Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2019

Supplemental Information

Umpolung cross-coupling of polyfluoroarenes with hydrazones via activation of C–F bonds

Dawei Cao,^a Pan Pan,^a Huiying Zeng*^a and Chao-Jun Li*^b

^aThe State Key Laboratory of Applied Organic Chemistry, Lanzhou University, 222 Tianshui Road, Lanzhou, 730000, P. R. China

^bDepartment of Chemistry and FQRNT Centre for Green Chemistry and Catalysis,

McGill University, 801 Sherbrooke St. West, Montreal, Quebec H3A 0B8, Canada

*Corresponding Authors: zenghy@lzu.edu.cn and cj.li@mcgill.ca

Table of Contents

Ι.	General Methods	S2
II.	Optimization of Reaction Conditions	S2
Ш.	Other Substrates	S6
IV.	Synthesis of the Hydrazone Substrates	S6
v.	General Procedure for the Coupling of Polyfluoroarenes with Hydrazones	S7
VI.	References	S19
VII.	Copies of ¹ H NMR, ¹⁹ F NMR and ¹³ C NMR	S20

I. General Methods

All reagents and solvents were purchased from commercial sources (Adamas-beta, TCI, Alfa and Ark) and used without further purification unless otherwise stated. All reactions were monitored by thin-layer chromatography (TLC). All reactions were carried out under argon atmosphere unless otherwise stated. Column chromatography was performed on silica gel (200-300 mesh) and visualized with ultraviolet light. Ethyl acetate and petroleum ether were used as eluents.¹H, ¹⁹F and ¹³C NMR spectra were taken on Bruker AV300, Bruker AV400, Varian Mercury plus 600 with TMS as an internal standard and CDCl₃ as solvent. Melting points were measured on micro melting point apparatus and uncorrected. GC-MS analyses were performed with a Thermo TRACE 1300 ISQ LT spectrometer. HRMS analyses were made at Lanzhou University by means of ESI.

II. Optimization of Reaction Conditions

1) Screening catalysts

General conditions: **1a** (0.2 mmol), **2a** (0.2 mmol), catalyst (5 mol%), dppp (10 mol%), KOH (1 equiv.) and THF (1 mL) at rt for 24 h under an argon atmosphere. ^aYields were determined by ¹H NMR with nitromethane as internal standard.

2) Control experiments

General conditions: **1a** (0.2 mmol), **2a** (0.2 mmol), $[Ru(p-cymene)Cl_2]_2$ (5 mol%), dppp (10 mol%), KOH (1 equiv.) and THF (1 mL) at rt for 24 h under an argon atmosphere. ^aYields were determined by ¹H NMR with nitromethane as internal standard.

3) Screening bases

General conditions: **1a** (0.2 mmol), **2a** (0.2 mmol), $[Ru(p-cymene)Cl_2]_2$ (5 mol%), dppp (10 mol%), base (1 equiv.) and THF (1 mL) at rt for 24 h under an argon atmosphere. ^aYields were determined by ¹H NMR with nitromethane as internal standard.

4) Screening the ratio of substrates

General conditions: **1a** (x mmol), **2a** (y mmol), $[Ru(p-cymene)Cl_2]_2$ (5 mol%), dppp (10 mol%), KOH (1 equiv.) and THF (1 mL) at rt for 24 h under an argon atmosphere. ^aYields were determined by ¹H NMR with nitromethane as internal standard.

5) Screening the amount of catalyst

General conditions: **1a** (0.2 mmol), **2a** (0.3 mmol), $[Ru(p-cymene)Cl_2]_2$ (x mol%), dppp (10 mol%), KOH (1 equiv.) and THF (1 mL) at rt for 24 h under an argon atmosphere. ^aYields were determined by ¹H NMR with nitromethane as internal standard.

6) Screening ligands and the amount of ligand

1	dppe	71
2	dppb	69
3	dppp (15 mol%)	84
4	dppp (15 mol%)	50

General conditions: **1a** (0.2 mmol), **2a** (0.3 mmol), $[Ru(p-cymene)Cl_2]_2$ (5 mol%), ligand (x mol%), KOH (1 equiv.) and THF (1 mL) at rt for 24 h under an argon atmosphere. ^aYields were determined by ¹H NMR with nitromethane as internal standard.

7) Screening solvents

General conditions: **1a** (0.2 mmol), **2a** (0.3 mmol), $[Ru(p-cymene)Cl_2]_2$ (5 mol%), dppp (15 mol%), base (1 equiv.) and solvent (1 mL) at rt for 24 h under an argon atmosphere. ^aYields were determined by ¹H NMR with nitromethane as internal standard.

8) Screening the amount of THF

General conditions: **1a** (0.2 mmol), **2a** (0.3 mmol), $[Ru(p-cymene)Cl_2]_2$ (5 mol%), dppp (15 mol%), KOH (1 equiv.) and THF (x mL) at rt for 24 h under an argon atmosphere. ^aYields were determined by ¹H NMR with nitromethane as internal standard.

III. Other Substrates^a

^{*a*} General conditions: **1** (0.2 mmol), **2** ((0.3 mmol), [Ru(p-cymene)Cl₂]₂ (5 mol%), dppp (15 mol%), KOH (1 equiv) and THF (0.5 mL) at 40 °C for 24 h under argon atmosphere. products were determined by GC-MS (EI).

IV. Synthesis of the Hydrazone Substrates ¹

A round-bottom flask, equipped with dropping funnel, was charged with magnetic stirring bar and hydrazine hydrate (98% purity, 12 mmol, 1.2 equiv), and then the

solution of aldehyde (10 mmol) in methanol (25 mL) was added dropwise. The mixture was stirred at room temperature for 1 h. After the aldehyde was consumed completely, methanol and the extra hydrazine were removed under reduced pressure at room temperature (25 °C). Water (30 mL) was added and the mixture was extracted with dichloromethane (3×20 mL). The combined extracts were washed with brine and dried with anhydrous sodium sulfate. Solvent was removed by rotary evaporation at room temperature (25 °C) to provide the desired hydrazone (> 95%, as shown by ¹H NMR), which was used directly without further purification.

V. General Procedure for the Coupling of Polyfluoroarenes with Hydrazones

A 20 mL microwave vial was charged with a magnetic stir-bar, [Ru(p-cymene)Cl₂]₂ (6.1 mg, 5 mol%), dppp (11.6 mg, 15 mol%), KOH (11.2 mg, 0.2 mmol), hydrazone **1** (0.2 mmol) and polyfluoroarenes **2** (0.6 mmol). The tube was then evacuated and backfilled with argon three times. THF (0.5 mL) was added by syringe and microsyringe. The tube was placed in a preheated oil bath at 40 °C and the mixture was stirred under an argon atmosphere for 24 h. The reaction mixture was cooled to room temperatures and concentrated, and then purified by preparative TLC on silica gel eluting with hexane: EtOAc (100:1-10:1) to afford the products.

