Supporting Information

Controllable Chemoselectivity in Coupling of Bromoalkynes with Alcohols under Visible-Light Irradiation without Additives: Synthesis of Propargyl Alcohols and α-Ketoesters

Ke Ni,[†] Ling-Guo Meng,^{*†} Hongjie Ruan,[†] and Lei Wang^{*†,‡}

 [†] Department of Chemistry, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
[‡] State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. China milig@126.com; leiwang88@hotmail.com

Table of Contents

1. General remarks	2
2. Optimization of reaction conditions for coupling of	
bromoalkynes with alcohols	3
3. General procedure for the synthesis of α-ketoesters	4
4. General procedure for the synthesis of propargyl alcohols	4
5. Optimization of the solvent on the reaction	
(for alcohol: C atoms \geq 3)	5
6. HRMS analysis for the intermediate C (or E), possible oxidation	
product of 1a , and the coupling product of 1a with 1g	6
7. Kinetic isotope effect (KIE) experiments	9
8. UV-Vis experiments	11
9. EPR experiments	12
10. Characterization data for	
4,4-dibromobut-3-en-1-yne-1,3-diyl)dibenzene	12
11. Characterization data for bromoalkynes (1b–1n)	14
12. Characterization data for all products	18
13. ¹ H and ¹³ C NMR spectra of bromoalkynes (1b–1n) and all products	34

1. General remarks

All reactions were conducted in clean glassware with magnetic stirring. Chromatographic purification was performed on silica gel (400~500 mesh) and analytical thin layer chromatography (TLC) on silica gel 60-F₂₅₄ (Qindao), which was detected by fluorescence. ¹H NMR (400 MHz) and ¹³C NMR (100 MHz) spectra were measured with a Bruker AC 400 spectrometer with CDCl₃ as solvent and recorded in ppm relative to internal tetramethylsilane standard. NMR data are reported as follows: δ , chemical shift; coupling constants (*J* are given in Hertz, Hz) and integration. Abbreviations to denote the multiplicity of a particular signal were s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet), and br (broad singlet). High resolution mass spectra were obtained with a Micromass GCT-TOF mass spectrometer. Melting points were determined on a digital melting point apparatus and temperatures were uncorrected. GC-MS spectra were measured with GCMS-QP2010 Plus. All light sources are purchased from the market without any particularity.

2. Optimization of reaction conditions for coupling of bromoalkynes with alcohols

	Br + EtOH gas atmospl blue LED, 1	2 h	OEt +	OH Me
	1a 2a	3aa		4aa
Entry	Light source (nm)	Gas atmosphere	Yield of 3aa (%) ^a	Yield of 4aa (%) ^{<i>a</i>}
1	Blue LED (420–470)	Air	57	Trace
2	Blue LED (420–470)	O_2	73	Trace
3	Blue LED (420–425)	O_2	12	Trace
4	Blue LED (450–455)	O_2	53	Trace
5		O_2	Trace	Trace
6	Red LED (610–650)	O ₂	NR	NR
7	Yellow LED (570–610)	O ₂	NR	NR
8	Green LED (480–570)	O ₂	Trace	Trace
9	Blue LED (420–470)	N_2	Trace	15^{b}
10	Blue LED (420–425)	N_2	Trace	37^b
11	Blue LED (450–455)	N_2	Trace	18^{b}
12	Blue LED (420–425)	N_2	Trace	45 ^c
13	Blue LED (420–425)	N_2	Trace	51 ^{<i>c</i>,<i>d</i>}
14	Blue LED (420–425)	N_2	Trace	63 ^{c,e}
15	Blue LED (420–425)	N_2	Trace	54 ^{<i>c</i>,<i>f</i>}

Reaction conditions: **1a** (0.30 mmol), **2a** (2 mL), light source, room temperature for 12 h. ^{*a*}Isolated yield. ^{*b*}For 36 h. ^{*c*}For 48 h. ^{*d*}**2a** (4 mL) was used. ^{*e*}**2a** (6 mL) was used. ^{*f*}**2a** (10 mL) was used.

3. General procedure for the synthesis of α-ketoesters

Bromoalkyne (0.20 mmol) was dissolved in ethanol or methanol (2.0 mL). The mixture was stirred tightly with the blue LED (420–470 nm) light source in O_2 for 12 h. Then, the residue was purified by column chromatography on silica gel (20:1 petroleum ether/EtOAc) to give the pure product [Note: CH₃CN was used as solvent when bromoalkynes were reacted with other alcohols (containing C atoms \geq 3, 2.0 mmol)].

4. General procedure for the synthesis of propargyl alcohols

Bromoalkyne (0.20 mmol) was dissolved in alcohol (6.0 mL). The mixture was stirred tightly with the blue LED (420–425 nm) light source in N₂ for 48 h. Then, the residue was purified by column chromatography on silica gel (1:2 petroleum ether/CH₂Cl₂) to give the pure product.

Br 1a	+ OH O ₂ , 12 h blue LED (420-470 nm) 2j	O O O J aj
Entry	Solvent	$\operatorname{Yield}^{b}(\%)$
1	CH ₃ CN	51
2	EtOAc	40
3	Ether	39
4	THF	35
5	1,4-Dioxane	33
6	CH_2Cl_2	< 10
7	DCE	< 10
8	Toluene	< 10
9	DMF	< 10
10	DMSO	< 10
11	CH ₃ CN	39 ^c
12	CH ₃ CN	62^d
13	$CH_{3}CN$	76 ^e
14	CH ₃ CN	68 ^f

5. Optimization of the solvent on the reaction (For alcohol: C atoms \geq 3)

^{*a*}Reaction conditions: **1a** (0.30 mmol), **2j** (0.60 mmol), blue LED (420–470 nm), solvent (2.0 mL), in O₂ atmosphere, room temperature for 12 h. ^{*b*}Isolated yield. ^{*c*}**2j** (0.30 mmol) was used. ^{*d*}**2j** (1.0 mmol) was used. ^{*e*}**2j** (2.0 mmol) was used. ^{*f*}**2j** (3.0 mmol) was used.

