Electronic Supplementary Information

Porous V₂O₅ Microspheres: A High-Capacity Cathode Material for Aqueous Zinc-Ion Battery

Ping Hu,^{a,‡} Ting Zhu,^{a,‡} Jingxuan Ma,^{a,‡} Congcong Cai,^a Guangwu Hu,^a Xuanpeng Wang,^b Ziang Liu,^a Liang Zhou^{a,*} and Liqiang Mai^{a,*}

^a State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China

^b Department of Physics, School of Science, Wuhan University of Technology, Wuhan 430070, China

Email: liangzhou@whut.edu.cn, mlq518@whut.edu.cn

Experimental Section

Synthesis

The porous V₂O₅ microspheres were synthesized by a spray drying method followed by annealing in air. 10 mmol V₂O₅ were dissolved in 130 mL distilled water and 20 mL H₂O₂ (30 wt. %). Then, 1.0 g sucrose was added into the above solution. The precursor solution was spray dried using a BUCHI Mini Spray Dryer B-290. After annealing the collected powder at 350 °C for 4 h in air, porous V₂O₅ microspheres (designated as V₂O₅) were obtained. For comparison, VO_x/C-350 and VO_y/C-500 were prepared by annealing the intermediate powder at 350 and 500 °C for 4 h in Ar. V₂O₅-PVP and V₂O₅-OX were synthesized with the same method by replacing the sucrose with PVP and oxalic acid, respectively.

Characterization

Ex-situ XRD during electrochemical measurements was performed on a D8 Discover X-ray diffractometer with a nonmonochromated Cu K α X-ray source. Field-emission scanning electron microscopy (FESEM) images were collected using a JSM-7001F microscope at an acceleration voltage of 10 kV. Transmission electron microscopy (TEM) and high-resolution TEM (HRTEM) images were recorded with a JSM-2100F STEM/EDS microscope. The XPS spectra were recorded on a Shimadzu Axis Ultra spectrometer with an Mg K α = 1253.6 eV excitation source. The Brunauer-Emmett-Teller (BET) surface area was calculated from nitrogen adsorption isotherms collected at 77 K using a Tristar-3020 instrument. Thermogravimetric analysis (TGA) and differential scanning calorimeter (DSC) curves were conducted by using a Netzsch STA 449C simultaneous analyzer.

Electrochemical Measurements

The cathode consisted of 60 wt. % active material, 30 wt. % acetylene black, and 10 wt. % polytetrafluoroethylene (PTFE). Metallic Zn foil (~0.25 mm) was used as the anode, 2 mol L⁻¹ zinc trifluoromethanesulfonate (Zn(CF₃SO₃)₂) was employed as the electrolyte, and Whatman grade GF/A was used as the membrane. 2016-type coin cells were assembled in air. The cyclic voltammetry (CV) and galvanostatic discharge-charge (GCD) tests were carried out on CHI600E and Land Battery Test System.

Fig. S1. (a) XRD pattern, (b, c, d) SEM images of VO_x/C-350 porous microspheres.

Fig. S2. (a) XRD pattern, (b, c) SEM images, (d) TEM images, (e) HRTEM image, and (f) EDS mapping of VO_y/C-500 porous microspheres.

Fig. S3. (a) XRD pattern, (b, c) SEM images, (d, e) TEM images, and (f) HRTEM image of porous V_2O_5 -PVP microspheres.

Fig. S4. (a) XRD pattern, (b, c) SEM images, (d, e) TEM images, and (f) HRTEM image of porous V_2O_5 -OX microspheres.

Fig. S5. The CV curves of V_2O_5 for the different cycles at 0.1 mV s⁻¹ (a), and for the different scan rates (b).

Fig. S6. The CV curves of VO_y/C -500 for the different cycles at 0.1 mV s⁻¹ (a), and for the different scan rates (b).

Fig. S7. Nyquist plots of porous V_2O_5 (red) and $VO_y/C-500$ (black) in 2 M $Zn(CF_3SO_3)_2$.

Fig. S8. The cycling performance of $VO_x/C-350$ at 100 mA g⁻¹.

