Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2019

The Facile Synthesis of α-trifluoromethylthio Phosphonium Ylides with a Constrained Trifluoromethylthiooxide via Proton-Transfer Procedure

Chengyao Kimmy Cao,^a Yue Zhang,^b Tianlei Lan, ^b Wei Liu,^c Chao Chen*^a Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084

Supporting information

Table of contents

1.	General information	
2.	Synthesis of compound \mathbf{A}^1	S3
3. metl	Studies of compound Ph ₃ P=CHSCF ₃ by trifluoromethylthiolated of hylenetriphenylphosphorane	
4.	General procedure for the synthesis of compound 2b-2d	S5
5.	Optimization of Wittig-Horner reaction conditions	S6
6.	Typical procedures for the synthesis of compounds 4	
7.	References	S14
8.	Copies of ¹ H, ¹³ C, ¹⁹ F and ³¹ P NMR spectra of the products	S15
9.	X-ray single crystallographic data of compound 2b	S64

1. General information

¹H, ¹³C and ¹⁹F NMR spectra were recorded with JEOL AL - 600 MHz, AL - 400 MHz and AL - 300 MHz spectrometer. CDCl₃ was selected as the solvent and residual proton resonance of CDCl₃ was referenced using the 7.26 ppm in ¹H NMR and 77.16 ppm in ¹³C NMR. Data are reported in the following order: multiplicities (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet) and Coupling constants (*J*) are in Hertz (Hz). HRMS were recorded on a high-resolution mass spectrometer in the EI or ESI mode. IR spectra was recorded on a Perkin Elmer Spectrum 100 FT-IR spectrometer.

Materials: Unless otherwise noted, all commercially available compounds were used as provided without further purification. Solvents were purified by solvent purification system. Reactions were performed under an atmosphere of N₂ using glassware that was flame-dried under vacuum. n-BuLi was purchased from Energy (1,6 M in hexane). AgSCF₃¹ and compounds A1,² A2, ³ A3, ² A4, ⁴ A5 ⁵ were prepared following the literature.

2. Synthesis of compound A¹

A 200 mL round-bottomed flask charged with 1-adamantanemethanol (4.5 mmol, 686 mg), N-trifluoromethylthiosaccharin (5.9 mmol, 1.65 g), and Et_3N (10.4 mmol, 1.5 mL) was added DCM (90 mL). The mixture was stirred at room temperature for 10 min. The mixture was concentrated to (15 mL). The resulting mixture was then purified by flash column chromatography (Eluent: pentane) to give trifluoromethyl substituted thioperoxide **A** as a colorless liquid in 87% yield.

¹H NMR (400 MHz, CHLOROFORM-D) δ 2.23 (s, 3H), 1.82 (s, 6H), 1.62 (q, J = 12.4 Hz, 6H). ¹³C NMR (101 MHz, CHLOROFORM-D) δ130.69 (q, J = 312.5 Hz), 83.10, 41.60, 35.88, 31.41. ¹⁹F NMR (283 MHz, CHLOROFORM-D) δ -52.50 (s). IR (FTIR): v = 2912, 2856, 1456, 1117, 1047, 892, 798 cm⁻¹. Anal. Calcd for C₁₁H₁₅F₃OS: C, 52.37; H, 5.99. Found: C, 52.52; H, 6.17.

3. Studies of compound Ph₃P=CHSCF₃ by trifluoromethylthiolated of

methylenetriphenylphosphorane

Initial observation of Ph₃P=CHSCF₃. To a solution of Methyltriphenylphosphonium bromide (71.4 mg, 0.2 mmol) in THF (2 mL) was added n-BuLi (1.6 M in hexane, 125 μ L, 0.2 mmol) at -78 °C, and stirred for 1 h. Then trifluoromethylthiolationg reagent **A** – **A5** (0.1 mmol) was added to the reaction mixture independently. The mixture was allowed to warm to 30 °C and stirred for 4 h. As shown in Figure S1, a strong signal at around $\delta = -52.6$ ppm was observed by ¹⁹F NMR spectroscopy at room temperature using reagent **A5** and **A** (1.0 equiv) as the trifluoromethylthiolating reagents (5, 6). When **A1** to **A4** was used as the functional reagent, no change was occurred (Figure S1, 1 – 4).

Figure S1 ¹⁹F NMR of the mixture of methylenetriphenylphosphorane with "SCF₃" reagents A - A5

The identification and reactivity of $Ph_3P=CHSCF_3$. In order to further affirm the new intermediate was our trifluoromethylthiolated ylide, aldehyde was added into the mixture in one-pot, ¹⁹F NMR spectra was recorded for different hours. As we can see the peak at -52.6 ppm decreased quickly in 10 min, and two new signals at -43.2 ppm emerged, which is exactly the same signal of the corresponding trifluoromethylthiolated olefin products (Figure S2). Prolonging the reaction time, the intermediate was almost consumed completely. The above information obviously indicated that compound $Ph_3P=CHSCF_3$ was produced and can finish Wittig reaction smoothly. It should be noted that compound $Ph_3P=CHSCF_3$ was not stable enough to be separated because of its high activity.

Figure S2. ¹⁹F NMR spectrum of the mixture of Ph₃P=CHSCF₃ and 1-Naphthaldehyde in THF

4. General procedure for the synthesis of compound 2b-2d

Phosphonium ylide (0.2 mmol) was added to a dry seal tube. The tube was evacuated and backfilled with pure N_2 for 3 times. DCM (2 mL) was added, then "SCF₃" reagent A (0.2 mmol) was added, the reaction was stirred at room temperature for 12 h. The solvent was removed under reduced pressure and the residue was purified by column chromatography on silica gel by using a 5:1 mixture of Petroleum ether/EtOAc as an eluent to provide the trifluoromethylthiolated ylides **2b**, **2c**, **2d**.

methyl 2-((trifluoromethyl)thio)-2-(triphenyl-λ⁵-phosphanylidene)acetate **2b** was obtained as white solid in 90% yield; R_f(PE/EA=5:1)=0.54. ¹H NMR (400 MHz, CHLOROFORM-D) δ 7.60 (m, 9H), 7.49 (m, 6H), 3.67 (s, 3H). ¹³C NMR (101 MHz, CHLOROFORM-D) δ 134.01 (d, J = 9.5 Hz), 132.43 (d, J = 2.6 Hz), 128.77 (d, J = 12.4 Hz). ¹⁹F NMR (565 MHz, CHLOROFORM-D) δ -49.53 (d, J = 440.3 Hz). ³¹P NMR (243 MHz, CHLOROFORM-D) δ 29.47 (s). HRMS (ESI) calcd for C₂₂H₁₈F₃O₂PS (M+H)⁺ 435.0790, found 435.0788. MP: 164.2 - 165.7 °C.