6. HRMS analysis for the intermediate C (or E), possible oxidation product of 1a, and the coupling product of 1a with 1g

The HRMS studies (Schemes 4b and 4c) were tested to prove the formation of possible key intermediate **C** (or **E**), and which could be detected when 2,2,6,6-tetramethylpiperidinyl-1-oxy (TEMPO) was added under different conditions (one condition is formation of α -ketoesters, and another condition is formation of propargyl alcohol), but we could not be sure which one was coupled with TEMPO (one or both of them have). Further possible generation of byproducts (oxidation product of 1a) and the different dimer products of 1a with 1g were also observed by HRMS studies, which imply that the initiation of the reaction might be started from the homolysis of bromoalkynes.

HRMS analysis of C or E for Scheme 4b of control experiment

HRMS analysis of C or E for Scheme 4c of control experiment

7. Kinetic isotope effect (KIE) experiments

7.1 KIE experiment (I)

Phenylethynyl bromide (**1a**, 0.20 mmol) was dissolved in mixture of methanol (25 mmol) and D₄-methanol (25 mmol). The mixture was stirred tightly with the blue LED (420–470 nm) irradiation in O₂ for 36 h. Then, the residue was purified by column chromatography on silica gel (20:1 petroleum ether/EtOAc) to give the pure product (6 mg, ~19% total yield). The KIE value ($k_{\rm H}/k_{\rm D} = 1$) was determined by ¹H NMR (600 MHz) of **3ab** and [**D**₃]-**3ab**.

7.2 KIE experiment (II)

Ph — Br
$$\xrightarrow{CH_3OH (2b)/CD_3OD ([D_4]-2b)}$$
 blue LED (420-425 nm) $H(D)$
N₂, 48 h $H(D)$ H(D)
4ab + [D₃]-4ab

Phenylethynyl bromide (**1a**, 0.20 mmol) was dissolved in in mixture of methanol (36 mmol) and D₄-methanol (36 mmol). The mixture was stirred tightly with the blue LED (420–425 nm) irradiation in N₂ for 48 h. Then, the residue was purified by column chromatography on silica gel (1:2 petroleum ether/CH₂Cl₂) to give the pure product (4 mg, ~16% total yield). The KIE value ($k_{\rm H}/k_{\rm D} = 6.14$) was determined by ¹H NMR (600 MHz) of **4ab** and [**D**₃]-**4ab**.

8. UV-Vis experiments

The UV-Vis measurement was performed with an ethanol solution of **1a**, indicating that an electron-donor acceptor (EDA) complex was not formed.

9. EPR experiments

The EPR were investigated under following conditions, which proved the non-existence of ${}^{1}O_{2}$ during the formation of α -ketoesters.

10. Characterization data for 4,4-dibromobut-3-en-1-yne-1,3-diyl)dibenzene

Known compound, see: V. K. Karapala, H.-P. Shih and C.-C. Han, *Org. Lett.*, 2018, **20**, 1550.

Pale yellow oil. ¹H NMR (400 MHz, CDCl₃): δ 7.54–7.49 (m, 4H), 7.45–7.39 (m, 3H), 7.37–7.31 (m, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 138.0, 131.5, 130.9, 128.9, 128.5, 128.5, 128.3, 128.3, 122.5, 98.9, 97.5, 88.9.

11. Characterization data for the bromoalkynes (1b-1n)

1-(Bromoethynyl)-4-methylbenzene (1b).¹ Yellow oil (163 mg, 84% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.37 (d, *J* = 8.0 Hz, 2H), 7.14 (d, *J* = 8.0 Hz, 2H), 2.36 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 138.8, 131.8, 129.0, 119.6, 80.1, 48.7, 21.4.

1-(Bromoethynyl)-4-ethylbenzene (1c).² Yellow oil (170 mg, 82% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.39 (d, J = 8.0 Hz, 2H), 7.16 (d, J = 8.0 Hz, 2H), 2.68 (q, J = 7.6 Hz, 2H), 1.26 (t, J = 7.6 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 145.1, 131.9, 127.8, 119.8, 80.1, 48.6, 28.8, 15.2.

1-(Bromoethynyl)-4-propylbenzene (1d).³ Yellow oil (180 mg, 81% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.39 (d, *J* = 8.0 Hz, 2H), 7.14 (d, *J* = 8.0 Hz, 2H), 2.61 (t, *J* = 7.2 Hz, 2H), 1.69 (sextet, *J* = 7.2 Hz, 2H), 0.97 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 143.6, 131.8, 128.4, 119.8, 80.2, 48.7, 37.9, 24.2, 13.7.

1-(Bromoethynyl)-4-(*tert***-butyl)benzene (1e).³** Colorless oil (185 mg, 78% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.31–7.39 (m, 2H), 7.35–7.33 (m, 2H), 1.32 (s, 9H). ¹³C NMR (100 MHz, CDCl₃): δ 151.9, 131.7, 125.3, 119.6, 80.1,

1-(Bromoethynyl)-4-fluorobenzene (1f).² Yellow oil (155 mg, 78% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.46–7.41 (m, 2H), 7.04–6.99 (m, 2H). ¹³C NMR (100 MHz, CDCl₃): δ 163.9 (d, J = 248.7 Hz), 133.9 (d, J = 8.5 Hz), 118.8 (d, J= 3.5 Hz), 115.7 (d, J = 22.0 Hz), 79.0, 49.5.

1-(Bromoethynyl)-4-chlorobenzene (1g).¹ White solid (174 mg, 81% yield). Mp: 88–90 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.40–7.37 (m, 2H), 7.31–7.28 (m, 2H). ¹³C NMR (100 MHz, CDCl₃): δ 134.8, 133.2, 128.7, 121.1, 79.0, 51.0.

