Hypervalent iodine initiated intramolecular alkene dimerisation: a stereodivergent entry to cyclobutanes

[^0]
Table of Contents

1. General experimental details S5
2. General procedure for the synthesis of \boldsymbol{E}-styrenes S5
2.1. Synthesis of S1a S5
2.2. Synthesis of S1b S6
2.3. Synthesis of S1c S6
2.4. Synthesis of S1d S7
3. General procedure for acetate deprotection S7
3.1. Synthesis of S2a S7
3.2. Synthesis of S2b S8
3.3. Synthesis of S2c S8
3.4. Synthesis of S2d S9
4. General procedure for the reduction of α, β-unsaturated aldehydes to allylic alcohols S9
4.1. Synthesis of S2e S9
4.2. Synthesis of S2f S10
5. Synthesis of S3a S10
6. General procedure for the preparation of symmetric silyl ethers S11
6.1. Synthesis of $\mathbf{1 a}$ S11
6.2. Synthesis of $\mathbf{1 b}$ S12
6.3. Synthesis of $1 \mathbf{c}$ S12
6.4. Synthesis of 1e S13
6.5. Synthesis of $\mathbf{1 j}$ S13
6.6. Synthesis of 1 k S14
6.7. Synthesis of 11 S14
6.8. Synthesis of 1 m S15
7. General procedure for the preparation of non-symmetric silyl ethers S16
7.1. Synthesis of 1d S16
7.2. Synthesis of $\mathbf{1 f}$ S17
7.3. Synthesis of $\mathbf{1 g}$ S17
7.4. Synthesis of $\mathbf{1 h}$ S18
7.5. Synthesis of $\mathbf{1 i}$ S18
7.6. Synthesis of $\mathbf{1 n}$ S19
8. General procedure for the synthesis of ethers S20
8.1. Synthesis of 4a S20
8.2. Synthesis of 4b S20
8.3. Synthesis of $\mathbf{4 c}$ S21
8.4. Synthesis of 4d S22
8.5. Synthesis of 4 e S22
8.6. Synthesis of $4 f$ S23
8.7. Synthesis of $\mathbf{4 g}$ S23
9. General procedure for the synthesis of cyclobutanes S25
9.1. Synthesis of 2a S25
9.2. Synthesis of $\mathbf{2 b}$ S25
9.3. Synthesis of 2c S26
9.4. Synthesis of 2d S27
9.5. Synthesis of 2 e and 3 e S27
9.6. Synthesis of $2 f$ S28
9.7. Synthesis of 2 g and $\mathbf{3 g}$ S29
9.8. Synthesis of 2 h and 3 h S30
9.9. Synthesis of $\mathbf{2 i}$ and $\mathbf{3 i}$ S31
9.10. Synthesis of 2 j and 3 j S32
9.11. Synthesis of $2 k$ and $3 k$ S33
9.12. Synthesis of 21 and 31 S33
9.13. Synthesis of 2 m and 3 m S34
9.14. Synthesis of $2 n$ and $3 n$ S35
9.15. Synthesis of 5a S36
9.16. Synthesis of 5b S36
9.17. Synthesis of 5 c S37
9.18. Synthesis of 5 d S38
9.19. Synthesis of 5e S38
9.20. Synthesis of $\mathbf{5 f}$ S39
9.21. Synthesis of 5 g S39
10. General procedure for silyl ether deprotection S40
10.1. Synthesis of $\mathbf{6 a}$ S40
10.2. Synthesis of $\mathbf{6 b}$ S41
10.3. Synthesis of 7a S42
11. General procedure for the Ru-catalyzed oxidation of aromatic rings to carboxylic acids S42
11.1. Synthesis of 8a S43
11.2. Synthesis of 8b S43
11.3. Synthesis of 8c S44
11.4. Synthesis of 8d S44
12. Synthesis of 9 S45
13. NMR study of compound 3 k , 8a and 8c S46
14. Limitations in the scope of $[2+2]$ cycloaddition S48
15. References S48