The products were characterized by ¹H NMR, ¹⁹F NMR, ¹³C NMR and HRMS (ESI). However, a large mass discrepancy was observed when testing such polyfluoro-substituted products using HRMS with ESI resource. Because most of those compounds were only composed of C, F and H, which were difficult to abstract the ion from the ESI resource. This reason made the error range greater than 5ppm. The same results of such compounds were seen in the literature, and the HRMS (ESI) of polyfluoroaryl compounds were not within the 5 ppm error range (please see SI in ref. 11). In contrast, the MS (EI resource) gave better results for those compounds. Therefore, all of those compounds were analyzed by MS (EI). Polyfluoroaryl compounds were also analyzed by MS (EI) in literature (please see SI in ref. 14a).

4-benzyl-2,2',3,3',4',5,5',6,6'-nonafluoro-1,1'-biphenyl

White solid, m.p. 65–66 °C. ¹H NMR (CDCl₃, 400 MHz) δ : 7.36–7.26 (m, 5H), 4.15 (s, 2H). ¹⁹F NMR (376 MHz, CDCl₃) δ : -136.98 to -137.94 (m, 2F), -138.72 to -139.47 (m, 2F), -142.38 (dd, J = 20.7, 10.9 Hz, 2F), -150.62 (tt, J = 21.0, 2.7 Hz, 1F), -160.65 to -160.84 (m, 2F). ¹³C NMR (CDCl₃, 101 MHz) δ : 146.2–143.6 (m), 145.8–142.7 (m), 144.1 (ddt, J = 252.5, 15.2, 5.1 Hz), 139.1–137.2 (m), 137.1, 141.0–136.6 (m), 128.9, 128.6, 127.1, 122.2 (t, J = 19.2 Hz), 104.4–102.5 (m), 28.9. GC-MS (EI) m/z: 406(100), 386(34), 385(38), 367(17), 219(19), 203(17), 108(17), 91(41).

2,2',3,3',4,5,5',6,6'-nonafluoro-4'-(4-methylbenzyl)-1,1'-biphenyl

White solid, m.p. 55–56 °C. ¹H NMR (CDCl₃, 400 MHz) δ : 7.23 (d, J = 7.9 Hz, 2H), 7.15 (d, J = 7.9 Hz, 2H), 4.10 (s, 2H), 2.34 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ : -137.35 to -137.66 (m, 2F), -139.07 (qd, J = 9.5, 4.5 Hz, 2F), -142.63 (dd, J = 21.2, 11.5 Hz, 2F), -150.89 (t, J = 20.8 Hz, 1F), -161.00 (qd, J = 10.4, 4.6 Hz, 2F). ¹³C NMR (CDCl₃, 101 MHz) δ : 146.2–143.7 (m), 145.1–142.9 (m), 144.2 (ddt, J = 257.6, 16.2, 6.0 Hz), 139.1–137.0 (m), 136.9, 141.2–136.6 (m), 134.1, 129.6, 128.5, 122.5 (t, J = 18.2 Hz), 104.3–102.4 (m), 28.5, 20.9. GC-MS (EI) m/z: 420(46), 405(36), 385(24), 91(100), 77(18), 65(22).

2,2',3,3',4,5,5',6,6'-nonafluoro-4'-(3-methylbenzyl)-1,1'-biphenyl White solid, m.p. 67–68 °C. ¹H NMR (CDCl₃, 400 MHz) δ: 7.28–7.20 (m, 1H), 7.19–7.07 (m, 3H),

4.11 (s, 2H), 2.37 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ : -137.49 (dddd, J = 20.3, 11.6, 5.8, 2.9 Hz, 2F), -138.64 to -139.51 (m, 2F), -142.43 (dd, J = 19.9, 10.3 Hz, 2F), -150.68 to -151.13 (m, 1F), -160.76 to -161.31 (m, 2F). ¹³C NMR (CDCl₃, 101 MHz) δ : 146.3–143.5 (m), 145.2–142.8 (m), 144.2 (ddt, J = 252.5, 16.1, 5.8 Hz), 139.2–136.7 (m), 138. 7, 137.0, 141.5–136.2 (m), 129.4, 128.8, 127.9, 125.6, 122.3 (t, J = 18.3 Hz), 104.3–102.4 (m), 28.8, 21.3. GC-MS (EI) m/z: 420(44), 405(30), 385(24), 104(18), 91(100), 77(15), 65(20).

2,2',3,3',4,5,5',6,6'-nonafluoro-4'-(2-methylbenzyl)-1,1'-biphenyl

White solid, m.p. 140–141 °C. ¹H NMR (CDCl₃, 400 MHz) δ : 7.24–7.14 (m, 3H), 7.08 (d, J = 6.6 Hz, 1H), 4.14 (s, 2H), 2.45 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ : -137.20 to -137.64 (m, 2F), -138.92 (qdd, J = 12.6, 8.4, 4.0 Hz, 2F), -141.19 to -141.50 (m, 2F), -150.59 (tt, J = 21.0, 2.7 Hz, 1F), -160.45 to -161.03 (m, 2F). ¹³C NMR (CDCl₃, 101 MHz) δ : 146.6–143.7 (m), 145.9–142.9 (m), 144.2 (ddt, J = 252.5, 16.0, 4.1 Hz), 139.2–136.6 (m), 141.2–136.2 (m), 136.2, 134.9, 130.5, 128.5, 127.1, 126.3, 121.5 (t, J = 18.2 Hz), 104.5–102.4 (m), 26.3, 19.6. GC-MS (EI) m/z: 420(55), 400(27), 385(20), 309(20), 105(32), 91(100), 77(32), 65(31).

4-([1,1'-biphenyl]-4-ylmethyl)-2,2',3,3',4',5,5',6,6'-nonafluoro-1,1'-biphenyl

White solid, m.p. 139–140 °C. ¹H NMR (CDCl₃, 400 MHz) δ : 7.59 (dd, J = 8.6, 2.2 Hz, 4H), 7.48–7.40 (m, 4H), 7.39–7.33 (m, 1H), 4.20 (s, 2H). ¹⁹F NMR (376 MHz, CDCl₃) δ : -137.15 to - 137.51 (m, 2F), -138.72 (ttd, J = 12.6, 8.4, 4.0 Hz, 2F), -142.32 (dd, J = 20.9, 11.2 Hz, 2F), - 150.60 (tt, J = 20.8, 2.7 Hz, 1F), -160.29 to -161.37 (m, 2F). ¹³C NMR (CDCl₃, 101 MHz) δ : 146.3–143.4 (m), 145.9–143.2 (m), 144.0 (ddt, J = 252.5, 15.2, 5.1 Hz), 140.6, 140.2, 139.2–136.5 (m), 141.2–136.4 (m), 136.0, 129.0, 128.8, 127.6, 127.4, 127.0, 122.1 (t, J = 18.2 Hz), 104.5–102.3 (m), 28.6. GC-MS (EI) m/z: 482(79), 167(60), 165(100), 152(89), 115(27), 77(18).

