A Stable Bis(methylene) $-\lambda^{4}$-selane with a $>\mathrm{C}=\mathrm{Se}=\mathrm{C}<$ bond containing Se(IV)

Table of Contents

General Procedure 2
NMR Spectroscopic Analysis 3
X-ray Crystallographic Analysis of 1, 12, 13, and 14 12
Computational Details 15
Kinetic Experiment 16
Electrochemical experiments. 17
References 18

General Procedure

Unless otherwise noted, all experiments were performed under an argon atmosphere. ${ }^{1} \mathrm{H}(400$ MHz) and ${ }^{13} \mathrm{C}$ NMR (100 MHz) spectra were measured in CDCl_{3} and $\mathrm{C}_{6} \mathrm{D}_{5} \mathrm{CD}_{3}$ on a JEOL JNM ECS-400SS spectrometer. A signal arising from residual $\mathrm{CHCl}_{3}(7.26 \mathrm{ppm})$ in benzene- d_{6} and $\mathrm{C}_{6} \mathrm{D}_{5} \mathrm{CD}_{2} \mathrm{H}(2.08 \mathrm{ppm})$ in toluene- d_{8} were used as an internal standard for the ${ }^{1} \mathrm{H}$ NMR spectra, respectively, and that of $\mathrm{CDCl}_{3}(77.26 \mathrm{ppm})$ and $\mathrm{C}_{6} \mathrm{D}_{5} \mathrm{CD}_{3}(20.43 \mathrm{ppm})$ for the ${ }^{13} \mathrm{C}$ NMR spectra. ${ }^{29} \mathrm{Si}$ NMR (79 MHz) spectra were measured in $\mathrm{C}_{6} \mathrm{D}_{6}$ using $\mathrm{Si}\left(\mathrm{CH}_{4}\right)_{4}(0 \mathrm{ppm})$ as an external standard. ${ }^{77} \mathrm{Se}$ NMR (76 MHz) spectra were measured in $\mathrm{C}_{6} \mathrm{D}_{6}$ using $\mathrm{Me}_{2} \mathrm{Se}(0 \mathrm{ppm})$ as an external standard.

High-resolution mass spectra (HRMS) were recorded on a JEOL JMS-T100LP (ESI) mass spectrometer. All melting points were measured on a SMP-300CT capillary melting point apparatus and are uncorrected.

Synthesis of Bis(methylene)- λ^{4}-selane (1): A THF solution (6 mL) of $\left(\mathrm{MePh}_{2} \mathrm{Si}_{2}\right)_{2} \mathrm{CBr}_{2}(572 \mathrm{mg}$, $1.01 \mathrm{mmol})$ at $-78^{\circ} \mathrm{C}$ was treated dropwise with $t-\mathrm{BuLi}(1.64 \mathrm{M}$ in pentane, $1.21 \mathrm{~mL}, 2.00 \mathrm{mmol})$ under vigorous stirring. After stirring for 5 min at this temperature, selenium powder ($36 \mathrm{mg}, 0.46$ mmol) was added and the reaction mixture was allowed to warm to room temperature, where stirring was continued for 1 h . Subsequently, all volatiles were removed under reduced pressure, and the residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and filtered through Celite ${ }^{\circledR}$. The filtrate was evaporated to dryness, and the residue was re-precipitated from $\mathrm{CH}_{3} \mathrm{CN}$ to afford 1 as a purple solid ($265 \mathrm{mg}, 0.30 \mathrm{mmol}$, 59 \%). mp. $130{ }^{\circ} \mathrm{C}$ (dec.); ${ }^{1} \mathrm{H}$ NMR (400 MHz , toluene- $d_{8}, 298 \mathrm{~K}$) $\delta 0.42$ (brs, 12H), 7.0-7.2 (m, $24 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), 7.3-7.5 (m, 16H, Ar-H); ${ }^{13} \mathrm{C}$ NMR (100 MHz , toluene- $d_{8}, 298 \mathrm{~K}$), $\delta-0.24,127.9,129.2$, $135.8,138.2,166.7\left({ }^{1} J_{\mathrm{Se}-\mathrm{C}}=215 \mathrm{~Hz},{ }^{1} J_{\mathrm{Si}-\mathrm{C}}=51 \mathrm{~Hz},>\mathrm{C}=\mathrm{Se}\right) ;{ }^{29} \mathrm{Si}$ NMR (79 MHz , toluene- $d_{8}, 298 \mathrm{~K}$), $\delta-11.1 ;{ }^{77} \mathrm{Se}$ NMR (76 MHz , toluene- $d_{8}, 298 \mathrm{~K}$), $\delta 1501$; Anal. Calcd for C, 72.69 ; H, 5.87; found: C, 71.16; H, 5.95; HRMS (DART) found: $m / z=893.2393\left(\left[\mathrm{M}^{+} \mathrm{H}\right]^{+}\right)$. Calcd for $\mathrm{C}_{54} \mathrm{H}_{52} \mathrm{SSi}_{4} 893.2397$ $\left([\mathrm{M}+\mathrm{H}]^{+}\right) . \mathrm{UV}$-vis (toluene): $\lambda=523 \mathrm{~nm}(\varepsilon 6,700)$.