1. General experimental details

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a 400 MHz or 500 MHz spectrometer in CDCl_{3} and referenced to residual solvent peaks. Chemical shifts are quoted in ppm (parts per million) to the nearest 0.01 ppm with signal splitting recorded as singlet (s), doublet (d), triplet (t), quartet (q), quintet (quint) septet (sept), multiplet (m) and broad singlet (br s). Coupling constants, J, are measured in Hz to the nearest $0.1 \mathrm{~Hz} .{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded at room temperature. Infrared spectra were recorded as thin films of neat samples on a Bruker Tensor 27 FT-IR spectrometer equipped with Attenuated Total Reflectance sampling accessories. High resolution mass spectra are given to four decimal places and were recorded on a Bruker MicroTof (resolution $=10000 \mathrm{FWHM}$) under conditions of electrospray ionization $(E S I)$, electronic ionization (EI) or chemical ionization (CI). Melting points (m.p.) were obtained from recrystallized samples using a Lecia VMTG heated-stage microscope and are uncorrected. The solvent systems used for recrystallization are quoted in parentheses. Flash column chromatography was performed using silica gel ($60 \AA, 0.033-0.070 \mathrm{~mm}, \mathrm{BDH}$) or using basic alumina ($\mathrm{pH} 9.5,58 \AA, 150$ mesh, Sigma-Aldrich). TLC analyses were performed on Merck Kiesegel $60 \mathrm{~F}_{254} 0.25 \mathrm{~mm}$ precoated silica plates or Macherey-Nagel Alugram Alox $\mathrm{N} / \mathrm{UV}_{254} 0.20 \mathrm{~mm}$ precoated alumina plates. Reagents obtained from Sigma-Aldrich, Alfa, Fluorochem and TCI suppliers were used directly as supplied All anhydrous reactions were carried out in flame dried glassware and under an inert atmosphere of argon provided by a balloon. All reactions were stirred with magnetic followers. THF, toluene and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ were dried by purification through two activated alumina purification columns. Brine refers to a saturated aqueous solution of NaCl .

2. General procedure for the synthesis of styrenes using a Ru-catalyzed methatesis reaction

To a flame-dried flask, charged with $1.5 \mathrm{~mol} \%$ of Ru-catalyst, under Ar, at room temperature, was added $4.0 \mathrm{~mL} / \mathrm{mmol}$ of dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (previously degassed, bubling Ar for 30 min .). A solution of the mixture of alkenes in dry and degassed $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.0 \mathrm{~mL} / \mathrm{mmol})$ was added and the mixture was stirred at the appropriate temperature. The reaction was monitored by TLC until completion, and the solvent was evaporated under reduced pressure to give the corresponding styrene, that was purified by chromatography on silica gel using the appropriate mixture of eluents.

2.1. (1E)-4-(4-Methoxyphenyl)but-3-en-1-yl acetate, S1a.

From 4-methoxystyrene ($5.000 \mathrm{~g}, 37.31 \mathrm{mmol}$), 3-butenyl acetate ($8.500 \mathrm{~g}, 74.60 \mathrm{mmol}$) and Grubbs II ($1.500 \mathrm{~g}, 1.769 \mathrm{mmol}$), in 150 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, following the general procedure, styrene S1a was obtained. Chromatographic purification (gradient elution: 1:99 $\rightarrow 10: 90 \mathrm{Et}_{2} \mathrm{O}$ - pentane) gave S1a $(6.800 \mathrm{~g}, 83 \%)$, as a colorless oil. Spectral properties matched those previously reported. ${ }^{1}$