Ph₃P=

2c

ethyl 2-((trifluoromethyl)thio)-2-(triphenyl- λ^5 -phosphanylidene)acetate **2c** was obtained as white solid in 92% yield; R_f(PE/EA=5:1)=0.54. ¹H NMR (600 MHz, CHLOROFORM-D) δ 7.64 – 7.53 (m, 9H), 7.51 – 7.43 (m, 6H), 4.43 – 3.58 (m, 2H), 1.70 – 0.96 (m, 3H). ¹³C NMR (151 MHz, CHLOROFORM-D) δ 133.94 (d, *J* = 9.6 Hz), 132.34 (d, *J* = 1.6 Hz), 128.67 (d, *J* = 12.4 Hz), 126.21 (m), 59.51 (m), 14.08 (m). ¹⁹F NMR (565 MHz, CHLOROFORM-D) δ -49.51 (d, *J* = 379.6 Hz). ³¹P NMR (243 MHz, CHLOROFORM-D) δ 29.60 (s). HRMS (ESI) calcd for C₂₃H₂₀F₃O₂PS (M+H)⁺ 449.0946, found 449.0941. MP: 165. – 166.4 °C.

Ph₃P SCF₃ 2d

2-((trifluoromethyl)thio)-2-(triphenyl-15-phosphanylidene)acetonitrile **2d** was obtained as white solid in 60% yield; $R_f(PE/EA=5:1)=0.35$. ¹H NMR (400 MHz, CHLOROFORM-D) δ 7.71 – 7.61 (m, 9H), 7.56 (m, 6H). ¹³C NMR (101 MHz, CHLOROFORM-D) δ 134.08 (d, J = 9.7 Hz), 133.57 (d, J = 2.3 Hz), 129.30 (d, J = 12.5 Hz), 126.58 (d, J = 25.6 Hz), 123.72 (d, J = 92.3 Hz). ¹⁹F NMR (283 MHz, CHLOROFORM-D) δ -49.08 (s). ³¹P NMR (243 MHz, CHLOROFORM-D) δ 30.41 (s). HRMS (ESI) calcd for C₂₁H₁₅F₃NPS (M+H)⁺ 402.0688, found 402.0685. MP: 161.5 – 162 °C.

		base	R- <mark>SCF</mark> 3, A - A5		3a SCF3	
		solvent, T °C	30 °C, time	50 °C, 12	h	
Entry	SCF ₃ reagent	Base	T⁰C	Solvent	4aa Yield of 4aa (%) ^b	Z/E ^b
1	A1-A4	n-BuLi	- 78 to rt	THF	0	
2	A5	n-BuLi	- 78 to rt	THF	69	80:20
3	Α	n-BuLi	- 78 to rt	THF	98 (96) ^c	80:20
4	Α	NaH	70	THF	50	78:22
5	Α	t-BuOK	70	THF	22	79:21
6	Α	NaNH ₂	rt	THF	7	67:33
7	Α	N(TMS) ₂ Na	- 78 to rt	THF	44	60:40
8	Α	n-BuLi	- 78 to rt	Et ₂ O	30	70:30
9	Α	n-BuLi	- 78 to rt	toluene	10	67:33
	Me Ph ^{-N} SCF ₃ A1		-SCF ₃		PhO ₂ S N—SCF ₃ PhO ₂ S A4	
	A5	A	`O <mark>SCF</mark> ₃			

сно

5. Table S1. Optimization of Wittig-Horner reaction conditions

^a Reaction conditions: preparation of the phosphonium ylide: methyltriphenylphosphoniu bromide (0.2 mmol), base (0.2 mmol), solvent; **A** - **A5** (0.2 mmol) was added dropwise to the reaction mixture, 30°C, 4 h. then aldehyde (0.17 mmol) was added, 50°C, 12 h. ^b Yields and *Z/E* ratio were determined by ¹⁹F-NMR using trifluoromethylbenzene as an internal standard. ^c Value in parentheses refers to isolated yield.

6. Typical procedures for the synthesis of compound 4

Methyltriphenylphosphonium bromide (71.4 mg, 0.2 mmol, 1.2 equiv) was added to a dry Seal tube. The tube was evacuated and backfilled with pure N₂ for 3 times. THF (2 mL) was added with syringe and the solution was cooled to -78 °C, then n-BuLi (1.6 M in hexane, 125 μ L, 0.2 mmol, 1.2 equiv) was added, the mixture was allowed to stirred for 1 h. "SCF₃" reagent A (52.0 mg, 0.2 mmol, 1.2 equiv) was added, the reaction was stirred for additional 4 h at 30°C. With the prepared trifluoromethylthiolated phosphonium ylides in hand, aldehydes (0.17mmol, 1equiv) was added in situ. The reaction mixture was stirred at corresponding temperature. The reaction was monitored by TLC. After completed the reaction, the reaction was treated with H₂O and extracted three times with EtOAc. The combined organic layers were dried over MgSO₄. After removal of the solvent under reduced pressure, the residue was purified by silica-gel column chromatography to give the products.