Materials	Electrolyte	Specific capacity at <i>x</i> mA g ⁻¹	Energy density (Wh Kg ⁻¹)	Capacity retention after <i>n</i> cycles at <i>y</i> mA g ⁻¹	Ref.
porous V ₂ O ₅ microsphere	$Zn(CF_3SO_3)_2$	401 (<i>x</i> = 100)	286	73% ($n = 1000, y = 2000$)	Our work
$Zn_{0.25}V_2O_5 nH_2O$	ZnSO ₄	300 (x = 50)	250	80% ($n = 1000, y = 2400$)	1
VS_2	ZnSO ₄	190 ($x = 50$)	123	98% ($n = 200, y = 50$)	2
LiV ₃ O ₈	ZnSO ₄	280 ($x = 16$)	224	75% (<i>n</i> = 65, <i>y</i> = 133)	3
$Na_3V_2(PO_4)_3$	Zn(CH ₃ COO) ₂	97 ($x = 50$)	108	74% ($n = 100, y = 50$)	4
V_2O_5	AN-Zn(TFSI)2	218 (<i>x</i> = 14.4)	156	95% (<i>n</i> = 120, <i>y</i> = 50)	5
Zn ₃ V ₂ O ₇ (OH) ₂ 2H ₂ O	ZnSO ₄	213 ($x = 50$)	150	68% (<i>n</i> = 300, <i>y</i> = 200)	6
VO_2	ZnSO ₄	353 ($x = 1000$)	176	75% ($n = 945, y = 3000$)	7
V ₂ O ₅ nanopaper	ZnSO ₄	375 ($x = 500$)	278	77% ($n = 500, y = 10000$)	8
porous V ₂ O ₅	$Zn(CF_3SO_3)_2$	319 (<i>x</i> = 20)	233	80% ($n = 500$, $y = 588$)	9
V ₂ O ₅ hollow spheres	ZnSO ₄	280 ($x = 200$)	204	82% ($n = 6200, y = 10000$)	10

Table S1. Electrochemical performances of recently reported vanadium-based zinc-ion battery cathode materials

- 1. D. Kundu, B. D. Adams, V. Duffort, S. H. Vajargah and L. F. Nazar, *Nature Energy*, 2016, 1, 16119.
- 2. P. He, M. Yan, G. Zhang, R. Sun, L. Chen, Q. An and L. Mai, Adv. Energy Mater., 2017, 7, 1601920.
- M. H. Alfaruqi, V. Mathew, J. Song, S. Kim, S. Islam, D. T. Pham, J. Jo, S. Kim, J. P. Baboo, Z. Xiu, K.-S. Lee, Y.-K. Sun and J. Kim, *Chem. Mater.*, 2017, 29, 1684-1984.
- 4. G. Li, Z. Yang, Y. Jiang, C. Jin, W. Huang, X. Ding and Y. Huang, *Nano Energy*, 2016, 25, 11-217.
- 5. P. Senguttuvan, S. D. Han, S. Kim, A. L. Lipson, S. Tepavcevic, T. T. Fister, I. D. Bloom, A. K. Burrell and C. S. Johnson, *Adv. Energy Mater.*, 2016, **6**, 1600826.
- 6. C. Xia, J. Guo, Y. Lei, H. Liang, C. Zhao and H. N. Alshareef, Adv. Mater., 2017, 30, 1705580.

- 7. Z. Li, S. Ganapathy, Y. Xu, Z. Zhou, M. Sarilar and M. Wagemaker, Adv. Energy Mater., 2019, 9, 1900237.
- 8. Y. Li, Z. Huang, P. Kalambate, Y. Zhong, Z. Huang, M. Xie, Y. Shen and Y. Huang, Nano Energy, 2019, 60, 752-759.
- 9. X. Chen, L. Wang, H. Li, F. Cheng and J. Chen, J. Energy Chem., 2019, 38, 20-25.
- 10. H. Qin, L. Chen, L. Wang, X. Chen and Z. Yang, *Electrochim. Acta*, 2019, 306, 307-316.

Fig. S9. The electrochemical performances of porous V_2O_5 -PVP microspheres. (a) CV curves. (b) Cyclic performance at 100 mA g⁻¹. (c) Long-life cycling performance at 2000 mA g⁻¹.

Fig. S10. The electrochemical performances of porous V_2O_5 -OX microspheres. (a) CV curves. (b) Cyclic performance at 200 mA g⁻¹. (c) Long-life cycling performance at 5000 mA g⁻¹.

Fig. S11. XPS Survey spectra of the electrodes obtained at different states (original, charged, and discharged states). The fluorine is coming from the PTFE binder.