Data for S1a: $\boldsymbol{R}_{f} 0.30\left(10 \% \mathrm{Et}_{2} \mathrm{O}\right.$ - pentane). ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 7.28(2 \mathrm{H}, \mathrm{d}, J=$ $8.4 \mathrm{~Hz}, \mathrm{Ar}), 6.84(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}, \mathrm{Ar}), 6.41(1 \mathrm{H}, \mathrm{d}, J=15.9 \mathrm{~Hz}, 4-\mathrm{H}), 6.02(1 \mathrm{H}, \mathrm{dt}, J=15.8,7.0$ $\mathrm{Hz}, 3-\mathrm{H}), 4.17\left(2 \mathrm{H}, \mathrm{t}, J=6.8 \mathrm{~Hz}, 1-\mathrm{H}_{2}\right), 3.79(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 2.52\left(2 \mathrm{H}, \mathrm{qd}, J=6.9,1.5 \mathrm{~Hz}, 2-\mathrm{H}_{2}\right), 2.05$ (3H, s, Me OAc). ${ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 171.1$ (C=O), 159.0 (C Ar), 131.8 (C-4), 130.1 (C $\mathrm{Ar}), 127.2$ (2 x CH Ar), 123.3 (C-3), 114.0 ($2 \times \mathrm{CH} \mathrm{Ar}$), 63.9 (C-1), 55.3 (OMe), 32.4 (C-2), 21.0 (Me OAc). HRMS (ESI): calculated for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$requires $\mathrm{m} / \mathrm{z} 243.0991$, found m / z 243.0994.

2.2. (E)-4-Phenylbut-3-en-1-yl acetate, S1b.

From styrene ($0.456 \mathrm{~g}, 4.38 \mathrm{mmol}$), but-3-en-1-yl acetate ($1.000 \mathrm{~g}, 8.772 \mathrm{mmol}$) and Grubbs II ($56.0 \mathrm{mg}, 0.0660 \mathrm{mmol}$) following the general procedure, styrene $\mathbf{S 1 b}$ was obtained. Chromatographic purification (gradient elution: $5 \% \rightarrow 8 \% \mathrm{Et}_{2} \mathrm{O}$ - pentane) gave $\mathbf{S 1 b}$ as a white solid $(510.0 \mathrm{mg}, 61 \%)$. Spectral properties matched those previously reported. ${ }^{2}$

Data for S1b: $\boldsymbol{R}_{f} 0.50\left(20 \% \mathrm{Et}_{2} \mathrm{O}\right.$ - pentane). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 7.28-7.38(4 \mathrm{H}$, $\mathrm{m}, \mathrm{Ar}), 7.19-7.25(1 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 6.48(1 \mathrm{H}, \mathrm{d}, J=15.9 \mathrm{~Hz}, 4-\mathrm{H}), 6.18(1 \mathrm{H}, \mathrm{dt}, J=15.9,7.0 \mathrm{~Hz}, 3-\mathrm{H})$, $4.20\left(2 \mathrm{H}, \mathrm{t}, J=6.7 \mathrm{~Hz}, 1-\mathrm{H}_{2}\right), 2.55\left(2 \mathrm{H}, \mathrm{qd}, J=6.8,1.5 \mathrm{~Hz}, 2-\mathrm{H}_{2}\right), 2.06(3 \mathrm{H}, \mathrm{s}, \mathrm{Me} \mathrm{Ac}) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 171.1$ ($\mathrm{C}=\mathrm{O}$), 137.3 (C Ar), 132.4 (C-4), 128.6 ($2 \times \mathrm{CH} \mathrm{Ar}$), 127.3 (CH Ar), 126.1 ($2 \times \mathrm{CH}$ Ar), 125.6 (C-3), 63.8 (C-1), 32.4 (C-2), 21.0 (Me Ac). HRMS (ESI): calculated for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$requires m / z 213.0886, found m / z 213.0888.

2.3. (E)-4-(p-Tolyl)but-3-en-1-yl acetate, S1c.

From 1-methyl-4-vinylbenzene ($0.520 \mathrm{~g}, 4.41 \mathrm{mmol}$), but-3-en-1-yl acetate ($1.000 \mathrm{~g}, 8.850$ $\mathrm{mmol})$ and Grubbs II $(56.0 \mathrm{mg}, 0.0660 \mathrm{mmol})$ following the general procedure, styrene S1c was
obtained. Chromatographic purification (gradient elution: $5 \% \rightarrow 8 \% \mathrm{Et}_{2} \mathrm{O}$ - pentane) gave S1c as a white solid ($552.0 \mathrm{mg}, 62 \%$).