2,2',3,3',4,5,5',6,6'-nonafluoro-4'-(4-methoxybenzyl)-1,1'-biphenyl

White solid, m.p. 107–108 °C. ¹H NMR (CDCl₃, 400 MHz) δ : 7.26 (d, J = 8.5 Hz, 2H), 6.86 (d, J = 8.7 Hz, 2H), 4.07 (s, 2H), 3.79 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ : -137.17 to -137.70 (m, 2F), -138.95 (ttd, J = 12.7, 8.4, 4.0 Hz, 2F), -142.78 (dd, J = 20.9, 11.1 Hz, 2F), -150.74 (tt, J = 21.0, 2.7 Hz, 1F), -160.67 to -161.08 (m, 2F). ¹³C NMR (CDCl₃, 101 MHz) δ : 146.3–143.6 (m), 145.7–142.6 (m), 144.0 (ddt, J = 252.5, 16.1, 5.1 Hz), 139.2–136.7 (m), 141.1–136.4 (m), 129.7, 129.1, 122.6 (t, J = 19.2 Hz), 114.2, 104.2–102.3 (m), 55.2, 28.1. GC-MS (EI) m/z: 436(56), 218(14), 206(14), 121(100), 77(69).

2,2',3,3',4,5,5',6,6'-nonafluoro-4'-(3-methoxybenzyl)-1,1'-biphenyl

White solid, m.p. 121–122 °C. ¹H NMR (CDCl₃, 400 MHz) δ : 7.28–7.22 (m, 1H), 7.15 (d, J = 7.3 Hz, 1H), 6.90 (dd, J = 15.9, 8.0 Hz, 2H), 4.13 (s, 2H), 3.85 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ : -137.30 to -137.62 (m, 2F), -139.59 to -140.09 (m, 2F), -141.34 to -141.88 (m, 2F), -150.93 (tt, J = 20.9, 2.6 Hz, 1F), -160.71 to -161.25 (m, 2F). ¹³C NMR (CDCl₃, 101 MHz) δ : 157.2, 146.7–144.1 (m), 145.8–143.3 (m), 143.9 (ddt, J = 251.5, 15.2, 5.1 Hz), 139.2–136.6 (m), 141.0–136.3 (m), 129.8, 128.4, 125.1, 121.8 (t, J = 18.2 Hz), 120.5, 110.3, 104.1–102.5 (m), 55.3, 23.8. GC-MS (EI) m/z: 436(100), 420(27), 401(14), 385(20), 218(18), 121(30), 91(41), 77(65).

2,2',3,3',4,5,5',6,6'-nonafluoro-4'-(4-fluorobenzyl)-1,1'-biphenyl White solid, m.p. 52–53 °C. ¹H NMR (CDCl₃, 400 MHz) δ : 7.36 (d, *J* = 5.3 Hz, 2H), 7.06 (td, *J* =

8.6, 1.9 Hz, 2H), 4.18 (s, 2H). ¹⁹F NMR (376 MHz, CDCl₃) δ : -114.27 to -116.08 (m, 1F), -137.64 (dd, *J* = 28.7, 20.5 Hz, 2F), -138.84 (ddd, *J* = 17.9, 15.5, 9.1 Hz, 2F), -142.30 to -143.22 (m, 2F), -150.82 (dd, *J* = 54.9, 34.0 Hz, 1F), -160.99 (ddd, *J* = 49.3, 31.8, 22.3 Hz, 2F). ¹³C NMR (CDCl₃, 101 MHz) δ : 161.9 (d, *J* = 244.5 Hz), 146.3–143.7 (m), 145.7–143.2 (m), 144.1 (ddt, *J* = 251.5, 15.2, 5.1 Hz), 139.3–136.6 (m), 141.1–136.4 (m), 132.8, 130.2(d, *J* = 8.1 Hz), 122.0 (t, *J* = 18.2 Hz), 115.7 (d, *J* = 21.2 Hz), 104.6–102.3 (m), 28.1. GC-MS (EI) m/z: 424(75), 403(24), 237(19), 212(18), 145(20), 126(34), 109(100), 83(30).

2,2',3,3',4,5,5',6,6'-nonafluoro-4'-(3-fluorobenzyl)-1,1'-biphenyl

White solid, m.p. 81-82 °C. ¹H NMR (CDCl₃, 400 MHz) δ : 7.36–7.30 (m, 1H), 7.13 (d, J = 7.6 Hz, 1H), 7.05 (d, J = 9.6 Hz, 1H), 6.99 (td, J = 8.4, 2.3 Hz, 1H), 4.16 (s, 2H). ¹⁹F NMR (376 MHz, CDCl₃) δ : -112.50 (td, J = 9.0, 6.0 Hz, 1F), -137.09 to -137.86 (m, 2F), -137.96 to -139.09 (m, 2F), -142.34 (dd, J = 20.1, 10.5 Hz, 2F), -150.51 (ddd, J = 20.8, 11.9, 2.7 Hz, 1F), -160.08 to -161.41 (m, 2F). ¹³C NMR (CDCl₃, 101 MHz) δ : 162.9 (d, J = 248.2 Hz), 146.2–143.5 (m), 145.8–143.2 (m), 144.0 (ddt, J = 253.5, 15.2, 5.0 Hz), 139.3 (d, J = 7.1 Hz), 139.3–136.7 (m), 141.2–136.4 (m), 130.4 (d, J = 8.1 Hz), 124.2, 121.4 (t, J = 18.2 Hz), 115.6 (d, J = 22.2 Hz), 114.1 (d, J = 25.3 Hz), 104.8–102.2 (m), 28.6. GC-MS (EI) m/z: 424(100), 403(34), 329(22), 237(27), 167(26), 126(40), 109(92), 83(34).

