Electronic Supporting Information

Resistive switching behaviors and memory logic functions in single MnO_x nanorod modulated by moisture[†]

Guangdong Zhou, ^{*‡ a b} Bai Sun ^{‡ d} Zhijun Ren, ^{‡ a} Lidan Wang, ^{‡ d} Cunyun Xu, ^b Bo Wu, ^c Ping Li, ^c Yanqing Yao ^b and Shukai Duan ^{*b}

^a School of Science, Guizhou institute of Technology, Guiyang 55003, China.

^bSchool of Artificial Intelligence, Southwest University, Chongqing 400715, China.

^cSchool of Physics and Electronic science, Zunyi Normal College, 563002, China.

^dSchool of Physical Science and Technology, Southwest Jiaotong University, Chengdu, Sichuan 610031, China.

[‡] The Authors equally contribute to this work.

Email: zhougd@swu.edu.cn, gdzhou132@163.com, duansk@swu.edu.cn

Tel: 086-185-8541-3032

Fig. S1 Moisture-dependency of RS behaviors in (a) air amiben, (b) N_2 and (c) O_2 atmosphere. The RS behavior under different RH levels: (d), (g) The humidified synthetic air with RH of 65%; (e), (h) The humidified synthetic air with the RH level of 100% and (f), (i) the dry air with the RH level of 0%. One can see that the reversion between resistor and memristor is reversible, despite the RS behaviors are not so stable.

Fig. S2 (a) Cycling endurance of RS behavior for the device in RH of 65%. (b) Reversing between resistor and memristor under vacuum and moisture ambient. (c) Compliance current dependency of the RS behavior under RH of 100%. (d) Current *versus* time relations for the input pulse of 0.7 V for 80s and the RH of 65% for 40s.

Fig. S3 EDX spectra of the nanomicro wire of MnO*x*-based lateral device under different RS states: (a) Initial HRS state; (b) SET; (c) RESET and (d) Switching back to HRS.

Fig. S4 Physical mechanism is proposed to comprehend the reversion between resistor and memristor. (a) The device presents in dry ambient. (b) H_2O molecule adsorption on the surface of the MnO_x nanorod. (c) H_2O molecule splitting process due to the H_2O redox reaction with surface oxygen vacancy. (d) Massive OH^- ion suspends on the surface of the MnO_x nanorod and then migrates along the surface to form conduction paths.

Experimental Details

 MnO_x nano-micro rod synthesis. Hydrothermal method is employed to synthesis the MnO_x nanorod. 0.5 g Mn(NO₃)₂•4H₂O and 0.05 g NaOH are dissolved into 25 mL deionized water and continuously stirs for 24 hours at room temperature to form precursor solution. The precursor solution is transferred into teflon-lined steel autoclave, which is heated at 200°C for 18 hours. After that, the MnO_x nanorod and fragments are formed in the post hydrothermal reaction solutions. The MnO_x nanorod can be finally obtained after centrifugal separated using deionized water for 4 times.

Lateral device fabrication. The 0.003g MnO_x nanorod is diluted into 50 mL deionized water. The dilute solution of 1.0 µL is spin coated on the surface of Si|SiO₂ substrate at 6000 rpm for 60 seconds. Then, the single MnO_x nanorod is mechanically selected using the Pt probe. After that, electragol is dropped into the both ends of single MnO_x nanorod.

Moisture levels controlling. Air ambient of laboratory of relative humidity(RH) is $35\% \pm 3\%$. The RH of 0% can be obtained by pumping the probe station to 5×10^{-4} Pa and then injecting the dry air (20% O₂, 80% N₂, H₂O<5 ppm), which is viable by flowing air through three interconnected heated-glass

delivery tubes filled with dry calcium oxide powers. The moist ambient with RH of $65\% \pm 5\%$ or and $95\% \pm 5\%$ is achieved by passing the laboratorial air through a gas-washing bottle filled with deionized water. A min-hygrometer is employed to detect the humidity levels.

Structural characterization and I-V measurement. Surface morphology and chemical component are characterized field emission scanning electron microscope(FE-SEM, JSM-6510) and X-ray photoelectron spectroscopy(XPS, 250Xi), respectively. Test system consisted by the electrochemical analyzer (CHI, 660D) and Lake Shore probe station(TTPX) are employed to conduct the I-V measurement.