Data for S1c: $\boldsymbol{R}_{f} 0.40$ ($20 \% \mathrm{Et}_{2} \mathrm{O}$ - pentane). M.p.: $4{ }^{\circ} \mathrm{C}$ (solvent: 5% diethyl ether in pentane). ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 7.25(2 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz}, \mathrm{Ar}), 7.12(2 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz}, \mathrm{Ar})$, $6.44(1 \mathrm{H}, \mathrm{d}, J=15.9 \mathrm{~Hz}, 4-\mathrm{H}), 6.12(1 \mathrm{H}, \mathrm{dt}, J=15.9,7.0 \mathrm{~Hz}, 3-\mathrm{H}), 4.18\left(2 \mathrm{H}, \mathrm{t}, J=6.8 \mathrm{~Hz}, 1-\mathrm{H}_{2}\right)$, $2.53\left(2 \mathrm{H}, \mathrm{qd}, J=6.8,1.5 \mathrm{~Hz}, 2-\mathrm{H}_{2}\right), 2.33(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 2.06(3 \mathrm{H}, \mathrm{s}, \mathrm{Me} \mathrm{Ac}) .{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{~ N M R}(\mathbf{1 0 0} \mathbf{~ M H z}$, $\mathbf{C D C l}_{3}$) $\delta 171.3(\mathrm{C}=\mathrm{O})$, $137.2(\mathrm{C} \mathrm{Ar}), 134.6(\mathrm{C} \mathrm{Ar}), 132.4(\mathrm{C}-4)$, 129.3 ($2 \times \mathrm{CH} \mathrm{Ar}$), 126.1 ($2 \times \mathrm{CH}$ Ar), 124.6 (C-3), 63.9 (C-1), 32.5 (C-2), 21.3 (Me), 21.1 (Me Ac). IR (film) $v_{\max }$ 2955, 2360, 2341, 1736, 1232, 1033, 967, $799 \mathrm{~cm}^{-1}$. HRMS (ESI): calculated for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$requires m / z 227.1043, found $m / z 227.1044$.

2.4. (E)-3-(p-Tolyl)allyl acetate, S1d.

From 1-methyl-4-vinylbenzene ($1.000 \mathrm{~g}, 8.475 \mathrm{mmol}$), allyl acetate ($1.450 \mathrm{~g}, 14.50 \mathrm{mmol}$) and Grubbs II ($108.0 \mathrm{mg}, 0.1273 \mathrm{mmol}$) following the general procedure, styrene S1d was obtained. Chromatographic purification (gradient elution: $5 \% \rightarrow 8 \% \mathrm{Et}_{2} \mathrm{O}$ - pentane) gave $\mathbf{S 1 d}$ as a white solid $(871.0 \mathrm{mg}, 55 \%)$. Spectral properties matched those previously reported. ${ }^{3}$

Data for S1d: $\boldsymbol{R}_{f} 0.5\left(15 \% \mathrm{Et}_{2} \mathrm{O}\right.$ - pentane). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 7.29(2 \mathrm{H}, \mathrm{d}, J=$ $8.1 \mathrm{~Hz}, \mathrm{Ar}), 7.13(2 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz}, \mathrm{Ar}), 6.63(1 \mathrm{H}, \mathrm{d}, J=15.9 \mathrm{~Hz}, 3-\mathrm{H}), 6.24(1 \mathrm{H}, \mathrm{dt}, J=15.9,6.6$ $\mathrm{Hz}, 2-\mathrm{H}), 4.72\left(2 \mathrm{H}, \mathrm{dd}, J=6.6,1.3 \mathrm{~Hz}, 1-\mathrm{H}_{2}\right), 2.34(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 2.10(3 \mathrm{H}, \mathrm{s}, \mathrm{Me} \mathrm{Ac}) .{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 0 0}$ MHz, CDCl3) $\delta 170.9$ ($\mathrm{C}=\mathrm{O}$), 138.0 (C Ar), 134.3 (C-3), 133.4 (C Ar), 129.3 (2 x CH Ar), 126.5 (2 x CH Ar), 122.1 (C-2), $65.3(\mathrm{C}-1), 21.3(\mathrm{Me})$, 21.1 (Me Ac). HRMS (Cl): calculated for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{O}_{2}$ $[\mathrm{M}+\mathrm{H}]^{+}$requires m / z 191.1072, found m / z 191.1069.

