Supporting Information

2-Iodoxybenzoic acid ditriflate: the most powerful hypervalent iodine(V) oxidant

Mekhman S. Yusubov,*^a Natalia S. Soldatova,^a Pavel S. Postnikov,^a Rashid R. Valiev,^{a,b} Akira Yoshimura,^{a,c} Thomas Wirth,^d Victor N. Nemykin^e and Viktor V. Zhdankin*^c

- ^a The Tomsk Polytechnic University, 634050 Tomsk, Russia
- ^b Tomsk State University, 634050 Tomsk, Russia
- ^c Department of Chemistry and Biochemistry, University of Minnesota Duluth, Duluth, Minnesota 55812, USA
- ^d School of Chemistry, Cardiff University, Park Place, Cardiff, CF10 3AT (UK)
- ^e Department of Chemistry, University of Manitoba, Winnipeg, MB R3T 2N2, Canada

Table of Contents

1.	General experimental remarks	S2
2.	Preparation and X-ray structure of 2-iodoxybenzoic acid ditriflate	S2
3.	Reactions of 2-iodoxybenzoic acid ditriflate	S3
4.	References	S10
5.	Spectra of products	S12

pp

1. General experimental remarks

All precursors, and other reagents and solvents were from commercial sources and used without further purification from freshly opened containers. Dichloromethane and acetonitrile were distilled from CaH₂ immediately prior to use. Melting points were determined in an open capillary tube with a Mel-temp II melting point apparatus. NMR spectra were recorded at the 300, 400 MHz, and 500 MHz spectrometers. Chemical shifts (δ) are reported in parts per million.

2. Preparation of 2-iodoxybenzoic acid triflate

To a suspension of 2-iodoxybenzoic acid 1 (1.4 g, 5 mmol) in dichloromethane (20 mL), trifluoromethanesulfonic acid (1 mL, 11.3 mmol) was added dropwise at 0 °C resulting in formation of a pale-yellow semisolid substance. Then trifluoroacetic acid (0.3 mL, 1.8 mmol) was added under stirring. Stirring was continued for 4 hours until the pale-yellow semisolid substance turned into a white precipitate. The precipitate was filtered and washed with dry dichloromethane (3x10 mL). The product was dried in vacuum to give IBX-ditriflate 4, 2.4-2.8 g (80-94%) as a white, moderately hygroscopic solid: mp 110-112 °C; ¹H NMR (400 MHz, CD₃CN): δ 10.37 (broad s), 8.44 (d, *J* = 8.0 Hz, 1H), 8.35 (d, *J* = 7.6 Hz, 1H), 8.28 (t, *J* = 8.0 Hz, 1H), 8.03 (t, *J* = 7.6 Hz, 1H); ¹³C NMR (100 MHz, CD₃CN): δ 172.9, 146.7, 138.2, 136.1, 133.3, 126.5, 125.4, 121.1 (q, *J* = 317 Hz, CF₃SO₃⁻);¹⁹F NMR (376 MHz, CD₃CN): δ -79.58; HRMS (ESI-TOF-positive mode): calcd for C₇H₆IO₄ ([M-HOTf-OTf])⁺: 280.9305, found: 280.9304. Anal. Calcd for C₉H₁₁F₆IO₁₂S₂ (**4** x H₂O): C, 17.54; H, 1.80; I, 20.60; S, 10.41. Found: C, 17.59; H, 1.78; I, 20.50; S, 10.32.

Single crystals of product **4** suitable for X-ray crystallographic analysis were obtained by slow crystallization from solution in CH₂Cl₂/CF₃CO₂H. X-ray diffraction data for **4** were collected on Rigaku RAPID II Image Plate system using graphite-monochromated CuK α radiation ($\lambda = 1.54187$ Å) at 123 K. The structure was solved by the Patterson method (SHELXS 86) and refined by full-matrix least-squares refinement on F² using Crystals for Windows program. Crystal data for **4** C₉H₉F₆I₁O₁₁S₂: M 598.19, monoclinic, space group P21/n, a = 15.4493(5), b = 5.7324(2), c = 20.1514(14) Å, $\beta = 97.086(7)$ °, V = 1771.01(12) Å³, Z = 4, $\mu = 17.569$ mm⁻¹, 8356 reflections measured, 2811 unique; final R₁ = 0.0953, R_w = 0.2256. CCDC 1908422.

