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Experimental Section 

Synthesis 

The porous V2O5 microspheres were synthesized by a spray drying method followed 

by annealing in air. 10 mmol V2O5 were dissolved in 130 mL distilled water and 20 

mL H2O2 (30 wt. %). Then, 1.0 g sucrose was added into the above solution. The 

precursor solution was spray dried using a BUCHI Mini Spray Dryer B-290. After 

annealing the collected powder at 350 ºC for 4 h in air, porous V2O5 microspheres 

(designated as V2O5) were obtained. For comparison, VOx/C-350 and VOy/C-500 

were prepared by annealing the intermediate powder at 350 and 500 ºC for 4 h in Ar. 

V2O5-PVP and V2O5-OX were synthesized with the same method by replacing the 

sucrose with PVP and oxalic acid, respectively. 
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Characterization 

Ex-situ XRD during electrochemical measurements was performed on a D8 Discover 

X-ray diffractometer with a nonmonochromated Cu Kα X-ray source. Field-emission 

scanning electron microscopy (FESEM) images were collected using a JSM-7001F 

microscope at an acceleration voltage of 10 kV. Transmission electron microscopy 

(TEM) and high-resolution TEM (HRTEM) images were recorded with a JSM-2100F 

STEM/EDS microscope. The XPS spectra were recorded on a Shimadzu Axis Ultra 

spectrometer with an Mg Kα = 1253.6 eV excitation source. The 

Brunauer-Emmett-Teller (BET) surface area was calculated from nitrogen adsorption 

isotherms collected at 77 K using a Tristar-3020 instrument. Thermogravimetric 

analysis (TGA) and differential scanning calorimeter (DSC) curves were conducted 

by using a Netzsch STA 449C simultaneous analyzer. 

 

Electrochemical Measurements 

The cathode consisted of 60 wt. % active material, 30 wt. % acetylene black, and 10 

wt. % polytetrafluoroethylene (PTFE). Metallic Zn foil (~0.25 mm) was used as the 

anode, 2 mol L
-1

 zinc trifluoromethanesulfonate (Zn(CF3SO3)2) was employed as the 

electrolyte, and Whatman grade GF/A was used as the membrane. 2016-type coin 

cells were assembled in air. The cyclic voltammetry (CV) and galvanostatic 

discharge-charge (GCD) tests were carried out on CHI600E and Land Battery Test 

System. 



 

 

Fig. S1. (a) XRD pattern, (b, c, d) SEM images of VOx/C-350 porous microspheres. 

 

 

Fig. S2. (a) XRD pattern, (b, c) SEM images, (d) TEM images, (e) HRTEM image, 

and (f) EDS mapping of VOy/C-500 porous microspheres. 



 

Fig. S3. (a) XRD pattern, (b, c) SEM images, (d, e) TEM images, and (f) HRTEM 

image of porous V2O5-PVP microspheres. 

 

 

Fig. S4. (a) XRD pattern, (b, c) SEM images, (d, e) TEM images, and (f) HRTEM 

image of porous V2O5-OX microspheres. 

 



 

 

Fig. S5. The CV curves of V2O5 for the different cycles at 0.1 mV s
-1

 (a), and for the 

different scan rates (b).  

 

 

Fig. S6. The CV curves of VOy/C-500 for the different cycles at 0.1 mV s
-1

 (a), and 

for the different scan rates (b).  



 

Fig. S7. Nyquist plots of porous V2O5 (red) and VOy/C-500 (black) in 2 M 

Zn(CF3SO3)2. 

 

 

Fig. S8. The cycling performance of VOx/C-350 at 100 mA g
-1

.



Table S1. Electrochemical performances of recently reported vanadium-based zinc-ion battery cathode materials 

Materials Electrolyte 
Specific capacity 

at x mA g
-1

 

Energy density 

(Wh Kg
-1

) 

Capacity retention after 

n cycles at y mA g
-1

 
Ref. 

porous V2O5 microsphere Zn(CF3SO3)2 401 (x = 100) 286 73% (n = 1000, y = 2000) Our work 

Zn0.25V2O5·nH2O ZnSO4 300 (x = 50) 250 80% (n = 1000, y = 2400) 1 

VS2 ZnSO4 190 (x = 50) 123 98% (n = 200, y = 50) 2 

LiV3O8 ZnSO4 280 (x = 16) 224 75% (n = 65, y = 133) 3 

Na3V2(PO4)3 Zn(CH3COO)2 97 (x = 50) 108 74% (n = 100, y = 50) 4 

V2O5 AN-Zn(TFSI)2 218 (x = 14.4) 156 95% (n = 120, y = 50) 5 

Zn3V2O7(OH)2·2H2O ZnSO4 213 (x = 50) 150 68% (n = 300, y = 200) 6 

VO2 ZnSO4 353 (x = 1000) 176 75% (n = 945, y = 3000) 7 

V2O5 nanopaper ZnSO4 375 (x = 500) 278 77% (n = 500, y = 10000) 8 

porous V2O5 Zn(CF3SO3)2 319 (x = 20) 233 80% (n = 500, y = 588) 9 

V2O5 hollow spheres  ZnSO4 280 (x = 200) 204 82% (n = 6200, y = 10000) 10 
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Fig. S9. The electrochemical performances of porous V2O5-PVP microspheres. (a) CV 

curves. (b) Cyclic performance at 100 mA g
-1

. (c) Long-life cycling performance at 

2000 mA g
-1

. 



 

Fig. S10. The electrochemical performances of porous V2O5-OX microspheres. (a) 

CV curves. (b) Cyclic performance at 200 mA g
-1

. (c) Long-life cycling performance 

at 5000 mA g
-1

. 

 

Fig. S11. XPS Survey spectra of the electrodes obtained at different states (original, 

charged, and discharged states). The fluorine is coming from the PTFE binder. 