1-Bromo-4-(bromoethynyl)benzene (1h).¹ White solid (207 mg, 80% yield). Mp: 100–101 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.47–7.44 (m, 2H), 7.33–7.29 (m, 2H). ¹³C NMR (100 MHz, CDCl₃): δ 133.4, 131.6, 123.0, 121.6, 79.0, 51.2.

1-(Bromoethynyl)-4-nitrobenzene (1i).¹ Yellow solid (171 mg, 76% yield). Mp: 170–172 °C. ¹H NMR (400 MHz, CDCl₃): δ 8.21–8.18 (m, 2H), 7.62–7.58 (m, 2H). ¹³C NMR (100 MHz, CDCl₃): δ 147.3, 132.8, 129.4, 123.6, 78.4, 56.3.

1-(Bromoethynyl)-3-methylbenzene (1j).² Yellow oil (144 mg, 74% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.30–7.27 (m, 2H), 7.24–7.16 (m, 2H), 2.35 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 138.0, 132.5, 129.5, 129.0, 128.2, 122.5, 80.2, 49.2, 21.7.

1-(Bromoethynyl)-3-fluorobenzene (1k).⁴ Yellow oil (149 mg, 75% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.31–7.22 (m, 2H), 7.17–7.13 (m, 1H), 7.09– 7.04 (m, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 163.4 (d, *J* = 245.5 Hz), 129.9 (d, *J* = 8.4 Hz), 127.9 (d, *J* = 3.0 Hz), 124.5 (d, *J* = 9.5 Hz), 118.9 (d, *J* = 23.0 Hz), 116.2 (d, *J* = 21.1 Hz), 78.8, 51.2.

1-(Bromoethynyl)-3-chlorobenzene (11).¹ Yellow oil (169 mg, 79% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.45 (t, *J* = 1.6 Hz, 1H), 7.34–7.32 (m, 2H), 7.27– 7.23 (m, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 134.1, 131.8, 130.1, 129.5, 129.0, 124.3, 78.7, 51.4.

1-(Bromoethynyl)-2-methylbenzene (1m).¹ Yellow oil (146 mg, 75% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.45 (d, *J* = 7.6 Hz, 1H), 7.28–7.20 (m, 2H), 7.17–7.13 (m, 1H), 2.46 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 140.8, 132.3, 129.4, 128.6, 125.5, 122.5, 79.1, 52.7, 20.5.

1-(Bromoethynyl)-2-chlorobenzene (1n).¹ Colorless oil (159 mg, 74% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.50 (dd, *J* = 1.2, 7.6 Hz 1H), 7.41 (dd, *J* = 0.8, 8.0 Hz, 1H), 7.30 (td, *J* = 1.2, 7.6 Hz, 1H), 7.23 (td, *J* = 1.2, 7.6 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 136.3, 133.8, 129.6, 129.3, 126.4, 122.6, 76.9, 55.2.

Reference:

1. X. Y. Chen, L. Wang, M. Frings and C. Bolm, *Org. Lett.*, 2014, 16, 3796.

 Y.-S. Feng, Z.-Q. Xu, L. Mao, F.-F. Zhang and H.-J. Xu, Org. Lett., 2013, 15, 1472.

K. K. Rajbongshi, D. Hazarika and P. Phukan, *Tetrahedron*, 2016, 72, 4151.

4. K. Villeneuve, N. Riddell, R. W. Jordan, G. C. Tsui and W. Tam, *Org. Lett.*, 2004, **6**, 4543.

12. Characterization data for all products

Ethyl 2-oxo-2-phenylacetate1 (3aa).¹ Colorless oil (39 mg, 73% yield). ¹H NMR (400 MHz, CDCl₃): δ 8.02–8.00 (m, 2H), 7.68–7.64 (m, 1H), 7.53 (t, *J* = 8.0 Hz, 2H), 4.48 (q, *J* = 7.2 Hz, 2H), 1.44 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 186.4, 163.8, 134.8, 132.4, 130.0, 128.8, 62.3, 14.1.

Ethyl 2-oxo-2-(*p***-tolyl)acetate (3ba).²** Pale yellow oil (44 mg, 76% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.91 (d, *J* = 8.4, 2H), 7.31 (d, *J* = 8.0 Hz, 2H), 4.46 (q, *J* = 7.2 Hz, 2H), 2.43 (s, 3H), 1.43 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 186.0, 164.0, 146.1, 130.1, 130.0, 129.6, 62.1, 21.8, 14.0.

Ethyl 2-(4-ethylphenyl)-2-oxoacetate (3ca).³ Pale yellow oil (43 mg, 70% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.87 (d, *J* = 8.0 Hz, 2H), 7.27 (d, *J* = 7.6 Hz, 2H), 4.40 (q, *J* = 7.2 Hz, 2H), 2.68 (q, *J* = 7.6 Hz, 2H), 1.36 (t, *J* = 7.2 Hz, 3H), 1.21 (t, *J* = 7.6 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 186.1, 164.0, 152.3, 130.3, 130.2, 128.4, 62.2, 29.1, 15.0, 14.1.

Ethyl 2-oxo-2-(4-propylphenyl)acetate (3da).⁴ Pale yellow oil (47 mg, 71% yield). ¹H NMR (400 MHz, CDCl₃): δ 7,93 (d, *J* = 8.0 Hz, 2H), 7.32 (d, *J* = 8.0 Hz, 2H), 4.47 (q, *J* = 7.2 Hz, 2H), 2.68 (t, *J* = 7.2 Hz, 2H), 1.71 (sextet, *J* = 7.2 Hz, 2H), 1.43 (t, *J* = 7.2 Hz, 3H), 0.96 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 186.1, 164.0, 150.8, 130.2, 130.1, 129.0, 62.1, 38.1, 24.0, 14.1, 13.7.