Analytic Data for products

(2-(Naphthalen-1-yl)vinyl)(trifluoromethyl)sulfane 4aa was obtained as colorless oil in 96% yield (*Z*:*E*=80:20, 41.5 mg); R_f(n-pentane)=0.80. NMR of the major isomer: ¹H NMR (400 MHz, CHLOROFORM-D) δ 7.98 – 7.94 (m, 1H), 7.93 – 7.90 (m, 1H), 7.88 (d, *J* = 8.4 Hz, 1H), 7.59 – 7.56 (m, 2H), 7.51 (d, *J* = 8.0 Hz, 1H), 7.45 (d, *J* = 10.1 Hz, 1H), 7.42 (d, *J* = 7.1 Hz, 1H), 6.72 (d, *J* = 10.0 Hz, 1H). ¹³C NMR (101 MHz, CHLOROFORM-D) δ133.70, 132.21, 131.18, 130.95, 129.85 (q, *J* = 307.6 Hz), 129.16, 128.77, 126.67, 126.41, 126.36, 125.23, 124.26, 117.40 (q, *J* = 3.2 Hz). ¹⁹F NMR (283 MHz, CHLOROFORM-D) δ-43.21(s). HRMS (ESI) calcd for C₁₃H₉F₃S [M]⁺: 254.0377; found, 254.0374.

(2-(Naphthalen-2-yl)vinyl)(trifluoromethyl)sulfane 4ab was obtained as white solid in 82% yield (*Z*:*E*=84:16, 35.4 mg); R_f(n-pentane)=0.80. NMR of the major isomer: ¹H NMR (400 MHz, CHLOROFORM-D) δ 7.89 – 7.81 (m, 3H), 7.78 (s, 1H), 7.50 (m, 3H), 7.00 (d, *J* = 10.5 Hz, 1H), 6.49 (d, *J* = 10.5 Hz, 1H). ¹³C NMR (101 MHz, CHLOROFORM-D) δ 133.25, 132.97, 132.70, 132.35, 129.72 (q, *J* = 307.9 Hz), 128.39, 128.37, 128.29, 127.81, 126.82, 126.71, 126.25, 114.36 (q, *J* = 3.6 Hz). ¹⁹F NMR (283 MHz, CHLOROFORM-D) δ -43.00 (s). HRMS (ESI) calcd for $C_{13}H_9F_3S$ [M]⁺: 254.0377; found, 254.0372.

4ac *Z:E*= 83:17

Styryl(trifluorometyl)sulfane 4ac was obtained as light yellow oil in 81% yield (*Z*:*E*=83:17, 28.1 mg); R_f (n-pentane)=0.82. NMR of the major isomer: ¹H NMR (400 MHz, CHLOROFORM-D) δ 7.43 – 7.29 (m, 5H), 6.85 (d, *J* = 10.4 Hz, 1H), 6.40 (d, *J* = 10.4 Hz, 1H). ¹³C NMR (151 MHz,

CHLOROFORM-D) $\delta 135.17$, 132.32, 129.67 (q, J = 307.8 Hz), 128.79, 128.71, 128.39, 114.01 (q, J = 3.0 Hz). ¹⁹F NMR (283 MHz, CHLOROFORM-D) δ -42.81(s). HRMS (ESI) calcd for C₉H₇F₃S [M]⁺: 204.0221; found, 204.0220.

(4-methylstyryl)(trifluoromethyl)sulfane 4ad was obtained as colorless oil in 80% yield (*Z*:*E*=84:16, 29.7 mg); R_f(n-pentane)=0.82. NMR of the major isomer: ¹H NMR (400 MHz, CHLOROFORM-D) δ 7.25 (d, *J* = 8.0 Hz, 2H), 7.21 (d, *J* = 8.0 Hz, 2H), 6.83 (d, *J* = 10.5 Hz, 1H), 6.34 (d, *J* = 10.4 Hz, 1H), 2.38 (s, 3H). ¹³C NMR (101 MHz, CHLOROFORM-D) δ 138.46, 132.46, 132.40, 129.73 (q, *J* = 307.7 Hz), 129.39, 128.78, 112.89 (q, *J* = 3.5 Hz), 21.42. ¹⁹F NMR (283 MHz, CHLOROFORM-D) δ -43.15 (s). HRMS (ESI) calcd for C₁₀H₉F₃S [M]⁺: 218.0377; found, 218.0379.

(4-isopropylstyryl)(trifluoromethyl)sulfane 4ae was obtained as colorless oil in 83% yield (*Z*:*E*=84:16, 34.7 mg); R_f(n-pentane)=0.82. NMR of the major isomer: ¹H NMR (400 MHz, CHLOROFORM-D) δ 7.30 (d, *J* = 8.5 Hz, 2H), 7.27 (d, *J* = 8.8 Hz, 2H), 6.84 (d, *J* = 10.5 Hz, 1H), 6.35 (d, *J* = 10.5 Hz, 1H), 2.94 (m, 1H), 1.28 (d, *J* = 7.0 Hz, 6H). ¹³C NMR (101 MHz, CHLOROFORM-D) δ 149.37, 132.40, 129.74 (q, *J* = 307.7 Hz), 128.91, 127.06, 126.79, 112.87 (q, *J* = 3.5 Hz), 34.11, 23.97. ¹⁹F NMR (283 MHz, CHLOROFORM-D) δ -43.17 (s). HRMS (ESI) calcd for C₁₂H₁₃F₃S [M]⁺: 246.0690; found, 246.0688.

(4-methoxystyryl)(trifluoromethyl)sulfane 4af was obtained as pale yellow oil in 68% yield (*Z*:*E*=78:22, 27.1 mg); R_f(n-pentane/EA 10:1)=0.74. NMR of the major isomer: ¹H NMR (400 MHz, CHLOROFORM-D) δ 7.31 (d, *J* = 7.4 Hz, 2H), 6.93 (d, *J* = 7.4 Hz, 2H), 6.80 (d, *J* = 10.4 Hz, 1H), 6.27 (dd, *J* = 10.4, 1.4 Hz, 1H), 3.84 (s, 3H). ¹³C NMR (101 MHz, CHLOROFORM-D) δ 159.62, 132.42, 130.36, 129.74 (q, *J* = 307.5 Hz), 127.86, 114.09, 111.38 (q, *J* = 3.3 Hz), 55.42. ¹⁹F NMR (283 MHz, CHLOROFORM-D) δ -43.16 (s). HRMS (ESI) calcd for C₁₀H₉F₃OS [M]⁺: 234.0326; found, 234.0328.