3. Oxidation of adamantane

Method A. A mixture of adamantane **5** (136 mg, 1 mmol), IBX-ditriflate **4** (657 mg, 1.1 mmol), chloroform (3 mL) and trifluoroacetic acid (0.5 mL, 3 mmol) was heated at 60 °C for 30 min until full conversion of adamantane **5** (according to GC-MS). Then sodium hydroxide (0.4 g, 10 mmol) and methanol (5 mL) were added and the resulting mixture was stirred for 1 hour. Water (5 mL) was added to the reaction mixture and the organic product was extracted with dichloromethane (3x5 mL). Organic layer was dried over Na₂SO₄, solvent was removed under reduced pressure. The product was dried in vacuum to give 1-adamantanol **6** as a white solid (131 mg, 86%), mp 249-251 °C (sublm) (lit.¹ mp >220 °C (sublm); ¹H NMR (300 MHz, CDCl₃) δ 2.13 (s, 3H), 1.70-1.54 (m, 13H). ¹³C NMR (100 MHz, CDCl₃) δ 68.4, 45.5, 36.2, 30.8.

Method B (with IBX-ditriflate 4 generated *in situ*). A mixture of adamantane 5 (136 mg, 1 mmol), IBX 1 (308 mg, 1.1 mmol), triflic acid (0.1 mL, 1.1 mmol), chloroform (3 mL),

trifluoroacetic acid (0.5 mL) was heated at 60 °C for 30 min. 1-Adamantanol **6** was isolated according to method **A** as a white solid (136 mg, 89%).

4. Oxidation of anthracen-9(10H)-one

Reagent IBX-ditriflate **4** (194 mg, 0.32 mmol) was added to the solution of anthracen-9(10*H*)-one **7** (49 mg, 0.25 mmol) in CH₂Cl₂ (5 mL) and stirred for 30 minutes at room temperature. Reaction was monitored by TLC (eluent hexane:EtOAc 9:1). Reaction mixture was diluted with water and extracted with dichloromethane (3x15 mL). Organic layer was washed with an aqueous solution of NaHCO₃ and dried over Na₂SO₄. Solvent was removed under reduced pressure. The product was dried under reduced pressure to give anthraquinone **8** as a grey solid (44 mg, 85%), mp 289-290 °C (lit.² mp 287-288 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ 8.24-8.21 (m, 4H), 7.99-7.91 (m, 4H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 182.6, 134.7, 133.1, 126.8.

5. Oxidation of 4-(tert-butyl)-cyclohexan-1-one³

Reagent IBX-ditriflate **4** (194 mg, 0.32 mmol) was added to a stirred mixture of 4-(*tert*-butyl)-cyclohexan-1-on **9** (38 mg, 0.25 mmol), K_2CO_3 (45 mg, 0.33 mmol), acetonitrile (1.5 mL). Reaction mixture was stirred for 80 min at room temperature. Reaction was monitored by TLC (eluent hexane: EtOAc 9:1, 2,4-dinitrophenylhydrazine

stain). Reaction mixture was diluted with water and extracted with dichloromethane (3x15 mL). Organic layer was washed with an aqueous solution of NaHCO₃ and dried over Na₂SO₄. The solvent was removed under reduced pressure. The product was purified by column chromatography on Silicagel (eluent hexane: EtOAc 9:1) to give the 4-(*tert*-butyl)-cyclohex-2-en-1-one **10** as a colorless oil³ (33 mg, 87%). ¹H NMR (400 MHz, CDCl₃) δ 7.01 (d, *J* = 10.4 Hz, 1H), 6.03 (d, *J* = 10.4, 1H), 2.51 (d, *J* = 16.4 Hz, 1H), 2.37-2.28 (m, 1H), 2.19 (d, *J* = 11.2 Hz, 1H), 2.10-2.08 (m, 1H), 1.84-1.66 (m, 1H), 0.97 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 200.4, 153.3, 130.0, 47.0, 37.9, 33.0, 27.5, 24.5.