3. General procedure for acetate deprotection

To a solution of acetate in $\mathrm{MeOH}(10.0 \mathrm{~mL} / \mathrm{mmol})$, 5.0 equiv of $\mathrm{K}_{2} \mathrm{CO}_{3}$ were added in one portion at room temperature. The reaction was monitored by TLC until completion. The mixture was filtered and the solvent was evaporated under reduced pressure to give the corresponding alcohol, that was purified by chromatography on silica gel using the appropriate mixture of eluents.

3.1. (E)-4-(4-Methoxyphenyl)but-3-en-1-ol, S2a.

From acetate S1a ($3.510 \mathrm{~g}, 15.95 \mathrm{mmol}$) and $\mathrm{K}_{2} \mathrm{CO}_{3}(6.580 \mathrm{~g}, 47.68 \mathrm{mmol})$ following the general procedure, alcohol S2a was obtained. Chromatographic purification (gradient elution: 50\% $\rightarrow 100 \% \mathrm{Et}_{2} \mathrm{O}$ - pentane) gave $\mathbf{S 2 a}$ as a white solid ($2.230 \mathrm{~g}, 79 \%$). Spectral properties matched those previously reported. ${ }^{4}$

Data for S2a: $\boldsymbol{R}_{f} 0.33$ ($75 \% \mathrm{Et}_{2} \mathrm{O}$ - pentane). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 7.30(2 \mathrm{H}, \mathrm{d}, J=$ $8.9 \mathrm{~Hz}, \mathrm{Ar}), 6.84(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}, \mathrm{Ar}), 6.45(1 \mathrm{H}, \mathrm{d}, J=15.9 \mathrm{~Hz}, 4-\mathrm{H}), 6.05(1 \mathrm{H}, \mathrm{dt}, J=15.8,7.2$ $\mathrm{Hz}, 3-\mathrm{H}), 3.80(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.75\left(2 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}, 1-\mathrm{H}_{2}\right), 2.43-2.50\left(2 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}_{2}\right), 1.47(1 \mathrm{H}, \mathrm{br} \mathrm{s}$, $\mathrm{OH}) .{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 159.0$ (C Ar), 132.3 (C-4), 130.1 (C Ar), 127.2 ($2 \times \mathrm{CH} \mathrm{Ar}$), 124.0 (C-3), 114.0 ($2 \times \mathrm{CH} \mathrm{Ar}$), 62.1 (C-1), 55.3 (OMe), 36.4 (C-2). HRMS (Cl): calculated for $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$requires m / z 179.1072, found m / z 179.1067.

3.2. (E)-4-Phenylbut-3-en-1-ol, S2b.

From acetate S1b ($0.541 \mathrm{~g}, 2.85 \mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(1.970 \mathrm{~g}, 14.28 \mathrm{mmol})$ following the general procedure, alcohol S2b was obtained. Chromatographic purification (gradient elution: 40\% $\rightarrow 60 \% \mathrm{Et}_{2} \mathrm{O}$ - pentane) gave $\mathbf{S 2 b}$ as a colorless oil ($0.369 \mathrm{~g}, 88 \%$). Spectral properties matched those previously reported. ${ }^{5}$

Data for S2b: $\boldsymbol{R}_{\boldsymbol{f}} 0.4\left(75 \% \mathrm{Et}_{2} \mathrm{O}\right.$ - pentane). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 7.28-7.39(4 \mathrm{H}, \mathrm{m}$, Ar), 7.19-7.25 ($1 \mathrm{H}, \mathrm{m}, \mathrm{Ar}$), $6.51(1 \mathrm{H}, \mathrm{d}, J=15.8 \mathrm{~Hz}, 4-\mathrm{H}), 6.21(1 \mathrm{H}, \mathrm{dt}, J=15.9,7.1 \mathrm{~Hz}, 3-\mathrm{H}), 3.73-$ $3.81\left(2 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}_{2}\right), 2.47-2.53\left(2 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}_{2}\right), 1.47(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta$ 137.2 (C Ar), 132.9 (C-4), 128.6 ($2 \times \mathrm{CH} \mathrm{Ar}$), 127.3 (CH Ar), 126.3 (C-3), 126.1 ($2 \times \mathrm{CH} \mathrm{Ar}$), 62.0 (C-1), 36.4 (C-2). HRMS (CI): calculated for $\mathrm{C}_{10} \mathrm{H}_{17} \mathrm{ON}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$requires $\mathrm{m} / \mathrm{z} 166.1232$, found m / z 166.1227.