(4-methoxystyryl)(trifluoromethyl)sulfane 4ag was obtained as white solid in 83% yield (*Z*:*E*=86:14, 31.1 mg); R_i(n-pentane/EA 10:1)=0.45. NMR of the major isomer: ¹H NMR (400 MHz, CHLOROFORM-D) δ 7.25 (d, *J* = 7.8 Hz, 2H), 6.85 (d, *J* = 7.8 Hz, 2H), 6.78 (d, *J* = 10.4 Hz, 1H), 6.26 (dd, *J* = 10.4, 0.9 Hz, 1H), 5.15 (s, 1H). ¹³C NMR (101 MHz, CHLOROFORM-D)

δ 155.61, 132.31, 130.59, 129.71 (q, J = 307.7 Hz), 128.12, 115.60, 111.57 (q, J = 3.4 Hz). ¹⁹F NMR (283 MHz, CHLOROFORM-D) δ -43.19 (s). HRMS (ESI) calcd for C₉H₇F₃OS [M]⁺: 220.0170; found, 220.0169 . MP: 52.2 – 54.7 °C.

(2-([1,1'-biphenyl]-4-yl)vinyl)(trifluoromethyl)sulfane 4ah was obtained as white solid in 91% yield (*Z*:*E*=82:18, 43.3 mg); R_f(n-pentane)=0.77. NMR of the major isomer: ¹H NMR (400 MHz, CHLOROFORM-D) δ 7.69 – 7.65 (m, 4H), 7.51 – 7.40 (m, 5H), 6.91 (d, *J* = 10.5 Hz, 1H), 6.47 (d, *J* = 10.5 Hz, 1H). ¹³C NMR (101 MHz, CHLOROFORM-D) δ 141.11, 140.41, 134.11, 131.89, 129.68 (q, *J* = 307.9 Hz), 129.30, 129.01, 127.77, 127.32, 127.17, 125.09, 113.88 (q, *J* = 3.3 Hz). ¹⁹F NMR (376 MHz, CHLOROFORM-D) δ -45.49 (s). HRMS (ESI) calcd for C₁₅H₁₁F₃S [M]⁺: 280.0534; found, 280.0529.

(4-bromostyryl)(trifluoromethyl)sulfane 4ai was obtained as colorless oil in 98% yield (*Z*:*E*=79:21, 47.0 mg); R_i(n-pentane)=0.60. NMR of the major isomer: ¹H NMR (400 MHz, CHLOROFORM-D) δ 7.51 (dd, *J* = 8.4, 1.4 Hz, 1H), 7.20 (d, *J* = 8.4 Hz, 1H), 6.77 (d, *J* = 10.4 Hz, 1H), 6.43 (dd, *J* = 10.5, 1.2 Hz, 1H).¹³C NMR (101 MHz, CHLOROFORM-D) δ 134.01, 131.89, 131.21, 130.30, 129.50 (q, *J* = 308.0 Hz), 122.45, 114.92 (q, *J* = 3.4 Hz).¹⁹F NMR (283 MHz, CHLOROFORM-D) δ -42.93 (s). HRMS (ESI) calcd for C₉H₆BrF₃S [M]⁺: 281.9326; found, 281.9327.

(4-chlorostyryl)(trifluoromethyl)sulfane 4aj was obtained as colorless oil in 99% yield (*Z*:*E*=74:26, 40.1 mg); R_f(n-pentane)=0.60. NMR of the major isomer: ¹H NMR (400 MHz, CHLOROFORM-D) δ 7.29 (d, *J* = 8.4 Hz, 2H), 7.19 (d, *J* = 8.4 Hz, 2H), 6.71 (d, *J* = 10.5 Hz, 1H), 6.34 (d, *J* = 10.5 Hz, 1H). ¹³C NMR (101 MHz, CHLOROFORM-D) δ134.25, 133.58, 131.20, 130.05, 129.53 (q, *J* = 307.7 Hz), 128.94, 114.77 (q, *J* = 3.6 Hz). ¹⁹F NMR (283 MHz, CHLOROFORM-D) δ -42.94 (s). HRMS (ESI) calcd for C₉H₆ClF₃S [M]⁺: 237.9831; found, 237.9828.

(4-nitrostyryl)(trifluoromethyl)sulfane 4ak was obtained as pale yellow oil in 99% yield (*Z:E*=75:25, 41.9 mg); R_f(n-pentane/EA 10:1)=0.30. ¹H NMR (400 MHz, CHLOROFORM-D) δ 8.24 (d, *J* = 8.8 Hz, 2H), 7.48 (d, *J* = 8.8 Hz, 2H), 6.88 (d, *J* = 10.7 Hz, 1H), 6.64 (d, *J* = 10.7 Hz, 1H). ¹³C NMR (101 MHz, CHLOROFORM-D) δ -147.08, 141.34, 129.70, 129.42, 129.19 (q, *J* =

308.1 Hz), 123.99, 118.75 (q, J = 3.7 Hz). ¹⁹F NMR (565 MHz, CHLOROFORM-D) δ -42.74 (s). HRMS (ESI) calcd for C₉H₆F₃NO₂S [M]⁺: 249.0071; found, 249.0072.

4-(2-((trifluoromethyl)thio)vinyl)benzonitrile 4al was obtained as yellow oil in 91% yield (*Z*:*E*=88:12, 35.4 mg); R_f(n-pentane/EA 10:1)=0.33. NMR of the major isomer: ¹H NMR (400 MHz, CHLOROFORM-D) δ 7.67 (d, *J* = 8.3 Hz, 2H), 7.42 (d, *J* = 8.3 Hz, 2H), 6.83 (d, *J* = 10.7 Hz, 1H), 6.59 (d, *J* = 10.7 Hz, 1H). ¹³C NMR (101 MHz, CHLOROFORM-D) δ 139.43, 132.44, 130.13, 129.21, 129.21 (d, *J* = 308.3 Hz), 118.57, 117.99 (q, *J* = 3.5 Hz), 111.71. ¹⁹F NMR (376 MHz, CHLOROFORM-D) δ -45.17 (s). HRMS (ESI) calcd for C₁₀H₆F₃NS [M]⁺: 229.0173; found, 229.0171.

