Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2019

Electronic Supplementary Information

for

Overcoming inaccessibility of fluorinated imines – synthesis of functionalized amines from readily available fluoroacetamides

Paweł J. Czerwiński and Bartłomiej Furman

Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland, e-mail: bartlomiej.furman@icho.edu.pl

Table of contents

General Remarks	. S2
Synthesis of starting amides 1a-s	. S2
General synthetic procedure for trifluoromethyl derivatives	. S2
General synthetic procedure for difluoromethyl or perfluoro derivatives	. S7
Synthesis of functionalized amines 2a-s (from Scheme 1 in main text)	. S8
Synthesis of functionalized amines 5, 7, 9, 11, 14 and 16-18 (from Table 2 in main text)	S15
Synthesis of trifluoromethyl bioisostere of procainamide 22 (Scheme 2 in main text)	S20
Synthesis of trifluoromethyl bioisostere of itopride 26 (Scheme 2 in main text)	S21
NMR spectra	S23
NMR spectra of starting amides 1i-m and 1o-s	S23
NMR spectra of amines 2a-s (from Scheme 1 in main text)	S36
NMR spectra of amines 5, 7, 9, 11, 14 and 16-18	S62
NMR spectra of products 20 and 22 from procainamide synthesis (from Scheme 2 in main text)	S74
NMR spectra of products 24 and 26 from itopride synthesis (from Scheme 2 in main text)	S77
References	S80

General Remarks

The reagents were purchased from Sigma Aldrich, Alfa Aesar or TCI Chemicals and used without further purification. All reactions involving air- and moisture-sensitive materials were carried out under argon atmosphere in oven-dried glassware with magnetic stirring. THF was distilled from Na and benzophenone. CH₂Cl₂ was distilled from CaH₂. Column chromatography was performed with Kieselgel (230-400 mesh). Analytical TLC was performed with Silica gel 60 F254 aluminum plates (Merck) with visualization by UV light and charring with Pancaldi reagent ((NH₄)₆MoO₄, Ce(SO₄)₂, H₂SO₄, H₂O) or potassium permanganate solution (KMnO₄, K₂CO₃, NaOH, H₂O). NMR analyses were performed with Varian Mercury 400 MHz, Varian VNMRS 500 MHz and 600 MHz spectrometers. In case of ¹⁹F spectroscopy, spectra from Varian Mercury 400 MHz were collected with ¹H decoupling in contrast to spectra from Varian VNMRS 500 MHz. Chemical shifts are calibrated using residual solvents signals (CDCl₃: δ (H)= 7.26, δ (C)= 77.0; C₆D₆: δ (H)= 7.16, δ (C)= 128.0; CD₃OD: δ (H)= 3.31, δ (C)= 49.0 toluene-d₈: δ (H)= 2.08, δ (C)= 20.4) and are reported in ppm. Infrared spectra (IR) were recorded on a JASCO FT/IR-6200 spectrophotometer and are reported in frequency of absorption (cm⁻¹). HRMS spectra were recorded on ESI-TOF Mariner spectrometer (Perspective Biosystem) and are given in m/z. Melting points were measured on Melting Point Meter MPMH2 apparatus and are uncorrected. Optical rotations were recorded on a Jasco P-2000 polarimeter.

Synthesis of starting amides 1a-s

General synthetic procedure for trifluoromethyl derivatives

To a solution of amine in DCM (2 mL/mmol) cooled to 0 °C was added triethylamine (1.0 equiv.) and obtained mixture was stirred at this temperature for 15 minutes. After this time, TFAA (1.0 equiv.) was added dropwise and reaction mixture was allowed to warm up to room temperature and stirred until complete conversion of amine (TLC). The resulting mixture was washed with water (3 times), dried over Na_2SO_4 and evaporated. The obtained residue was crystallized from appropriate solvent to give a pure product.

2,2,2-trifluoro-N-phenylacetamide (1a)

The compound was synthesized according to the general procedure starting with 1.8 mL (20.0 mmol) of aniline and crystallized from *n*-hexane. Product was collected as white crystal needles (3.27 g, 87%). mp 96-97 °C (from *n*-hexane, lit.¹ 91 °C). ¹**H NMR** (400 MHz, CDCl₃) δ 7.82 (br, 1H), 7.57 (d, *J* = 8.2 Hz, 2H), 7.40 (t, *J* = 7.9 Hz, 2H), 7.44-7.37 (m, 1H). The spectroscopic data are in agreement with those reported.²

MeO N H CF₃

2,2,2-trifluoro-N-(4-methoxyphenyl)acetamide (1b)

The compound was synthesized according to the general procedure starting with 1.85 mL (15.0 mmol) of *p*-anisidine and crystallized from *n*-heptane. Product was collected as off-white crystal needles (2.98 g, 91%). mp 123 °C (from *n*-heptane, lit.³ 117-119 °C). ¹H NMR (400 MHz, CDCl₃) δ 7.82 (br, 1H), 7.50-7.43 (m, 2H), 6.95-6.87 (m, 2H), 3.81 (s, 3H). The spectroscopic data are in agreement with those reported.²

Br O N CF3

N-(4-bromophenyl)-2,2,2-trifluoroacetamide (1c)

The compound was synthesized according to the general procedure starting with 516.0 mg (3.0 mmol) of 4-bromoaniline and crystallized from diethyl ether/*n*-pentane solvent system. Product was collected as light grey crystalline powder (594.3 mg, 74%). mp 136 °C (from diethyl ether/*n*-pentane, lit.⁴ 126 °C). ¹H NMR (400 MHz, CDCl₃) δ 7.86 (br, 1H), 7.55-7.49 (m, 2H), 7.49-7.44 (m, 2H). The spectroscopic data are in agreement with those reported.²

N-(3-bromophenyl)-2,2,2-trifluoroacetamide (1d)

The compound was synthesized according to the general procedure starting with 516.0 mg (3.0 mmol) of 3-bromoaniline and crystallized from *n*-heptane. Product was collected as opalescent white crystals (601.5 mg, 75%). mp 100-101 °C (from *n*-heptane, lit.⁵ 92-93 °C). ¹H NMR (400 MHz, CDCl₃) δ 7.95 (br, 1H, NH), 7.84-7.77 (m, 1H), 7.45-7.38 (m, 1H), 7.42- 7.34 (m, 1H), 7.31 – 7.22 (m, 1H). The spectroscopic data are in agreement with those reported.⁶

N-(2-bromophenyl)-2,2,2-trifluoroacetamide (1e)

The compound was synthesized according to the general procedure starting with 516.0 mg (3.0 mmol) of 4-bromoaniline and crystallized from DCM/*n*-heptane solvent system. Product was collected as white crystalline needles (530.1 mg, 66%). mp 76 °C (from DCM/*n*-heptane, lit.⁷ 70-71 °C). ¹H NMR (400 MHz, CDCl₃) δ 8.44 (br, 1H, NH), 8.32 (dd, *J* = 8.2, 1.2 Hz, 1H), 7.61 (dd, J = 8.1, 1.2 Hz, 1H), 7.40 (td, *J* = 8.0, 1.0 Hz, 1H), 7.12 (td, *J* = 8.0, 1.4 Hz, 1H). The spectroscopic data are in agreement with those reported.⁸

2,2,2-trifluoro-N-(2-phenylethyl)acetamide (1f)

The compound was synthesized according to the general procedure starting with 4.84 g (40.0 mmol) of 2-phenethylamine. Product was obtained as oil, which crystallized upon standing as white crystals (8.45 g, 97%). mp 65 °C (from DCM, lit.⁹ 59 °C). ¹**H NMR** (400 MHz, CDCl₃) δ 7.38-7.28 (m, 2H), 7.28-7.21 (m, 1H), 7.21-7.10 (m, 2H), 6.26 (br, 1H), 3.60 (q, *J* = 6.7 Hz, 2H), 2.87 (t, *J* = 7.0 Hz, 2H). The spectroscopic data are in agreement with those reported.¹⁰

N-[2-(3,4-dimethoxyphenyl)ethyl]-2,2,2-trifluoroacetamide (1g)

The compound was synthesized according to the general procedure starting with 906.0 mg (5.0 mmol) of 3,4-dimethoxyphenethylamine. Product was crystallized from DCM/*n*-pentane solvent system (1.15 g, 83%). mp 93-94 °C (from DCM/*n*-pentane, lit.⁹ 87-88 °C). ¹H NMR (400 MHz, CDCl₃) δ 6.83 (d, *J* = 8.1 Hz, 1H), 6.72 (dd, *J* = 8.1, 1.8 Hz, 1H), 6.69 (d, *J* = 1.8 Hz, 1H), 6.31 (br, 1H, NH), 3.87 (s, 6H), 3.60 (q, *J* = 6.7 Hz, 2H), 2.83 (t, *J* = 6.9 Hz, 2H). The spectroscopic data are in agreement with those reported.¹¹

2,2,2-trifluoro-N-[2-(4-nitrophenyl)ethyl]acetamide (1h)

The compound was synthesized by directed nitration of 2,2,2-trifluoro-*N*-phenethylacetamide in according to the modified literature procedure.¹² To a solution of the amide (1.52 g, 7.0 mmol) in acetic anhydride (10 mL) cooled to 0 °C was added dropwise a solution of nitric acid (1.45 mL, 21.0 mmol, 3.0 equiv.) in acetic anhydride (10 mL). The reaction mixture was allowed to warm up to room temperature and stirred for 16h. The resulted mixture had been poured into ice water, but expected solid did not precipitated. The mixture was diluted with EtOAc. The organic phase was separated, washed with water (3 x 30mL), brine (1 x 50 mL), dried over MgSO₄ and evaporated. The residue was purified by FCC (30-60% MTBE/hexanes). Two products were isolated, a more polar was expected compound. An obtained yellowish solid was recrystallized from DCM/*n*-pentane solvent system and pure product was collected as white crystalline needles (717.2 mg, 39%). mp 107-108 °C (from DCM/*n*-pentane, lit.¹³ 97-98 °C). ¹H NMR (400 MHz, CDCl₃) δ 8.26-8.18 (m, 2H), 7.45-7.36 (m, 2H), 6.35 (br, 1H), 3.67 (q, *J* = 6.7 Hz, 2H), 3.03 (t, *J* = 7.1 Hz, 2H). The spectroscopic data are in agreement with those reported.¹⁴

ethyl 4-{2-[(trifluoroacetyl)amino]ethyl}benzoate (1i)

The compound was synthesized by cyanation of ethyl 4-(bromomethyl)benzoate, reduction of obtained nitrile and subsequent trifluoroacetylation in according to the modified literature procedure.¹⁵ To a solution of the benzoate (972.4 mg, 4.0 mmol) in ethanol (6 mL) was added water (1.35 mL) and a solution was stirred for 5 minutes at room temperature. Then potassium cyanide (312.6 mg, 4.8 mmol, 1.2 equiv.) was added and obtained solution was refluxed for 16 h. After this time, reaction mixture was diluted with water (10 mL) and extracted with EtOAc (3 x 10mL), dried over Na₂SO₄ and evaporated. Obtained crude nitrile was used to reduction step without further purification. The compound (616 mg, 3.25 mmol) was dissolved in anhydrous methanol (50 mL), palladium on carbon (175.5 mg, 0.16 mmol; 5 mol%, 10 wt %) was added and HCl in dioxane (1.22 mL, 4.88 mmol, 1.5 equiv., 4M) was dropped into. The atmosphere of the flask was exchanged for hydrogen by evacuation by aspirator and refill (3 times). The reaction mixture was vigorously stirred for 16h at room temperature, filtered through short pad of celite, purging by methanol and evaporated. The residue was dried on oil pump and used to trifluoroacetylation step without further purification. The reaction was performed under standard procedure starting with 690.0 mg of crude amine. Product was crystallized from *n*-heptane (637.7 mg, 55% overall yield after 3 steps). mp 91-92 °C (from *n*-heptane). ¹H NMR (500 MHz, CDCl₃) δ 8.05-7.95 (m, 2H), 7.30-7.26 (m, 2H), 6.49 (br, 1H, NH), 4.37 (q, J = 7.1 Hz, 2H), 3.64 (q, J = 6.9 Hz, 2H), 2.96 (t, J = 7.1 Hz, 2H), 1.39 (t, J = 7.1 Hz, 2H). ¹³C **NMR** (125 MHz, CDCl₃) δ 166.3, 157.2 (q, J_{CF} = 37.2 Hz), 142.8, 130.1, 129.3, 128.7, 115.7 (q, J_{CF} = 286.2 Hz), 61.0, 40.7, 35.0, 14.3. ¹⁹F NMR (470 MHz, CDCl₃) δ -76.0 (s, 3F). IR (film) ν̃: 3302, 3106, 2993, 2939, 1712, 1563, 1282, 1179, 1150, 1108, cm⁻¹. HRMS (ESI-TOF) m/z calcd for C₁₃H₁₄NO₃NaF₃ [M+Na]⁺ 312.0823 found: 312.0815.