Reaction of 1 with $\mathbf{H C l}$: $\mathrm{A}_{\mathrm{CH}}^{2} \mathrm{Cl}_{2}$ solution $(10 \mathrm{~mL})$ of $\mathbf{1}(104 \mathrm{mg}, 0.12 \mathrm{mmol})$ at $-78{ }^{\circ} \mathrm{C}$ was treated with $\mathrm{HCl}(0.8 \mathrm{M}$ in dioxane, $0.60 \mathrm{~mL}, 0.12 \mathrm{mmol})$. After 30 min , all volatiles were removed under reduced pressure, and the residue was recrystallized from $\mathrm{Et}_{2} \mathrm{O}$ to afford $\mathbf{1 2}$ as a colorless solid ($86 \mathrm{mg}, 0.093 \mathrm{mmol}, 79 \%$). HCl-adduct 12: mp. $79{ }^{\circ} \mathrm{C}$ (dec.); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$) δ $-0.26(\mathrm{~s}, 6 \mathrm{H}), 0.22(\mathrm{~s}, 6 \mathrm{H}), 2.77(\mathrm{~s}, 1 \mathrm{H}), 7.04(\mathrm{~d}, 4 \mathrm{H}), 7.13(\mathrm{t}, 4 \mathrm{H}), 7.15-7.30(\mathrm{~m}, 16 \mathrm{H}), 7.41(\mathrm{t}, 2 \mathrm{H})$, $7.47(\mathrm{t}, 4 \mathrm{H}), 7.45-7.55(\mathrm{~m}, 6 \mathrm{H}), 7.77(\mathrm{~d}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$), $\delta-3.55,-1.10$, $10.6\left(\mathrm{~s},{ }^{1} J_{\mathrm{Se}-\mathrm{C}}=90 \mathrm{~Hz},{ }^{1} J_{\mathrm{Si}-\mathrm{C}}=44 \mathrm{~Hz}\right), 52.1,127.3,127.3,127.4,127.8,128.9,129.0,129.6,129.9$, $135.2,135.4,136.0,136.1,136.4,137.1,137.3,137.5 ;{ }^{77} \mathrm{Se} \mathrm{NMR}\left(76 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), \delta 375$.