Methyl-4-(2-((trifluoromethyl)thio)vinyl)benzoate 4am was obtained as white solid in 92% yield (*Z*:*E*=86:14, 41.1 mg); R_f(n-pentane/EA 10:1)=0.46. NMR of the major isomer: ¹H NMR (400 MHz, CHLOROFORM-D) δ 8.04 (d, *J* = 8.3 Hz, 2H), 7.37 (d, *J* = 8.3 Hz, 2H), 6.84 (d, *J* = 10.6 Hz, 1H), 6.51 (d, *J* = 10.6 Hz, 1H), 3.92 (s, 3H).¹³C NMR (101 MHz, CHLOROFORM-D) δ 166.58, 139.43, 130.93, 129.93, 129.67, 129.44 (q, *J* = 307.9 Hz), 128.62, 116.55 (q, *J* = 3.7 Hz), 52.29. ¹⁹F NMR (376 MHz, CHLOROFORM-D) δ -45.17 (s). HRMS (ESI) calcd for C₁₁H₉F₃O₂S [M]⁺: 262.0275; found, 262.0278.

(3-bromostyryl)(trifluoromethyl)sulfane 4an was obtained as yellow oil in 65% yield (*Z*:*E*=80:20, 31.2 mg); R_f(n-pentane)=0.60. NMR of the major isomer: ¹H NMR (400 MHz, CHLOROFORM-D) δ 7.47 (s, 1H), 7.44 (td, *J* = 5.1, 2.1 Hz, 1H), 7.26 (d, *J* = 5.1 Hz, 2H), 6.76 (d, *J* = 10.6 Hz, 1H), 6.46 (d, *J* = 10.6 Hz, 1H). ¹³C NMR (101 MHz, CHLOROFORM-D) δ 137.12, 131.66, 131.33, 130.69, 130.20, 129.48 (q, *J* = 307.9 Hz), 127.19, 122.83, 115.86 (q, *J* = 3.6 Hz). ¹⁹F NMR (376 MHz, CHLOROFORM-D) δ -45.32 (s). HRMS (ESI) calcd for C₉H₆BrF₃S [M]⁺: 281.9326; found, 281.9325.

(2-bromostyryl)(trifluoromethyl)sulfane 4ao was obtained as colorless oil in 99% yield (*Z:E*=75:25, 47.5 mg); R_f(n-pentane)=0.60. NMR of the major isomer: ¹H NMR (400 MHz, CHLOROFORM-D) δ 7.63 (d, *J* = 8.3 Hz, 1H), 7.34 (m, 2H), 7.23 – 7.15 (m, 1H), 7.00 (d, *J* = 10.4 Hz, 1H), 6.54 (d, *J* = 10.4 Hz, 1H). ¹³C NMR (101 MHz, CHLOROFORM-D) δ 135.11,

133.16, 132.17, 129.94, 129.66, 129.60 (q, J = 308.0 Hz), 127.40, 123.93, 116.75 (q, J = 3.5 Hz). ¹⁹F NMR (283 MHz, CHLOROFORM-D) δ -42.73 (s). HRMS (ESI) calcd for C₉H₆BrF₃S [M]⁺: 281.9326; found, 281.9322.

(2-nitrostyryl)(trifluoromethyl)sulfane 4ap was obtained as pale yellow oil in 82% yield (*Z*:*E*=66:34, 34.7 mg); R_f(n-pentane/EA 10:1)=0.34. NMR of the major isomer: ¹H NMR (400 MHz, CHLOROFORM-D) δ 8.13 (d, *J* = 8.2 Hz, 1H), 7.66 (t, *J* = 7.7 Hz, 1H), 7.53 (t, *J* = 8.1 Hz, 1H), 7.46 (d, *J* = 7.4 Hz, 1H), 7.29 (d, *J* = 10.2 Hz, 1H), 6.60 (d, *J* = 10.2 Hz, 1H). ¹³C NMR (101 MHz, CHLOROFORM-D) δ 147.39, 134.0, 133.64, 130.93, 130.54, 129.51, 129.49 (q, *J* = 308.0 Hz), 125.29, 117.60 (q, *J* = 3.1 Hz). ¹⁹F NMR (283 MHz, CHLOROFORM-D) δ -42.26 (s). HRMS (ESI) calcd for C₉H₆F₃NO₂S [M]⁺: 249.0071; found, 249.0074.

2-(2-((trifluoromethyl)thio)vinyl)benzo[b]thiophene 4aq was obtained as white solid in 68% yield (*Z*:*E*=82:18, 30.1 mg); R_f(n-pentane)=0.85. NMR of the major isomer: ¹H NMR (400 MHz, CHLOROFORM-D) δ 7.85 – 7.82 (m, 1H), 7.77 –7.79(m 1H), 7.40 – 7.36 (m, 2H), 7.33 (s, 1H), 7.07 (d, *J* = 10.1 Hz, 1H), 6.41 (d, *J* = 10.2 Hz, 1H). ¹³C NMR (101 MHz, CHLOROFORM-D) δ 139.59, 138.87, 138.16, 130.97 (t, *J* = 308.7 Hz), 127.51, 126.85, 125.44, 124.90, 124.09, 122.36, 113.28 (d, *J* = 3.4 Hz). ¹⁹F NMR (283 MHz, CHLOROFORM-D) δ -42.43 (s). HRMS (ESI) calcd for C₁₁H₇F₃S₂ [M]⁺: 259.9941; found, 259.9944.