2,2,2-trifluoro-N-[2-(1H-imidazol-4-yl)ethyl]acetamide (1j)

The compound was exceptionally synthesized according to the procedure for difluoromethyl and perfluoro derivatives (see below), however under neat conditions, starting with 222 mg (2.0 mmol) of histamine and ethyl trifluoroacetate 238 μ l (2.0 mmol). Product was collected as off-white crystals (398 mg, 96%). mp 91-92 °C. ¹H NMR (400 MHz, CD₃OD) δ 7.63 (s, 1H), 6.87 (s, 1H), 3.52 (t, *J* = 7.2 Hz, 2H), 2.84 (t, *J* = 7.2 Hz, 2H). ¹³C NMR (100 MHz, CD₃OD) δ 159.0 (q, *J*_{CF} = 36.6 Hz), 136.2, 135.7, 117.5, 117.5 (q, *J*_{CF} = 284.9 Hz), 40.7, 27.2. ¹⁹F NMR (376 MHz, CD₃OD) δ -77.5 (s, 3F). IR (KBr) $\tilde{\nu}$: 3213, 3016, 2998, 1705, 1570, 1210, 1154 cm⁻¹. HRMS (ESI-TOF) m/z calcd for C₇H₉N₃OF₃[M+H]⁺ 208.0698, found: 208.0691.

N-[(2E)-3,7-dimethylocta-2,6-dien-1-yl]-2,2,2-trifluoroacetamide (1k)

The compound was exceptionally synthesized according to the procedure for difluoromethyl and perfluoro derivatives (see below) starting with 153 mg (1.0 mmol) of geranyl amine and ethyl trifluoroacetate 127 µl (1.0 mmol). Product was collected as orange oil (175 mg, 70%). ¹H NMR (400 MHz, CDCl₃) δ 6.24 (br, 1H, NH), 5.23-5.17 (m, 1H), 5.10-5.02 (m, 1H), 3.95 (t, *J* = 6.3 Hz, 2H), 2.14-2.06 (m 2H), 2.06-1.99 (m, 2H), 1.69 (s, 3H), 1.68 (s, 3H), 1.60 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 156.9 (q, *J*_{CF} = 36.8 Hz), 142.2, 132.0, 123.5, 117.6, 115.8 (q, *J*_{CF} = 286.3 Hz), 39.4, 37.7, 26.2, 25.6, 17.6, 16.3. ¹⁹F NMR (470 MHz, CDCl₃) δ -76.0 (s, 3F). IR (film) $\tilde{\nu}$: 3300, 3096, 2970, 2922, 2859, 1704, 1205, 1183, 1164 cm⁻¹. HRMS (ESI-TOF) m/z calcd for C₁₂H₁₇NOF₃[M-H]⁻ 248.1262, found: 248.1264.

2,2,2-trifluoro-N-[(1R)-1-(naphthalen-2-yl)ethyl]acetamide (1l)

The compound was synthesized according to the general procedure starting with 342 mg (2.0 mmol) of (*R*)-(-)-1-(2-naphthyl)ethylamine. Product was crystallized from *n*-heptane (404 mg, 76%). mp 145-146 °C (from *n*-heptane). α = 191.7 (c = 1.18, DCM). ¹H NMR (400 MHz, CDCl₃) δ 7.91-7.81 (m, 3H), 7.77 (s, 1H), 7.56-7.47 (m, 2H), 7.42 (dd, *J* = 8.5, 1.5 Hz, 1H), 6.61 (br, 1H, NH), 5.32 (p, *J* = 7.1 Hz, 1H), 1.68 (d, *J* = 6.9 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 156.4 (q, *J*_{CF} = 36.8 Hz), 138.2, 133.3, 133.0, 129.0, 127.9, 127.7, 126.6, 126.4, 125.0, 124.1, 115.8 (q, *J*_{CF} = 286.4 Hz), 49.9, 20.9. ¹⁹F NMR (376 MHz, CDCl₃) δ -75.8 (s, 3F). IR (film) $\tilde{\nu}$: 3361, 3052, 2983, 2938, 2878, 1703, 1546, 1196, 1173, 1157 cm⁻¹. HRMS (ESI-TOF) m/z calcd for C₁₄H₁₂NONaF₃ [M+Na]⁺ 290.0769, found: 290.0758.

methyl (2S)-phenyl[(trifluoroacetyl)amino]ethanoate (1m)

The compound was synthesized according to the general procedure starting with 1.01 g (5.0 mmol) of (*S*)-phenylglycine methyl ester hydrochloride, however 2.0 equivalent of triethylamine was used instead of standard 1.0 equivalent. Product was crystallized from *n*-heptane (880 mg, 67%). mp 89-90 °C (from *n*-heptane). α = 208.9 (c =0.8, DCM). ¹H NMR (400 MHz, CDCl₃) δ 7.46 – 7.28 (m, 5H + br, 1H, NH), 5.56 (d, *J* = 7.1 Hz, 1H), 3.78 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 167.0, 156.3 (q, *J*_{CF} = 37.7 Hz), 134.7, 129.3, 129.2, 127.2, 115.6 (q, *J*_{CF} = 286.0 Hz), 56.6, 53.3. ¹⁹F NMR (376 MHz, CDCl₃) δ -75.8 (s, 3F). IR (film) $\tilde{\nu}$: 3317, 3071, 3037, 2957, 1743, 1704, 1549, 1440, 1308, 1269, 1211, 1185, 1164 cm⁻¹. HRMS (ESI-TOF) m/z calcd for C₁₁H₁₀NO₃NaF₃ [M+Na]⁺ 284.0510, found: 284.0502.

General synthetic procedure for difluoromethyl or perfluoro derivatives

To a solution of amine in DCM (2mL/mmol) was added fluoroester (1.0 equiv.) and obtained mixture was refluxed for 16 h. The reaction mixture was evaporated. The obtained residue was recrystallized from appropriate solvent to give a pure product.

2,2-difluoro-*N*-phenylacetamide (1n)

The compound was synthesized according to the literature procedure.¹⁶ The general procedure was failed, as well as protocol with addition of triethylamine. The reaction was performed under neat conditions with addition of catalytic amount of KOH. To the screw cap vial was charged 456 μ l (5.0 mmol) of aniline, 526 μ l (5.0 mmol) of ethyl difluoroacetate and catalytic amount of powdered KOH. The reaction mixture was heated to 120 °C for 36 h, then cooled to room temperature, diluted with DCM (2 mL) and washed with water (3 x 2 mL). The organic layer was dried over Na₂SO₄, evaporated and obtained residue was recrystallized from *n*-heptane. Product was collected as white crystal needles (238.2 mg, 28%). mp 65 °C (from *n*-heptane, lit.¹⁷ 60 °C). ¹H NMR (400 MHz, CDCl₃) δ 7.97 (br, 1H, NH), 7.64-7.56 (m, 2H), 7.44-7.36 (m, 2H), 7.27-7.19 (m, 1H), 6.01 (t, *J*_{HF} = 54.4 Hz). The spectroscopic data are in agreement with those reported.¹⁸

2,2-difluoro-N-(2-phenylethyl)acetamide (10)

The compound was synthesized according to the general procedure starting with 881 μ l (7.0 mmol) of 2-phenethylamine and ethyl difluoroacetate 868 μ l (7.0 mmol). Product was collected as yellowish oil (1.37 g, 98%). ¹**H NMR** (400 MHz, CDCl₃) δ 7.37-7.29 (m, 2H), 7.29-7.23 (m, 1H), 7.22-7.17 (m, 2H), 6.31 (br, 1H, NH), 5.85 (t, *J*_{HF} = 54.3 Hz, 1H), 3.61 (q, *J* = 6.8 Hz, 2H), 2.88 (t, *J* = 7.0 Hz, 2H). ¹³**C NMR** (125 MHz, CDCl₃) δ 162.5 (t, *J*_{CF} = 24.4 Hz), 137.9, 128.8, 128.7, 126.8, 108.4 (t, *J*_{CF} = 251.1 Hz), 40.4, 35.2. ¹⁹**F NMR** (376 MHz, CDCl₃) δ -126.3 (s, 3F). **IR** (film) $\tilde{\nu}$: 3299, 3090, 3030, 2942, 1687, 1553, 1497, 1454, 1364, 1344, 1063 cm⁻¹. **HRMS** (ESI-TOF) m/z calcd for C₁₀H₁₀NOF₂ [M-H]⁻ 198.0730, found: 198.0731.

2,2-difluoro-*N*-[2-(1*H*-imidazol-4-yl)ethyl]acetamide (1p)

The compound was synthesized according to the general procedure starting with 450 mg (4.05 mmol) of histamine. Product crystallized from crude cold reaction mixture as a off-white crystals (753.5 mg, 98%). mp 122-123 °C (from DCM). ¹H NMR (500 MHz, CD₃OD) δ 7.59 (s, 1H), 6.86 (s, 1H), 6.00 (t, *J*_{HF} = 54.1 Hz, 1H), 3.50 (t, J = 7.2 Hz, 2H), 2.82 (t, J = 7.2 Hz, 2H). ¹³C NMR (125 MHz, CD₃OD) δ

165.1 (t, J_{CF} = 25.2 Hz), 136.2, 135.9, 117.56, 110.0 (t, J_{CF} = 246.7 Hz), 40.3, 27.5. ¹⁹F NMR (470 MHz, CD₃OD) δ -128.3 (d, J = 54.0 Hz, 2F) **IR** (KBr) $\tilde{\nu}$: 3246, 3025, 2944,2857, 1679, 1573, 1491, 1453, 1359, 1319, 1300, 1287, 1259, 1227, 1191, 1118, 1088, 1061 cm⁻¹. **HRMS** (ESI-TOF) m/z calcd for C₇H₁₀N₃OF₂ [M+H]⁺ 190.0792, found: 190.0788.