Ethyl 2-(4-(*tert***-butyl)phenyl)-2-oxoacetate (3ea).⁵** Pale yellow oil (54 mg, 76% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.96–7.93 (m, 2H), 7.53–7.51 (m, 2H), 4.47 (q, *J* = 7.2 Hz, 2H), 1.43 (t, *J* = 7.2 Hz, 3H), 1.34 (s, 9H). ¹³C NMR (100 MHz, CDCl₃): δ 186.0, 164.0, 159.0, 130.0, 129.9, 125.9, 62.2, 35.3, 30.9, 14.1.

Ethyl 2-(4-fluorophenyl)-2-oxoacetate (3fa).² Pale yellow oil (46 mg, 78% yield). ¹H NMR (400 MHz, DMSO- d_6): 8.08–8.03 (m, 2H), 7.46 (m, 2H), 4.43 (q, J = 7.2 Hz, 2H), 1.33 (t, J = 7.2 Hz, 3H). ¹³C NMR (100 MHz, DMSO- d_6): δ 185.4, 167.9 (J = 253.9 Hz), 163.7, 133.5 (J = 10.1 Hz), 129.1 (J = 2.7 Hz), 117.1 (J = 22.4 Hz), 62.8, 14.2.

Ethyl 2-(4-chlorophenyl)-2-oxoacetate (3ga).² Pale yellow oil (47 mg, 74% yield). ¹H NMR (400 MHz, CDCl₃): 8.00–7.97 (m, 2H), 7.50–7.47 (m, 2H),

4.47 (q, *J* = 7.2 Hz, 2H), 1.44 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 184.8, 163.2, 141.6, 131.4, 130.9, 129.2, 62.5, 14.0

Ethyl 2-(4-bromophenyl)-2-oxoacetate (3ha).¹ Pale yellow oil (58 mg, 76% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.90–7.88 (m, 2H), 7.66–7.64 (m, 2H), 4.47 (q, *J* = 7.2 Hz, 2H), 1.43 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 185.0, 163.1, 132.2, 131.4, 131.3, 130.4, 62.5, 14.0.

Ethyl 2-(4-nitrophenyl)-2-oxoacetate (3ia).⁶ Pale yellow oil (35 mg, 52% yield). ¹H NMR (400 MHz, CDCl₃): δ 8.36 (d, J = 8.4 Hz, 2H), 8.25 (d, J = 8.4 Hz, 2H), 4.51 (q, J = 7.2 Hz, 2H), 1.47 (t, J = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 184.1, 162.2, 151.1, 137.0, 131.2, 123.9, 63.0, 14.0.

Ethyl 2-oxo-2-(*m***-tolyl)acetate (3ja).²** Pale yellow oil (42 mg, 72% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.80 (d, *J* = 7.2 Hz, 2H), 7.47 (d, *J* = 7.6 Hz, 1H), 7.41 (t, *J* = 8.0 Hz, 1H), 4.47 (q, *J* = 7.2 Hz, 2H), 2.42 (s, 3H), 1.44 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 186.6, 164.0, 138.8, 135.7, 132.4, 130.2, 128.7, 127.3, 62.2, 21.2, 14.1.

Ethyl 2-(3-fluorophenyl)-2-oxoacetate (3ka).⁷ Pale yellow oil (41 mg, 69% yield). ¹H NMR (400 MHz, CDCl₃): 7.83 (d, J = 7.6 Hz, 1H), 7.75 (dt, J = 2.4, 9.2 Hz, 1H), 7.53–7.48 (m, 1H), 7.38 (td, J = 2.8, 8.4 Hz, 1H), 4.48 (q, J = 7.2 Hz, 2H), 1.45 (t, J = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 184.9 (d, J = 2.5 Hz), 163.9 (d, J = 247.6 Hz), 163.0, 134.5 (d, J = 6.6 Hz), 130.6 (d, J = 7.7 Hz), 126.0 (d, J = 3.1 Hz), 122.1 (d, J = 21.4 Hz), 116.5 (d, J = 22.7 Hz), 62.5, 14.0.

Ethyl 2-(3-chlorophenyl)-2-oxoacetate (3la).¹ Pale yellow oil (43 mg, 68% yield). ¹H NMR (400 MHz, CDCl₃): δ 8.01 (t, *J* = 1.6 Hz, 1H), 7.92 (dt, *J* = 1.2, 7.6 Hz, 1H), 7.64 (ddd, *J* = 1.2, 2.0, 8.0 Hz, 1H), 7.48 (t, *J* = 8.0 Hz, 1H), 4.88 (q, *J* = 7.2 Hz, 2H), 1.45 (d, *J* = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 184.8, 162.9, 135.2, 134,7, 134.0, 130.2, 129.8, 128.2, 62.6, 14.0.

Ethyl 2-oxo-2-(*o***-tolyl)acetate (3ma).²** Pale yellow oil (39 mg, 68% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.70 (d, *J* = 8.0 Hz, 1H), 7.51 (td, *J* = 1.2, 7.6 Hz, 1H), 7.33 (t, *J* = 8.0 Hz, 2H), 4.46 (q, *J* = 7.2 Hz, 2H), 2.61 (s, 3H), 1.43 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 188.7, 164.6, 141.3, 133.6, 132.3, 132.2, 131.2, 125.9, 62.2, 21.4, 14.0.

Ethyl 2-(2-chlorophenyl)-2-oxoacetate (3na).¹ Pale yellow oil (40 mg, 63% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.77 (dd, *J* = 2.0, 7.6 Hz, 1H), 7.54–7.50 (m, 1H), 7.45–7.38 (m, 2H), 4.45 (q, *J* = 7.2 Hz, 1H), 1.41 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 186.5, 163.0, 134.2, 133.8, 133.3, 131.6, 130.5, 127.2, 62.8, 13.8.

Methyl 2-oxo-2-phenylacetate (3ab).⁸ Colorless oil (32 mg, 65% yield). ¹H NMR (400 MHz, CDCl₃): δ 8.02–8.00 (m, 2H), 7.68–7.64 (m, 1H), 7.53 (t, *J* = 8.0 Hz, 2H), 3.98 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 186.0, 164.0, 135.0, 132.4, 130.0, 128.9, 52.7.

