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Experimental Procedures

Materials and Methods

Cell Culture 
SK-LU-1 and HeLa cells were cultured in Minimum Essential Medium Alpha (MEM alpha, Gibco, 
Gaithersburg MD) supplemented with 10% fetal bovine serum (FBS, Invitrogen, Carlsbad CA) at 
37°C with 5% CO2. 
Live Cell Measurements
Live SK-LU-1 and HeLa cells were seeded in three different 8-well µ-slides at a density of 10 000 
cells per well for 12 hours prior experiments using RPMI medium supplemented with 10 FBS. 
Then, specific concentrations of HQN, nBu2(Sn)Cl2, adenosine monophosphate (AMP), and 
specific metal ions and polyols in RPMI media were added on each slide 30 minutes before imaging 
experiments. For nuclear and cytoplasmic imaging, cell cultures were washed two times with 
RPMI. During confocal imaging the microscope parameters were maintained constant using a 63x 
oil immersion objective. 
Spectrophotometric and Fluorometric Titrations. 
All titration experiments were performed at 25 °C and ionic strength 0.05 M created either by 
buffer or NaCl. The experiments were performed with and without 5 mM 
hexadecyltrimethylammonium bromide (HTAB). An aliquot of 1 mM stock solution of HQN in 
acetonitrile was added to a 5 mM MOPS aqueous buffered solution in appropriate pH intervals, 
allowing to equilibrate for 15 minutes before titrations. The final content of acetonitrile remained 
less 1%. Fluorescence quantum yields of HQN and the equimolar nBu2Sn(HQN) complex were 
0.17 and 0.08, respectively, obtained according to the relative protocol [S. Fery-Forgues, D. 
Lavabre, J. Chem. Educ., 1999, 76, 1260.] using coumarin 6 in ethanol as standard fluorophore.

Quantum Chemical Calculations
Quantum Chemical Calculations were obtained by using DFT and TD-DFT with Polarizable 
Continuum Model1 as performed in the Gaussian 09 code,2 using a PBE0/6-31+G(d,p)/IEF-PCM 
(water) level of theory to determine the optimized molecular geometry of HQN. Then, a frequency 
analysis corroborates that the geometry corresponds to an energy minimum, finding no imaginary 
frequencies. As a first step in the analysis of the electron charge distribution in the molecules, the 
electrostatic potentials were computed to compare the local charge distribution between these 
molecules. Finally, Natural Transition Orbital (NTO)3 analysis was computed at the same level of 
theory to further understand the optical properties for probe HQN.

General Probe Synthesis

Scheme S1. Synthetic methodology for probe HQN.

Synthetic procedure for 2-naphthyl-3-hydroxy-4(1H)-quinolone (HQN). Compound HQN was 
synthetized as described in literature for other similar structures [P. Hradil, J. Hlaváč, K. Lemr, J. 
Heterocyclic Chem., 1999, 36, 141–144.]. A solution of 3-Anthranilic acid (2.00 g, 14.50 mmol) 
dissolved in DMF (20 mL) was mixed with potassium carbonate anhydrous (2.16 g, 15.6 mmol). 
Then, the reaction mixture was heated to 90 °C and stirred for 1 h. After that, the solution was cooled 
to 20 °C and 2-Bromo-2′-acetonaphthone (2.00 g, 8.02 mmol) was added. The generated exothermic 
reaction was stirred for 30 min, at this temperature. Then, the reaction was heated to 60 °C and stirred 
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for 30 min more. The product was poured in cooled water and the precipitated product was collected 
by filtration, washed with water (3 x 30 mL) and dried. After that, the anthranilate (0.5 g, 1.48 mmol) 
was added to a previously heated polyphosphoric acid (5.0 g) and stirred at 120 °C during 2 h. The 
reaction mixture was poured into cooled water (10 g), then the pH was adjusted to 7 – 8 with a NaOH 
10% solution and the precipitated solid was collected by filtration, washed with water (3 x 30 mL), 
dried and recrystallized from DMF. 1H NMR (300 MHz; DMSO-d6; Me4Si): δ 9.21 (br. s, 1H), 8.19-
7.42 (m, 12H), 13C NMR (300 MHz; DMSO-d6; Me4Si): δ 171.0, 138.5, 138.2, 132.8, 132.2, 132.0, 
131.0, 130.4, 129.7, 129.2, 128.3, 128.2, 127.6, 127.5, 124.9, 124.6, 122.4, 122.3, 118.9. IR 
(νmax/cm-1) 3440 (O–H stretching), 2994, 2913, 2845 (C–H stretching), 1663 (C=O stretching). MS 
(ESI, m/z) for C19H13N1O2: [M]+ calculated: 287.03, found [M+H]+: 288.0918, error = 0.012 ppm 
m.p. 262–264 °C.