(4-phenylbut-1-en-1-yl)(trifluoromethyl)sulfane 4ar was obtained as colorless oil in 35% yield (*Z*:*E*= 50:50, 13.8 mg); R_f(n-pentane)=0.88. NMR of the major isomer: ¹H NMR (400 MHz, CHLOROFORM-D) δ 7.32 (d, *J* = 7.2 Hz, 1H), 7.31 (d, *J* = 7.6 Hz, 1H), 7.26 –7.16 (m, 3H), 6.33 – 6.05 (m, 2H), 2.78 – 2.72 (m, 2H), 2.59 – 2.49 (m, 2H). ¹³C NMR (101 MHz, CHLOROFORM-D) δ140.75, 138.83, 129.75 (d, *J* = 307.0 Hz), 128.56, 128.5, 126.29, 113.69 (d, *J* = 2.8 Hz), 34.74, 30.91. ¹⁹F NMR (283 MHz, CHLOROFORM-D) δ -43.08 (s). HRMS (ESI) calcd for C₁₁H₁₁F₃S [M]⁺: 232.0534; found, 232.0536.

3E-4-phenylbuta-1,3-dien-1-yl)(trifluoromethyl)sulfane 4as was obtained as colorless oil in 85% yield (*Z*:*E*= 61:39, 33.3 mg); R_f (n-pentane)=0.85. NMR of the major isomer: ¹H NMR (400 MHz, CHLOROFORM-D) δ 7.47 (d, *J* = 7.3 Hz, 2H), 7.40 – 7.35 (m, 3H), 7.10 (dd, *J* = 15.3, 11.1 Hz,

1H), 6.78 – 6.72 (m, 2h), 6.17 (d, J = 9.5 Hz, 1H). ¹³C NMR (101 MHz, CHLOROFORM-D) δ 137.39, 136.43, 129.61 (q, J = 307.5 Hz), 128.91, 128.79, 128.08, 127.10, 126.95, 122.94, 112.63 (q, J = 2.8 Hz). ¹⁹F NMR (283 MHz, CHLOROFORM-D) δ -42.26 (s). HRMS (ESI) calcd for C₁₁H₉F₃S [M]⁺: 230.0377; found, 230.0373.

((4-phenylcyclohexylidene)methyl)(trifluoromethyl)sulfane 4at was obtained as colorless oil in 42% yield (19.4 mg); R_f(n-pentane)=0.76. ¹H NMR (400 MHz, CHLOROFORM-D) δ 7.31 (t, J = 7.5 Hz, 2H), 7.25 – 7.19 (m, 3H), 5.91 (s, 1H), 3.09 (d, J = 14.7 Hz, 1H), 2.76 (t, J = 12.2 Hz, 1H), 2.55 (d, J = 13.7 Hz, 1H), 2.41 – 2.29 (m, 1H), 2.13 – 2.04 (m, 3H), 1.66 – 1.53 (m, 2H). ¹³C NMR (101 MHz, CHLOROFORM-D) δ 155.07, 146.00, 130.03 (q, J = 306.9 Hz), 128.61, 126.92, 126.42, 103.63 (q, J = 2.0 Hz), 44.14, 36.67, 35.31, 34.43, 30.50. ¹⁹F NMR (283 MHz, CHLOROFORM-D) δ -43.02 (s). HRMS (ESI) calcd for C₁₄H₁₅F₃S [M]⁺: 272.0847; found, 272.0851.

(2-(4-nitrophenyl)prop-1-en-1-yl)(trifluoromethyl)sulfane 4au was obtained as pale yellow oil in 65% yield (*Z*:*E*= 55:45, 29 mg); R_f(n-pentane/EA 10:1)=0.30. NMR of the major isomer: ¹H NMR (400 MHz, CHLOROFORM-D) δ 8.22 (d, *J* = 8.6 Hz, 2H), 7.54 (d, *J* = 8.6 Hz, 2H), 6.57 (s, 1H), 2.23 (s, 3H). ¹³C NMR (101 MHz, CHLOROFORM-D) δ 146.87, 146.11, 143.44, 129.55 (q, *J* = 307.7 Hz), 126.63, 124.05, 114.81 (q, *J* = 3.0 Hz), 25.43. ¹⁹F NMR (283 MHz, CHLOROFORM-D) δ -42.75 (s). HRMS (ESI) calcd for C₁₀H₈F₃NO₂S [M]⁺: 263.0228; found, 263.0226.

(Z)-(1-(naphthalen-1-yl)prop-1-en-2-yl)(trifluoromethyl)sulfane 4ea was obtained as colorless oil in 37% yield (17.0 mg); R_f(n-pentane)=0.78. ¹H NMR (400 MHz, CHLOROFORM-D) δ 7.89 – 7.85 (m, 2H), 7.84 (d, *J* = 8.8 Hz, 1H), 7.52 (m, 2H), 7.54 – 7.50 (t, *J* = 7.8 Hz, 1H), 7.35 (d, *J* = 7.6 Hz, 1H), 7.33 (s, 1H), 2.48 (s, 3H). ¹³C NMR (101 MHz, CHLOROFORM-D) δ 135.35, 133.45, 133.21, 131.47, 129.74 (d, *J* = 308.9 Hz), 128.62, 128.56, 127.59, 127.37, 126.38, 126.15, 125.23, 124.59, 25.86. ¹⁹F NMR (283 MHz, CHLOROFORM-D) δ -37.97 (s). HRMS (ESI) calcd for C₁₄H₁₁F₃S [M]⁺: 268.0534; found, 268.0533.

(*E*)-(1-(naphthalen-1-yl)prop-1-en-2-yl)(trifluoromethyl)sulfane 4ea' was obtained as colorless oil in 32% yield (14.0 mg); R_f (n-pentane)=0.82. ¹H NMR (400 MHz, CHLOROFORM-D) δ 7.92

-7.86 (m, 2H), 7.84 (d, J = 8.3 Hz, 1H), 7.59 (s, 1H), 7.57 -7.51 (m, 2H), 7.49 (t, J = 7.7 Hz, 1H), 7.35 (d, J = 7.2 Hz, 1H), 2.18 (s, 3H). ¹³C NMR (101 MHz, CHLOROFORM-D) δ 141.09, 133.65, 133.12, 131.40, 130.35 (q, J = 308.8 Hz), 128.76, 128.68, 126.69, 126.60, 126.34, 125.32, 124.63, 21.89. ¹⁹F NMR (283 MHz, CHLOROFORM-D) δ -40.56 (s). HRMS (ESI) calcd for C₁₄H₁₁F₃S [M]⁺: 268.0534; found, 268.0531.