2,2',3,3',4,5,5',6,6'-nonafluoro-4'-(2-fluorobenzyl)-1,1'-biphenyl

White solid, m.p. 90–91 °C. ¹H NMR (CDCl₃, 400 MHz) δ : 7.28–7.26 (m, 2H), 7.15–7.04 (m, 2H), 4.19 (s, 2H). ¹⁹F NMR (376 MHz, CDCl₃) δ : -116.52 to -117.84 (m, 1F), -136.21 to -138.09 (m, 2F), -138.19 to -139.86 (m, 2F), -141.77 (dd, J = 19.8, 9.6 Hz, 2F), -150.13 to -151.13 (m, 1F), -160.21 to -161.63 (m, 2F). ¹³C NMR (CDCl₃, 101 MHz) δ : 160.7 (d, J = 247.1 Hz), 146.5–143.8 (m), 145.7–143.2 (m), 144.1 (ddt, J = 253.5, 15.2, 5.0 Hz), 139.2–136.6 (m), 141.2–136.5 (m), 130.5 (d, J = 4.0 Hz), 129.0 (d, J = 8.1 Hz), 124.3 (d, J = 3.0 Hz), 123.8 (d, J = 8.1 Hz), 120.6 (t, J = 18.2 Hz), 115.6 (d, J = 22 Hz), 104.8–102.3 (m), 22.2. GC-MS (EI) m/z: 424(100), 403(30), 385(17), 329(20) 237(24), 145(19), 126(34), 109(85), 83(31).

4-(4-chlorobenzyl)-2,2',3,3',4',5,5',6,6'-nonafluoro-1,1'-biphenyl

White solid, m.p. 98–99 °C. ¹H NMR (CDCl₃, 400 MHz) δ : 7.31–7.25 (m, 4H), 4.10 (s, 2H). ¹⁹F NMR (376 MHz, CDCl₃) δ : -137.15 to -137.59 (m, 2F), -138.34 to -138.79 (m, 2F), -142.47 (dd, J = 20.7, 11.1 Hz, 2F), -150.49 (tt, J = 20.9, 2.8 Hz, 1F), -160.43 to -160.96 (m, 2F). ¹³C NMR (CDCl₃, 101 MHz) δ : 146.2–143.6 (m), 145.7–143.1 (m), 144.1 (ddt, J = 252.5, 16.1, 5.1 Hz), 139.2–136.6 (m), 141.2–136.5 (m), 135.5, 133.1, 129.9, 129.0, 121.6 (t, J = 18.2 Hz), 114.2, 104.7–102.2 (m), 28.3. GC-MS (EI) m/z: 442 (17), 440 (49), 405(100), 385(68), 203(36), 125(26), 89(29).

4-(3-chlorobenzyl)-2,2',3,3',4',5,5',6,6'-nonafluoro-1,1'-biphenyl

White solid, m.p. 90–91 °C. ¹H NMR (CDCl₃, 400 MHz) δ : 7.31–7.20 (m, 4H), 4.11 (s, 2H). ¹⁹F NMR (376 MHz, CDCl₃) δ : -137.09 to -137.61 (m, 2F), -138.06 to -138.52 (m, 2F), -142.26 (dd, J = 21.5, 12.4 Hz, 2F), -150.50 (t, J = 20.9 Hz, 1F), -160.73 (td, J = 20.2, 5.7 Hz, 2F). ¹³C NMR (CDCl₃, 101 MHz) δ : 146.2–143.4 (m), 145.8–143.2 (m), 144.0 (ddt, J = 251.5, 15.2, 5.1 Hz), 138.8, 139.3–136.7 (m), 141.0–136.4 (m), 134.6, 130.1, 128.7, 127.4, 126.8, 121.2 (t, J = 18.2 Hz), 104.8–102.2 (m), 28.5. GC-MS (EI) m/z: 442 (18), 440 (56), 405(100), 385(73), 203(19), 192(28), 89(29).

4-(2-bromobenzyl)-2,2',3,3',4',5,5',6,6'-nonafluoro-1,1'-biphenyl White solid, m.p. 124–125 °C. ¹H NMR (CDCl₃, 400 MHz) δ : 7.61 (dd, J = 7.9, 0.8 Hz, 1H),

7.30–7.22 (m, 1H), 7.14 (td, J = 7.8, 1.3 Hz, 1H), 7.08 (d, J = 7.7 Hz, 1H), 4.28 (s, 2H). ¹⁹F NMR (376 MHz, CDCl₃) δ : -136.99 to -137.64 (m, 2F), -138.51 to -139.19 (m, 2F), -140.41 to -140.84 (m, 2F), -150.03 to -150.91 (m, 1F), -160.69 (ddt, J = 21.0, 10.5, 5.2 Hz, 2F). ¹³C NMR (CDCl₃, 101 MHz) δ : 146.6–143.7 (m), 145.9–143.2 (m), 144.1 (ddt, J = 251.5, 15.2, 5.1 Hz), 139.3–136.6 (m), 141.2–136.1 (m), 136.1, 133.1, 129.7, 128.7, 127.7, 124.3, 120.4 (t, J = 18.2 Hz), 105.0–102.2 (m), 29.5. GC-MS (EI) m/z: 486(29), 484(28), 405(97), 385(100), 237(35), 193(62), 167(34), 90(31), 89(42), 63(26).

4-(3,4-dichlorobenzyl)-2,2',3,3',4',5,5',6,6'-nonafluoro-1,1'-biphenyl

White solid, m.p. 122–123 °C. ¹H NMR (CDCl₃, 400 MHz) δ : 7.41 (dd, J = 5.1, 3.1 Hz, 2H), 7.17 (dd, J = 8.2, 1.8 Hz, 1H), 4.10 (s, 2H). ¹⁹F NMR (376 MHz, CDCl₃) δ : -137.09 to -137.64 (m, 2F), -138.12 (qdd, J = 12.2, 8.4, 3.7 Hz, 2F), -142.24 (dd, J = 20.8, 11.2 Hz, 2F), -150.30 (tt, J = 20.9, 2.8 Hz, 1F), -160.21 to -161.21 (m, 2F). ¹³C NMR (CDCl₃, 101 MHz) δ : 146.6–143.5 (m), 145.9–143.2 (m), 144.0 (ddt, J = 253.5, 16.2, 4.1 Hz), 137.0, 139.3–136.6 (m), 141.3–136.4 (m), 132.9, 131.4, 130.8, 130.5, 128.0, 120.8 (t, J = 18.2 Hz), 105.1–102.1 (m), 28.1. GC-MS (EI) m/z: 476(22), 474(58), 438(100), 403(54), 237(44), 202(59), 177(43), 167(53), 158(26), 123(58).

methyl 4-((perfluoro-[1,1'-biphenyl]-4-yl)methyl)benzoate

White solid, m.p. 87–88 °C. ¹H NMR (CDCl₃, 400 MHz) δ : 8.01 (d, J = 8.1 Hz, 2H), 7.39 (d, J = 8.1 Hz, 2H), 4.20 (s, 2H), 3.92 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ : -136.99 to -137.96 (m, 2F), -138.09 to -138.74 (m, 2F), -142.14 (dd, J = 20.8, 11.2 Hz, 2F), -150.35 (tt, J = 21.1, 2.8 Hz, 1F), -160.21 to -161.08 (m, 2F). ¹³C NMR (CDCl₃, 101 MHz) δ : 166.6, 146.5–143.5 (m), 145.8–143.2 (m), 144.0 (ddt, J = 253.5, 16.2, 4.1 Hz), 142.1, 139.3–136.6 (m), 141.2–136.4 (m), 130.2, 129.1, 128.6, 121.2 (t, J = 18.2 Hz), 104.9–102.2 (m), 52.1, 28.9. GC-MS (EI) m/z: 464(39), 432(100), 384(40), 216(55), 192(29), 63(13).