6. Oxidation of 1,1,1,3,3,3-hexafluoroisopropanol in NMR tube

To a mixture of 2-iodoxybenzoic acid ditriflate 4 (24 mg, 0.040 mmol) in CDCl₃ (0.3 mL) in sealed NMR tube was added 0.26 M solution of hexafluoroisopropanol in CDCl₃ (0.1 mL, 0.026 mmol) and DCE as internal standard. After measuring initial ¹H NMR spectrum (0 min) trifluoroacetic acid (0.1 mL) was added to the reaction mixture in order to partially dissolve IBX-ditriflate 4 and initiate the reaction, and the reaction was heated at 60 °C. The progress of oxidation and conversion was monitored by ¹H NMR.

7. Oxidation of 2,2,2-trifluoroethanol in NMR tube

CF₃CH₂OH 4 (1 equiv), CDCl₃, TFA, sealed NMR tube, 60 °C, 10 min 100% conversion CF₃CHO

7.1. Oxidation at 60 °C. To a mixture of 2-iodoxybenzoic acid ditriflate 4 (24 mg, 0.040 mmol) in CDCl₃ (0.3 mL) in sealed NMR tube was added 0.26 M solution of trifluoroethanol in CDCl₃ (0.1 mL, 0.026 mmol) and DCE as internal standard. After measuring initial ¹H NMR spectrum (0 min), trifluoroacetic acid (0.1 mL) was added to reaction mixture in order to partially dissolve IBX-ditriflate 4 and initiate the reaction. According to ¹H NMR full conversion of starting material at 60 °C was reached in 10 min.

7.2. Oxidation at room temperature. To a mixture of 2-iodoxybenzoic acid ditriflate 4 (24 mg, 0.040 mmol) in CDCl₃ (0.3 mL) in sealed NMR tube was added 0.26 M solution of trifluoroethanol in CDCl₃ (0.1 mL, 0.026 mmol) and DCE as internal standard. After measuring initial ¹H NMR spectrum (0 min), trifluoroacetic acid (0.1 mL) was added to the reaction mixture in order to partially dissolve IBX-ditriflate 4 and initiate the reaction. The progress of oxidation and conversion was monitored by ¹H NMR. A 96% conversion of starting material at room temperature was reached in 105 min.

8. Oxidation of polyfluorinated alcohols with IBX ditriflate generated in situ

Cooled trifluoromethanesulfonic acid (88 μ L, 1 mmol) was added to the mixture of fluorinated alcohol **11** (0.25 mmol) and IBX **1** (140 mg, 0.5 mmol) in dichloromethane at 0 °C. Reaction mixture was refluxed from 30 min to 4 h and monitored by TLC (eluent hexane:EtOAc 3:1, KMnO₄ stain). After completion of reaction, the mixture was cooled to room temperature and mixed with ether (10 mL) and saturated solution of Na₂S₂O₃

(0.2 mL). The obtained white precipitate was filtered and 100 mg of Na₂CO₃ was added to mother liquor. The organic solution was filtered and dried over Na₂SO₄. Solvent was removed under reduced pressure. Products were purified by column chromatography on Silicagel (eluent hexane:Et₂O 5:1) to give the corresponding polyfluorinated aldehydes in the form of polyfluoroalkane-1,1-diols **12-15**, which were identified by comparison with the available literature data.⁶⁻¹⁰

2,2,3,3,4,4,5,5,6,6,7,7,7-tridecafluoroheptane-1,1-diol^{6,7}

The reaction of 2,2,3,3,4,4,5,5,6,6,7,7,7-tridecafluoroheptan-1-ol (88 mg, 0.25 mmol), IBX (140mg, 0.5 mmol), TfOH (88 μ L, 1 mmol) according to the general procedure afforded 72 mg (79%) of 2,2,3,3,4,4,5,5,6,6,7,7,7-tridecafluoroheptane-1,1-diol⁶ **12** as a white, semicrystalline solid; ¹H NMR (500 MHz, acetone-*d*₆) δ 6.38 (d, *J* = 8.0 Hz, 2H), 5.52-5.35 (m, 1H). ¹⁹F NMR (471 MHz, acetone-*d*₆) δ -81.70 (s, 3F), -122.65 (s, 2F), -123.04 (s, 2F), -123.37 (s, 2F), -126.76 (s, 2F), -128.49 (s, 2F).