2,2,3,3,4,4,4-heptafluoro-*N*-(2-phenylethyl)butanamide (1r)

The compound was synthesized according to the general procedure starting with 378 μ l (3.0 mmol) of 2-phenetylamine and 520 μ l (3.0 mmol) of ethyl heptafluorobutyrate. Product was crystallized from DCM/*n*-pentane solvent system (874.1 mg, 92%). mp 53 °C (from DCM/*n*-pentane). ¹**H NMR** (400 MHz, CDCl₃) δ 7.42-7.32 (m, 2H), 7.32-7.25 (m, 1H), 7.24-7.16 (m, 2H), 6.39 (br, 1H, NH), 3.68 (q, J = 6.7 Hz, 2H), 2.91 (t, J = 6.9 Hz, 2H). ¹³**C NMR** (100 MHz, CDCl₃) δ 157.5 (t, *J_{CF}* = 25.8 Hz), 137.5, 128.9, 128.6, 127.0, 41.3, 35.0. ¹⁹**F NMR** (376 MHz, CDCl₃) δ -80.6 (t, *J* = 8.8 Hz, 3F), -120.7, (q, *J* = 8.8 Hz, 2F), -127.0, (s, 2F). **IR** (film) $\tilde{\nu}$: 3316, 3065, 3030, 2949, 2869, 1691, 1550, 1222, 1182, 1152, 1124 cm⁻¹. **HRMS** (ESI-TOF) m/z calcd for C₁₂H₁₀NONaF₇ [M+Na]⁺ 340.0548, found: 340.0543.

2,2,3,3,4,4,5,5,6,6,7,7,7-tridecafluoro-*N*-(2-phenylethyl)heptanamide (1s)

The compound was synthesized according to the general procedure starting with 252 μ l (2.0 mmol) of 2-phenethylamine and 756 mg (2.0 mmol) of ethyl perfluoroheptanoate. Product was crystallized from DCM/*n*-pentane solvent system (845.0 mg, 90%). mp 88 °C (from DCM/*n*-pentane) ¹**H NMR** (500 MHz, CDCl₃) δ 7.38-7.30 (m, 2H), 7.30-7.23 (m, 1H), 7.22-7.15 (m, 2H), 6.39 (br, 1H, NH), 3.66 (q, *J* = 6.7 Hz, 2H), 2.89 (t, *J* = 6.9 Hz, 2H). ¹³**C NMR** (125 MHz, CDCl₃) δ 157.5 (t, *J*_{CF} = 2.5 Hz), 137.5, 128.9, 128.6, 127.0, 41.3, 35.0. ¹⁹**F NMR** (470 MHz, CDCl₃) δ -80.8 (m, 3F), -119.8 (m, 2F), -121.8 (m, 2F), -122.6 (m, 2F), -122.8 (m, 2F), -126.1 (m, 2F). **IR** (film) $\tilde{\nu}$: 3352, 3318, 3064, 3028, 2945, 1689, 1549, 1455, 1230, 1208, 1146, 1080 cm⁻¹. **HRMS** (ESI-TOF) m/z calcd for C₁₅H₁₀NONaF₁₃ [M+Na]⁺ 490.0453, found: 490.0435.

Synthesis of functionalized amines 2a-s (from Scheme 1 in main text)

To a suspension of Schwartz's reagent (50.3 mg, 0.195 mmol, 1.3 equiv.) in dry THF (1 mL) at room temperature (unless indicated otherwise) was added amide (0.15 mmol). The reaction mixture was stirred at RT until it cleared (from 15 to 45 minutes typically) and then was cooled to 0 °C. TFA (44.5 mg, 0.39 mmol, 2.6 equiv.) and indole (52.7 mg, 0.45 mmol, 3 equiv.) was added. The reaction mixture was allowed to warm up to room temperature and stirred for 16 h. The reaction was quenched with saturated NaHCO₃ and diethyl ether (5 mL) was added. The aqueous layer was extracted with ether (3x5 mL). The combined organic extracts were dried over Na₂SO₄ and

evaporated. The residue was purified by FCC in the appropriate solvent system to give a pure product.

N-[2,2,2-trifluoro-1-(1H-indol-3-yl)ethyl]aniline (2a)

The compound was synthesized according to the general procedure starting with 28.4 mg of **1a** and purified using 15-30% MTBE/hexanes solvent system. Product was isolated as yellowish solid (39.4 mg, 90%). ¹H NMR (400 MHz, CDCl₃) δ 8.16 (br, 1H, NH_{Het}), 7.64-7.56 (m, 1H), 7.44-7.36 (m, 1H), 7.33-7.13 (m, 5H), 6.86-6.79 (m, 1H), 6.78-6.71 (m, 2H), 5.29 (q, *J* = 7.1 Hz, 1H, CHCF₃), 4.15 (br, 1H, NH). ¹³C NMR (100 MHz, CDCl₃) δ 146.3, 136.1, 129.36, 125.92, 125.9 (q, *J*_{CF} = 280.8 Hz), 123.1, 122.9, 120.5, 119.1, 119.0, 113.7, 111.5, 109.6 (d, *J*_{CF} = 1.1 Hz), 54.3 (q, *J*_{CF} = 31.6 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -73.9 (s, 3F). IR (KBr) $\tilde{\nu}$: 3409, 3051, 1600, 1507, 1308, 1266, 1245, 1166, 1108 cm⁻¹. HRMS (ESI-TOF) m/z calcd for C₁₆H₁₂N₂F₃ [M-H]⁻ 289.0953, found: 289.0949.

4-methoxy-N-[2,2,2-trifluoro-1-(1H-indol-3-yl)ethyl]aniline (2b)

The compound was synthesized according to the general procedure starting with 32.9 mg of **1b** and purified using 15-30% MTBE/hexanes solvent system. Product was isolated as brown waxy oil (40.8 mg, 85%). ¹H NMR (400 MHz, CDCl₃) δ 8.21 (br, 1H, NH_{Het}), 7.60-7.38 (m, 2H), 7.30-7.22 (m, 2H), 7.17 (m, 1H), 6.80-6.72 (m, 4H), 5.16 (q, J_{HF} = 7.2 Hz, 1H), 3.76 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 153.2, 140.5, 136.2, 125.9, 126.0 (q, J_{CF} = 280.7 Hz), 123.1, 122.8, 120.4, 119.0, 115.5, 114.9, 111.5, 109.8, 55.7, 55.6 (q, J_{CF} = 31.2 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -73.8 (s, 3F). IR (film) $\tilde{\nu}$: 3410, 3059, 3000, 2934, 2836, 1513, 1459, 1270, 1237, 1166, 1118, 1034 cm⁻¹. HRMS (ESI-TOF) m/z calcd for C₁₇H₁₅N₂ONaF₃ [M+Na]⁺ 343.1034, found: 343.1020.

4-bromo-*N*-[2,2,2-trifluoro-1-(1*H*-indol-3-yl)ethyl]aniline (2c)

The compound was synthesized according to the general procedure starting with 40.2 mg of **1c** and purified using 15-30% MTBE/hexanes solvent system. Product was isolated as brown waxy oil (47.9 mg, 86%). ¹H NMR (400 MHz, CDCl₃) δ 8.21 (br, 1H, NH_{Het}), 7.57-7.41 (m, 2H), 7.34-7.25 (m, 4H), 7.18 (m, 1H), 6.68-6.58 (m, 2H), 5.23 (q, J_{HF} = 6.9 Hz, 1H), 4.16 (br, 1H, NH). ¹³C NMR (100 MHz, CDCl₃) δ 145.3, 136.1, 132.1, 125.8, 125.7 (q, J_{CF} = 280.8 Hz), 123.1, 123.0, 120.6, 118.8, 115.3, 111.6, 110.9,

109.1, 54.4 (q, J_{CF} = 31.7 Hz). ¹⁹**F** NMR (376 MHz, CDCl₃) δ -73.8 (s, 3F). IR (KBr) $\tilde{\nu}$: 3416, 3155, 3046, 2921, 2852, 1592, 1500, 1270, 1163, 1120 cm⁻¹. HRMS (ESI-TOF) m/z calcd for C₁₆H₁₁N₂F₃Br [M-H]⁻ 367.0058, found: 367.0058.

3-bromo-N-[2,2,2-trifluoro-1-(1H-indol-3-yl)ethyl]aniline (2d)

The compound was synthesized according to the general procedure starting with 40.2 mg of **1d** and purified using 0-30% MTBE/hexanes solvent system. Product was isolated as brown oil (28.9 mg, 52%). ¹**H NMR** (400 MHz, CDCl₃) δ 8.23 (br, 1H, NH_{Het}), 7.59-7.52 (m, 1H), 7.46-7.39 (m, 1H), 7.35-7.30 (m, 1H), 7.29 – 7.23 (m, 1H), 7.20-7.14 (m, 1H), 7.08-7.00 (m, 1H), 6.95-6.88 (m, 2H), 6.69- 6.60 (m, 1H), 5.24 (q, *J*_{HF} = 7.0 Hz, 1H), 4.17 (br, 1H, NH). ¹³**C NMR** (150 MHz, CDCl₃) δ 147.6, 136.1, 130.7, 125.7, 125.7 (q, *J*_{CF} = 281.0 Hz), 123.3, 123.1, 123.0, 122.0, 120.6, 118.9, 116.4, 112.2, 111.6, 109.1, 54.1 (q, *J*_{CF} = 32.0 Hz). ¹⁹**F NMR** (376 MHz, CDCl₃) δ -73.8 (s, 3F). **IR** (film) $\tilde{\nu}$: 3417, 3059, 2925, 1596, 1501, 1480, 1265, 1168, 1119 cm⁻¹. **HRMS** (EI) m/z calcd for C₁₆H₁₂N₂F₃Br [M]⁺ 368.0136, found: 368.0142.

2,2,2-trifluoro-1-(1*H*-indol-3-yl)-*N*-(2-phenylethyl)ethanamine (2f)

The compound was synthesized according to the general procedure starting with 32.6 mg of **1f** and purified using 30% MTBE/hexanes solvent system. Product was isolated as yellowish oil (43.4 mg; 91%). ¹**H NMR** (400 MHz, C_6D_6) δ 7.76-7.70 (m, 1H), 7.20-7.11 (m, 3H), 7.10-7.01 (m, 2H), 6.99-6.95 (m, 1H), 6.95-6.91 (m, 2H), 6.73 (br, 1H, NH_{Het}), 6.62 (d, *J* = 2.5 Hz, 1H), 4.36 (q, *J*_{HF} = 7.6 Hz, 1H), 2.76 (t, *J* = 7.1 Hz, 2H), 2.59-2.42 (m, 2H), 1.45 (br, 1H, NH). ¹³**C NMR** (100 MHz, C_6D_6) δ 140.0, 136.4, 128.9, 128.6, 126.9 (q, *J*_{CF} = 280.2 Hz), 126.9, 126.4, 123.8, 122.7, 120.5, 119.9, 111.5, 109.8, 58.1 (q, *J*_{CF} = 29.5 Hz), 49.4, 36.7. ¹⁹**F NMR** (376 MHz, C_6D_6) δ -73.9 (s, 3F). **IR** (film) $\tilde{\nu}$: 3416, 3060, 3028, 2928, 2855, 1456, 1268, 1167, 1119 cm⁻¹. **HRMS** (ESI-TOF) m/z calcd for $C_{18}H_{17}N_2F_3Na$ [M+Na]⁺ 341.1242, found: 341.1226.