4-(3,4-dimethoxybenzyl)-2,2',3,3',4',5,5',6,6'-nonafluoro-1,1'-biphenyl

White solid, m.p.78–79 °C. ¹H NMR (CDCl₃, 400 MHz) δ : 6.90 (s, 2H), 6.85 (d, J = 8.7 Hz, 1H), 4.10 (s, 2H), 3.93 (s, 3H), 3.89 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ : -137.09 to -137.76 (m, 2F), -138.82 (ttd, J = 12.7, 8.4, 4.0 Hz, 2F), -142.76 (dd, J = 20.9, 11.1 Hz, 2F), -150.63 (tt, J = 21.0, 2.7 Hz, 1F), -160.43 to -161.31 (m, 2F). ¹³C NMR (CDCl₃, 101 MHz) δ : 149.0, 148.0, 146.2–143.4 (m), 145.7–143.1 (m), 144.0 (ddt, J = 252.5, 15.2, 5.1 Hz), 139.2–136.5 (m), 141.0–136.3 (m), 129.45, 121.4 (t, J = 18.2 Hz), 120.6, 111.7, 111.2, 104.2–102.3 (m), 55.8 (2C), 28.5. GC-MS (EI) m/z: 466(46), 329(100), 233(14), 151(11), 77(27), 51(17).

2,2',3,3',4,5,5',6,6'-nonafluoro-4'-(3,4,5-trimethoxybenzyl)-1,1'-biphenyl

White solid, m.p. 82–83 °C. ¹H NMR (CDCl₃, 400 MHz) δ : 6.57 (s, 2H), 4.07 (s, 2H), 3.88 (s, 6H), 3.84 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ : -136.99 to -137.96 (m, 2F), -138.62 (ttd, *J* = 12.6, 8.4, 3.9 Hz, 2F), -142.54 (dd, *J* = 21.0, 11.1 Hz, 2F), -150.46 (tt, *J* = 20.9, 2.8 Hz, 1F), -160.31 to -161.21 (m, 2F). ¹³C NMR (CDCl₃, 101 MHz) δ : 153.4, 146.2–143.4 (m), 145.6–143.1 (m), 144.0 (ddt, *J* = 252.5, 16.2, 5.1 Hz), 137.1, 139.2–136.5 (m), 141.1–136.4 (m), 132.6, 122.1 (t, *J* = 18.2 Hz), 105.6, 104.4–102.1 (m), 60.7, 56.0 (2C), 29.1. GC-MS (EI) m/z: 496(43), 309(67), 208(45), 207(100), 128(29), 77(86), 55(66).

5-((perfluoro-[1,1'-biphenyl]-4-yl)methyl)benzo[d][1,3]dioxole White solid, m.p. 92–93 °C. ¹H NMR (CDCl₃, 400 MHz) δ: 6.82–6.76 (m, 3H), 5.96 (s, 2H), 4.06

(s, 2H). ¹⁹F NMR (376 MHz, CDCl₃) δ : -136.99 to -137.76 (m, 2F), -138.78 (ttd, *J* = 12.5, 8.3, 4.0 Hz, 2F), -142.65 (dd, *J* = 20.8, 11.0 Hz, 2F), -150.63 (tt, *J* = 20.9, 2.7 Hz, 1F), -160.43 to -161.41 (m, 2F). ¹³C NMR (CDCl₃, 101 MHz) δ : 147.9, 146.6, 146.1–143.4 (m), 145.7–143.1 (m), 144.0 (ddt, *J* = 252.5, 15.2, 5.1 Hz), 139.2–136.5 (m), 141.1–136.4 (m), 130.7, 122.2 (t, *J* = 18.2 Hz), 121.7, 109.0, 108.5, 104.4–102.1 (m), 101.1, 28.6. GC-MS (EI) m/z: 450(100), 449(26), 391(28), 372(22), 225(36), 135(73), 77(50), 51(28).

N,N-dimethyl-4-((perfluoro-[1,1'-biphenyl]-4-yl)methyl)aniline

White solid, m.p. 141–142 °C. ¹H NMR (CDCl₃, 600 MHz) δ : 7.21 (d, J = 8.5 Hz, 2H), 6.69 (d, J = 8.7 Hz, 2H), 4.04 (s, 2H), 2.93 (s, 6H). ¹⁹F NMR (376 MHz, CDCl₃) δ : -137.07 to -137.58 (m, 2F), -138.83 to -139.51 (m, 2F), -142.85 (dd, J = 21.1, 11.2 Hz, 2F), -150.88 (t, J = 20.9 Hz, 1F), -160.71 to -161.51 (m, 2F). ¹³C NMR (CDCl₃, 151 MHz) δ : 149.7, 145.6–143.2 (m), 144.9–142.9 (m), 141.4 (ddt, J = 257.6, 16.2, 6.0 Hz), 138.8–136.9 (m), 129.3, 124.8, 123.2 (t, J = 18.2 Hz), 112.8, 103.9–102.6 (m), 40.5, 28.0. GC-MS (EI) m/z: 449(100), 448(62), 385(12), 225(23), 134(73), 118(49), 91(14).