Reaction of 1 with $\mathbf{S O}_{2} \mathbf{C l}_{2}$: $\mathrm{A}_{\mathbf{C H}}^{2} \mathrm{Cl}_{2}$ solution $(5 \mathrm{~mL})$ of $\mathbf{1}(57 \mathrm{mg}, 0.064 \mathrm{mmol})$ at $-78{ }^{\circ} \mathrm{C}$ was treated with $\mathrm{SO}_{2} \mathrm{Cl}_{2}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.12 \mathrm{M}, 0.5 \mathrm{~mL}, 0.064 \mathrm{mmol})$. After stirring for 30 min at room temperature, all volatiles were removed under reduced pressure, and the residue was recrystallized from $\mathrm{Et}_{2} \mathrm{O}$ to afford 13 as a colorless solid ($46 \mathrm{mg}, 0.048 \mathrm{mmol}, 75 \%$). mp. $107{ }^{\circ} \mathrm{C}(\mathrm{dec}.) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.07(\mathrm{~s}, 12 \mathrm{H}), 7.20-7.30(\mathrm{~m}, 16 \mathrm{H}), 7.43(\mathrm{t}, 8 \mathrm{H}), 7.50(\mathrm{~d}, 8 \mathrm{H}), 7.58(\mathrm{~d}$, $8 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-2.42$, $56.4\left(\mathrm{~s},{ }^{1} J_{\mathrm{Se}-\mathrm{C}}=134 \mathrm{~Hz},{ }^{1} J_{\mathrm{Si}-\mathrm{C}}=42 \mathrm{~Hz}\right), 127.3,127.4$, 129.4, 129.7, 135.0, 136.3, 136.6, 137.1; ${ }^{77} \mathrm{Se}$ NMR ($76 \mathrm{MHz}, \mathrm{CDCl}_{3}$), $\delta 621$.
 with Br_{2} in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.10 \mathrm{M}, 1.5 \mathrm{~mL}, 0.15 \mathrm{mmol})$. After stirring for 30 min at room temperature, all volatiles were removed under reduced pressure, and the residue was recrystallized from $\mathrm{Et}_{2} \mathrm{O}$ to afford 14 as a colorless solid ($160 \mathrm{mg}, 0.15 \mathrm{mmol}, 99 \%$). mp. $128{ }^{\circ} \mathrm{C}(\mathrm{dec}.) ;{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 0.21(\mathrm{~s}, 12 \mathrm{H}), 7.25-7.35(\mathrm{~m}, 16 \mathrm{H}), 7.40-7.50(\mathrm{~m}, 8 \mathrm{H}), 7.50-7.60(\mathrm{~m}, 16 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right), \delta-0.58,48.6\left(\mathrm{~s},{ }^{1} J_{\mathrm{Se}-\mathrm{C}}=142 \mathrm{~Hz},{ }^{1} J_{\mathrm{Si}-\mathrm{C}}=39 \mathrm{~Hz}\right), 127.2,127.3,129.3,129.7,135.1$, $136.3,136.8,137.5 ;{ }^{77} \mathrm{Se} \mathrm{NMR}\left(76 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), \delta 511$.

NMR Spectroscopic Analysis

Figure S1. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1}\left(400 \mathrm{MHz}\right.$, toluene- $\left.d_{8}, 298 \mathrm{~K}\right)$

Figure S2. ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{1}\left(100 \mathrm{MHz}\right.$, toluene- $\left.d_{8}, 298 \mathrm{~K}\right)$

Figure S3. ${ }^{29}$ Si NMR spectrum of $\mathbf{1}$ (79 MHz, toluene- $\left.d_{8}, 298 \mathrm{~K}\right)$

Figure S4. ${ }^{77} \mathrm{Se}$ NMR spectrum of $\mathbf{1}$ (76 MHz , toluene- $d_{8}, 298 \mathrm{~K}$)

Figure S5. VT- ${ }^{1} \mathrm{H}$ NMR spectrum for $\mathbf{1}$ in toluene $-d_{8}(400 \mathrm{MHz})$

Figure S6. ${ }^{1} \mathrm{H}$ NMR spectrum for $\mathbf{1 2}$ in $\mathrm{CDCl}_{3}(400 \mathrm{MHz})$

Figure S7. ${ }^{13} \mathrm{C}$ NMR spectrum for $\mathbf{1 2}$ in $\mathrm{CDCl}_{3}(100 \mathrm{MHz})$

Figure S8. ${ }^{77} \mathrm{Se}$ NMR spectrum for $\mathbf{1 2}$ in $\mathrm{CDCl}_{3}(76 \mathrm{MHz})$

Figure S9. ${ }^{1} \mathrm{H}$ NMR spectrum for $\mathbf{1 3}$ in $\mathrm{CDCl}_{3}(400 \mathrm{MHz})$

Figure S10. ${ }^{13} \mathrm{C}$ NMR spectrum for $\mathbf{1 3}$ in $\mathrm{CDCl}_{3}(100 \mathrm{MHz})$
䉩

Figure S11. ${ }^{77} \mathrm{Se}$ NMR spectrum for $\mathbf{1 3}$ in $\mathrm{CDCl}_{3}(76 \mathrm{MHz})$