Propyl 2-oxo-2-phenylacetate (3ac).⁸ Colorless oil (38 mg, 66% yield). ¹H NMR (400 MHz, CDCl₃): δ 8.01–7.99 (m, 2H), 7.68–7.64 (m, 1H), 7.53–7.49 (m, 2H), 4.37 (t, *J* = 6.8 Hz, 2H), 1.82 (sextet, *J* = 7.6 Hz, 2H), 1.03 (t, *J* = 7.6 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 186.5, 164.0, 134.8, 132.5, 129.9, 128.8, 67.7, 21.8, 10.2.

Butyl 2-oxo-2-phenylacetate (3ad).⁸ Colorless oil (44 mg, 71% yield). ¹H NMR (400 MHz, CDCl₃): δ 8.01–7.99 (m, 2H), 7.68–7.64 (m, 1H), 7.53 (t, J = 8.0 Hz, 2H), 4.41 (t, J = 6.8 Hz, 2H), 1.80 (quintet, J = 6.8 Hz, 2H), 1.50 (sextet, J = 7.6 Hz, 2H), 0.98 (t, J = 7.6 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 186.4, 164.0, 134.8, 132.5, 129.9, 128.8, 66.0, 30.4, 19.0, 13.6.

Pentyl 2-oxo-2-phenylacetate (3ae).⁸ Colorless oil (45 mg, 69% yield). ¹H NMR (400 MHz, CDCl₃): δ 8.01–7.99 (m, 2H), 7.68 (t, *J* = 7.6 Hz, 1H), 7.53 (t, *J* = 8.0 Hz, 2H), 4.40 (t, *J* = 7.2 Hz, 2H), 1.82 (quintet, *J* = 7.2Hz, 2H), 1.42–1.33 (m, 4H), 0.93 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 186.4, 164.0, 134.8, 132.5, 130.0, 128.8, 66.3, 28.1, 27.8, 22.2, 13.8.

Hexyl 2-oxo-2-phenylacetate (3af).⁸ Colorless oil (50 mg, 72% yield). ¹H NMR (400 MHz, CDCl₃): δ 8.01 (dd, *J* = 0.8, 8.0 Hz, 2H), 7.67–7.63 (m, 1H), 7.53 (t, *J* = 7.6 Hz, 2H), 4.40 (t, *J* = 7.2 Hz, 2H), 1.81 (quintet, *J* = 7.2 Hz, 2H), 1.45–1.37 (m, 2H), 1.34–1.30 (m, 4H), 0.91 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 186.4, 164.0, 134.8, 132.5, 130.0, 128.8, 66.3, 31.3, 28.4, 25.4, 22.4, 13.9.

Octyl 2-oxo-2-phenylacetate (3ag).9 Colorless oil (58 mg, 74% yield). ¹H

NMR (400 MHz, CDCl₃): δ 8.01 (dd, J = 1.2, 8.0 Hz, 2H), 7.68–7.63 (m, 1H), 7.53–7.49 (m, 2H), 4.40 (t, J = 7.2 Hz, 2H), 1.81 (quintet, J = 7.2 Hz, 1H), 1.44–1.27 (m, 12H), 0.89 (t, J = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 186.4, 163.9, 134.8, 132.5, 129.9, 128.8, 66.3, 31.7, 29.0, 28.4, 25.7, 22.5, 14.0.

iso-Propyl 2-oxo-2-phenylacetate (3ah).⁸ Colorless oil (28 mg, 48% yield). ¹H NMR (400 MHz, CDCl₃): δ 8.00–7.98 (m, 2H), 7.68–7.73 (m, 1H), 7.53–7.49 (m, 2H), 5.37 (septet, *J* = 6.4 Hz, 1H), 1.42 (d, *J* = 6.4 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃): δ 186.7, 163.6, 134.7, 132.5, 129.9, 128.8, 70.6, 21.7

iso-Butyl 2-oxo-2-phenylacetate (3ai).⁸ Colorless oil (47 mg, 77% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.93–7.90 (m, 2H), 7.59 (t, *J* = 7.6 Hz, 1H), 7.45 (t, *J* = 7.6 Hz, 2H), 4.10 (d, *J* = 6.8 Hz, 2H), 2.05 (septet, *J* = 6.8 Hz, 1H), 0.93 (d, *J* = 6.8 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃): δ 186.5, 164.0, 134.8, 132.5, 129.9, 128.9, 72.0, 27.7, 18.9.

iso-Pentyl 2-oxo-2-phenylacetate (3aj).⁸ Colorless oil (50 mg, 76% yield). ¹H NMR (400 MHz, DMSO-*d*₆): δ 7.95–7.93 (m, 2H), 7.80 (t, *J* = 7.6 Hz, 2H), 7.63 (t, J = 7.6 Hz, 2H), 4.38 (t, J = 6.8 Hz, 2H), 1.72 (quintet, J = 6.4 Hz, 2H), 1.33–1.28 (m, 4H), 0.87 (t, J = 6.8 Hz, 3H). ¹³C NMR (100 MHz, DMSO- d_6): δ 187.2, 164.2, 135.9, 132.1, 130.1, 129.7, 66.5, 27.9, 27.8, 22.0, 14.2.

Neopentyl 2-oxo-2-phenylacetate (3ak).¹⁰ Colorless oil (47 mg, 71% yield). ¹H NMR (400 MHz, CDCl₃): δ 8.01–7.99 (m, 2H), 7.68–7.64 (m, 1H), 7.53 (t, J = 8.0 Hz, 2H), 4.10 (s, 2H), 1.01 (s, 9H). ¹³C NMR (100 MHz, CDCl₃): δ 186.5, 164.1, 134.8, 132.5, 129.9, 128.9, 75.2, 31.5, 26.3.