4-((perfluoro-[1,1'-biphenyl]-4-yl)methyl)phenol

Colorless liquid. ¹H NMR (CDCl₃, 600 MHz) δ : 7.33 (d, J = 8.5 Hz, 2H), 7.02 (d, J = 8.6 Hz, 2H), 4.14 (s, 2H). ¹⁹F NMR (376 MHz, CDCl₃) δ : -137.16 to -137.46 (m, 2F), -137.80 to -138.06 (m, 1F), -138.52 (td, J = 14.8, 6.0 Hz, 1F), -142.52 (dd, J = 20.9, 11.2 Hz, 1F), -149.89 to -150.52 (m, 1F), -152.68 (td, J = 11.8, 4.6 Hz, 1F), -160.28 to -160.76 (m, 2F). ¹³C NMR (CDCl₃, 151 MHz) δ : 156.0, 146.0–143.4 (m), 145.0–142.8 (m), 144.1 (ddt, J = 257.6, 16.2, 6.0 Hz), 138.9–137.1 (m), 141.2–137.1 (m), 133.0, 130.1, 121.9 (t, J = 18.2 Hz), 116.3, 104.6–102.3 (m), 28.2. GC-MS (EI) m/z: 422(32), 91(100), 77(8), 65(38).

2-((perfluoro-[1,1'-biphenyl]-4-yl)methyl)furan

White solid, m.p. 85–86 °C. ¹H NMR (CDCl₃, 600 MHz) δ : 7.33 (d, J = 1.6 Hz, 1H), 6.31 (dd, J = 4.7, 2.9 Hz, 1H), 6.17 (d, J = 4.7 Hz, 1H), 4.16 (s, 2H). ¹⁹F NMR (376 MHz, CDCl₃) δ : -137.25 – -137.42 (m, 2F), -138.76 (dt, J = 10.7, 7.4 Hz, 2F), -142.49 (dd, J = 21.2, 11.8 Hz, 2F), -150.48 (t, J = 20.9 Hz, 1F), -160.68 (tt, J = 10.4, 5.3 Hz, 2F). ¹³C NMR (CDCl₃, 151 MHz) δ : 149.7, 146.0–144.2 (m), 145.5–143.7 (m), 145.0–143.1 (m), 142.1, 138.8–137.0 (m), 119.2 (t, J = 18.2 Hz), 110.6, 107.0, 104.9–102.4 (m), 21.9. GC-MS (EI) m/z: 396(100), 349(65), 329(33) 299(29), 198 (21), 81(69).

2-benzyl-1,3,4,5,6,7,8-heptafluoronaphthalene

White solid, m.p. 115–116 °C. ¹H NMR (CDCl₃, 400 MHz) δ : 7.32–7.18 (m, 5H), 4.18 (s, 2H). ¹⁹F NMR (376 MHz, CDCl₃) δ : -122.05 (dd, J = 67.6, 18.7 Hz, 1F), -137.50 (d, J = 17.6 Hz, 1F), -144.54 (dt, J = 67.6, 16.8 Hz, 1F), -145.94 to -147.04 (m, 1F), -148.14 to -150.13 (m, 1F), -154.33 (t, J = 18.6 Hz, 1F), -156.00 (ddd, J = 13.4, 6.6, 3.3 Hz, 1F). ¹³C NMR (CDCl₃, 101 MHz) δ : 151.4–147.7 (m), 148.9–145.3 (m), 142.5–139.6 (m), 141.9–139.1 (m), 140.7–137.9 (m), 137.4, 128.8, 128.5, 127.0, 118.8–118.3 (m), 111.4–107.8 (m), 28.7. GC-MS (EI) m/z: 344(100), 324(37), 323(46), 305(27), 267(14), 137(27), 91(25).

1-benzyl-2,3,5,6-tetrafluoro-4-(trifluoromethyl)benzene

White solid, m.p. 60-61 °C. ¹H NMR (CDCl₃, 400 MHz) δ: 7.43 -7.28 (m, 5H), 4.17 (s, 2H). ¹⁹F

NMR (376 MHz, CDCl₃) δ : -56.32 (t, J = 21.5 Hz, 3F), -140.34 to -141.17 (m, 2F), -141.30 to -141.59 (m, 2F). ¹³C NMR (CDCl₃, 101 MHz) δ : 146.4–143.7 (m), 145.6–145.5 (m), 136.5, 129.0, 128.5, 127.3, 124.4 (t, J = 18.2 Hz), 125.0–116.8 (m), 108.5–107.5 (m), 28.8. GC-MS (EI) m/z: 308(100), 289(29), 287(24), 237(24), 91(44).

1-benzyl-2,3,4,5,6-pentafluorobenzene

White solid, m.p. 56–57 °C. ¹H NMR (CDCl₃, 400 MHz) δ : ¹H NMR (400 MHz, CDCl₃) δ 7.48–7.19 (m, 5H), 4.08 (s, 2H). ¹⁹F NMR (376 MHz, CDCl₃) δ : -143.34 (dd, J = 22.4, 8.3 Hz, 2F), -157.17 (t, J = 20.8 Hz, 1F), -162.42 (dt, J = 22.3, 8.4 Hz, 2F). ¹³C NMR (CDCl₃, 101 MHz) δ : 146.3–143.6 (m), 141.3–138.6 (m), 138.9–136.1 (m), 137.4, 128.8, 128.3, 127.0, 114.4 (td, J = 19.2, 4.0 Hz), 28.1. HRMS (ESI) calcd. for C₁₁H₁₈N ([M+H]⁺): 164.1434, found: 164.1431. MS (EI) m/z: 181, 138, 124, 110, 98, 68, GC-MS (EI) m/z: 258(100), 237(51), 219(27), 181(11), 91(23).

1,2,3,4,5,6,8-heptafluoro-7-(4-methylbenzyl)naphthalene

White solid, m.p. 132–133 °C. ¹H NMR (CDCl₃, 600 MHz) δ : 7.19 (d, J = 7.7 Hz, 2H), 7.10 (d, J = 7.8 Hz, 2H), 4.15 (s, 2H), 2.30 (s, 3H). ¹⁹F NMR (564 MHz, CDCl₃) δ : -122.19 (dd, J = 67.1, 19.1 Hz, 1F), -137.54 (d, J = 16.9 Hz, 1F), -144.60 (dt, J = 67.5, 16.8 Hz, 1F), -146.30 to -146.66 (m, 1F), -149.08 (dt, J = 57.1, 18.3 Hz, 1F), -154.46 (t, J = 18.5 Hz, 1F), -156.10 (t, J = 16.9 Hz, 1F). ¹³C NMR (CDCl₃, 151 MHz) δ : 151.0–147.4 (m), 149.1–145.7 (m), 142.1–140.2 (m), 141.5–138.8 (m), 139.7–136.6 (m), 136.7, 134.4, 129.5, 128.4, 119.0–118.0 (m), 110.5–107.9 (m), 28.4, 21.0. GC-MS (EI) m/z: 358(100), 343(67), 323(71), 105(30), 91(58), 77(24), 65(19).

