁹F NMR (377 MHz, CDCl₃) δ -61.02; FT-IR (KBr) 3030, 2953, 1735, 1619, 1519, 1494, 1453, 1435, 1334, 1273, 1156, 1123 1087, 754, 700 cm⁻¹; HRMS (ESI) m/z [M+H]⁺ calcd for C₂₇H₂₅F₃NO₄: 484.1730, found: 484.1734.

(S)-Dimethyl 1-benzyl-2-phenyl-6-(trifluoromethoxy)-2,3-dihy-

droquinoline-4,4(1*H***)-dicarboxylate 4u'.** Analytical TLC on silica gel, 1:9 ethyl acetate/hexane $R_f = 0.36$; semi solid; yield 69% (68 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.24-7.08 (m, 8H), 7.02-6.97 (m, 3H), 6.94-6.90 (m, 1H), 6.59 (d, J = 9.2 Hz, 1H), 4.54-4.48 (m, 2H), 4.03 (d, J = 16.8 Hz, 1H), 3.69 (s, 3H), 3.44 (s, 3H), 2.89 (dd, J = 13.6, 4.8 Hz, 1H), 2.63 (dd, J = 13.6, 8.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 171.0, 170.7, 144.0, 141.4, 139.9, 137.6, 128.8, 128.7, 127.9, 127.4, 127.2, 126.9, 122.7, 122.4, 122.1 (q, J = 254.1 Hz), 120.1, 113.8, 59.4, 56.9, 53.3, 53.1, 53.0, 37.9; ¹⁹F NMR (377 MHz, CDCl₃) δ -58.38; FT-IR (neat) 3029, 2956, 2924, 2853, 1737, 1604, 1502, 1454, 1435, 1377, 1261, 1162, 1025, 804, 762, 700 cm⁻¹; HRMS (ESI) m/z [M+H]⁺ calcd for C₂₇H₂₅F₃NO₅: 500.1679, found: 500.1680; [α]_D²⁵ = +46.00 (c= 0.1, CHCl₃); HPLC:

>97% *ee* [CHIRALCEL AD-H, hexane/ⁱPrOH = 90:10, flow rate: 1 mL /min, λ = 254 nm, *t*_R = 9.51 min (major), 5.92 min (minor)].

Dimethyl 1-benzyl-6-methoxy-2-phenyl-2,3-dihydroquinoline-

4,4(1*H***)-dicarboxylate 4v.** Analytical TLC on silica gel, 1:9 ethyl acetate/hexane $R_f = 0.47$; sticky liquid; yield 56% (50 mg); ¹H NMR (600 MHz, CDCl3) δ 7.22-7.10 (m, 8H), 7.01 (d, J = 7.2 Hz, 2H), 6.69-6.66 (m, 2H), 6.60 (d, J = 9.0 Hz, 1H), 4.48 (d, J = 16.2 Hz, 1H), 4.39-4.37 (m, 1H), 3.92 (d, J = 16.2 Hz, 1H), 3.68 (s, 3H), 3.67 (s, 3H), 3.52 (s, 3H), 2.89-2.86 (m, 1H), 2.57-2.53 (m, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 171.5, 171.3, 151.3, 142.3, 139.5, 138.4, 128.7, 128.5, 127.6, 127.5, 127.2, 126.9, 121.5, 115.0, 114.8, 114.7, 59.2, 57.5, 55.8, 53.26, 53.24, 53.0, 39.0; FT-IR (neat) 2953, 2924, 2852, 1734, 1501, 1453, 1242, 1053, 803, 755, 701 cm⁻¹; HRMS (ESI) m/z [M+H]+ calcd for C₂₇H₂₈NO₅: 446.1962, found: 446.1972.