Benzyl 2-oxo-2-phenylacetate (3al).¹¹ Colorless oil (43 mg, 60% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.96–7.94 (m, 2H), 7.64 (t, *J* = 7.6 Hz, 1H), 7.48–7.42 (m, 4H), 7.40–7.34 (m, 3H), 5.40 (s, 2H). ¹³C NMR (100 MHz, CDCl₃): δ 186.0, 163.6, 134.9, 134.5, 132.4, 130.0, 128.9, 128.8, 128.7, 128.6, 67.7.

4-Bromobenzyl 2-oxo-2-phenylacetate (3am).¹¹ Yellow soild (56 mg, 59% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.97 (dd, *J* = 0.8, 8.0 Hz, 2H), 7.67–7.63 (m, 1H), 7.53–7.47 (m, 4H), 7.33 (d, *J* = 8.4 Hz, 2H), 5.35 (s, 2H). ¹³C NMR (100 MHz, CDCl₃): δ 185.7, 163.4, 135.0, 133.5, 132.3, 131.9, 130.2, 130.0, 128.9, 122.9, 66.9.

2-Hydroxyethyl 2-oxo-2-phenylacetate (3an). Pale yellow oil (36 mg, 62% yield). ¹H NMR (400 MHz, DMSO-*d*₆): δ 7.99–7.97 (m, 2H), 7.81–7.76 (m, 1H), 7.64–7.60 (m, 2H), 4.42 (t, *J* = 4.8 Hz, 2H), 3.71 (t, *J* = 4.8 Hz, 2H). ¹³C NMR (100 MHz, DMSO-*d*₆): δ 187.3, 164.3, 135.9, 132.2, 130.2, 129.7, 68.1, 59.1. HRMS (ESI) calcd for C₁₀H₁₁O₄ (M+H)⁺: 195.0652; Found: 195.0643.

Ethane-1,2-diyl bis(2-oxo-2-phenylacetate) (3ao). Pale yellow oil (28 mg, 29% yield). ¹H NMR (400 MHz, CDCl₃): δ 8.02–8.00 (m, 4H), 7.67–7.63 (m, 2H), 7.51 (t, *J* = 7.6 Hz, 4H), 4.74 (s, 4H). ¹³C NMR (100 MHz, CDCl₃): δ 185.5, 163.2, 135.1, 132.1, 130.1, 128.9, 62.9. HRMS (ESI) calcd for C₁₈H₁₅O₆ (M+H)⁺: 327.0863; Found: 327.0866.

4-Phenylbut-3-yn-2-ol (4aa).¹² Colorless oil (18.1 mg, 63% yield). ¹H NMR (400 MHz, CDCl₃): δ 7,45–7.43 (m, 2H), 7.33–7.31 (m, 3H), 4.80–4.74 (m, 1H), 1.99 (d, *J* = 5.3 Hz, 1H), 1.57 (d, *J* = 6.6 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 131.6, 128.3, 128.2, 122.5, 90.9, 84.0, 58.8, 24.4.

4-(*p***-Tolyl)but-3-yn-2-ol (4ba).¹³** Pale yellow oil (16.3 mg, 51% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.32 (d, *J* = 8.0 Hz, 2H), 7.11 (d, *J* = 7.9 Hz, 2H), 4.77 (q, *J* = 6.5 Hz, 1H), 2.34 (s, 3H), 2.01 (s, 1H). 1.55 (d, *J* = 6.6 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 138.4, 131.5, 129.0, 119.5, 90.2, 84.1, 58.8, 24.3, 21.4.

4-(4-Ethylphenyl)but-3-yn-2-ol (4ca). Pale yellow oil (17 mg, 49% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.35 (d, J = 8.1 Hz, 2H), 7.13 (d, J = 8.1 Hz, 2H), 4.77 (q, J = 6.5 Hz, 1H), 2.66 (q, J = 7.6 Hz, 2H), 2.05 (s, 1H), 1.55 (d, J = 6.5 Hz, 3H), 1.23 (t, J = 7.6 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 144.7, 131.6, 127.8, 119.7, 90.3, 84.1, 58.8, 28.7, 24.4, 15.2. HRMS (ESI) calcd for C₁₂H₁₅O (M+H)⁺: 175.1117; Found: 175.1118.

4-(4-Propylphenyl)but-3-yn-2-ol (4da). Pale yellow oil (20 mg, 53% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.35 (d, J = 8.0 Hz, 2H), 7.13 (d, J = 8.0 Hz, 2H), 4.79–4.72 (m 1H), 2.60 (t, J = 7.4 Hz, 2H), 1.95–1.94 (m, 1H), 1.62–1.61 (m, 2H), 1.56 (d, J = 6.6 Hz, 3H), 0.95 (t, J = 7.3 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 143.2, 131.5, 128.4, 119.7, 90.2, 84.1, 58.9, 37.8, 24.4, 24.2, 13.6. HRMS (ESI) calcd for C₁₂H₁₅O (M+H)⁺: 189.1274; Found: 189.1274.

4-(4-(*tert***-Butyl)phenyl)but-3-yn-2-ol (4ea).¹⁴** Pale yellow oil (24.6 mg, 61% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.37–7.35 (m, 2H), 7.33–7.30 (m, 2H), 4.77 (q, *J* = 6.5 Hz, 1H), 2.01 (s, 1H), 1.55 (d, *J* = 6.5 Hz, 3H), 1.30 (s, 9H). ¹³C NMR (100 MHz, CDCl₃): δ 151.1, 131.3, 125.2, 119.5, 90.2, 84.1, 58.9, 34.7, 31.1, 24.4.

4-(4-Methoxyphenyl)but-3-yn-2-ol (4fa).¹³ Pale yellow oil (10.5 mg, 30% yield). ¹H NMR (400 MHz, DMSO-*d*₆): δ 7.33 (d, *J* = 8.8 Hz, 2H), 6.92 (d, *J* = 8.8 Hz, 2H), 5.37 (d, *J* = 5.3 Hz, 1H), 4.58–4.52 (m, 1H), 3.75 (s, 3H), 1.36 (d, *J* = 6.5 Hz, 2H). ¹³C NMR (100 MHz, DMSO-*d*₆): δ 159.6, 133.1, 114.9, 114.6, 92.2, 82.5, 57.1, 55.6, 25.1.