(1-(4-methoxyphenyl)prop-1-en-2-yl)(trifluoromethyl)sulfane 4ef was obtained as colorless oil in 85% yield (*Z*:*E*= 63:37, 35.8 mg); R_f(n-pentane/EA 10:1)=0.56. NMR of the major isomer: ¹H NMR (400 MHz, CHLOROFORM-D) δ 7.39 (d, *J* = 8.8 Hz, 2H), 6.89 (d, *J* = 8.8 Hz, 2H), 6.86 (s, 1H), 3.83 (s, 3H), 2.32 (s, 3H). ¹³C NMR (101 MHz, CHLOROFORM-D) δ159.45, 137.75, 130.81, 129.95 (q, *J* = 309.5 Hz), 128.20, 121.63, 113.73, 55.39, 27.10. ¹⁹F NMR (283 MHz, CHLOROFORM-D) δ -38.29 (s). HRMS (ESI) calcd for C₁₁H₁₁F₃OS [M]⁺: 248.0483; found, 248.0485.

(1-(4-bromophenyl)prop-1-en-2-yl)(trifluoromethyl)sulfane 4ei was obtained as colorless oil in 89% yield (*Z*:*E*= 62:38, 44.8 mg); R_f(n-pentane)=0.86. NMR of the major isomer: ¹H NMR (400 MHz, CHLOROFORM-D) δ 7.47 (d, *J* = 8.4 Hz, 2H), 7.25 (d, *J* = 8.4 Hz, 2H), 6.83 (s, 1H), 2.33 (s, 3H). ¹³C NMR (101 MHz, CHLOROFORM-D) δ 136.75, 134.50, 131.53, 130.90, 129.69 (q, *J* = 309.3 Hz), 125.00, 122.19, 26.96. ¹⁹F NMR (283 MHz, CHLOROFORM-D) δ -38.07 (s). HRMS (ESI) calcd for C₁₀H₈BrF₃S [M]⁺: 295.9482; found, 295.9483.

(*E*)-(2-(4-bromophenyl)-1-phenylvinyl)(trifluoromethyl)sulfane 4fi was obtained as colorless oil in 20% yield (12.3 mg); R_f(n-pentane)=0.84. ¹H NMR (400 MHz, CHLOROFORM-D) δ 7.38 – 7.31 (m, 5H), 7.28 (d, J = 8.5 Hz, 2H), 7.20 (s, 1H), 6.88 (d, J = 8.5 Hz, 2H). ¹³C NMR (101 MHz, CHLOROFORM-D) δ 139.46, 137.50, 134.30, 131.64, 131.06, 129.49, 129.02, 128.98, 128.91, 122.72. ¹⁹F NMR (283 MHz, CHLOROFORM-D) δ -40.81 (s). HRMS (ESI) calcd for C₁₅H₁₀BrF₃S [M]⁺: 357.9639; found, 357.9635.

7. References

- [1] G. Teverovskiy, D. S. Surry and S. L. Buchwald, Angew. Chem. Int. Ed., 2011, 50, 7312.
- [2] C. Xu, B. Ma and Q. Shen, Angew. Chem. Int. Ed., 2014, 53, 9316.
- [3] R. Pluta, P. Nikolaienko and M. Rueping, Angew. Chem. Int. Ed., 2014, 53, 1650.
- [4] P. Zhang, M. Li, X. -S. Xue, C. Xu, Q. Zhao, Y. Liu, H. Wang, Y. Guo, L. Lu and Q. Shen, *J. Org. Chem.* 2016, **81**, 7486.

[5] X. Shao, X. Wang, T. Yang, L. Lu and Q. Shen, Angew. Chem. Int. Ed., 2013, 52, 3457.

8. Copies of ¹H, ¹³C, ¹⁹F and ³¹P NMR spectra of the products.

¹H NMR spectrum of A in CDCl₃ (400 MHz)

¹³C NMR spectrum of A in CDCl₃ (101 MHz)

 1 H NMR spectrum of **2b** in CDCl₃ (400 MHz)

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 fi (ppm)

 ^{13}C NMR spectrum of 2b in CDCl₃ (101 MHz)

10 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -1 f1 (ppm)

¹⁹F NMR spectrum of **2b** in CDCl₃ (565 MHz)

 1 H NMR spectrum of **2c** in CDCl₃ (600 MHz)

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 fi (ppm)

 ^{13}C NMR spectrum of 2c in CDCl₃ (151 MHz)

60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 fi (ppm)

¹⁹F NMR spectrum of **2c** in CDCl₃ (565 MHz)

¹H NMR spectrum of **2d** in CDCl₃ (400 MHz)

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 fi (ppm)

 ^{13}C NMR spectrum of 2d in CDCl₃ (101 MHz)

¹⁹F NMR spectrum of **2d** in CDCl₃ (283 MHz)

³¹P NMR spectrum of **2d** in CDCl₃ (243 MHz)

¹H NMR spectrum of **4aa** in CDCl₃ (400 MHz)

 ^{19}F NMR spectrum of 4aa in CDCl₃ (283 MHz)

¹H NMR spectrum of **4ab** in CDCl₃ (400 MHz)

¹³C NMR spectrum of **4ab** in CDCl₃ (101 MHz)

 $^{19}\mathrm{F}$ NMR spectrum of 4ab in CDCl₃ (283 MHz)

 $^1\mathrm{H}$ NMR spectrum of 4ac in CDCl3 (400 MHz)

¹⁹F NMR spectrum of **4ac** in CDCl₃ (283 MHz)

¹H NMR spectrum of **4ad** in CDCl₃ (400 MHz)