Dimethyl 1-benzyl-5,7-dimethyl-2-phenyl-2,3-dihydroquino-line-

4,4(1*H***)-dicarboxylate 4w.** Analytical TLC on silica gel, 1:9 ethyl acetate/hexane $R_f = 0.57$; sticky liquid; yield 51% (45 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.23-7.10 (m, 9H), 6.95-6.92 (m, 2H), 6.46, (s, 1H), 6.37, (s, 1H), 4.61 (d, J = 16.4 Hz, 1H), 4.37 (dd, J = 9.2, 5.2 Hz, 1H), 3.92 (d, J = 16.4 Hz, 1H), 3.67 (s, 3H), 3.43 (s, 3H), 2.78 (dd, J = 13.2, 5.2 Hz, 1H), 2.56 (dd, J = 13.2, 9.2 Hz, 1H), 2.12 (s, 3H), 2.10 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 172.2, 172.0, 145.8, 142.4, 138.5, 138.3, 138.1, 128.7, 128.5, 127.6, 127.4, 127.3, 126.9, 122.1, 117.5, 112.9, 56.4, 53.4, 53.1, 52.8, 40.6, 21.7, 20.8; FT-IR (neat) 3027, 2950, 2924, 2856, 1732, 1605, 1572, 1451, 1343, 1234, 1073, 1028, 823, 751, 700 cm⁻¹; HRMS (ESI) *m*/*z* [M+H]⁺ calcd for C₂₈H₃₀NO₄: 444.2169, found: 444.2179.

Dimethyl 1-methyl-2-phenyl-2,3-dihydroquinoline-4,4(1*H*)-dicar-

boxylate 4y. Analytical TLC on silica gel, 1:9 ethyl acetate/hexane $R_f = 0.60$; sticky liquid; yield 75% (51 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.27-7.24 (m, 2H), 7.20-7.17 (m, 4H), 7.07-7.05 (m, 1H), 6.70-6.65 (m, 2H), 4.29-4.27 (m, 1H), 3.71 (s, 3H), 3.53 (s, 3H), 2.78 (dd, J = 13.8, 4.2 Hz, 1H), 2.65 (s, 3H), 2.45-2.41(m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 171.74, 171.72, 146.4, 142.6, 129.6, 129.4, 128.8, 127.6, 127.2, 118.9, 116.7, 112.9, 60.8, 57.2, 53.3, 52.9, 38.9, 37.9; FT-IR (neat) 3026, 2953, 2921, 2852, 1735, 1690, 1604, 1495, 1450, 1351, 1239, 1100, 1061, 751, 701 cm⁻¹; HRMS (ESI) m/z [M+H]⁺ calcd for C₂₀H₂₂NO₄: 340.1543, found: 340.1544.

(*S*)-Dimethyl 1-ethyl-2-phenyl-2,3-dihydroquinoline-4,4(1*H*)-dicarboxylate 4z'. Analytical TLC on silica gel, 1:9 ethyl acetate/hexane $R_f = 0.61$; semi solid; yield 72% (51 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.25-7.12 (m, 6H), 7.04-7.02 (m, 1H), 6.76 (d, J = 8.8 Hz, 1H), 6.65-6.61 (m, 1H), 4.35(dd, J = 9.6, 4.4 Hz, 1H), 3.68 (s, 3H), 3.50 (s, 3H), 3.43-3.34 (m, 1H), 2.89-2.80 (m, 1H), 2.76-2.71 (m, 1H), 2.50-2.43 (m, 1H), 0.88 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 171.8, 171.6, 145.0, 142.8, 129.47, 129.43, 128.7, 127.6, 127.4, 119.8, 116.6, 113.5, 58.3, 57.3, 53.1, 52.8, 43.2, 38.7, 11.2; FT-IR (neat) 3029, 2952, 1733, 1602, 1573, 1495, 1452, 1344, 1255, 1203, 1096, 1058, 1023 749, 703 cm⁻¹; HRMS (ESI) *m/z* [M+H]⁺ calcd for C₂₁H₂₄NO4: 354.1700, found: 354.1706; [α]_D²⁵ = +12.00 (c= 0.1, CHCl₃); HPLC: >97% *ee* [CHIRALCEL AD-H, hexane/*i*PrOH = 97:03, flow rate: 1 mL /min, $\lambda = 254$ nm, $t_R = 10.28$ min (major), 8.65 min (minor)].