2,2,3,3,4,4,5,5,6,6,7,7,8,8,8-pentadecafluorooctan-1,1-diol^{8,9}

The reaction of 2,2,3,3,4,4,5,5,6,6,7,7,8,8,8-pentadecafluorooctan-1-ol (100 mg, 0.25 mmol), IBX (140 mg, 0.5 mmol), TfOH (88 μ L, 1 mmol) according to the general procedure afforded 85 mg (82%) of 2,2,3,3,4,4,5,5,6,6,7,7,8,8,8-- pentadecafluorooctan-1,1-diol^{8,9} **13** as a white semicrystalline, solid; ¹H NMR (400 MHz, acetone-*d*₆) δ 6.43 (d, *J* = 7.2 Hz, 2H), 5.43 (m, *J* = 8.0 Hz, 1H). ¹⁹F NMR (376 MHz, acetone-*d*₆) δ -81.67 (s, 3F), -122.51 (s, 4F), -122.99 (s, 2F), -123.28 (s, 2F), -126.72 (s, 2F), -128.47 (s, 2F).

2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,9-heptadecafluorononane-1,1-diol⁷

The reaction of 2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,9-heptadecafluorononan-1-ol (113 mg, 0.25

mmol), IBX **1** (140mg, 0.5 mmol), TfOH (88 μL, 1 mmol) according to the general procedure afforded 83 mg (80%) of 2,2,3,3,4,4,5,5,6,6,7,7,8,8,8-pentadecafluorooctan-1-ol **14** as a white, semicrystalline solid; ¹H NMR (300 MHz, Acetone- d_6) δ 6.44 (d, J = 7.2 Hz, 1H), 5.48-5.38 (m, 1H). ¹⁹F NMR (376 MHz, Acetone- d_6) δ -81.66 (s, 3F), -122.48 (s, 6F), -123.03 (s, 2F), -123.29 (s, 2F), -126.76 (s, 2F), -128.52 (s, 2F).

2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-nonadecafluorodecane-1,1-diol¹⁰

The reaction of 2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-nonadecafluorodecan-1-ol (125 mg, 0.25 mmol), IBX (140mg, 0.5 mmol), TfOH (88 μ L, 1 mmol) according to the general procedure afforded 99 mg (77%) of 2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-nona-decafluorodecane-1,1-diol¹⁰ **15** as a white, semicrystalline solid; ¹H NMR (300 MHz, acetone-*d*₆) δ 6.46 (d, *J* = 7.2 Hz, 2H), 5.43 (m, *J* = 7.5 Hz 1H). ¹⁹F NMR (471 MHz, acetone-*d*₆) δ -81.63 (s, 3F), -122.41 (s, 8F), -123.03 (s, 2F), -123.27 (s, 2F), -126.75 (s, 2F), -128.52 (s, 2F).

9. References

- 1. R. D. Bach, T. H. Taaffee and J. W. Holubka, J. Org. Chem., 1980, 45, 3439-3442.
- 2. E. Turunc and F. Aydin, Org. Prep. Proc. Int., 2004, 36, 363-366.
- 3. M. Uyanik, M. Akakura and K. Ishihara, J. Am. Chem. Soc., 2009, 131, 251-262.
- A. O. Miller, D. Peters, C. Zur, M. Frank and R. Miethchen, *J. Fluorine Chem.*, 1997, 82, 33-38.
- 5. B. Hatano, S. Toyota, F. Toda, Green Chem., 2001, 3, 140–142.
- V. Kolarikova, O. Simunek, M. Rybackova, J. Cvacka, A. Brezinova and J. Kvicala, *Dalton Trans.*, 2015, 44, 19663-19673.
- A. O. Miller, D. Peters, C. Zur, M. Frank and R. Miethchen, *J. Fluorine Chem.*, 1997, 82, 33-38.
- 8. L. Ingrassia and M. Mulliez, Synthesis, 1999, 10, 1731-1738.

- 9. O. R. Pierce and T. G. Kane, J. Am. Chem. Soc., 1954, 76, 300-301.
- 10. D.R. Husted and A. H Ahlbrecht, Fluorocarbon aldehydes and their monohydrates, US Pat., 2 568 500, 1949.

ESI Mass Spectrometry Study of stability of IBX-ditriflate 4 in acetonitrile solution:

S16

S27