3.3. (E)-4-(p-Tolyl)but-3-en-1-ol, S2c.

From acetate S1c ($0.452 \mathrm{~g}, 2.22 \mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(1.530 \mathrm{~g}, 11.09 \mathrm{mmol})$ following the general procedure, styrene S2c was obtained. Chromatographic purification (gradient elution: 50\% $\rightarrow 100 \% \mathrm{Et}_{2} \mathrm{O}$ - pentane) gave $\mathbf{S 2 c}$ as a white solid ($0.317 \mathrm{~g}, 88 \%$). Spectral properties matched those previously reported. ${ }^{6}$

Data for S2c: $\boldsymbol{R}_{\boldsymbol{f}} 0.5\left(80 \% \mathrm{Et}_{2} \mathrm{O}\right.$ - pentane). ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\left.\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 7.29(2 \mathrm{H}, \mathrm{d}, J=$ $8.2 \mathrm{~Hz}, \mathrm{Ar}), 7.14(2 \mathrm{H}, \mathrm{d}, J=7.9 \mathrm{~Hz}, \mathrm{Ar}), 6.48(1 \mathrm{H}, \mathrm{d}, J=15.9 \mathrm{~Hz}, 4-\mathrm{H}), 6.17(1 \mathrm{H}, \mathrm{dt}, J=15.9,7.1$ $\mathrm{Hz}, 3-\mathrm{H}), 3.75\left(2 \mathrm{H}, \mathrm{t}, J=6.4 \mathrm{~Hz}, 1-\mathrm{H}_{2}\right), 2.48\left(2 \mathrm{H}, \mathrm{qd}, J=6.5,1.4 \mathrm{~Hz}, 2-\mathrm{H}_{2}\right), 2.44(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH})$, 2.37 ($3 \mathrm{H}, \mathrm{s}, \mathrm{Me}$). ${ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 137.0$ (C Ar), 134.6 (C Ar), 132.5 (C-4), 129.3 (2 x CH Ar), 126.0 (2 x CH Ar), 125.4 (C-3), 62.1 (C-1), 36.5 (C-2), 21.2 (Me). HRMS (ESI): calculated for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{ONa}[\mathrm{M}+\mathrm{Na}]^{+}$requires m / z 185.0937, found m / z 185.0935.

3.4. (E)-3-(p-Tolyl)prop-2-en-1-ol, S2d.

From acetate S1d ($0.440 \mathrm{~g}, 2.14 \mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(1.480 \mathrm{~g}, 10.72 \mathrm{mmol})$ following the general procedure, styrene S2d was obtained. Chromatographic purification (gradient elution: 50\% $\rightarrow 100 \% \mathrm{Et}_{2} \mathrm{O}$ - pentane) gave S2d as a light yellow solid ($250.0 \mathrm{mg}, 79 \%$). Spectral properties matched those previously reported. ${ }^{7}$

Data for S2d: $\boldsymbol{R}_{f} 0.5\left(80 \% \mathrm{Et}_{2} \mathrm{O}-\right.$ pentane). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 7.30(2 \mathrm{H}, \mathrm{d}, J=$ $8.1 \mathrm{~Hz}, \mathrm{Ar}), 7.15(2 \mathrm{H}, \mathrm{d}, J=7.9 \mathrm{~Hz}, \mathrm{Ar}), 6.58(1 \mathrm{H}, \mathrm{d}, J=15.9 \mathrm{~Hz}, 3-\mathrm{H}), 6.32(1 \mathrm{H}, \mathrm{dt}, J=15.8,5.8$ $\mathrm{Hz}, 2-\mathrm{H}), 4.30\left(2 \mathrm{H}, \mathrm{dd}, J=5.8,1.5 \mathrm{~Hz}, 1-\mathrm{H}_{2}\right), 2.92(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 2.38(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0}$ $\mathbf{M H z}, \mathbf{C D C l}_{3}$) $\delta 137.5$ (C Ar), 134.0 (C Ar), 131.0 (C-3), 129.4 (2 x CH Ar), 127.6 (C-2), 126.5 ($2 \times$ CH Ar), $63.6(\mathrm{C}-1), 21.3(\mathrm{Me})$. HRMS (Cl): calculated for $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{ON}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$requires m / z 166.1232, found $m / z 166.1232$.

