Rational design of alkali-resistant catalysts for selective

reduction of NO with NH₃†

Chao Li,^a Zhiwei Huang,^b Xiaona Liu,^a Junxiao Chen,^a Weiye Qu,^a Xiaoming Jiang,^c

Hu Wang,^c Zhen Ma,^a Xingfu Tang,^a and Yaxin Chen*^a

Contents

Experimental Section2
1.1. Catalyst syntheses
1.2. Synchrony X-ray diffraction (SXRD)2
1.3. X-ray adsorption spectra (XAS)
1.4. Catalyst evaluation
1.5. Temperature-programmed decomposition (TPDC) of K ₂ SO ₄
Figures and Tables4
Fig. S1. Temperature-programmed decomposition profiles of Fe ₂ O ₃ /WO ₃ with deposited K ₂ SO ₄
Fig. S2. Full-scaled SXRD pattern and the corresponding Rietveld refinement data of Fe ₂ O ₃ /K _{in} HWO
Fig. S3. (a) <i>R</i> -space ($\Delta k = 1.6-5.95 \text{ Å}^{-1}$) and (b) inverse FT spectra ($\Delta r = 1.0-4.7 \text{ Å}$) of Fe ₂ O ₃ /K _{in} HWO.
Fig. S4. X_{NO} and N ₂ selectivity over Fe ₂ O ₃ /HWO with deposited K ₂ SO ₄ 7
Fig. S5. XANES spectra at the K K-edge of K_2SO_4 loaded Fe_2O_3/TiO_2
Table S1. Supplementary information for Fig. 1
Table S2. NO conversion of pristine catalysts and catalysts with deposited K ⁺ a 350 °C
Table S3. Crystallographic data and details of Fe ₂ O ₃ /K _{in} HWO in the data collections and the Rietveld refinements
Table S4. Structure parameters determined by the Rietveld refinement of the
SXRD pattern of Fe ₂ O ₃ /K _{in} HWO11
Table S5. Local structure parameters around potassium of $Fe_2O_3/K_{in}HWC$ estimated by EXAFS analysis at the K K-edge. ^a
References

Experimental Section

1.1. Catalyst syntheses

HWO was prepared by a hydrothermal method according to our previous report.¹ Fe₂O₃ was prepared by a co-precipitation method. 25 mmol FeSO₄·7H₂O and 50 mmol FeCl₃·6H₂O were synchronously added into 300 mL ammonia solution (1 mol L⁻¹). The as-synthesized slurry was washed by distilled water, dried at 105 °C overnight, and calcinated at 250 °C for 3 h to obtain Fe₂O₃. m-WO₃ (monoclinic WO₃) was prepared by decomposition of $(NH_4)_{10}W_{12}O_{41}$ at 500 °C for 5 h. Fe₂O₃/HWO, Fe₂O₃/m-WO₃, and Fe₂O₃/TiO₂ were prepared by loading certain amounts of Fe₂O₃ (0.10 g) onto HWO, m-WO₃, and TiO₂ (1.00 g) dispersed in distilled water. After drying at 80 °C with stirring, the solid was calcinated at 350 °C for 4 h to obtain the final product. The V₂O₅/WO₃-TiO₂ catalyst was purchased from Shandong Guantong Catalyst Co., Ltd.

K⁺ loaded catalysts was prepared by wet impregnation with K₂SO₄. The obtained K₂SO₄-Fe₂O₃/HWO was annealed at 350 °C for 12 h to simulate the aging process in stack gases. The annealed catalyst is denoted as Fe₂O₃/K_{in}HWO. The K⁺ loading amount is 200 μ mol/g.

1.2. Synchrony X-ray diffraction (SXRD)

Synchrony X-ray diffraction (SXRD) was performed at BL14B1 beamline of the Shanghai Synchrotron Radiation Facility (SSRF). The X-ray wavelength was 0.6883 Å. Refinement was conducted of the collected data using Rietica v1.77 program.