N-[2-(3,4-dimethoxyphenyl)ethyl]-2,2,2-trifluoro-1-(1H-indol-3-yl)ethanamine (2g)

The compound was synthesized according to the general procedure starting with 41.6 mg of **1g** and purified using 50% MTBE/hexanes solvent system. Product was isolated as colorless oil (44.5 mg,

78%). ¹**H** NMR (400 MHz, CDCl₃) δ 8.36 (br, 1H, NH_{Het}), 7.68-7.60 (m, 1H), 7.39-7.34 (m, 1H), 7.25-7.20 (m, 1H), 7.19-7.11 (m, 2H), 6.79-6.74 (m, 1H), 6.71-6.66 (m, 1H), 6.65-6.61 (m, 1H) 4.51 (q, J_{HF} = 7.6 Hz, 1H, CHCF₃), 3.85 (s, 3H), 3.74 (s, 3H), 3.06-2.88 (m, 2H), 2.84-2.66 (m, 2H), 1.77 (br, 1H, NH). ¹³**C** NMR (100 MHz, CDCl₃) δ 148.9, 147.5, 136.1, 132.0, 126.3, 126.1 (q, J_{CF} = 279.7 Hz), 123.7, 122.5, 120.6, 120.1, 119.2, 111.9, 111.3, 109.6, 57.6 (q, J_{CF} = 29.8 Hz), 55.9, 55.7, 49.3, 35.7. ¹⁹**F** NMR (376 MHz, CDCl₃) δ -74.1 (s, 3F). **IR** (film) $\tilde{\nu}$: 3354, 3059, 3002, 2936, 2837, 1516, 1463, 1262, 1235, 1157, 1141, 1119, 1027 cm⁻¹; **HRMS** (ESI-TOF) m/z calcd for C₂₀H₂₁N₂O₂F₃Na [M+Na]⁺ 401.1453, found: 401.1438.

2,2,2-trifluoro-1-(1H-indol-3-yl)-N-[2-(4-nitrophenyl)ethyl]ethanamine (2h)

The compound was synthesized according to the general procedure starting with 39.3 mg of **1h** and purified using 30% MTBE/hexanes solvent system. Product was isolated as yellow oil (32.5 mg, 60%). ¹**H NMR** (400 MHz, CDCl₃) δ 8.28 (br, 1H, NH_{Het}), 8.12-8.04 (m, 2H), 7.66-7.59 (m, 1H), 7.42-7.36 (m, 1H), 7.31-7.18 (m, 4H), 7.17-7.10 (m, 1H), 4.50 (q, *J*_{HF} = 7.6 Hz, 1H, CHCF₃), 3.08-2.96 (m, 2H), 2.95-2.80 (m, 2H), 1.71 (br, 1H, NH). ¹³**C NMR** (100 MHz, CDCl₃) δ 147.5, 146.6, 136.1, 129.5, 126.1, 125.9 (q, *J*_{CF} = 280.2 Hz), 123.7, 123.6, 122.7, 120.3, 119.2, 111.4, 109.4, 57.84 (q, *J*_{CF} = 29.8 Hz), 48.4, 36.3. ¹⁹**F NMR** (376 MHz, CDCl₃) δ -73.9 (s, 3H). **IR** (film) $\tilde{\nu}$: 3410, 3056, 2928, 2852, 1601, 1517, 1458, 1345, 1265, 1165, 1118 cm⁻¹. **HRMS** (ESI-TOF) m/z calcd for C₁₈H₁₆N₃O₂NaF₃ [M+Na]⁺ 386.1092, found: 386.1078.

ethyl 4-(2-{[2,2,2-trifluoro-1-(1H-indol-3-yl)ethyl]amino}ethyl)benzoate (2i)

The compound was synthesized according to the general procedure starting with 43.4 mg of **1i** and purified using 30-50% MTBE/hexanes solvent system. Product was isolated as colorless oil (29.3 mg, 50%). ¹H NMR (400 MHz, CDCl₃) δ 8.26 (br, 1H, NH_{Het}), 7.96-7.88 (m, 2H), 7.67-7.60 (m, 1H), 7.42-7.34 (m, 1H) 7.28-7.23 (m, 1H), 7.22-7.16 (m, 3H),7.16-7.10 (m, 1H), 4.50 (q, *J*_{HF} = 7.5 Hz, 1H, CHCF₃), 4.36 (q, *J* = 7.1 Hz, 2H), 3.08-2.93 (m, 2H), 2.92-2.76 (m, 2H), 1.77 (br, 1H, NH), 1.39 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 166.6, 144.9, 136.1, 129.7, 128.7, 128.6, 126.3, 126.0 (q, *J*_{CF} = 280.1 Hz), 123.7, 122.6, 120.2, 119.2, 111.4, 109.6, 60.9, 57.7 (q, *J*_{CF} = 29.8 Hz), 48.8, 36.4, 14.3. ¹⁹F NMR (376 MHz, CDCl₃) δ -74.1 (s, 3F). IR (film) $\tilde{\nu}$: 3406, 3354, 3059, 2982, 2932, 2857, 1708, 1281, 1166, 1115 cm⁻¹. HRMS (ESI-TOF) m/z calcd for C₂₁H₂₁N₂O₂NaF₃ [M+Na]⁺ 413.1453, found: 413.1438.

2,2,2-trifluoro-N-[2-(1H-imidazol-4-yl)ethyl]-1-(1H-indol-3-yl)ethanamine (2j)

The compound was synthesized according to the general procedure starting with 31.1 mg of **1j** and purified using 5-10% MeOH/DCM solvent system. Product was isolated as waxy yellowish oil (34.1 mg, 74%). ¹**H NMR** (500 MHz, CD₃OD) δ 7.61-7.56 (m, 1H), 7.54-7.51 (m, 1H), 7.40-7.35 (m, 1H), 7.32-7.28 (m, 1H), 7.15-7.09 (m, 1H), 7.05-7.00 (m, 1H), 6.75-6.71 (m, 1H), 4.58 (q, *J*_{HF} = 7.9 Hz, 1H), 2.92-2.84 (m, 2H), 2.80-2.69 (m, 2H). ¹³**C NMR** (125 MHz, CD₃OD) δ 138.0, 136.0, 127.7, 127.7 (q, *J*_{CF} = 278.5 Hz), 125.7, 125.5, 122.8, 120.4, 119.8, 112.5, 111.4, 109.3, 58.5 (q, *J*_{CF} = 29.7 Hz), 30.8, 27.8. ¹⁹**F NMR** (470 MHz, CD₃OD) δ -75.5 (d, *J*_{FH} = 7.9 Hz). **IR** (film) $\tilde{\nu}$: 3146, 2925, 2859, 1710, 1458, 1266, 1165, 1119 cm⁻¹. **HRMS** (ESI-TOF) m/z calcd for C₁₅H₁₅N₄NaF₃ [M+Na]⁺ 331.1147, found: 331.1137.

(2E)-3,7-dimethyl-N-[2,2,2-trifluoro-1-(1H-indol-3-yl)ethyl]octa-2,6-dien-1-amine (2k)

The compound was synthesized according to the general procedure starting with 37.4 mg of **1k** and purified using 30% MTBE/hexanes solvent system. Product was isolated as colourless oil (31.3 mg, 60%). ¹**H NMR** (600 MHz, CDCl₃) δ 8.26 (br, 1H, NH_{Het}), 7.74 -7.70 (m, 1H), 7.42 -7.38 (m, 1H), 7.29 - 7.22 (m, 3H), 5.27 - 5.22 (m, 1H), 5.12 - 5.06 (m, 1H), 4.53 (q, *J*_{HF} = 7.6 Hz, 1H), 3.37 - 3.26 (m, 2H), 2.12-2.05 (m, 2H), 2.05 - 1.98 (m, 2H), 1.68 (s, 3H), 1.61 (s, 3H), 1.51 (s, 3H). ¹³**C NMR** (150 MHz, CDCl₃) δ 139.2, 136.1, 131.7, 126.4, 126.2 (q, *J*_{CF} = 279.7 Hz), 124.0, 123.8, 122.6, 121.9, 120.2, 119.3, 111.3, 109.9, 56.5 (q, *J*_{CF} = 29.8 Hz), 45.2, 39.6, 26.4, 25.7, 17.7, 16.2. ¹⁹**F NMR** (470 MHz, CDCl₃) δ - 74.0 (s, 3F). **IR** (film) $\tilde{\nu}$: 3415, 3184, 3058, 2968, 2925, 2857, 1457, 1268, 1167, 1118 cm⁻¹. **HRMS** (ESI-TOF) m/z calcd for C₂₀H₂₄N₂F₃ [M-H]⁻ 349.1892, found: 349.1889.

2,2,2-trifluoro-1-(1H-indol-3-yl)-N-[(1S)-1-(naphthalen-2-yl)ethyl]ethanamine (2l)

The compound was synthesized according to the general procedure starting with 40.1 mg of **1I** and purified using 15-30% MTBE/hexanes solvent system. Product was isolated as waxy colourless oil (as an inseparable mixture of diastereomers, dr 9:1 based on ¹H and ¹⁹F NMR spectra) (38.9 mg, 70%). α = 166.1 (c = 1.03, DCM). ¹H NMR (400 MHz, CDCl₃) major diastereoisomer: δ 8.24 (br, 1H, NH_{Het}), 7.95-7.86 (m, 2H), 7.87 – 7.78 (m, 1H), 7.68 (s, 1H), 7.67-6.63 (m, 1H), 7.58 – 7.49 (m, 3H), 7.48-7.43 (m, 1H), 7.34 – 7.27 (m, 1H), 7.23 – 7.14 (m, 2H), 4.28 (q, *J*_{HF} = 8.1 Hz, 1H), 3.94 (q, *J* = 6.6 Hz, 1H),

2.08 (br, 1H, NH), 1.45 (d, J = 6.6 Hz, 3H); minor diastereoisomer (selected signals): 8.15 (br, 0.1H, NH_{Het}), 1.52 (d, J = 6.5 Hz, 0.3H). ¹³**C** NMR (100 MHz, CDCl₃) major isomer: δ 141.5, 136.3, 133.4, 133.0, 128.5, 127.8, 127.7, 126.5, 126.1, 125.9 (q, $J_{CF} = 278.9$ Hz), 125.8, 125.7, 124.8, 124.2, 122.6, 120.2, 119.6, 111.4, 109.8, 55.2 (q, $J_{CF} = 30.1$ Hz), 55.0, 24.7; minor isomer (selected signals): δ 141.9, 135.9, 132.9, 111.2, 23.9. ¹⁹**F** NMR (376 MHz, CDCl₃) diastereoisomer: δ -74.1 (s, 3F); minor diastereoisomer -73.1 (s, 0.3F). **IR** (film) $\tilde{\nu}$: 3419, 3056, 2965, 2927, 2866, 1457, 1350, 1264, 1184, 1168, 1120 cm⁻¹. **HRMS** (ESI-TOF) m/z calcd for C₂₂H₁₈N₂F₃ [M-H]⁻ 367.1422, found: 367.1414.

methyl (2S)-phenyl{[2,2,2-trifluoro-1-(1H-indol-3-yl)ethyl]amino}ethanoate (2m)

The compound was synthesized according to the general procedure starting with 31.1 mg of **1m** and purified using 30-50% MTBE/pentane solvent system. Product was isolated (as an inseparable mixture of diastereomers, dr 2:1 based on ¹H NMR spectra) as yellowish oil (24.4 mg, 43%). ¹H NMR (400 MHz, CDCl₃) major diastereoisomer: δ 8.26 (br, 1H, NH_{Het}), 7.66-7.58 (m, 1H), 7.43-7.32 (m, 4H), 7.31-7.22 (m, 4H), 7.17-7.09 (m, 1H), 4.43 (s, 1H) 4.31 (q, *J*_{HF} = 7.6 Hz, 1H), 3.61 (s, 3H); minor diastereoisomer (selected signals): δ 4.56 (q, *J*_{HF} = 7.5 Hz, 0.5H), 4.55 (s, 0.5H), 3.65 (s, 1.5H). ¹³C NMR (125 MHz, CDCl₃) major diastereoisomer: δ 172.6, 137.0, 136.2, 128.8, 128.4, 127.9, 126.4, 125.8 (q, *J*_{CF} = 279.0 Hz), 124.4, 122.7, 120.4, 119.6, 111.3, 108.6, 62.5, 55.0 (q, *J*_{CF} = 30.5 Hz), 52.4; minor diastereoisomer (selected signals): δ 172.9, 137.2, 136.1, 128.9, 127.6, 126.2, 122.7, 120.3, 119.7, 111.3, 108.7, 62.4, 52.3. ¹⁹F NMR (376 MHz, CDCl₃) major diastereoisomer: δ -74.12; minor diastereoisomer: δ -74.11. IR (film) $\tilde{\nu}$: 3411, 3061, 3033, 2954, 2927, 2855, 1736, 1457, 1269, 1173, 1120 cm⁻¹. HRMS (ESI-TOF) m/z calcd for C₁₉H₁₇N₂O₂NaF₃ [M+Na]⁺ 385.1140, found: 385.1128.