4-(4-Fluorophenyl)but-3-yn-2-ol (4ga).¹³ Pale yellow oil (18.6 mg, 57% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.43–7.38 (m, 2H), 7.03–6.97 (m, 2H), 4.78–4.72 (m, 1H), 2.01 (d, J = 5.1 Hz, 1H), 1.56 (d, J = 6.6 Hz, 3H), 1.31 (s, 9H). ¹³C NMR (100 MHz, CDCl₃): δ 163.7 (J = 248.0 Hz), 133.5 (J = 8.3 Hz), 118.6 (J = 3.5 Hz), 115.6 (J = 21.9 Hz), 90.6, 82.9, 58.8, 24.3.

4-(4-Chlorophenyl)but-3-yn-2-ol (4ha).¹⁵ Pale yellow oil (22 mg, 61% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.36–7.32 (m, 2H), 7.29–7.27 (m, 2H), 4.78–4.72 (m, 1H), 2.12 (d, *J* = 5.1 Hz, 1H), 1.56 (d, *J* = 6.6 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃):

4-(4-Bromophenyl)but-3-yn-2-ol (4ia).¹³ Pale yellow oil (26.9 mg, 60% yield). ¹H NMR (400 MHz, DMSO-d₆): δ 7.56–7.53 (m, 2H), 7.35–7.31 (m, 2H), 5.47 (d, J = 5.2 Hz, 1H), 4.60–4.53 (m, 1H), 1.37 (d, J = 6.6 Hz, 3H). ¹³C NMR (100 MHz, DMSO-d₆): δ 133.5, 132.1, 122.2, 122.1, 95.1, 81.5, 57.1, 24.9.

4-(*m***-Tolyl)but-3-yn-2-ol (4ja).¹³** Pale yellow oil (15.5 mg, 48% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.25–7.21 (m, 2H), 7.20–7.16(m, 1H), 7.13–7.11(m, 1H), 4.77 (q, *J* = 6.5 Hz, 1H), 2.31 (s, 3H), 2.03 (s, 1H),1.55 (d, *J* = 6.6 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 137.9, 132.2, 129.2, 128.7, 128.1, 122.3, 90.6, 84.1, 58.8, 24.4, 21.1.

4-(3-Fluorophenyl)but-3-yn-2-ol (4ka).¹³ Pale yellow oil (20.3 mg, 62% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.30–7.26 (m, 1H), 7.21-7.19(m, 1H), 7.14–7.11(m, 1H), 7.05–7.00(m, 1H), 4.79–4.72 (m, 1H), 2.05 (s, 1H), 1.57 (d, J = 6.6 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 163.5 (J = 245.0 Hz), 129.8 (J = 8.5 Hz), 127.5 (J = 3.0 Hz), 124.5 (J = 9.3 Hz), 118.5 (J = 22.7 Hz), 115.8 (J = 21.0 Hz), 91.8, 82.8 (J = 3.4 Hz), 58.7, 24.2.

4-(3-Chlorophenyl)but-3-yn-2-ol (4la).¹⁴ Pale yellow oil (22.3 mg, 62% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.41–7.40 (m, 1H), 7.30–7.28 (m, 2H), 7.24–7.20 (m, 1H), 4.75–4.73 (m, 1H), 2.00 (s, 1H), 1.55 (d, *J* = 6.6 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 134.1, 131.5, 129.7, 129.4, 128.6, 124.3, 92.1, 82.6, 58.7, 24.2.

4-(3-Bromophenyl)but-3-yn-2-ol (4ma).¹⁵ Pale yellow oil (28.6 mg, 64% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.58 (t, *J* = 1.6 Hz, 3H), 7.45 (dq, *J* = 0.96, 8.0 Hz, 1H), 7.35 (dt, *J* = 1.1, 7.7 Hz, 1H), 7.18 (t, *J* = 7.8 Hz, 1H), 4.78–4.72 (m, 1H), 2.28 (s, 1H), 1.56 (d, *J* = 6.6 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 134.4, 131.5, 130.1, 129.7, 124.6, 122.0, 92.3, 82.5, 58.7, 24.2.

4-(2-Chlorophenyl)but-3-yn-2-ol (4na).¹⁶ Pale yellow oil (22.3 mg, 62% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.47 (dd, *J* = 1.8, 7.4 Hz, 1H), 7.40 (dd, *J* = 1.3, 7.9 Hz, 1H), 7.25–7.18 (m, 2H), 4.84–4.77 (m, 1H), 2.01 (d, *J* = 5.2 Hz, 1H),1.59 (d, *J* = 6.6 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 135.9, 133.3, 129.4, 129.2, 126.4, 122.5, 96.2, 80.8, 58.9, 24.2.

4-(2-Bromophenyl)but-3-yn-2-ol (4oa).¹⁵ Pale yellow oil (26.4 mg, 59% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.59 (dd, *J* = 1.0, 8.0 Hz, 1H), 7.40 (dd, *J* = 1.6, 7.6 Hz, 1H) 7.27–7.23(m, 1H), 7.18–7.14 (m, 1H), 4.84–4.77 (m, 1H), 2.18 (d, *J* = 5.2 Hz, 1H), 1.60 (d, *J* = 6.6 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 133.3, 132.3, 129.5, 126.9, 125.5, 124.7, 95.6, 82.6, 58.9, 24.2.

3-Phenylprop-2-yn-1-ol (4ab).¹² Colorless oil (10.3 mg, 39% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.46–7.44 (m, 2H), 7.34–7.31 (m, 3H), 4.51 (d, *J* = 4.4 Hz, 1H), 1.77 (s, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 131.6, 128.4, 128.3, 122.5, 87.1, 85.7, 51.6.