1,2,4,5-tetrafluoro-3-(4-methylbenzyl)-6-(trifluoromethyl)benzene

Colorless liquid. ¹H NMR (CDCl₃, 600 MHz) δ : 7.20 (d, J = 7.9 Hz, 2H), 7.15 (d, J = 7.9 Hz, 2H), 4.09 (s, 2H), 2.35 (s, 3H). ¹⁹F NMR (564 MHz, CDCl₃) δ : -56.35 (t, J = 21.6 Hz, 3F), -140.97 to -141.24 (m, 2F), -141.48 to -141.72 (m, 2F). ¹³C NMR (CDCl₃, 151 MHz) δ : 145.9–144.1 (m), 145.0–143.2 (m), 137.0, 133.5, 129.6, 128.4, 124.8 (t, J = 18.2 Hz), 127.2–120.8 (m), 108.1–107.5 (m), 28.5, 20.9. GC-MS (EI) m/z: 322(62), 307(52), 287(16), 238(19), 91(100), 77(15), 65 (16).

1,2,3,4,5-pentafluoro-6-(4-methylbenzyl)benzene

White solid, m.p. 30-32 °C. ¹H NMR (CDCl₃, 600 MHz) δ : 7.18 (d, J = 8.0 Hz, 2H), 7.15 (d, J = 8.6 Hz, 2H), 4.02 (s, 2H), 2.36 (s, 3H). ¹⁹F NMR (564 MHz, CDCl₃) δ : -143.47 (dd, J = 22.3, 8.1 Hz, 2F), -157.42 (t, J = 20.8 Hz, 1F), -162.43 to -162.64 (m, 2F). ¹³C NMR (CDCl₃, 151 MHz) δ : 145.9–144.2 (m), 140.8–138.9 (m), 138.6–136.8 (m), 136.8, 134.5, 129.5, 128.2, 114.8 (td, J = 19.2, 4.0 Hz), 27.7, 20.9. GC-MS (EI) m/z: 272(100), 257(92), 237(51), 135(17), 91(76), 77(18).

2-(4-chlorobenzyl)-1,3,4,5,6,7,8-heptafluoronaphthalene

White solid, m.p. 110–112 °C. ¹H NMR (CDCl₃, 600 MHz) δ : 7.28–7.20 (m, 4H), 4.16 (s, 2H). ¹⁹F NMR (564 MHz, CDCl₃) δ : -122.10 (dd, J = 67.5, 18.6 Hz, 1F), -137.84 (d, J = 17.1 Hz, 1F), -144.46 (dt, J = 67.6, 16.8 Hz, 1F), -146.09 to -146.41 (m, 1F), -148.56 to -148.90 (m, 1F), -154.03 (t, J = 18.6 Hz, 1F), -155.68 to -155.89 (m, 1F). ¹³C NMR (CDCl₃, 151 MHz) δ : 151.0–147.1 (m), 149.3–145.5 (m), 142.1–139.7 (m), 141.6–139.5 (m), 138.7–137.2 (m), 135.8, 133.0, 129.9, 129.0,

118.2-117.9 (m), 110.6-107.9 (m), 28.1. GC-MS (EI) m/z: 380(25), 378(87), 343(93), 323(100), 162(54), 146(66), 125(30), 89(36), 75(11).

1-(4-chlorobenzyl)-2,3,5,6-tetrafluoro-4-(trifluoromethyl)benzene

Colorless liquid. ¹H NMR (CDCl₃, 600 MHz) δ : 7.28 (d, J = 8.2 Hz, 2H), 7.21 (d, J = 8.1 Hz, 2H), 4.07 (s, 2H). ¹⁹F NMR (564 MHz, CDCl₃) δ : -56.38 (t, J = 21.6 Hz, 3F), -140.50 to -140.82 (m, 2F), -141.25 to -141.69 (m, 2F). ¹³C NMR (CDCl₃, 151 MHz) δ : 145.9–144.2 (m), 145.1–143.3 (m), 134.9, 133.4, 129.8, 129.1, 123.8 (t, J = 18.2 Hz), 125.2–120.0 (m), 108.9–108.0 (m), 28.3. GC-MS (EI) m/z: 344(15), 342(51), 307(100), 287(31), 238(41), 125(19), 89(20), 75(12).

3-benzyl-1,2,4,5-tetrafluorobenzene Colorless liquid. ¹H NMR (CDCl₃, 400 MHz) δ: 7.41 – 7.11 (m, 5H), 6.93 (tt, J = 9.7, 7.4 Hz, 1H), 4.06 (s, 2H). ¹⁹F NMR (376 MHz, CDCl₃) δ: -137.70 to - 140.49 (m, 2F), -143.78 (ddd, J = 20.8, 13.0, 7.4 Hz, 2F). ¹³C NMR (CDCl₃, 101 MHz) δ: 145.8 (dm, J = 248.5 Hz), 144.7 (dm, J = 245.4 Hz), 137.6, 128.7, 128.4, 126.8, 120.3 (t, J = 18.2 Hz), 104.1 (t, J = 22.2 Hz), 28.7. GC-MS (EI) m/z: 240, 220, 219, 201, 189, 163, 143, 109, 91, 85, 51.

VI. References

[1] (a) J.-S. Poh, D. N. Tran, C. Battilocchio, J. M. Hawkins and S. V. Ley, *Angew. Chem. Int. Ed.*2015, 54, 7920; (b) S.-S. Yan, L. Zhu, J.-H. Ye, Z. Zhang, H. Huang, H. Zeng, C.-J. Li, Y. Lan and D.-G. Yu, *Chem. Sci.* 2018, 9, 4873.

VII. Copies of ¹H NMR, ¹⁹F NMR and ¹³C NMR

¹H, ¹⁹F and ¹³C NMR spectra of **4-benzyl-2,2',3,3',4',5,5',6,6'-nonafluoro-1,1'-biphenyl**

137.33 137.33 137.33 137.33 137.34 13

¹H, ¹⁹F and ¹³C NMR spectra of **2,2',3,3',4,5,5',6,6'-nonafluoro-4'-(4-methylbenzyl)-1,1'biphenyl**

147 146 145 144 143 142 141 140 139 138 137 136 135 134 133

130 120 110 100 -10 160 150 140

¹H, ¹⁹F and ¹³C NMR spectra of 2,2',3,3',4,5,5',6,6'-nonafluoro-4'-(3-methylbenzyl)-1,1'-biphenyl

 $^1\mathrm{H},~^{19}\mathrm{F}$ and $^{13}\mathrm{C}$ NMR spectra of 2,2',3,3',4,5,5',6,6'-nonafluoro-4'-(2-methylbenzyl)-1,1'- biphenyl