N-[2,2-difluoro-1-(1*H*-indol-3-yl)ethyl]aniline (2n)

The compound was synthesized according to the general procedure starting with 25.7 mg of **1n** and purified using 30% MTBE/hexanes solvent system. Product was isolated as yellowish oil (26.9 mg, 66%). ¹**H NMR** (400 MHz, CDCl₃) δ 8.11 (br, 1H, NH_{Het}), 7.71-7.62 (m, 1H), 7.43-7.35 (m, 1H), 7.30-7.22 (m, 2H), 7.22-7.12 (m, 3H), 6.81-6.75 (m, 1H), 6.75-6.69 (m, 2H), 6.17 (td, *J*_{HF} = 56.0, 2.8 Hz, 1H, CF₂HCH), 5.09 (td, *J* = 12.9, 2.2 Hz, 1H, CHCF₂H), 4.18 (br, 1H, NH). ¹³C **NMR** (100 MHz, CDCl₃) δ 146.7, 136.3, 129.3, 126.10, 123.2, 122.7, 120.2, 119.0, 118.6, 115.7 (t, *J*_{CF} = 245.3 Hz), 113.8, 111.5, 110.6, 53.8 (t, *J*_{CF} = 23.0 Hz). ¹⁹F **NMR** (376 MHz, CDCl₃) δ -124.2, -125.6 (ABq, *J* = 277.2 Hz, 2F). **IR** (film) $\tilde{\nu}$: 3411, 3054, 2972, 2924, 1602, 1504, 1063cm⁻¹. **HRMS** (ESI-TOF) m/z calcd for C₁₆H₁₅N₂F₂ [M+H]⁺ 273.1203, found: 273.1191.

2,2-difluoro-1-(1*H*-indol-3-yl)-*N*-(2-phenylethyl)ethanamine (20)

The compound was synthesized according to the general procedure starting with 29.9 mg of **1o** and purified using 25-30% EtOAc/hexanes solvent system. Product was isolated as pinkish oil (42.5 mg, 94%). ¹**H NMR** (400 MHz, C_6D_6) δ 7.82-7.74 (m, 1H), 7.23-7.18 (m, 1H), 7.13-7.06 (m, 3H), 7.06-6.98 (m, 2H), 6.98-6.93 (m, 2H), 6.72 (br, 1H, NH_{Het}), 6.62-6.55 (m, 1H), 5.80 (td, J_{HF} = 56.9, 5.0, 1H), 4.15 (td, J_{HF} = 11.2, 4.9, 1H), 2.81-2.66 (m, 2H), 2.57-2.47 (m, 2H), 1.32 (br, 1H, NH). ¹³**C NMR** (100 MHz, C_6D_6) δ 140.3, 136.7, 129.0, 128.6, 127.0, 126.3, 123.6, 122.6, 120.2, 120.1, 117.5 (t, J = 243.5 Hz), 111.5, 111.3, 58.6 (t, J = 23.0 Hz), 49.0, 36.8. ¹⁹**F NMR** (376 MHz, C_6D_6) δ -122.2, -123.2 (ABq, J = 278.2 Hz, 2F). **IR** (film) $\tilde{\nu}$: 3417, 3171, 3060, 3028, 2926, 2854 cm⁻¹. **HRMS** (ESI-TOF) m/z calcd for $C_{18}H_{18}N_2NaF_2$ [M+Na]⁺ 323.1336, found: 323.1331.

2,2-difluoro-N-[2-(1H-imidazol-4-yl)ethyl]-1-(1H-indol-3-yl)ethanamine (2p)

The compound was synthesized according to the general procedure starting with 28.4 mg of **1p** and purified using 10% MeOH/DCM solvent system. Product was isolated as waxy colourless oil (32.7 mg, 75%). ¹**H NMR** (400 MHz, CD₃OD) δ 7.63-7.56 (m, 1H), 7.53-7.50 (m, 1H), 7.39-7.33 (m, 1H), 7.25 (s, 1H), 7.15-7.07 (m, 1H), 7.05- 6.97 (m, 1H), 6.74 (s, 1H), 6.01 (td, *J*_{HF} = 56.6, 4.4 Hz, 1H), 4.30 (td, *J* = 12.4, 4.4 Hz, 1H), 2.90-2.81 (m, 2H), 2.79-2.68 (m, 2H). ¹³**C NMR** (100 MHz, CD₃OD) δ 138.1, 136.1, 136.0, 128.0, 125.3, 122.7, 120.3, 119.7, 118.3 (t, *J*_{CF} = 242.3 Hz), 118.2, 112.5, 110.6, 58.7 (t, *J*_{CF} = 22.8 Hz), 48.0, 27.8. ¹⁹**F NMR** (376 MHz, CD₃OD) δ -125.1, -124.3, (ABq, *J* = 278.4 Hz, 2F). **IR** (film) $\tilde{\nu}$: 3406, 3136, 2976, 2923, 2854, 1456, 1104, 1048 cm⁻¹. **HRMS** (ESI-TOF) m/z calcd for C₁₅H₁₆N₄NaF₂ [M+Na]⁺ 313.1241, found: 313.1233.

2,2,3,3,4,4,4-heptafluoro-1-(1*H*-indol-3-yl)-*N*-(2-phenylethyl)butan-1-amine (**2r**)

The compound was synthesized according to the general procedure starting with 47.6 mg of **1r** and purified using 10-30% MTBE /hexanes solvent system. Product was isolated as colorless waxy oil (49.5 mg, 79%). ¹**H NMR** (600 MHz, CDCl₃) δ 8.16 (s, 1H, NH_{Het}), 7.62-7.58 (m, 1H), 7.37-7.33 (m, 1H), 7.26 – 7.19 (m, 3H), 7.19-7.15 (m, 1H), 7.15-7.11 (m, 1H), 7.10-7.05 (m,3H), 4.59 (dd, *J*_{HF} = 16.7, 11.9 Hz, 1H), 2.93 – 2.64 (m, 4H), 1.59 (s, 1H, NH). ¹³**C NMR** (150 MHz, CDCl₃) δ 139.5, 136.1, 128.7, 128.4, 126.5, 126.2, 124.1, 122.5, 120.3, 119.2, 111.4, 109.2, 56.1 (dd, *J*_{CF} = 23.2, 23.2 Hz), 49.0, 36.3. ¹⁹**F NMR** (376 MHz, CDCl₃) δ -80.8 (t, *J* = 10.7 Hz, 3F), -115.7, -120.5 (ABq, *J* = 277.1 Hz, 2F), -124.2, -125.2

(ABq, J = 289.7 Hz, 2F). **IR** (film) $\tilde{\nu}$: 3418, 3061, 3030, 2929, 2855, 1457, 1345, 1223, 1188, 1110 cm⁻¹. **HRMS** (EI) m/z calcd for C₂₀H₁₇N₂F₇ [M]⁺ 418.1280, found: 418.1283.

2,2,3,3,4,4,5,5,6,6,7,7,7-tridecafluoro-1-(1*H*-indol-3-yl)-*N*-(2-phenylethyl)heptan-1-amine (2s)

The compound was synthesized according to the general procedure starting with 70.1 mg of **1s** and purified using 10-30% MTBE /hexanes solvent system. Product was isolated as colorless waxy oil (53.4 mg, 63%). ¹H NMR (500 MHz, CDCl₃) δ 8.16 (s, 1H), 7.63-7.57 (m, 1H), 7.38-7.33 (m, 1H), 7.25-7.19 (m, 3H), 7.19-7.10 (m, 2H), 7.10-7.04 (m, 3H), 4.62 (dd, *J*_{HF} = 16.5, 12.0 Hz, 1H), 2.94-2.62 (m, 4H), 1.60 (s, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 139.5, 136.1, 128.7, 128.4, 126.5, 126.2, 124.2, 122.6, 120.3, 119.2, 111.4, 109.3, 56.4 (dd, *J*_{CF} = 24.8, 21.5 Hz), 49.0, 36.3. ¹⁹F NMR (470 MHz, CDCl₃) δ -80.8 (t, *J* = 10.0 Hz, 3F), -115.0, -119.7 (ABq, *J* = 277.2 Hz, 2F), -120.4 (m, 2F), -121.9 (m, 2F), -122.7 (m, 2F), -126,1 (m, 2F). IR (film) $\tilde{\nu}$: 3418, 3062, 3030, 2930, 2856, 1457, 1361, 1237, 1145 cm⁻¹. HRMS (ESI-TOF) m/z calcd for C₂₃H₁₈N₂F₁₃ [M+H]⁺ 569.1262, found: 569.1244.

Synthesis of functionalized amines 5, 7, 9, 11, 14 and 16-18 (from Table 2 in main text)

2,2,2-trifluoro-1-(3-methyl-1H-indol-2-yl)-N-(2-phenylethyl)ethanamine (5)

Reaction performed according to the general procedure synthesis of functionalized amines **2a-s**. To a suspension of Schwartz's reagent (50.3 mg, 0.195 mmol, 1.3 equiv.) in dry THF (1 mL) at room temperature was added amide (32.6 mg, 0.15 mmol). The reaction mixture was stirred at RT until it cleared (15 minutes) and then was cooled to 0 °C. TFA (44.5 mg, 0.39 mmol, 2.6 equiv.) and 3-methylindole (59.0 mg, 0.45 mmol, 3 equiv.) was added. The reaction mixture was allowed to warm up to room temperature and stirred for 16 h. The reaction was quenched with saturated NaHCO₃ and diethyl ether (5 mL) was added. The aqueous layer was extracted with ether (3x5 mL). The combined organic extracts were dried over Na₂SO₄ and evaporated. The residue was purified by FCC (50-100% toluene/hexanes). Product was isolated as colourless waxy oil (37.2 mg, 75%). ¹H NMR (500 MHz, CDCl₃) δ 8.09 (br, 1H, NH_{Het}), 7.58-7.54 (m, 1H), 7.33-7.24 (m, 4H), 7.24-7.18 (m, 1H), 7.18-7.09 (m, 3H), 4.56 (q, *J*_{HF} = 7.0 Hz, 1H), 2.92-2.85 (m, 1H), 2.83-2.69 (m, 3H), 2.30 (s, 3H), 1.69 (br, 1H, NH). ¹³C NMR (125 MHz, CDCl₃) δ 139.2, 135.5, 128.7, 128.6, 128.5, 126.5, 125.5, 125.0 (q, *J*_{CF} = 280.2 Hz), 122.6, 119.2, 118.8, 112.4, 111.0, 56.6 (q, *J*_{CF} = 29.8 Hz), 48.3, 36.1, 8.4. ¹⁹F NMR (376 MHz, CDCl₃) δ

74.0 (s, 3F). **IR** (film) $\tilde{\nu}$: 3416, 3060, 3029, 2924, 2858, 1456, 1267, 1172, 1143, 1119 cm⁻¹. **HRMS** (ESI-TOF) m/z calcd for C₁₉H₁₈N₂F₃ [M-H]⁻ 331.1422, found: 331.1429.