Dimethyl 1-(2-ethoxy-2-oxoethyl)-2-phenyl-2,3-dihydroquinoline-4,4(1*H***)-dicarboxylate 4aa.** Analytical TLC on silica gel, 1:9 ethyl acetate/hexane $R_f = 0.47$; sticky liquid; yield 62% (51 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.34-7.25 (m, 5H), 7.21-7.17 (m, 2H), 6.79-6.75 (m, 1H), 6.68-6.65 (m, 1H), 4.60 (dd, J = 10.8, 3.6 Hz, 1H), 4.09-4.01 (m, 2H), 3.80 (s, 3H), 3.65 (s, 3H), 2.84 (dd, J = 13.6, 4.0 Hz, 1H), 2.55 (dd, J = 13.6, 10.8 Hz, 1H), 1.11 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 171.9, 171.4, 170.7, 145.3, 142.0, 130.3, 129.5, 129.0, 128.1, 127.6, 119.2, 117.8, 112.9, 60.9, 60.0, 57.4, 53.2, 53.0, 51.0, 38.5, 14.2; FT-IR (neat) 2953, 1733, 1603, 1495, 1454, 1435, 1334, 1236, 1193, 1126, 1093, 1026, 749, 703 cm⁻¹; HRMS (ESI) m/z [M+H]⁺ calcd for C₂₃H₂₆NO₆: 412.1755, found: 412.1756.

(S)-Dimethyl 1-(4-methoxybenzyl)-2-phenyl-2,3-dihydroqui-noline-

4,4(1*H***)-dicarboxylate 4ab'.** Analytical TLC on silica gel, 1:9 ethyl acetate/hexane $R_f = 0.63$; sticky liquid; yield 71% (63 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.22-7.01 (m, 7H), 6.91 (d, J = 8.8 Hz, 1H), 6.70-6.62 (m, 4H), 4.53 (d, J = 16.4 Hz, 1H), 4.42-4.39 (m, 1H), 3.89 (d, J = 16.4 Hz, 1H), 3.67 (s, 3H), 3.66 (s, 3H), 3.46 (s, 3H), 2.88-2.83 (m, 1H), 2.60-2.54 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 171.7, 171.3, 158.7, 145.2, 142.1, 129.9, 129.5, 128.9, 128.7, 128.4, 127.6, 127.4, 120.1, 117.0, 113.9, 113.6, 58.8, 57.2, 55.4, 53.1, 52.8, 52.0, 38.5; FT-IR (neat) 3028, 2951, 2838, 1733, 1603, 1509, 1453, 1245, 1175, 1102, 1060, 815, 751, 702 cm⁻¹; HRMS (ESI) *m/z* [M+H]⁺ calcd for C₂₇H₂₈NO₅: 446.1962 found: 446.1969; $[\alpha]_D^{25} = -42.00$ (c= 0.1, CHCl₃); HPLC: >94% *ee* [CHIRALCEL AD-H, hexane/*i*PrOH = 90:10, flow rate: 1 mL /min, $\lambda = 254$ nm, $t_R = 34.75$ min (major), 16.65 min (minor)].

Dimethyl 1,2-diphenyl-2,3-dihydroquinoline-4,4(1*H***)-dicarboxylate 4ac. Analytical TLC on silica gel, 1:9 ethyl acetate/hexane R_f = 0.47; semi solid; yield 68% (54 mg); ¹H NMR (400 MHz, CDCl₃) \delta 7.21-7.05 (m, 9H), 6.90-6.78 (m, 5H), 4.72-4.68 (dd,** *J* **= 9.2, 6.0 Hz, 1H), 3.62 (s, 3H), 3.58 (s, 3H), 3.09 (dd,** *J* **= 13.6, 5.6 Hz, 1H), 2.61 (dd,** *J* **= 13.6, 9.2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) \delta 171.5, 171.0, 147.6, 144.2, 143.1, 129.2, 129.0, 128.7, 128.4, 127.3, 127.0, 124.5, 123.6, 123.5, 120.13, 120.11, 60.5, 57.4, 53.3, 53.0, 40.6; FT-IR (neat) 3029, 2952, 1733, 1594, 1492, 1449, 1383, 1314, 1249, 1129, 1095, 1056, 1026, 751, 699 cm⁻¹; HRMS (ESI)** *m/z* **[M+H]+ calcd for C₂₅H₂₄NO4: 402.1700, found: 402.1703.**