Figure S12. ${ }^{1} \mathrm{H}$ NMR spectrum for 14 in $\mathrm{CDCl}_{3}(400 \mathrm{MHz})$

Figure S13. ${ }^{13} \mathrm{C}$ NMR spectrum for $\mathbf{1 4}$ in $\mathrm{CDCl}_{3}(100 \mathrm{MHz})$

Figure S14. ${ }^{77} \mathrm{Se}$ NMR spectrum for 14 in $\mathrm{CDCl}_{3}(76 \mathrm{MHz})$

X-ray Crystallographic Analysis of 1, 12, 13, and 14

Single crystals of $\mathbf{1}$ was grown by slow recrystallization of the Hexane solutions at -4 ${ }^{\circ} \mathrm{C}$. Suitable single crystals of $\mathbf{1 2}, \mathbf{1 3}$, and $\mathbf{1 4}$ were grown by slow recrystallization of the $\mathrm{Et}_{2} \mathrm{O}$ solutions at room temperature. The structures were solved by a direct method (SHELXT) ${ }^{[52]}$ and refined by full-matrix least square method on F^{2} for all reflections (SHELXL-2016). ${ }^{[53]}$ All hydrogen atoms were placed using AFIX instructions, while the other atoms were refined anisotropically. The supplementary crystallographic information for this paper has been deposited at The Cambridge Crystallographic Data Centre (CCDC) under the reference numbers CCDC-1916133 (1), CCDC-1916134 (12), CCDC-1916132 (13), CCDC-1916135 (14).

Table S1 Crystal data and data collections of 1, 12, 13, and 14.

	$\mathrm{CSeC}(\mathbf{1})$	HCl adduct (12)	Cl_{2} adduct $(\mathbf{1 3})$	Br_{2} adduct $(\mathbf{1 4})$
empirical formula	$\mathrm{C}_{54} \mathrm{H}_{52} \mathrm{SeSi}_{4}$	$\mathrm{C}_{54} \mathrm{H}_{53} \mathrm{ClSeSi}_{4}$	$\mathrm{C}_{54} \mathrm{H}_{52} \mathrm{Cl}_{2} \mathrm{SeSi}_{4}$	$\mathrm{C}_{54} \mathrm{H}_{52} \mathrm{Br}_{2} \mathrm{SeSi}_{4} \bullet \mathrm{Et}_{2} \mathrm{O}$
formula weight	892.27	928.73	963.17	1126.21
color	purple	colourless	colourless	colourless
crystal system	monoclinic	monoclinic	monoclinic	monoclinic
space group	$P 2_{1} / n(\# 14)$	$P 2_{1} / n(\# 14)$	$P 2_{1} / n(\# 14)$	$P 2_{1} / c(\# 14)$
unit-cell dimentions				
$a(\AA)$	$12.7354(8)$	$17.3177(13)$	$17.4721(5)$	$12.0334(4)$
$b(\AA)$	$21.5853(14)$	$13.0257(8)$	$13.4080(5)$	$20.0424(6)$
$c(\AA)$	$17.4791(10)$	$21.8104(15)$	$21.0645(7)$	$22.4788(6)$
$\alpha\left({ }^{\circ}\right)$	90	90	90	90
$\beta\left({ }^{\circ}\right)$	$102.496(2)$	$105.764(8)$	$104.8770(10)$	$91.4760(10)$
$\left.\mu^{\circ}\right)$	90	90	90	90
$V\left(\AA^{3}\right)$	$4691.1(5)$	$4734.8(6)$	$4769.3(3)$	$5419.6(3)$
Z	4	4	4	4
$D\left(\mathrm{~g} / \mathrm{cm}^{3}\right)$	1.263	1.303	1.341	1.380
independent reflections	8658	9304	8865	12402
parameters	536	555	554	601
$R 1, w R 2$	$0.0544,0.1446$	$0.0626,0.1428$	$0.0315,0.0697$	$0.0382,0.0760$
goodness-of-fit on F^{2}	1.025	1.058	1.025	1.024
CCDC	1916133	1916134	1916132	1916135

Figure S15. Structure of Compound 12

Figure S16. Structure of Compound 13

Figure S17. Structure of Compound 14 (All hydrogens and solvent molecule are omitted for clarity.)