137.32 137.33 137.35 137.55 13

210 160 150 140 110 100 Ó -10 200 190 180 170 130 120 90 80 70 60 50 40 30 20 10

¹H, ¹⁹F and ¹³C NMR spectra of **4-([1,1'-biphenyl]-4-ylmethyl)-2,2',3,3',4',5,5',6,6'- nonafluoro-1,1'-biphenyl**

¹H, ¹⁹F and ¹³C NMR spectra of **2,2',3,3',4,5,5',6,6'-nonafluoro-4'-(4-methoxybenzyl)-1,1'biphenyl**

¹H, ¹⁹F and ¹³C NMR spectra of **2,2',3,3',4,5,5',6,6'-nonafluoro-4'-(3-methoxybenzyl)-1,1'**biphenyl

 1 H, 19 F and 13 C NMR spectra of **2,2',3,3',4,5,5',6,6'-nonafluoro-4'-(4-fluorobenzyl)-1,1'-biphenyl**

¹H, ¹⁹F and ¹³C NMR spectra of **2,2',3,3',4,5,5',6,6'-nonafluoro-4'-(3-fluorobenzyl)-1,1'**biphenyl

112.47 112.47 112.47 112.55 11

¹H, ¹⁹F and ¹³C NMR spectra of **2,2',3,3',4,5,5',6,6'-nonafluoro-4'-(2-fluorobenzyl)-1,1'biphenyl**

C-117.06 C-177.08 C-177.08 C-177.08 C-177.42 C-177.42 C-177.42 C-177.42 C-177.44 C-177.44 C-177.44 C-177.44 C-177.44 C-177.45 C-1

¹H, ¹⁹F and ¹³C NMR spectra of **4-(4-chlorobenzyl)-2,2',3,3',4',5,5',6,6'-nonafluoro-1,1'biphenyl**

¹H, ¹⁹F and ¹³C NMR spectra of **4-(3-chlorobenzyl)-2,2',3,3',4',5,5',6,6'-nonafluoro-1,1'-biphenyl**

¹H, ¹⁹F and ¹³C NMR spectra of **4-(2-bromobenzyl)-2,2',3,3',4',5,5',6,6'-nonafluoro-1,1'biphenyl**

-100 -145 -105 -110 -115 -120 -125 -130 -135 -140 -150 -155 -160 -165 -170 -175 -180

¹H, ¹⁹F and ¹³C NMR spectra of **4-(3,4-dichlorobenzyl)-2,2',3,3',4',5,5',6,6'-nonafluoro -1,1'biphenyl**

¹H, ¹⁹F and ¹³C NMR spectra of methyl 4-((perfluoro-[1,1'-biphenyl]-4-yl)methyl)benzoate

¹H, ¹⁹F and ¹³C NMR spectra of **4-(3,4-dimethoxybenzyl)-2,2',3,3',4',5,5',6,6'-nonafluoro -1,1'biphenyl**

177.35 177.35 177.37 177.37 177.37 177.37 177.37 177.37 177.37 177.37 177.43 177.43 177.43 177.44 177.45 177.45 177.45 177.45 177.45 177.45 177.45 177.45 177.45 177.45 177.45 177.45 177.45 177.45 177.45 177.45 177.45 177.45 177.45 178.75 178.75 178.75 178.75 178.75 178.75 178.75 178.75 178.75 178.75 178.75 178.75 178.75 178.75 17

 $^1\mathrm{H},~^{19}\mathrm{F}$ and $^{13}\mathrm{C}$ NMR spectra of 2,2',3,3',4,5,5',6,6'-nonafluoro-4'-(3,4,5-trimethoxybenzyl) - 1,1'-biphenyl

¹H, ¹⁹F and ¹³C NMR spectra of **5-((perfluoro-[1,1'-biphenyl]-4-yl)methyl)benzo[d][1,3]** dioxole

197.35 197.35 197.37 197.37 197.37 197.42 197.43 197.42 197.43 197.43 197.43 197.43 197.43 197.43 197.43 197.43 197.43 197.43 197.43 198.74 198.74 198.75 198.83 198.74 198.75 198.56 198.56 199.55 199.55 190.55 190.55 190.77 190.55 190.77 190.55 190.77 190.75 190.75 190.75 190.55 190.77 190.55 190.75 19

¹H, ¹⁹F and ¹³C NMR spectra of N,N-dimethyl-4-((perfluoro-[1,1'-biphenyl]-4-yl)methyl) aniline

¹H, ¹⁹F and ¹³C NMR spectra of **4-((perfluoro-[1,1'-biphenyl]-4-yl)methyl)phenol**

7.34 7.27 7.03 7.03

-4.14

-1.57

S49

¹H, ¹⁹F and ¹³C NMR spectra of **2-((perfluoro-[1,1'-biphenyl]-4-yl)methyl)furan**

¹H, ¹⁹F and ¹³C NMR spectra of **2-benzyl-1,3,4,5,6,7,8-heptafluoronaphthalene**

121.13 122.16 122.16 122.16 122.16 122.16 122.16 122.16 122.16 122.16 122.16 122.16 122.16 122.16 122.16 122.16 122.16 123.17 144.45 145.45145.45 145.45 145.45145.45 145.45 145.45145.45 145.45 145.45145.45 145.45 145.45145.45 145.45145.45 145.45145.45 145.45145.45 145.4514

¹H, ¹⁹F and ¹³C NMR spectra of **1-benzyl-2,3,5,6-tetrafluoro-4-(trifluoromethyl)benzene**

¹H, ¹⁹F and ¹³C NMR spectra of **1-benzyl-2,3,4,5,6-pentafluorobenzene**

7.37

-4.08

¹H, ¹⁹F and ¹³C NMR spectra of **1,2,3,4,5,6,8-heptafluoro-7-(4-methylbenzyl)naphthalene**

¹H, ¹⁹F and ¹³C NMR spectra of **1,2,4,5-tetrafluoro-3-(4-methylbenzyl)-6-(trifluoromethyl)** benzene

7.26

-141.06 -141.07 -141.08 -141.08 -141.10 -141.13 -141.55 -141.55 -141.55 -141.55 -141.56 -141.56

56.31 56.35 56.39 56.47 56.50 56.50

¹H, ¹⁹F and ¹³C NMR spectra of **2-(4-chlorobenzyl)-1,3,4,5,6,7,8-heptafluoronaphthalene**

 -4.16

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10

11.

¹H, ¹⁹F and ¹³C NMR spectra of **1-(4-chlorobenzyl)-2,3,5,6-tetrafluoro-4-(trifluoromethyl)** benzene

S62

 $^1\mathrm{H},\,^{19}\mathrm{F}$ and $^{13}\mathrm{C}$ NMR spectra of 3-benzyl-1,2,4,5-tetrafluorobenzene