4,4,4-trifluoro-1-phenyl-3-[(2-phenylethyl)amino]butan-1-one (7)

Reaction performed according to the literature procedure.¹⁹ To a suspension of Schwartz's reagent (50.3 mg, 0.195 mmol, 1.3 equiv.) in dry THF (1 mL) at room temperature was added amide (32.6 mg, 0.15 mmol). The reaction mixture was stirred at RT until it cleared (45 minutes) and then was cooled to -65 °C. Acetophenone sillyl enol ether (33.8 µl, 31.7 mg, 0.165 mmol, 1.1 equiv.) and then boron trifluoride diethyl etherate (9.3 µl, 10.6 mg, 0.075 mmol, 0.5 equiv.) was added (the reaction mixture significantly heated up after addition of Lewis acid). The reaction mixture was allowed to warm up to room temperature and stirred for 16 h. The reaction was quenched with saturated NaHCO₃ and diethyl ether (5 mL) was added. The aqueous layer was extracted twice with ether (3x5 mL). The combined organic extracts were dried with Na₂SO₄ and evaporated. The residue was purified by FCC (0-15% MTBE/hexanes). Product was isolated as yellowish oil (35.0 mg, 73%). The reaction was also prepared on 5.0 mmol scale of starting amide (scaled up 33 times), quantity of used reagents: Cp₂Zr(H)Cl (1.68 g, 6.5 mmol, 1.3 equiv.); THF (33 mL); amide **1f** (1.09 g, 5.0 mmol); acetophenone sillyl enol ether (5) (1.13 mL, 5.5 mmol, 1.1 equiv.); boron trifluoride diethyl etherate (0.31 mL, 2.5 mmol, 0.5 equiv.). A reaction time and temperature were crucial factors in this case and the reaction mixture should be stirring for 16 h after a warm up to room temperature to give similar yield (1.02 g, 63%). ¹H NMR (500 MHz, C₆D₆) δ 7.63-7.57 (m, 2H), 7.14 – 7.06 (m, 3H), 7.05 – 6.95 (m, 5H), 3.90-3.80 (m, 1H) 2.98-2.84 (m, 2H), 2.79 (dd, J = 17.2, 3.4 Hz, 1H), 2.69 (dd, J = 17.2, 9.1 Hz, 1H), 2.53 (t, J = 7.2 Hz, 2H), 0.93 (br, 1H, NH). ¹³C NMR (125 MHz, C₆D₆) δ 195.2, 139.9, 137.0, 133.2, 129.0, 128.7, 128.3, 128.0, 127.6 (q, J_{CF} = 282.0 Hz), 126.4, 56.3 (q, J_{CF} = 28.0 Hz), 49.8, 38.5, 37.0. ¹⁹F NMR (470 MHz, C₆D₆) δ -74.7 (d, J_{FH} = 7.7 Hz, 3F). **IR** (film) $\tilde{\nu}$: 3356, 3062, 3029, 2925, 2858, 1689, 1266, 1143, 1119 cm⁻¹. **HRMS** (ESI-TOF) m/z calcd for C₁₈H₁₉NOF₃ [M+H]⁺ 322.1419, found: 322.1407.

5-{2,2,2-trifluoro-1-[(2-phenylethyl)amino]ethyl}furan-2(5H)-one (9)

Reaction performed according to the literature procedure.¹⁹ To a suspension of Schwartz's reagent (50.3 mg, 0.195 mmol, 1.3 equiv.) in dry THF (1 mL) at room temperature was added amide (32.6 mg, 0.15 mmol). The reaction mixture was stirred at rt until it cleared (45 minutes) and then was cooled to -65 °C. Trimethylsilyloxyfuran (28.0 μ l, 26.0 mg, 0.165 mmol, 1.1 equiv.) and then boron trifluoride diethyl etherate (9.3 μ l, 10.6 mg, 0.075 mmol, 0.5 equiv.) was added. The reaction mixture was allowed to warm up to room temperature and stirred for 16 h. The reaction was quenched with saturated NaHCO₃ and diethyl ether (5 mL) was added. The aqueous layer was extracted with ether

(3x5 mL). The combined organic extracts were dried with Na₂SO₄ and evaporated. The residue was purified by FCC (30% MTBE/hexanes). Product was isolated as yellow oil mixture of unseparable diastereoisomers (dr 1.4:1 based on ¹H NMR) (25.2 mg, 59%). ¹H NMR (500 MHz, CDCl₃) δ signals of both diastereoisomers: 7.34-7.12 (m, 10.5H), 3.21-3.11 (m, 2H), 3.00-2.93 (m, 1.4H), 2.91-2.83(m, 1H), 2.78-2.67 (m, 2.4H); major diastereoisomer (selected signals): 6.18 (dd, *J* = 5.8, 1.9 Hz, 1H), 5.25-5.22 (m, 1H), 3.58 (qd, *J*_{HF} = 7.6 Hz, *J* = 4.4 Hz, 1H); minor diastereoisomer (selected signals): 6.13 (dd, *J* = 5.7, 2.1 Hz, 0.7H), 5.22-5.19 (m, 0.7H), 3.92-3.82 (m, 0.7H), 3.31(qd, *J*_{HF} = 7.4 Hz, *J* = 3.2 Hz, 0.7H). ¹³C NMR (125 MHz, CDCl₃) major diastereoisomer: δ 171.6, 151.5, 138.9, 128.6, 128.6, 126.4, 125.1 (q, *J*_{CF} = 281.6 Hz), 124.3, 80.2, 61.3 (q, *J*_{CF} = 278.9 Hz), 123.1, 79.8, 60.8 (q, *J*_{CF} = 27.9 Hz), 50.0, 36.8. ¹⁹F NMR (470 MHz, CDCl₃) δ -72.4 (d, *J*_{FH} = 7.4 Hz, 2.1F), -72.6 (d, *J*_{FH} = 7.6 Hz, 3F). IR (film) $\tilde{\nu}$: 3352, 3087, 3063, 3029, 2926, 2856, 1764, 1667, 1455, 1362, 1262, 1156, 1129 cm⁻¹. HRMS (ESI-TOF) m/z calcd for C₁₄H₁₃NO₂F₃ [M-H]⁻ 284.0898, found: 284.0895.

1,1,1-trifluoro-N-(2-phenylethyl)hexan-2-amine (11)

To a suspension of Schwartz's reagent (50.3 mg, 0.195 mmol, 1.3 equiv.) in dry THF (1 mL) at room temperature was added amide (32.6 mg, 0.15 mmol). The reaction mixture was stirred at RT until it cleared (45 minutes) and then was cooled to -65 °C. *n*-BuLi (180 µl, 0.45 mmol, 3.0 equiv., 2.5M in hexanes) was dropped. The reaction mixture was allowed to warm up to room temperature and stirred for 16 h. The brown sluggish reaction mixture was quenched with saturated NaHCO₃ and diethyl ether (5 mL) was added. The aqueous layer was extracted twice with ether (3x5 mL). The combined organic extracts were dried with Na₂SO₄ and evaporated. The residue was purified by FCC (0-15% MTBE/hexanes). Product was isolated as pale yellow oil (17.8 mg, 46%). ¹**H NMR** (600 MHz, C₆D₆) δ 7.15-7.11 (m, 2H), 7.08-7.00 (m, 3H), 2.97-2.90 (m, 1H), 2.71-2.58 (m, 2H), 2.50 (t, *J* = 7.0 Hz, 2H), 1.50 - 1.41 (m, 1H), 1.18-1.08 (m, 2H), 1.08 - 0.92 (m, 3H), 0.75 (t, *J* = 7.1 Hz, 3H), 0.66 (br, 1H, NH). ¹³**C NMR** (150 MHz, C₆D₆) δ 140.1, 129.0, 128.7, 127.9 (q, *J*_{CF} = 283.2 Hz), 126.5, 59.8 (q, *J*_{CF} = 26.7 Hz), 49.7, 37.3, 28.8, 27.9, 22.7, 14.0. ¹⁹**F NMR** (470 MHz, C₆D₆) δ -74.8 (d, *J*_{FH} = 7.5 Hz, 3F). **IR** (film) $\tilde{\nu}$: 3350, 3062, 3029, 2959, 2931, 2872, 2705, 2442, 1723, 1456, 1270, 1176, 1149, 1103 cm⁻¹. **HRMS** (ESI-TOF) m/z calcd for C₁₄H₂₁NF₃ [M+H]⁺ 260.1626, found: 260.1614.

1,1,1-trifluoro-N-(2-phenylethyl)pent-4-en-2-amine (14)

Product was obtained by addition of organozinc or organomagnesium nucleophiles as follows:

To a suspension of Schwartz's reagent (50.3 mg, 0.195 mmol, 1.3 equiv.) in dry THF (1 mL) at room temperature was added amide (32.6 mg, 0.15 mmol). The reaction mixture was stirred at RT until it cleared (45 minutes).

In the case of addition of organozinc nucleophile, the mixture was cooled to 0 °C. Then allyl bromide (39.0 μ l, 54.4 mg, 0.45 mmol, 3.0 equiv) was dropped and zinc dust (34.3 mg, 0.525 mmol, 3.5 equiv., <10 μ m) was added. The reaction mixture was maintained in this temperature for 10 minutes and then allowed to warm up to room temperature and stirred for 16 h.

In the case of addition of organomagnesium nucleophile, the mixture was cooled to -65 °C. Then allylmagnesium bromide (600 μ l, 0.6 mmol, 4.0 equiv., 1.0M in Et₂O) was dropped. The reaction mixture was maintained in this temperature for 10 minutes and then allowed to slowly warm up to room temperature and stirred for 16 h.

Both reaction mixtures was quenched and purified in the same way. The reaction mixture (organozinc - green and sluggish, organomagnesium - pale yellow and clear) was quenched with saturated NaHCO₃ and diethyl ether (5 mL) was added. The aqueous layer was extracted with ether (3x5 mL). The combined organic extracts were dried with Na₂SO₄ and evaporated. The residue was purified by FCC (15% MTBE/hexanes). Product was isolated as yellow oil (organozinc - 24.5 mg, 67%, organomagnesium - 21.2 mg, 58%). ¹H NMR (400 MHz, CDCl₃) δ 7.34-7.27 (m, 2H), 7.25-7.16 (m, 3H), 5.74-5.59 (m, 1H), 5.09-5.05 (m, 1H), 5.05-5.01 (m, 1H), 3.15-3.07 (m, 1H), 3.07-2.98 (m, 1H), 2.96-2.87 (m, 1H), 2.86-2.70 (m, 2H), 2.52-2.38 (m, 1H), 2.25-2.12 (m, 1H), 1.29 (br, 1H, NH). ¹³C NMR (100 MHz, CDCl₃) δ 139.4, 132.7, 128.7, 128.5, 126.6 (q, *J_{CF}* = 282.0 Hz), 126.3, 118.9, 59.2 (q, *J_{CF}* = 27.2 Hz), 49.8, 36.5, 33.3. ¹⁹F NMR (376 MHz, CDCl₃) δ -74.9 (s, 3F). IR (film) \tilde{v} : 3348, 3084, 3066, 3029, 2927, 2856, 1495, 1480, 1452, 1442, 1381, 1273, 1145 cm⁻¹. HRMS (ESI-TOF) m/z calcd for C₁₃H₁₇NF₃ [M+H]⁺ 244.1313, found: 244.1306.