Computational Details

All calculations were performed using the Gaussian 09 suite of programs, revision E 01. ${ }^{[\mathrm{S} 1]}$ The geometry optimization and harmonic vibration frequency calculations of $\mathbf{1}$, 1a-e were performed in DFT method at B3PW91/6-311G(2d,p) level of theory. The frequency calculations confirmed minimum energies for the optimized structures. s The optimized geometry of $\mathbf{1}$ is shown in Figure S6, and the selected optimized structural parameters are given in Table S1. Optimized structures are provided as a xyz file. Frontier orbitals of $\mathbf{1}$ is shown in Figures S6.

Figure S18. Molecular structure of 1 with ellipsoids at the 50% probability and calculated geometry for $\mathbf{1}$ at B3PW91/6-311G(2d,p) level. Hydrogen atoms omitted for clarity. For the comparison of the structural parameters obtained experimentally with those calculated, see Table S1.

Table S2. The bond parameters of the experimental and calculated values for compound 1.

	Experimental values (\AA, deg)	Calculated values (\AA, deg)
$\mathrm{Se} 1-\mathrm{C} 1$	$1.811(4)$	1.846
$\mathrm{Se} 1-\mathrm{C} 2$	$1.808(3)$	1.846
$\mathrm{C} 1-\mathrm{Si} 1$	$1.886(4)$	1.883
$\mathrm{C} 1-\mathrm{Si} 2$	$1.862(4)$	1.871
$\mathrm{C} 2-\mathrm{Si} 3$	$1.886(4)$	1.871
$\mathrm{C} 2-\mathrm{Si4}$	$1.867(4)$	1.883
$\mathrm{C} 1-\mathrm{Se} 1-\mathrm{C} 2$	$120.82(16)$	117.97
$\mathrm{Se} 1-\mathrm{C} 1-\mathrm{Si} 1$	$104.82(18)$	109.42

Se1-C1-Si2	$124.24(19)$	124.82
Si1-C1-Si2	$125.7(2)$	124.14
Se1-C2-Si3	$124.29(18)$	124.84
Se1-C2-Si4	$105.34(18)$	109.42
Si3-C2-Si4	$124.29(19)$	124.13

Figure S19. Frontier orbitals of $\mathbf{1}$ (B3PW91/6-311G(2d,p))

Kinetic Experiment

Kinetic experiments were conducted to ascertain the rate of bond rotation of selane $\mathbf{1}$ and sulfane $\mathbf{2}$ in toluene using temperature as a function. Line shape analysis allowed the rotation rate constant (k) values estimated at several temperatures from 243 to 323 K . The thermodynamic parameters of activation for the rotation between the carbon and chalcogen atoms were obtained from an Eyring plot analysis ${ }^{54}$ of $\mathbf{1}$ and 2.

Figure S20. Eyring Plots of $\mathbf{1}$ and $\mathbf{2}$.

Electrochemical experiments

Electrochemical experiments were carried out on an ALS 600A potentiostat/galvanostat using Pt wire electrodes. Electrochemical samples were recorded with scan rates of 50 mVs^{-1} at room temperature. Samples solutions in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ were 1.0 mM in analyte and 0.1 M in $\left[n-\mathrm{Bu}_{4} \mathrm{~N}\right]\left[\mathrm{ClO}_{4}\right]$ as the supporting electrolyte.

Figure S21. Cyclic and Differential Pulse Voltammograms of 1 and 2

Figure S22. Thermolysis of $\operatorname{Bis}\left(\right.$ methylene) $-\lambda^{4}$-selane in $\mathbf{C}_{6} \mathbf{D}_{6}$.

References

[S1] Gaussian 09, Revision E.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2009.
[S2] Sheldrick, G. M. Acta Crystallogr. Sect. A, 2015, 71, 3-8.
[S3] Sheldrick, G. M. Acta Crystallogr. Sect. C, 2015, 71, 3-8.
[S4] Gasparro, F. P.; Kolodny, N. H. NMR Determination of the Rotational Barrier in N,NDimethylacetamide. J. Chem. Educ. 1977, 54, 258-261.