(A) 1H and (B) 13C NMR spectra of probe HQN in DMSO-δ6.
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HPLC Purification

A 50 μM stock solution of Compound 5 in PBS was run through RP-HPLC on a C18 column 
with a 10-70% MeCN/H2O 2%/min gradient with 0.1% TFA. Retention time is shown below 
The peaks were identified through a UV-Vis detector at different wavelengths (below is 
shown 360 nm before and after purification). 

Sample:
HQN       

HPLC Agilent 1260 Infinity II

Detector UV-Vis 

Wavelength 360 nm

Column Kinetex XB C18 50 x 2.1 mm 2.6 um
Eluent acetonitrile Water

Inicial 10 90

30 min 70 30

Flux  0.2 mL/min

Date 26-01-2019

HQN

HQN
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UV-Vis traces for the HQN before (blue) and after purification (red).
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Figure S1. Intracellular localization redistribution of the HQN in live SK-LU-1 cells under 30 
minutes incubation observed in (A) the confocal green channel (λexc = 503 nm, λem = 550 nm) and in 
(C) the blue channel (λexc = 404 nm, λem = 470 nm), indicating a strong nuclear localization. Then, 
the Sn(nBu)2Cl2 addition (45 minutes incubation) enable a clean cytosol distribution observed in (B) 
the blue channel (λexc = 404 nm, λem = 470 nm) and in (D) the green channel (λexc = 503 nm, λem = 
550 nm). Control experiments showing the localization using the equimolar performed Sn:HQN 
complex observed under the blue (E) and green (F) channels. Scale bars represent 20 µm.
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NTO – Hole NTO – Particle

NTO eigenvalue
w = 0.98
f = 0.289
3.314 eV

For the HOMO – 
LUMO levels

Figure S2. The dominant natural transition orbital pair for the first excited singlet state of HQN. The 
left panels quote in sequence the NTO eigenvalue (w), oscillator strength (f), transition energy, and 
associated MO levels.
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Correlation coefficients 
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Figure S3. Potentiometric titration in 10 mL HQN thermostatted at 25 °C under N2 using 0.05 M NaCl as 
background electrolyte to maintain ionic strength, pH was 7 under 5 mM HTAB media. Below: the 
potentiometric data analyzed with HyperQuad software when detecting at 550 nm. L stands for the HQN ligand 
while SnBu for Sn(nBu)2Cl2. As can be seen from the iteration data and the Figure below, about 89% of the 
equimolar [nBu2Sn]HQN complex is strongly favored over competing [nBu2Sn]HQN2 stoichiometry and the 
free ligand, indicating that this complex is dominant under such conditions.



10

Table S1. Protonation constants of ligands and stability constants of metal complex determined 
potentiometrically in 20% vol. acetonitrile, 0.05 M NaCl at 25oC.

species p q r log pqr equilibrium log Kobs

LH 0 1 1 11.08±0.01 L + H = LH 11.90

LH2 0 1 2 20.42±0.01 LH + H = LH2 10.66

nBu2Sn LH 1 1 1 24.17±0.09 nBu2Sn + LH = nBu2Sn(LH) 13.09

The results of potentiometric titrations were analyzed in terms of traditional pqr scheme 
expressed by equations (1) and (2), where L is a completely deprotonated dianionic form of the 
HQN ligand and M is the metal ion (nBu2Sn2+). The overall binding constants and the pKa values 
of free HQN and the complex are collected in Table S2. 

pM + qL + rH  MpLqHr   (1)

pqr = [MpLqHr]/[M]p[L]q[H]r   (2)

The simple 1 : 1 nBu2Sn2+ complex of the type M(LH)+ is much more stable and is a 
dominating species in acid and neutral solutions. However, with excess of the ligand 
and pH above 7 the M(LH)2 complex will be favored. 