1-(1,3-dithian-2-yl)-2,2,2-trifluoro-N-(2-phenylethyl)ethanamine (16)

To a suspension of Schwartz's reagent (50.3 mg, 0.195 mmol, 1.3 equiv.) in dry THF (1 mL) at room temperature was added amide (32.6 mg, 0.15 mmol). The reaction mixture was stirred at RT until it cleared (45 minutes) and then was cooled to 0 °C. In another Schlenk tube, to cooled to -30 °C solution of 1,3-dithiane (39.7 mg, 0.33 mmol, 2.2 equiv.) in dry THF (3 mL), n-BuLi (120µl, 0.3 mmol, 2.0 equiv., 2.5M in hexanes) was dropped and stirred for 2 h. Next, the solution of crude imine was dropped, the reaction mixture was allowed to warm up to room temperature and stirred for 16 h. The reaction mixture was quenched with saturated NaHCO₃ and diethyl ether (5 mL) was added. The aqueous layer was extracted with ether (3x5 mL). The combined organic extracts were dried with Na₂SO₄ and evaporated. The residue was purified by FCC (0-15% MTBE/hexanes). Product was isolated as a colorless oil (24.7 mg, 51%). ¹H NMR (400 MHz, CDCl₃) δ7.35 – 7.27 (m, 2H), 7.25 – 7.16 (m, 3H), 4.47 (d, J = 3.5 Hz, 1H), 3.39 (dq, J = 7.4, 3.6 Hz, 1H), 3.20 – 3.01 (m, 2H), 2.96 (ddd, J = 14.0, 11.4, 2.7 Hz, 1H), 2.91 – 2.79 (m, 5H), 2.22 (br, 1H, NH), 2.13 – 2.01 (m, 1H), 1.96-1.78 (m, 1H). ¹³C **NMR** (100 MHz, CDCl₃) δ 139.3, 128.7, 128.4, 126.2, 125.3 (q, J_{CF} = 283.7 Hz), 64.1 (q, J_{CF} = 28.0 Hz), 50.9, 47.7, 36.7, 30.9, 30.2, 25.3. ¹⁹F NMR (376 MHz, CDCl₃) δ -71.0 (s, 3F). IR (film) $\tilde{\nu}$: 3337, 3061, 3027, 2934, 2903, 2857, 1476, 1422, 1362, 1256, 1153, 1131 cm⁻¹. HRMS (ESI-TOF) m/z calcd for C₁₄H₁₉NS₂F₃ [M+H]⁺ 322.0911, found: 322.0902.

2,2,2-trifluoro-N-(2-phenylethyl)ethanamine (17)

To a suspension of Schwartz's reagent (50.3 mg, 0.195 mmol, 1.3 equiv.) in dry THF (1 mL) at room temperature was added amide (32.6 mg, 0.15 mmol). The reaction mixture was stirred at RT until it cleared (45 minutes) and then was cooled to 0 °C. TFA (68 mg, 0.6 mmol, 4.0 equiv.) was dropped and then borane tetrahydrofuran complex (225 μ l, 0.225 mmol, 1.5 equiv., 1M in THF) was added. The reaction mixture was allowed to warm up to room temperature and stirred for 16 h. The reaction mixture was quenched with saturated NaHCO₃ and diethyl ether (5 mL) was added. The aqueous layer was extracted with ether (3x5 mL). The combined organic extracts were dried with Na₂SO₄ and evaporated. The residue was purified by FCC (15% MTBE/hexanes). Product was isolated as colorless oil (18.5 mg, 61%). ¹H NMR (400 MHz, CDCl₃) δ 7.36 - 7.27 (m, 2H), 7.26 - 7.17 (m, 3H), 3.19 (q, *J* = 9.4 Hz, 2H), 3.01 (t, *J* = 7.0 Hz, 2H), 2.81 (t, *J* = 7.0 Hz, 2H), 1.42 (br, 1H, NH). ¹³C NMR (100 MHz, CDCl₃) δ 139.3, 128.7. 128.6, 126.4, 125.5 (q, *J_{CF}* = 277.8 Hz), 50.6, 50.5 (q, *J_{CF}* = 31.1 Hz), 36.4. ¹⁹F NMR (376 MHz, CDCl₃) δ -7.17 (s, 3F). IR (film) \tilde{v} : 3395, 2956, 2920, 2851, 1728, 1601, 1460, 1376, 1262, 1139, 1089, 1026 cm⁻¹. HRMS (ESI-TOF) m/z calcd for C₁₀H₁₃NF₃ [M+H]⁺ 204.1000, found: 204.0997.

N-tert-butyl-3,3,3-trifluoro-*N*²-(2-phenylethyl)-*N*²-(trifluoroacetyl)alaninamide (**18**)

To a suspension of Schwartz's reagent (50.3 mg, 0.195 mmol, 1.3 equiv.) in dry THF (1 mL) at room temperature was added amide (32.6 mg, 0.15 mmol). The reaction mixture was stirred at RT until it cleared (45 minutes) and then was cooled to -70 °C. TFA (68 mg, 0.6 mmol, 4.0 equiv.) was dropped and then tert-butyl isocyanide (21.5 µl, 15.8 mg, 0.19 mmol, 1.25 equiv.) was added. The reaction mixture was allowed to slowly warm up to room temperature and stirred for 16 h. The reaction mixture was quenched with saturated NaHCO₃ and diethyl ether (5 mL) was added. The aqueous layer was extracted twice with ether (3x5 mL). The combined organic extracts were dried with Na₂SO₄ and evaporated. The residue was purified by FCC (0-15% MTBE/hexanes). Product was isolated as colorless waxy oil (34.1 mg, 57%). Major rotamer (selected signals): ¹H NMR (500 MHz, toluene-d₈) δ 5.82 (br, 1H), 5.40 (q, J = 7.6 Hz, 1H), 4.00 – 3.88 (m, 1H), 3.79 -3.65 (m, 1H), 3.05 -2.95 (m, 1H), 2.88 – 2.75 (m, 1H), 1.12 (s, 9H); ¹³C NMR (125 MHz, toluene-d₈) δ 160.6, 159.3 (q, J = 36.9 Hz), 138.2, 127.2, 123.7 (q, J = 276.1 Hz), 117.0 (q, J = 287.1 Hz), 59.1 (q, J = 30.8 Hz), 52.4, 48.7, 36.4, 28.0; ¹⁹F NMR (376 MHz, CDCl₃) δ -66.8, -68.6. Minor rotamer (selected signals): ¹H NMR (500 MHz, toluene-d₈) δ 5.25-5.10 (m, 0.3H), 4.74-4.56 (m, 0.3H), 1.02 (s, 3H); ¹³C NMR (125 MHz, toluene-d₈) δ 61.1 (q, J = 30.8 Hz), 49.4, 33.5, 30.3; ¹⁹F NMR (376 MHz, CDCl₃) δ -67.0, -67.4. IR (film) $\tilde{\nu}$: 3363, 2974, 1683, 1538, 1456, 1368, 1210, 1145, 1126 cm⁻¹. HRMS (ESI-TOF) m/z calcd for C₁₇H₂₀N₂O₂F₆Na [M+Na]⁺ 421.1327, found: 421.1312.

Synthesis of trifluoromethyl bioisostere of procainamide 22 (Scheme 2 in main text)

N-[2-(diethylamino)ethyl]-2,2,2-trifluoroacetamide (20)

To neat *N*,*N*-diethylethylenediamine (1.12 mL, 8.0 mmol) was added ethyl trifluoroacetate (952 µl, 8.0 mmol, 1.0 equiv.) and a solution was stirred for 3 h at room temperature (full conversion of amine was checked by TLC). The reaction mixture was evaporated and dried on oil pump for 16 h to give pure product as orange oil (1.54 g, 91%). ¹H NMR (400 MHz, CDCl₃) δ 7.29 (br, NH, 1H), 3.34 (t, *J* = 5.8 Hz, 2H), 2.59 (t, *J* = 5.9 Hz, 2H), 2.52 (q, *J* = 7.2 Hz, 4H), 0.99 (t, *J* = 7.2 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 156.9 (q, *J*_{CF} = 36.7 Hz), 115.9 (q, *J*_{CF} = 286.0 Hz), 50.4, 46.7, 37.0, 11.7. ¹⁹F NMR (376 MHz, CDCl₃) δ -76.3. IR (film) $\tilde{\nu}$: 3319, 2974, 2819, 1712, 1557, 1163 cm⁻¹. HRMS (ESI-TOF) m/z calcd for C₈H₁₆N₂OF₃ [M+H]⁺ 213.1215, found: 213.1206.

N'-[1-(4-aminophenyl)-2,2,2-trifluoroethyl]-N,N-diethylethane-1,2-diamine (22)

To a suspension of Schwartz's reagent (50.3 mg, 0.195 mmol, 1.3 equiv.) in dry THF (1 mL) at room temperature was added amide (31.8 mg, 0.15 mmol). The reaction mixture was stirred at RT until it cleared (45 minutes) and then was cooled to -70 °C. In another Schlenk tube, to cooled to -70 °C solution of 4-bromo-N,N-bistrimethylsilylaniline (130 μl, 146mg, 0.45 mmol, 3.0 equiv.) in dry THF (1 mL), t-BuLi (529 µl, 0.9 mmol, 6.0 equiv., 1.7M in hexanes) was dropped and stirred at this temperature for 1 h. Next, the solution of crude imine was cooled to -70 °C, pale yellow solution of generated organolithium compound was dropped (the mixture changed colour from yellow to orange) and the reaction mixture was stirred at this temperature for 3 h. Next, to the reaction mixture was added TBAF (0.9 mL, 0.9 mmol, 6.0 equiv., 1M in THF) and solution was stirred for 15 minutes. After this time, a previously prepared solution of acetic acid (0.9 mL, 0.9 mmol, 6.0 equiv., 1M in THF) was added and the solution was stirred for additional 15 minutes. Next, a silica gel was added to the solution (ca. 500 mg) and the slurry mixture was evaporated. The residue was purified by FCC (1/5/94% aqueous ammonia/MeOH/DCM). Product was isolated as yellow oil (23.9 mg, 55%). ¹**H NMR** (500 MHz, toluene-d₈) δ 7.15-7.10 (m, 2H), 6.22-6.18 (m, 2H), 3.91 (q, J = 7.6 Hz, 1H), 2.75 (br, 2H, NH₂), 2.51-2.38 (m, 2H), 2.38-2.31 (m, 1H), 2.30-2.18 (m, 5H), 0.85 (t, J = 7.1 Hz, 6H). ¹³C NMR (125 MHz, toluene-d₈) δ 147.6, 129.8, 129.2, 126.6 (q, J_{CF} = 280.1 Hz) 114.8, 65.0 (q, J_{CF} = 28.1 Hz), 52.8, 47.2, 45.6, 12.3. The quartet with chemical shift 126.6 ppm was difficult to observation, therefore ¹⁹F decoupled ¹³C spectra was also done and 126.6 (d, J_{CH} = 6.7 Hz) was noticed. ¹⁹F NMR (470 MHz, toluene-d₈) δ -74.4 (d, J_{FH} = 7.6 Hz). **IR** (film) \tilde{v} : 3317, 3213 2970, 2936, 2874, 2817, 2653, 1626, 1520, 1470, 1261, 1168, 1118 cm⁻¹. **HRMS** (ESI-TOF) m/z calcd for C₁₄H₂₃N₃F₃ [M+H]⁺ 290.1844, found: 290.1840.