1.3. X-ray adsorption spectra (XAS)

X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) spectra at the K *K*-edge were measured at BL4B7A of the Beijing Synchrotron Radiation Facility (BSRF) with the electron beam energy of 2.21 GeV and a ring current of 300-450 mA. XANES and EXAFS spectra at Fe or W *K*-edge were obtained at BL14W1 of the SSRF with the electron beam energy of 3.5 GeV and a ring current of 200-300 mA. Data analyses were conducted by using the IFEFFIT 1.2.11 software package.

1.4. Catalyst evaluation

SCR activity measurement was performed in a fixed-bed quartz reactor (i.d. = 8 mm) under atmospheric pressure. 0.500 g sample (40-60 mesh) was used for each run. The feed gas was composed of 1,000 ppm NO, 1,000 ppm NH₃, 3.0 vol% O₂, 200 ppm SO₂ (when used), 5 vol% H₂O (when used), and balanced N₂. The total flow rate was 500 mL min⁻¹. The concentrations of NH₃, NO, N₂O and NO₂ in the inlet and outlet gas were measured by a FTIR spectrometer (Thermo Scientific, Antaris IGS Analyzer). The NO conversion and N₂ selectivity were determined as follows:

NO conversion =
$$\frac{[NO]_{in} - [NO]_{out}}{[NO]_{in}} \times 100\%$$

N₂ selectivity =
$$1 - \frac{[NO_2]_{out} + 2[N_2O]_{out}}{[NO]_{in} + [NH_3]_{in} - [NO]_{out} - [NH_3]_{out}} \times 100\%$$

1.5. Temperature-programmed decomposition (TPDC) of K₂SO₄

The TPDC experiment was conducted in the above reactor system. 0.500 g sample with deposited K_2SO_4 (K⁺ loading amount = 200 μ mol g_{cat}⁻¹) was pretreated at 150 °C for 1 h under N₂ flow of 500 mL min⁻¹. The sample was cooled down to 100 °C, then heated to 350 °C at a ramp rate of 5 °C min⁻¹. The outlet SO₂ and NH₃ was monitored by FTIR spectrometer (Thermo Scientific, Antaris IGS Analyzer).

Figures and Tables

Fig. S1. Temperature-programmed decomposition profiles of Fe_2O_3/WO_3 with deposited K_2SO_4 (K⁺ loading amount = 200 μ mol g_{cat}^{-1}) under 500 mL min⁻¹ N₂ flow.

Fig. S2. Full-scaled SXRD pattern and the corresponding Rietveld refinement data of $Fe_2O_3/K_{in}HWO$.

Fig. S3. (a) *R*-space ($\Delta k = 1.6-5.95 \text{ Å}^{-1}$) and (b) inverse FT spectra ($\Delta r = 1.0-4.7 \text{ Å}$) of Fe₂O₃/K_{in}HWO.

Fig. S4. X_{NO} and N₂ selectivity over Fe₂O₃/HWO with K⁺ loading amount of 200 μ mol g_{cat}⁻¹ at 350 °C. Reaction conditions: 1,000 ppm NO, 1,000 ppm NH₃, 3.0 vol% O₂, 200 ppm SO₂, 5 vol% H₂O, and balanced N₂. Catalyst mass is 0.500 g. Gas flow rate is 500 mL min⁻¹.

Fig. S5. XANES spectra at the K *K*-edge of K_2SO_4 loaded Fe_2O_3/TiO_2 (K⁺ loading amount = 200 μ mol g_{cat}⁻¹) after annealing at 350 °C (nominated as K_2SO_4 -Fe₂O₃/TiO₂), together with that of K_2SO_4 .

Catalyst	K ⁺ loading amount (μmol g ⁻¹)	K ⁺ source	Data source
НМО	1150	KCl	Reference 2
CeO ₂ /TNTs	~590	KNO ₃	Reference 3
V ₂ O ₅ /HWO	350	K_2SO_4	Reference 4
Fe ₂ O ₃ /HWO			
V ₂ O ₅ -WO ₃ /TiO ₂			
Fe ₂ O ₃ /TiO ₂	200	K_2SO_4	This work
V ₂ O ₅ /WO ₃			
Fe ₂ O ₃ /WO ₃			

Table S1. K⁺ loading amounts, K⁺ sources, and data sources of catalysts in Fig. 1.