Dimethyl 1-(4-(benzyloxy)benzyl)-6-methoxy-2-(4methoxyphenyl)-2,3-dihydroquinoline-4,4(1*H***)-dicarboxylate 4ad. Analytical TLC on silica gel, 1:9 ethyl acetate/hexane R_f = 0.47; thick liquid; yield 75% (87 mg); ¹H NMR (400 MHz, CDCl₃) \delta 7.43-7.30 (m, 5H), 7.10 (d, J = 8.8 Hz, 2H), 6.99 (d, J = 8.8 Hz, 2H), 6.86-6.68 (m, 7H), 5.02 (s, 2H), 4.49 (d, J = 16.0 Hz, 1H), 4.36-4.33 (m, 1H), 3.90 (d, J = 16.0 Hz, 1H), 3.78 (s, 3H), 3.74 (s, 3H), 3.72 (s, 3H), 3.64 (s, 3H), 2.90 (dd, J = 13.6, 5.2 Hz, 1H), 2.57 (dd, J = 13.6, 9.6 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) \delta 171.5, 171.4, 159.0, 157.8, 151.3, 139.8, 137.2, 134.4, 130.7, 128.7, 128.6, 128.5, 128.1, 127.6, 121.8, 115.0, 114.9, 114.84, 114.80, 114.0, 70.1, 58.3, 57.7, 55.8, 55.4, 53.1, 53.0, 52.3, 39.3; FT-IR (neat) 2951, 2836, 1733, 1610, 1584, 1509, 1454, 1245, 1172, 1032, 832, 744, 698 cm⁻¹; HRMS (ESI)** *m/z* **[M+H]⁺ calcd for C₃₅H₃₆NO₇: 582.2486, found: 582.2485.**

Dimethyl 1-benzyl-2-(4-(tert-butyl)phenyl)-6-isopropyl-2,3dihydroquinoline-4,4(1*H***)-dicarboxylate 4ae.** Analytical TLC on silica gel, 1:9 ethyl acetate/hexane $R_f = 0.68$; sticky liquid; yield 78% (80 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.21-7.08 (m, 5H), 7.05-7.01 (m, 4H), 6.94-6.88 (m, 2H), 6.59 (d, J = 8.4 Hz, 1H), 4.54 (d, J = 16.8 Hz, 1H), 4.43-4.40 (m, 1H), 4.01 (d, J = 16.8 Hz, 1H), 3.68 (s, 3H), 3.42 (s, 3H), 2.86 (dd, J = 13.6, 4.8 Hz, 1H), 2.76-2.69 (m, 1H), 2.62 (dd, J = 13.6, 8.8 Hz, 1H), 1.21 (s, 9H), 1.14 (d, J = 6.8, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 171.9, 171.6, 150.4, 143.3, 138.9, 138.7, 137.0, 128.5, 127.4, 127.28, 127.23, 127.1, 126.8, 125.5, 119.1, 113.3, 59.0, 57.3, 53.1, 53.0, 52.7, 38.3, 34.6, 33.1, 31.5, 24.3, 24.2; FT-IR (neat) 3026, 2958, 2869, 1735, 1615, 1508, 1453, 1434, 1360, 1239, 1142, 1081, 1025, 810, 756, 699 cm⁻¹; HRMS (ESI) m/z [M+H]⁺ calcd for C₃₃H₄₀NO4: 514.2952, found: 514.2961.