Synthesis of trifluoromethyl bioisostere of itopride 26 (Scheme 2 in main text)

N-{4-[2-(dimethylamino)ethoxy]benzyl}-2,2,2-trifluoroacetamide (24)

The compound **24** was synthesized by alkylation of 4-hydroxybenzaldehyde, reductive amination of obtained derivative and subsequent trifluoroacetylation in according to the modified literature procedure.¹⁵ To a solution of the 4-hydroxybenzaldehyde (**23**) (2.44 g, 20.0 mmol) in EtOAc (20 mL) was added potassium carbonate (3.06 g, 22.0 mmol, 1.1 equiv.), tetra-*N*-butylammonium bromide (66.0 mg, 0.2 mmol, 1 mol%) and the solution was refluxed for 5 minutes. In another flask, to a solution of 2-chloro-*N*,*N*-dimethylethylamine hydrochloride in toluene (6 mL) was added water (5 mL). The mixture was stirred vigorously and a solution of 25% aqueous NaOH (7 mL) was added into and stirred until organic phase cleared. Next, organic extract was dropped to the previously prepared boiling reaction mixture and refluxed for 16h. After this time, the reaction mixture was cooled to room temperature, water was added (12 mL) and vigorously stirred for 5 minutes. Next, the organic phase was separated and evaporated. Obtained yellow oily residue (2.7 g) was used to next step without further purification.

To the solution of hydroxylamine hydrochloride (458.6 mg, 6.6 mmol, 1.1 equiv.) in acetic acid (3 mL) cooled to 5 °C was added dropwise a solution of previously obtained alkylated aldehyde (1.16 g, 6.0 mmol) in acetic acid (2 mL). The yellow reaction mixture was stirred at this temperature for 2 h (full conversion of substrate, TLC). Next, a zinc powder (934.0 mg, 14.4 mmol, 2.4 equiv.) was added in portions and reaction mixture was allowed to warm up to room temperature. After 5 minutes, a mixture was turned colourless. After 1 h (full conversion of substrate, TLC) the reaction mixture was evaporated, to the residue was added water (30 mL) and aqueous ammonia (25%) was added dropwise until pH was 9-10 (heating up the mixture during alkalisation). After that, the solution was vigorously stirred for additional 15 minutes and extracted with DCM (8x30 mL). The combined organic extracts were dried with Na₂SO₄ and evaporated. Obtained yellow oily residue (1.05 g), was dried on oil pump and used to next step without further purification.

To the solution of crude benzylamine (1.05 g, 5.4 mmol) in DCM (anhydrous) was added ethyl trifluoroacetate (643 µl, 767 mg, 5.4 mmol; 1.0 equiv.) and reaction mixture was heating up to gently reflux (50 °C) for 16 h. After this time, mixture was cooled to room temperature and evaporated. Product was obtained as yellowish oil, which crystallized upon standing in refrigerator (1.25 g, 51%, overall yield after 4 steps). mp 59-60 °C (from DCM). ¹H NMR (400 MHz, CDCl₃) δ 7.21-7.16 (m, 2H), 6.93 (br, 1H, NH), 6.90-6.84 (m, 2H), 4.43 (d, *J* = 5.7 Hz, 2H), 4.05 (t, *J* = 5.6 Hz, 2H), 2.75 (t, *J* = 5.6 Hz, 2H), 2.35 (s, 6H). ¹³C NMR (125 MHz, CDCl₃) δ 158.7, 157.0 (q, *J*_{CF} = 37.1 Hz), 129.4, 128.2, 115.9 (q, *J*_{CF} = 37.1 Hz), 115.0, 65.8, 58.1, 45.7, 43.4. ¹⁹F NMR (376 MHz, CDCl₃) δ -75.8. IR (film) $\tilde{\nu}$: 3199, 3040,

2948, 2881, 2828, 2783, 1712, 1513, 1217, 1179 cm⁻¹. **HRMS** (ESI-TOF) m/z calcd for $C_{13}H_{18}N_2O_2F_3$ [M+H]⁺ 291.1320, found: 290.1311.

1-(3,4-dimethoxyphenyl)-N-{4-[2-(dimethylamino)ethoxy]benzyl}-2,2,2-trifluoroethanamine (26)

To a suspension of Schwartz's reagent (100.6 mg, 0.39 mmol, 1.3 equiv.) in dry THF (2 mL) at room temperature was added amide (87.1mg, 0.3 mmol). The reaction mixture was stirred at RT until it cleared (5 minutes) and then was cooled to -70 °C. In another Schlenk tube, to cooled to -70 °C solution of 4-bromo-1,2-dimethoxybenzene (129.5 μl, 195.3 mg, 0.9 mmol, 3.0 equiv.) in dry THF (2 mL), t-BuLi (1.06 mL, 1.8 mmol, 6.0 equiv., 1.7M in pentane) was dropped (reaction mixture has changed a colour from colourless to pale yellow) and stirred at this temperature for 1 h. Next, the solution of crude imine was cooled to -70 °C, pale orange solution of generated organolithium compound was dropped (the mixture has changed the colour from yellow to orange) and the reaction mixture was stirred at this temperature for 3 h. The reaction mixture was quenched with saturated NaHCO₃ and EtOAc (5 mL) was added. The aqueous layer was extracted with EtOAc (3x10mL). The combined organic extracts were dried with Na₂SO₄ and evaporated. The residue was purified by FCC (0-5% MeOH/DCM). Product was isolated as a yellow oil (37.9 mg, 31%). ¹H NMR (500 MHz, CDCl₃) δ 7.18- 7.14 (m, 2H), 6.96- 6.90 (m, 2H), 6.90-6.82 (m, 3H), 4.10-4.02 (t, J = 5.7 Hz, 2H + q, J = 7.2 Hz, 1H), 3.90 (s, 3H), 3.89 (s, 3H), 3.75, 3.58 (ABq, J = 13.3 Hz, 2H), 2.76 (t, J = 5.8 Hz, 2H), 2.36 (s, 6H). ¹³C NMR (125 MHz, CDCl₃) δ 158.0, 149.5, 149.2, 131.3, 129.7, 129.4, 125.5 (q, *J*_{CF} = 281.1 Hz), 121.4, 114.6, 111.2, 111.0, 65.7, 62.9 (q, *J*_{CF} = 28.6 Hz), 58.1, 56.0, 55.9, 50.3, 45.7. ¹⁹F NMR (470 MHz, CDCl₃) δ -74.1 (d, J_{FH} = 7.4 Hz). **IR** (film) \tilde{v} : 2941, 2825, 2723, 1609, 1513, 1465, 1256, 1157, 1029 cm⁻¹. **HRMS** (ESI-TOF) m/z calcd for C₂₁H₂₈N₂O₃F₃ [M+H]⁺ 413.2052, found: 413.2050.

NMR spectra

NMR spectra of starting amides 1i-m and 1o-s

S24

¹⁹F NMR (376 MHz, MeOD)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

S27

S35

NMR spectra of amines 2a-s (from Scheme 1 in main text)

-4.1517

2d ¹H NMR (400 MHz, CDCl₃)

f1 (ppm)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

-8.3623 -8.3623 -8.3623 -8.36597 7.65601 7.15782 7.15782 7.15782 7.15782 7.157382 6.66977 7.157382 6.663945 -6.663149 6.633465 -6.632465 -6.632465

$\begin{array}{c} -8.26 \\ -8.26 \\ -7.338 \\ -7.538$

< -75.4588
< -75.4758</pre>

2k ¹⁹F NMR (470 MHz, CDCl₃)

-123.7233 -124.4638 -124.9629 -125.7036

-40 -45 -50 -55 -60 -65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 -145 -150 -155 -160 f1 (ppm)

 $<_{-74.6837}$

<172.1601171.5653 171.5653 151.5186 151.5186 151.5186 151.5186 151.5186 133.8.6979 133.8.65392 133.9767 126.3392 123.3923 123.3923 123.39243 123.39243 123.39243 123.39243 123.39243 123.39243 123.39243 123.39243 123.39264 1

7.1599 7.1467 7.1343 7.1217 7.0692 7.0692 7.0569 7.0144

2.9574 2.9459 2.9459 7.2.9459 7.2.9153 7.2.9153 7.2.9153 7.2.6548 7.2.6548 7.2.6548 7.2.6548 7.2.6548 7.2.6548 7.2.6548 7.2.6548 7.2.6548 7.2.6548 7.2.6548 7.2.6548 7.4549 7.5459 7.5599 7.5599 7.5599 7.5599 7.5599 7.5599 7.5599 7.5599 7

S67

10 0 -10 -20 -30 -40 -50 -50 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

NMR spectra of products 20 and 22 from procainamide synthesis (from Scheme 2 in main text)

6.8.4	4041002	1 8 5
ν m ω	0 8 1 9 1 9 1 9 0	101
	ດ ທີ່ທີ່ທີ່ທີ່ 4	0,0,0
ຕໍຕໍຕັ	NNNNNN	-i o d
\checkmark		\checkmark

 $< \frac{7.2891}{7.2600}$

S78

-50 -55 -60 -65 -70 -75 -80 -85 -90 -95 f1 (ppm)

-100

-40

-45

References

- 1. J. Ohtaka, T. Sakamoto and Y. Kikugawa, *Tetrahedron Lett.*, 2009, **50**, 1681-1683.
- 2. C.-Z. Tao, J. Li, Y. Fu, L. Liu and Q.-X. Guo, *Tetrahedron Lett.*, 2008, **49**, 70-75.
- 3. H. Morimoto, R. Fujiwara, Y. Shimizu, K. Morisaki and T. Ohshima, *Org. Lett.*, 2014, **16**, 2018-2021.
- 4. H. W. Johnson and Y. Iwata, J. Org. Chem., 1970, **35**, 2822-2823.
- 5. Q.-Z. Zhou and Z.-C. Chen, *Synth. Commun.*, 2000, **30**, 3189-3194.
- 6. J. C. Holder, E. D. Goodman, K. Kikushima, M. Gatti, A. N. Marziale and B. M. Stoltz, *Tetrahedron*, 2015, **71**, 5781-5792.
- 7. K. G. Rutherford, S. Y.-S. Ing and R. J. Thibert, *Can. J. Chem.*, 1965, **43**, 541-546.
- 8. L. A. Arnold, W. Luo and R. K. Guy, *Org. Lett.*, 2004, **6**, 3005-3007.
- 9. S. Nagubandi and G. Fodor, *Heterocycles*, 1981, **15**, 165-177.
- 10. H. J. Davis, G. R. Genov and R. J. Phipps, *Angew. Chem. Int. Ed.*, 2017, **56**, 13351-13355.
- 11. A. B. Gómez, M. A. Cortés González, M. Lübcke, M. J. Johansson, C. Halldin, K. J. Szabó and M. Schou, *Chem. Commun.*, 2016, **52**, 13963-13966.
- 12. Z. Wang, Y. Zhang, S. G. Bartual, J. Luo, T. Xu, W. Du, Q. Xun, Z. Tu, R. A. Brekken, X. Ren, A. N. Bullock, G. Liang, X. Lu and K. Ding, *ACS Med. Chem. Lett.*, 2017, **8**, 327-332.
- 13. W. O. Foye and J. C. Anderson, J. Pharm. Sci., 1969, **58**, 1558-1560.
- 14. L. J. Theodore, W. L. Nelson, B. Dave and J. C. Giacomini, *J. Med. Chem.*, 1990, **33**, 873-877.
- 15. L. Pignataro, S. Carboni, M. Civera, R. Colombo, U. Piarulli and C. Gennari, *Angew. Chem. Int. Ed.*, 2010, **49**, 6633-6637.
- 16. S. S. Biechler and R. W. Taft, *J. Am. Chem. Soc.*, 1957, **79**, 4927-4935.
- 17. A. P. Sergeev, J. Org. Chem, USSR, 1970, **6**, 750-756.
- 18. M. Ke and Q. Song, *Chem. Commun.*, 2017, **53**, 2222-2225.
- 19. M. V. Spanedda, M. Ourévitch, B. Crousse, J.-P. Bégué and D. Bonnet-Delpon, *Tetrahedron Lett.*, 2004, **45**, 5023-5025.