1-Phenylpent-1-yn-3-ol (4ac).¹⁷ Pale yellow oil (16.4 mg, 51% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.45–7.43 (m, 2H), 7.34–7.30 (m, 3H), 4.59 (q, *J* = 6.2 Hz, 1H), 2.01–2.00 (m, 1H), 1.87–1.80 (m, 2H), 1.11 (t, *J* = 7.4 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 131.6, 128.3, 128.2, 122.6, 89.9, 84.9, 64.2, 30.9, 9.4.

1-Phenylhex-1-yn-3-ol (4ad).¹⁸ Pale yellow oil (12.5 mg, 36% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.45–7.43 (m, 2H), 7.33–7.31 (m, 3H), 4.64 (q, *J* = 6.4 Hz, 1H), 1.93

(d, *J* = 6.4 Hz, 1H), 1.83–1.77 (m, 2H), 1.59–1.52 (m, 2H), 1.02 (t, *J* = 7.3 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 131.6, 128.3, 128.2, 122.6, 90.2, 84.2, 62.7, 40.0, 18.4, 13.7.

1-Phenylhept-1-yn-3-ol (4ae).¹⁹ Pale yellow oil (11.6 mg, 31% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.45–7.43 (m, 2H), 7.33–7.31 (m, 3H), 4.63 (q, *J* = 6.4 Hz, 1H), 1.93–1.91 (m, 1H), 1.85–1.79 (m, 2H), 1.56–1.48 (m, 2H), 1.45–1.38 (m, 2H), 0.97 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 131.6, 128.3, 128.2, 122.7, 90.2, 84.8, 63.0, 37.6, 27.3, 22.3, 13.9.

2-Methyl-4-phenylbut-3-yn-2-ol (4af).²⁰ Pale yellow oil (9.6 mg, 30% yield). ¹H NMR (400 MHz, CDCl3): δ 7.44–7.41 (m, 2H), 7.32–7.29 (m, 3H), 2.13 (s, 1H), 1.63 (s, 6H). ¹³C NMR (100 MHz, CDCl₃): δ 131.6, 128.2, 122.7, 93.7, 82.1, 65.6, 31.4.

4-Methyl-1-phenylpent-1-yn-3-ol (4ag).²¹ Pale yellow oil (12.1 mg, 35% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.46–7.43 (m, 2H), 7.32–7.30 (m, 3H), 4.42 (t, *J* = 5.6 Hz, 1H), 1.99–1.96 (m, 1H), 1.31 (s, 1H), 1.10 (d, *J* = 6.7 Hz, 3H), 1.08 (d, *J* = 6.8 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 131.6, 128.3, 128.2, 122.7, 88.9, 85.5, 68.4, 34.7, 18.1, 17.5.

References:

- 1. H. Shimizu and M. Murakami, Chem. Commun., 2007, 2855.
- 2. M. Hayashi and S. Nakamura, Angew. Chem., Int. Ed., 2011, 50, 2249.
- J. W. Epstein, H. J. Brabander, W. J. Fanshawe, C. M. Hofmann, T. C. McKenzie, S. R. Safir, A. C. Osterberg, D. B. Cosulich and F. M. Love, *J. Med. Chem.*, 1981, 24, 481.
- 4. J. Slawiński, A. Grzonek, B. Żolnowska and A. Kawiak, Molecules, 2016, 21,41.
- 5. C. Feng and T.-P. Loh, Angew. Chem., Int. Ed., 2013, 52, 12414.
- 6. R. M. Laha, S. Khamarui, S. K. Manna and D. K. Maiti, Org. Lett., 2016, 18, 144.
- S. Song, P. Lu, H. Liu, S.-H. Cai, C. Feng and T.-P. Loh, Org. Lett., 2017, 19, 2869.
- 8. S. K. Alamsett and G. Sekar, Chem. Commun., 2010, 46, 7235.
- 9. T. Shao, X. Fang, J. Zhou, C. Jin, X. Yang and F. Wu, Synlett, 2017, 28, 2018.
- A. G. Merzlikine, S. V. Voskresensky, E. O. Danilov, M. A. J. Rodgers and D. C. Neckers, *J. Am. Chem. Soc.*, 2002, **124**, 14532.
- 11. C. Zhang, P. Feng and N. Jiao, J. Am. Chem. Soc., 2013, 135, 15257.
- Z.-Y. Tian, S.-M. Wang, S.-J. Jia, H.-X. Song and C.-P. Zhang, Org. Lett., 2017, 19, 5454.
- 13. W. Kouichi, M. Yusuke, O. Masataka, Z. Biao, T. Hiroaki and K. Motoi, *Org. Lett.*, 2018, **20**, 5448.
- 14. F. Wang, Z. Qi, J. Sun, X. Zhang and X. Li, Org. Lett., 2013, 15, 6290.
- 15. T. Schubert, W. Hummel, M.-R. Kula and M. Müller, *Eur. J. Org. Chem.*, 2001, 4181.
- 16. G. Ernouf, J.-L. Brayer, B. Folléas, J.-P. Demoute, C. Meyer and J. Cossy, J. Org. Chem., 2017, 82, 3965.
- 17. R. K. Everett and J. P. Wolfe, Org. Lett., 2013, 15, 2926.
- 18. M. N. Pennell, M. P. Kyle, S. M. Gibson, L. Male, P. G. Turner, R. S. Grainger and T. D. Sheppard, *Adv. Synth. Catal.*, 2016, **358**, 1519.
- 19. A. B. Smith III, R. Tong, W.-S. Kim and W. A. Maio, *Angew. Chem., Int. Ed.*, 2011, **50**, 8904.
- 20. S. Fu, N.-Y. Chen, X Liu, Z Shao, S.-P. Luo and Q. Liu, J. Am. Chem. Soc., 2016, 138, 8588.
- 21. F. Schömberg, Y. Zi and I. Vilotijevic, Chem. Commun., 2018, 54, 3266.

13. ¹H and ¹³C NMR spectra of bromoalkynes (1b–1n) and all products

180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 ppm

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 ppm