Table S2. NO conversion of pristine catalysts and catalysts with deposited K⁺ at 350°C.

Catalyst	Pristine NO conversion (%)	NO conversion after loading K ⁺ (%)
Fe ₂ O ₃ /HWO	92.6%	88.0%
V ₂ O ₅ -WO ₃ /TiO ₂	90.0%	8.0%
Fe ₂ O ₃ /TiO ₂	47.2%	14.0%
V ₂ O ₅ /WO ₃	84.1%	8.7%
Fe ₂ O ₃ /WO ₃	82.8%	3.3%

Parameters	Crystallographic data
Crystal system	hexagonal
Space group	P6/mmm
Z^a	6
<i>a</i> (Å)	7.316
<i>c</i> (Å)	3.825
$V(Å^3)$	173.30
$R_{\mathrm{p}}{}^{b}$ (%)	8.0
$R_{\mathrm{wp}}{}^{c}$ (%)	11.4
R_{\exp^d} (%)	1.2
$\chi^{2 e}$	9.8
Wavelength (Å)	0.6883
2θ range (°)	5-35
2θ step width (°)	0.02

Table S3. Crystallographic data and details of $Fe_2O_3/K_{in}HWO$ in the data collections and the Rietveld refinements.

^{*a*} The number of $K_{0.04}WO_3$ formula units per unit cell

^b The unweighted profile factor

^c The weighted profile factor

^d The expected *R* parameter

 e The goodness of fitting, defined as the square of the ratio of $R_{\rm wp}/R_{\rm exp}$

Atoms	x	у	Z	Occupation	Isotropic thermal factor
K	0	0	0	0.125	1.5
W	0.5	0	0	1.0	1.9
01	0.5	0	0.5	1.0	1.1
O2	0.21	0.42	0	1.0	0.2

Table S4. Structure parameters determined by the Rietveld refinement of the SXRDpattern of $Fe_2O_3/K_{in}HWO$.

Shell	CN ^b	<i>R^c∕</i> Å	σ^{2d} / Å ²	$\Delta E_0^e / \mathrm{eV}$
K-O	6.0	2.63(9)	0.033(9)	-4.686
K-W	6.0	3.67(8)	0.010(5)	-9.506
K-O	12.0	4.01(3)	0.078(8)	11.668

Table S5. Local structure parameters around potassium of $Fe_2O_3/K_{in}HWO$ estimated by EXAFS analysis at the K *K*-edge.^{*a*}

^{*a*} *R*-factor = 0.00572; R-space fit, $\Delta k = 1.60-5.95 \text{ Å}^{-1}$, $\Delta r = 1.0-4.7 \text{ Å}$

^b The coordination number

^c The distance between absorber and backscatter atoms

^d Debye–Waller factor

^e Energy shift

References

[1] Z. Huang, H. Li, J. Gao, X. Gu, L. Zheng, P. Hu, Y. Xin, J. Chen, Y. Chen, Z.

Zhang, J. Chen and X. Tang, Environ. Sci. Technol. 2015, 49, 14460-14465.

[2] Z. Huang, X. Gu, W. Wen, P. Hu, M. Makkee, H. Lin, F. Kapteijn and X. Tang, Angew. Chem. Int. Ed. 2013, 52, 660-664.

[3] P. Wang, H. Wang, X. Chen, Y. Liu, X. Weng and Z. Wu, *J. Mat. Chem. A* 2015, 3, 680-690.

[4] L. Zheng, M. Zhou, Z. Huang, Y. Chen, J. Gao, Z. Ma, J. Chen and X. Tang, *Environ. Sci. Technol.* 2016, **50**, 11951-11956.