The stability constant for nBu2Sn(HL)+ complex is in fact larger than expected for other 
metal ions present in biological systems (Zn2+, Cu2+, etc).4 The reason for this effect is the 
strong hydrolysis of nBu2Sn2+ cation in neutral solutions. In accordance with reported 
hydrolysis constants of nBu2Sn2+ in water at pH 7 (log1 0 -2 = -8.30)5 the cation is 
completely transformed into dihydroxo complex and the actual reactions of the 
formation of M(HL)+ is (3).

nBu2Sn(OH)2 + LH2 + H+= nBu2Sn(LH)+ + 2 H2O (3) 

The corresponding values for Kobs at pH = 7 are logKobs = log111 – log012 – log10-2 – pH = 
(24.17) – (20.42) – (-8.30) – 7.0 = 5.05 for nBu2Sn(LH)+. 

(A)
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Figure S4. (A) Absorption spectra of 40 µM HQN at variable viscosity increments. (B) Fluorescence 
spectra of Sn:HQN (1:1) complex under a continuous viscosity variation from 10% aqueous glycerol 
to 75% aqueous glycerol. 
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Scheme S2. Interaction between the 3-hydroxy group and the 2-naphthyl moiety. In (a) a low 
viscosity media the larger rotational freedom of the naphthyl group decreases the planarity of the dye, 
enabling a fast ESIPT process, whereas the high viscosity media (b) limits considerably the rotational 
motion of the naphthyl group giving rise to a slow ESIPT process (T* tautomer is favored). (c) 
Previously reported rotation-bond mechanism (J. Phys. Chem. A, 2007, 111, 8986.): Above: 
Interaction between the 3-hydroxy group and the 2-phenyl moiety in the N-H derivative limits 
considerably the rotational motion of the hydroxyl group. Below: the steric effect of the proximal N-
methyl group decreases the planarity of the dye, enabling a larger rotational freedom of the 3-OH 
group. 
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Table S2. Detailed experimental procedure for in-vitro viscosity determinations: The viscosity 
quantification was done by using the calibration plot obtained in Fig. 1B inset, the Table S1 (below) 
shows the corresponding viscosity values in cP for each volume fraction of glycerol. Then, the λ-
ratiometric method was used by taking the blue signal (at 405 nm) as internal reference since the blue 
emission channel of the microscope showed no intensity variations during recordings when detecting 
at the same wavelength λem = 405 nm. 

Glycerol volume 
fraction xgly

Viscosity 
[cP]