Dimethyl 2-phenyl-2,3-dihydroquinoline-4,4(1*H***)-dicarboxylate 6.⁴ Anisole (2 mL) was added to a stirring solution of 4ab** (0.1 mmol, 50 mg) in TFA (1.5 mL, 1 mmol) and the resultant mixture was heated to reflux for 4 h. The reaction was quenched by addition of sat. aq. NaHCO₃ (5 mL) and extracted with CH₂Cl₂ (10 mL). Drying (Na₂SO₄) and evaporation of the solvent gave a residue that was purified on silica gel column chromatography to give **6**. Analytical TLC on silica gel, 1:9 ethyl acetate/hexane $R_f = 0.37$; yellow solid; mp 124-125 °C; yield 89% (29 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.47-7.44 (m, 2H), 7.40-7.29 (m, 4H), 7.15-7.10 (m, 1H), 6.76-6.72 (m, 1H), 6.60-6.58 (m, 1H), 4.47-4.43 (m, 1H), 4.17 (brs, 1H), 3.80 (s, 3H), 3.74 (s, 3H), 2.81 (dd, *J* = 13.2, 2.8 Hz, 1H), 2.32 (dd, *J* = 13.2, 11.6 Hz, 1H); ¹³C NMR (100

MHz, CDCl₃) δ 172.2, 171.7, 144.8, 142.9, 131.1, 129.3, 128.9, 128.2, 126.9, 117.7, 115.7, 115.3, 57.5, 53.7, 53.3, 53.1, 38.6; FT-IR (neat) 3028, 2952, 2848, 1731, 1607, 1490, 1434, 1321, 1253, 1126, 1059, 751, 701 cm⁻¹; HRMS (ESI) *m*/*z* [M+H]⁺ calcd for C₁₉H₂₀NO₄: 326.1387, found: 326.1397.

Dimethyl 1-benzyl-2-(3-(pyren-2-yl)phenyl)-2,3-dihy-

droquinoline-4,4(1H)-dicarboxylate 7. Tetrahydroquinoline 4c (0.1 mmol, 50 mg), Pd(PPh₃)₄ (2 mol %, 2.3 mg), pyrene-1-boronic acid (0.2 mmol, 50 mg), Na₂CO₃ (0.2 mmol, 22 mg) and H₂O (50 µL) were refluxed in toluene:EtOH (1:1, 2 mL) for 4 h under N₂ atmosphere. After completion, the reaction mixture was cooled to room temperature and passed through a short pad of celite using CH₂Cl₂ (10 mL). Evaporation of the solvent gave a residue that was purified on silica gel column chromatography using hexane and ethyl acetate as an eluent to give 7. Analytical TLC on silica gel, 1:9 ethyl acetate/hexane $R_f = 0.32$; semi solid; yield 91% (56 mg); ¹H NMR $(600 \text{ MHz}, \text{CDCl}_3) \delta 8.13-8.09 \text{ (m, 3H)}, 8.07 \text{ (d, } J = 9.0 \text{ Hz}, 1\text{H}), 8.02 \text{ (s, 2H)}, 7.96-7.93 \text{ (m, 2H)},$ 7.76 (s, 1H), 7.45-7.39 (m, 3H), 7.25-7.23 (m, 1H), 7.21-7.18 (m, 2H), 7.16-7.13 (m, 1H), 7.11-7.05 (m, 4H), 6.69-6.65 (m, 2H), 4.70 (d, J = 16.8 Hz, 1H), 4.61-4.58 (m, 1H), 4.18 (d, J = 16.8Hz, 1H), 3.70 (s, 3H), 3.52 (s, 3H), 3.01 (dd, *J* = 13.8, 4.8 Hz, 1H), 2.76 (dd, *J* = 13.2, 8.4 Hz, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 171.7, 171.5, 145.2, 142.2, 141.6, 138.2, 137.4, 131.6, 131.1, 130.8, 130.0, 129.7, 129.6, 129.2, 128.7, 128.5, 127.8, 127.7, 127.66, 127.61, 127.19, 127.11, 126.4, 126.2, 125.3, 125.2, 125.1, 125.07, 125.04, 124.8, 119.6, 117.2, 113.6, 59.4, 57.2, 53.3, 53.2, 53.0, 38.4; FT-IR (neat) 2924, 2853, 1732, 1602, 1456, 1451, 1239, 1083, 1029, 848, 750 cm^{-1} ; HRMS (ESI) m/z [M+H]⁺ calcd for C₄₂H₃₄NO₄: 616.2482, found: 616.2489.