¹³C NMR spectrum of **4ad** in CDCl₃ (101 MHz)

¹H NMR spectrum of **4ae** in CDCl₃ (400 MHz)

 ^{19}F NMR spectrum of 4ae in CDCl₃ (283 MHz)

¹H NMR spectrum of **4af** in CDCl₃ (400 MHz)

¹³C NMR spectrum of **4af** in CDCl₃ (101 MHz)

 $^{19}\mathrm{F}$ NMR spectrum of **4af** in CDCl₃ (283 MHz)

¹H NMR spectrum of **4ag** in CDCl₃ (400 MHz)

 $^{19}\mathrm{F}$ NMR spectrum of 4ag in CDCl3 (4283 MHz)

¹H NMR spectrum of **4ah** in CDCl₃ (400 MHz)

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 f1 (ppm)

¹³C NMR spectrum of **4ah** in CDCl₃ (101 MHz)

¹⁹F NMR spectrum of **4ah** in CDCl₃ (376 MHz)

¹H NMR spectrum of **4ai** in CDCl₃ (400 MHz)

S36

¹H NMR spectrum of **4aj** in CDCl₃ (400 MHz)

¹³C NMR spectrum of **4aj** in CDCl₃ (101 MHz)

¹H NMR spectrum of **4ak** in CDCl₃ (400 MHz)

¹⁹F NMR spectrum of **4ak** in CDCl₃ (565 MHz)

¹H NMR spectrum of **4al** in CDCl₃ (400 MHz)

 ^{13}C NMR spectrum of **4al** in CDCl₃ (101 MHz)

 $^{19}\mathrm{F}$ NMR spectrum of **4al** in CDCl₃ (376 MHz)

 1 H NMR spectrum of **4am** in CDCl₃ (400 MHz)

 $^{19}\mathrm{F}$ NMR spectrum of 4am in CDCl3 (376 MHz)

¹H NMR spectrum of **4an** in CDCl₃ (400 MHz)

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 f1 (ppm)

¹³C NMR spectrum of **4an** in CDCl₃ (101 MHz)

¹⁹F NMR spectrum of **4an** in CDCl₃ (376 MHz)

¹H NMR spectrum of **4ao** in CDCl₃ (400 MHz)

¹³C NMR spectrum of **4ao** in CDCl₃ (101 MHz)

⁹F NMR spectrum of 4ao in CDCl₃ (283 MHz)

¹H NMR spectrum of **4ap** in CDCl₃ (400 MHz)

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 f1 (ppm)

 ^{13}C NMR spectrum of 4ap in CDCl_3 (101 MHz)

¹⁹F NMR spectrum of **4ap** in CDCl₃ (283 MHz)

¹H NMR spectrum of 4aq in CDCl₃ (400 MHz)

 ^{13}C NMR spectrum of 4aq in CDCl₃ (101 MHz)

¹⁹F NMR spectrum of **4aq** in CDCl₃ (283 MHz)

¹H NMR spectrum of **4ar** in CDCl₃ (400 MHz)

¹³C NMR spectrum of **4ar** in CDCl₃ (101 MHz)

 1 H NMR spectrum of **4as** in CDCl₃ (400 MHz)

¹⁹F NMR spectrum of **4as** in CDCl₃ (283 MHz)

¹³C NMR spectrum of **4at** in CDCl₃ (101 MHz)

¹H NMR spectrum of **4au** in CDCl₃ (400 MHz)

¹⁹F NMR spectrum of **4au** in CDCl₃ (283 MHz)

¹H NMR spectrum of **4ea** in CDCl₃ (400 MHz)

¹³C NMR spectrum of **4ea** in CDCl₃ (101 MHz)

¹H NMR spectrum of **4ea'** in CDCl₃ (400 MHz)

¹⁹F NMR spectrum of **4ea'** in CDCl₃ (283 MHz)

220 210 200 190 180 170 160 150 140 130 120 110 100 90 f1 (ppm)

80 70 60 50

-10 -20

20 10

0

40 30

¹H NMR spectrum of **4ei** in CDCl₃ (400 MHz)

¹⁹F NMR spectrum of **4ei** in CDCl₃ (283 MHz)

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 f1 (ppm)

 ^{13}C NMR spectrum of 4fi in CDCl3 (101 MHz)

¹⁹F NMR spectrum of **4fi** in CDCl₃ (283 MHz)

9. X-ray single crystallographic data of compound 2b

The trifluoromethylthiolated phosphonium ylide **2b** was recrystallized from a solution in DCM/PE. The X-ray data have been deposited at the Cambridge Crystallographic Data Center (CCDC 1914419).

	Table 1	Crystal	data and	structure	refinement	for	compou	ınd 2b.
--	---------	---------	----------	-----------	------------	-----	--------	---------

Empirical formula	$C_{22}H_{18}F_3O_2PS$		
Formula weight	434.39		
Temperature/K	173.00(10)		
Crystal system	monoclinic		
Space group	P2 ₁ /c		
a/Å	9.7335(2)		
b/Å	20.6854(3)		
c/Å	10.7411(2)		
$\alpha/^{\circ}$	90		
β/°	103.192(2)		
γ/°	90		
Volume/Å ³	2105.56(7)		
Z	4		
$\rho_{calc}g/cm^3$	1.370		
μ/mm^{-1}	2.459		
F(000)	896.0		
Crystal size/mm ³	0.6 imes 0.2 imes 0.2		
Radiation	$CuK\alpha (\lambda = 1.54184)$		
2Θ range for data collection/° 8.55 to 153.408			
Index ranges	-12 \leq h \leq 12, -17 \leq k \leq 25, -13 \leq l \leq 13		

Reflections collected	10455
Independent reflections	4378 [$R_{int} = 0.0264, R_{sigma} = 0.0295$]
Data/restraints/parameters	4378/0/263
Goodness-of-fit on F ²	1.132
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0404, wR_2 = 0.1350$
Final R indexes [all data]	$R_1 = 0.0437, wR_2 = 0.1407$
Largest diff. peak/hole / e Å ⁻³	0.57/-0.48