0.0 0.6
0.1 1.8
0.2 4.8
0.3 7.7
0.4 13
0.5 28
0.6 58
0.7 130
0.8 250
0.9 630
1.0 1410
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Figure S6. Percentage of SK-LU-1 cell viability remaining after treatment. Cells were grown under 
standard conditions and treated with: triangles (Sn:HQN), squares (free HQN) and circles 
(nBu2SnCl2). Untreated cells were considered to have 100% survival. Cell viability was determined 
by a redox indicator (Alamar Blue). For cytotoxicity assays, human lung adenocarcinoma (SK-LU-
1) cell lines were plated in 96-well plates at 5000 cells/well in RPMI-1640 medium. About 24 h after 
plating, varied doses of compound Sn:HQN, HQN and nBu2SnCl2 at 0.5, 1, 10, 20, 25, 35, 50 and 
60 μM concentration were added in triplicate. Cell viability was evaluated after 72-h incubation with 
the molecules using Alamar Blue fluorescent assay (Life Technologies, Carlsbad, CA, USA).
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Figure S7. Confocal imaging of the HQN in apoptotic HeLa cells treated with high-dose H2O2 for 
45 min under (A) non-swelling and (B) swelling conditions. Panel (B) shows a 10 minutes time lapse 
observed in the green channel (λexc = 503 nm, λem = 550 nm). Scale bars represent 10 µm. Distances 
are a1 = 17 µm and b1 = 13 µm, while a2= 21 µ and b2 = 16 µm. Arrows indicate zones of plasma 
membrane adhesion (focal points) having almost no variations. However, white arrows (apoptotic 
cells) show a significant decrease in adhesion. Laser light was fully shielded between recordings to 
prevent artifacts and photobleaching.
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Figure S8. Time-dependent effect of 5 µM nBu2(Sn) ion on the HQN fluorescence signal, shown as 
fluorescence difference (F – F0). The experiment was performed in cell culture AMP-enriched MEM 
medium (dark line) and no AMP-enriched, 2 mg/mL, medium (blue line). Data in red correspond to 
the fluorescence intensity control Cy5 CellMask Deep Red (λex/λem = 649/666 nm). 
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Figure S9. Fluorescent emission titrations (λexc = 330 nm) of 10 mM Sn:HQN, under variable 
concentrations of A) AMP, ADP and ATP anions and; B) a series of polyols. The titrations were 
conducted at pH = 7.0 in HTAB (5mM) and 10 mM NaCl at 25 °C. Analyte concentrations are shown 
in the insets.
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Table S3. Comparison of different adenosine monophosphate (AMP) detection methods 
previously reported.

Reference Method Conditions

log K / limit 
of 
detenction, 
LoD

Yakun Lian, et.al. Talanta, 2016, 150, 
485.

1H and 31P NMR

D2O, peak at 0.9 
ppm as 
quantitative signal 
of AMP

LoD = 0.40 
mM 

Israel Carreira-Barral, et.al. Molecules, 
2018, 23, 479; 
doi:10.3390/molecules23020479

Spectrophotometric
pH = 7, MOPS 
buffer

log K = 4.35

Li Qin, et.al. Anal. Chem., 2018, 90, 
9983. 

Colorimetric
pH = 7, pretreated 
sample (digestion)

LoD = 1 µM

Sujoy Das, et.al. Chem. Commun., 2017, 
53, 7600.

Spectrophotometric

pH 7.0, 10 mM 
HEPES buffer, 
CH3CN/H2O, 1:6 
(v/v)

LoD = 2.8 
µM

Eisuke Furuya, et.al. Anal. Biochem., 
1985, 145, 144.

HPLC
Pretreated: 
glucagon-treated 
rat liver 

LoD = 2 pM

Laxman Gangwani, et.al. Biochem. 
Biophys. Res. Commun., 1991, 178, 
1113.

HPLC
Pretreated: acidic 
pH and TLC-
purified

LoD = 70-80 
pM

Mikio Bakke, et.al. J. Food Protect., 
2018, 81, 729.

Bioluminescence: 
Total XXXdenylate 
(ATP+ADP+AMP)

Pretreated: acidic 
conditions

Not reported 
Signal rec. 
1735 RLU 
(relative light 
units)

Shan Sun, et.al. Anal. Chem., 2017, 89, 
5542.

Spectrophotometric 
pH = 7.0, Tris 
buffer, 

LoD ~ 1 µM

Dhaval P. Bhatt, J. Chromatogr. B, 
2012, 
doi:10.1016/j.jchromb.2012.02.005.

HPLC Pretreated: pH 4.5
LoD = 0.16–
20.6 pM 

Subhanjan Mondal, et.al. Assay Drug. 
Dev. Techn., 2017, 15, 330.

Bioluminescence: 
enzyme-coupled 
assay

pH 7.5 HEPES 
buffer

LoD = 100 
nM

E. Harmsen, et.al. J. Chromatogr., 1982, 
230, 131.

Ion-exchange 
chromatography 

pH 7.5, UV 
detector 210 nm

LoD = 20 
pM

Q. Y. Bai, J. Microbiol. Meth., 1989, 9, 
345. 

Spectrophotometric pH 7.5
LoD = 0.05 
µM

This work Spectrophotometric pH ~ 7.4 (cyosol)

log Kobs = 
4.51±0.01
LoD = 0.038 
mM
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