Supporting Information

Na₄Fe₇(PO₄)₆: A zero-strain iron-based polyanionic cathode for sodiumion batteries

Xiangjun Pu, ^a Chao Rong, ^b Shenglong Tang,^a Huiming Wang, ^a Shunan Cao, *^a Yan Ding,^c Yuliang Cao *^c and Zhongxue Chen *^a

^a Key Laboratory of Hydraulic Machinery Transients, Ministry of Education, School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China.
^b Guangxi Ministry-Province Jointly-Constructed Cultivation Base for State Key Laboratory of Processing for Nonferrous Metal and Featured Materials College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, China.
^c Hubei Key Laboratory of Electrochemical Power Sources, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.

* <u>sacao@whu.edu.cn</u> (S.-A. Cao)

* <u>ylcao@whu.edu.cn</u> (Y.-L. Cao)

* <u>zxchen_pmc@whu.edu.cn(Z.-X.</u> Chen)

Experimental details

Material Preparation

Na₄Fe₇(PO₄)₆/C microspheres were prepared by a simple spray-dry method. Typically, stoichiometric amounts of 1.2481 g of NaH₂PO₄·2H₂O, 0.4601 g of NH₄H₂PO₄, 5.656 g of Fe(NO₃)₃·9H₂O and 1.3075 g of C₆H₈O₇·H₂O were dissolved in 30 mL of deionized water followed by vigorous stirring to form transparent solution. Then the final solution was spray-dried to form a solid precursor. Sebquently, the precursor was heated in Ar atmosphere at 600 °C for 12 h with a heating rate of 2 °C min⁻¹ to obtain the Na₄Fe₇(PO₄)₆/C microspheres (denoted NFP/C).

Materials characterization

XRD measurements were performed on a Bruker AXS diffractometer (D8 Advance) using Cu K α radiation at $\lambda = 1.54$ Å. The Rietveld refinement was carried out using the Palleysoftware. SEM test were carried out on a Histachi S-4800 scanning electron microscope (SEM). X-ray photoelectron spectroscopy (XPS) measurements were carried out with a Kratos XSAM800 Ultra Spectrometer. Raman spectroscopic analysis was performed with a Confocal Raman Microspectroscopy (Renishaw, UK) system utilizing a 514.5 nm incident radiation in the range from 400 to 2000 cm⁻¹. The calcination temperature was certified by TG, DTG and DTA at a heating rate of 10 °C min⁻¹ in Ar atmosphere from 40 to 680 °C, and the carbon content was also determined by TG at 10 °C min⁻¹ from 30 to 750 °C (TA 449 F3, USA). Fourier transformed infrared spectroscopy (FTIR) was performed on a Nicolet Avatar 360 FTIR (Thermo electro, USA).

Electrochemical measurements

The obtained NFP/C composite was mixed with Super P, and poly (vinylidene fluoride) (PVdF) in a mass ratio of 8:1:1, the mixture was dispersed in N-methyl-2pyrrolidone (NMP) to form homogeneous slurry. Later, the slurry was pasted on Al foil and dried at 80 °C for 10 h in a vacuum oven. The electrode loading was about 1.5 mg cm⁻², and the electrode area was 1.44 cm². Electrochemical tests were performed using coin cells with the above electrode as cathode and Na metal as a counter electrode. The electrolyte was 1 mol L⁻¹ NaClO₄ dissolved in a mixture of ethylene carbonate (EC), diethyl carbonate (DEC) and Fluoroethylene carbonate (FEC) (1:1:0.05 by wt., Zhangjiagang Guotai-Huarong New Chemical Materials Co., Ltd. China), and the separator was a microporous membrane (Celgard 2325). The coin cells (CR2032) were fabricated in an argon-filled glove box with water/oxygen content lower than 0.1 ppm and galvanostaticly charged/discharged with a CT2001A (Land Wuhan, China) battery tester. The charge/discharge capacities presented in this work were calculated on the mass of NFP. Cyclic voltammetric measurements were also conducted with the coin cell on a Corrtest 350Helectrochemical workstation (Correst, China).

Fig. S1 Thermogravimetric Analysis (TG) and Differential Thermal Analysis (DTA) of raw materials in Ar atmosphere.

Fig. S2 Structure view of $Na_4Fe_7(PO_4)_6$ along the *a* axis.

Fig. S3 Thermogravimetric Analysis (TG) of final NFP/C in air.

Fig. S4 The FTIR specrum of NFP/C showing various bands stemming from PO₄ tetrahedra.

Fig. S5 The Raman spectrum of NFP/C showing the information of carbon coating.

Fig. S6 The full X-ray photoelectron spectroscopy (XPS) spectrum of NFP/C.

Fig. S7 The XPS spectra of (a) C 1s and (b) Fe 2p of the NFP/C.

Fig. S8 The galvanostatic charge/discharge profiles at a current density of 200 mA g^{-1} .

Fig. S9 Cycling performance of NFP/C electrode at 10 mA g^{-1} .

Fig. S10 XRD pattern of NFP/C after cycling test (comparing with the initial pattern).

Fig. S11 SEM images of the $Na_4Fe_7(PO_4)_6/C$ electrode after 500 cycles.

Fig. S12 XRD pattern of super P.

Fig. S13 Rietveld refinement of X-ray diffraction patterns of NFP/C at 4.2 V. (Desodiation state).