Methyl 1-benzyl-2-phenyl-1,2,3,4-tetrahydroquinoline-4-carboxylate

8.⁵ Tetrahydroquinoline **4a** (41.6 mg, 0.1 mmol), LiCl (12.7 mg, 0.3 mmol) and H₂O (1 drop) were stirred in DMSO (2 mL) at 130 °C for 12 h. The mixture was cooled to room temperature, washed with brine (5 mL) and extracted with ethyl acetate (10 mL). Evaporation of the solvent gave a residue that was purified by silica gel column chromatography using hexane and ethyl acetate as an eluent to furnish **8** in 77% yield as a 6:5 mixture of diasteromers.

Data for major diastereomer. Analytical TLC on silica gel, 1:9 ethyl acetate/hexane $R_f = 0.60$; liquid; yield 42% (15 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.23-7.09 (m, 10H), 7.06-7.01 (m, 1H), 6.96-6.94 (m, 1H), 6.64-6.59 (m, 2H), 4.69 (d, J = 17.2 Hz, 1H), 4.58 (t, J = 5.2 Hz, 1H), 4.093 (d, J = 17.6 Hz, 1H), 3.75 (t, J = 5.6 Hz, 1H), 3.20 (s, 3H), 2.73-2.68 (m, 1H), 2.47-2.41 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 173.7, 145.1, 141.8, 138.5, 130.4, 128.7, 128.5, 127.4, 127.0, 126.6, 118.9, 116.4, 112.0, 60.6, 53.0, 51.9, 42.0 32.9; FT-IR (neat) 3028, 2952, 1734, 1602, 1494, 1400, 1451, 1196, 1162, 1124, 1014 cm⁻¹; HRMS (ESI) m/z [M+H]⁺ calcd for C₂₄H₂₄NO₂: 358.1802, found: 358.1803.

Data for minor diastereomer. Analytical TLC on silica gel, 1:9 ethyl acetate/hexane $R_f = 0.63$; sticky liquid; yield 35% (12 mg); ¹H NMR (600 MHz, CDCl₃) δ 7.25-7.10 (m, 10H), 7.03-7.00 (m, 1H), 6.95 (d, J = 7.8 Hz, 1H), 6.60-6.54 (m, 2H), 4.66 (t, J = 5.4 Hz, 1H), 4.63 (d, J = 17.4 Hz, 1H), 4.14 (d, J = 17.4 Hz, 1H), 3.67 (s, 3H), 3.62-3.59 (m, 1H), 2.57-2.52 (m, 1H), 2.19-2.16 (m, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 174.7, 144.9, 143.2, 138.3, 128.9, 128.8, 128.7, 128.1, 127.6, 127.0, 126.9, 126.6, 119.2, 116.4, 111.7, 59.8, 52.9, 52.2, 40.6, 33.4; FT-IR (neat) 3018, 2952, 1733, 1601, 1400, 1451, 1250, 1162, 1123, 1013 cm⁻¹; HRMS (ESI) *m/z* [M+H]⁺ calcd for C₂₄H₂₄NO₂: 358.1802, found: 358.1804.

References

- Preparation of DA cyclopropane, see: A. F. G. Goldberg, N. R. O'Connor, R. A. Craig and B. M. Stolz, *Org. Lett.* 2012, 14, 5314.
- For preparation of chiral cyclopropane, see: K. Sapeta and M. A. Kerr, J. Org. Chem., 2007, 72, 8597.
- Preparation of *N*-alkylanilines, see: X. Ling, Y. Xiong, R. Huang, X. Zhang, S. Zhang and C. Chen, *J. Org. Chem.* 2013, 78, 5218.
- F. Burg, M. Gicquel, S. Breitenlechner, A. Po thig and T. Bach, *Angew. Chem., Int. Ed.*, 2018, 57, 2953.
- 5. S. Das, S. Chakrabarty, C. G. Daniliuc and A. Studer, Org. Lett. 2016, 18, 2784.

NMR spectra

S32

S33

S34

BKD-170-BPH-1H

S54

S59

BKD-179-4F-19F

128.721----

BKD-181-CF3-19F

S98