4. General procedure for the reduction of $\boldsymbol{\alpha}, \boldsymbol{\beta}$-unsaturated aldehydes to allylic alcohols

To a solution of 1.0 eq. of aldehyde in $\mathrm{MeOH}(1.5 \mathrm{~mL} / \mathrm{mmol})$ under $\mathrm{Ar}, 1.0 \mathrm{eq}$. of NaBH_{4} was slowly added at $0^{\circ} \mathrm{C}$. The reaction was stirred for 30 min . and let it warmed up slowly to rt . until completion (usually 12 hours). The reaction was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution (5.0 $\mathrm{mL} / \mathrm{mmol})$ and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 5.0 \mathrm{~mL} / \mathrm{mmol})$. The combined organic layers were washed with brine ($5.0 \mathrm{~mL} / \mathrm{mmol}$), dried over anhydrous MgSO_{4} and the solvent was removed under reduced pressure. Recrystalization afforded the corresponding alcohol.

4.1. (E)-3-(4-Methoxyphenyl)prop-2-en-1-ol, S2e.

From p-methoxycinnamaldehyde ($4.800 \mathrm{~g}, 29.63 \mathrm{mmol}$) and $\mathrm{NaBH}_{4}(1.125 \mathrm{~g}, 29.63 \mathrm{mmol})$ following the general procedure, gave alcohol S2e ($4.850 \mathrm{~g}, 99 \%$) as a white solid. Spectral properties matched those previously reported. ${ }^{8}$

Data for S2e: $\boldsymbol{R}_{\boldsymbol{f}} 0.5\left(80 \% \mathrm{Et}_{2} \mathrm{O}\right.$ - pentane). ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\left.\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 7.32(2 \mathrm{H}, \mathrm{d}, J=$ $8.7 \mathrm{~Hz}, \mathrm{Ar}), 6.86(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}, \mathrm{Ar}), 6.56(1 \mathrm{H}, \mathrm{d}, J=15.9 \mathrm{~Hz}, 3-\mathrm{H}), 6.24(1 \mathrm{H}, \mathrm{dt}, J=15.8,6.0$ $\mathrm{Hz}, 2-\mathrm{H}), 4.29\left(2 \mathrm{H}, \mathrm{dd}, J=5.9,1.2 \mathrm{~Hz}, 1-\mathrm{H}_{2}\right), 3.81(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 1.53(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l} 3$) $\delta 159.5$ (C Ar), 131.1 (C-3), 129.6 (C Ar), 127.8 ($2 \times \mathrm{CH} \mathrm{Ar}$), 126.4 (C-2), 114.2 ($2 \times \mathrm{CH}$ Ar), $64.07(\mathrm{C}-1), 55.43(\mathrm{OMe})$. HRMS (Cl) : calculated for $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$requires m / z 165.0916, found $m / z 165.0919$.

4.2. (E)-3-(4-Bromophenyl)prop-2-en-1-ol, S2f.

From (E)-3-(4-Bromophenyl)acrylaldehyde ($0.500 \mathrm{~g}, 2.38 \mathrm{mmol}$) and $\mathrm{NaBH}_{4}(91.0 \mathrm{mg}, 2.39$ mmol) following the general procedure gaver alcohol $\mathbf{S 2 f}$ as a yellow solid ($479.0 \mathrm{mg}, 95 \%$). Spectral properties matched those previously reported. ${ }^{9}$

Data for S2f: $\boldsymbol{R}_{f} 0.45\left(80 \% \mathrm{Et}_{2} \mathrm{O}\right.$ - pentane). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 7.38(2 \mathrm{H}, \mathrm{d}, J=$ $8.4 \mathrm{~Hz}, \mathrm{Ar}), 7.15(2 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}, \mathrm{Ar}), 6.48(1 \mathrm{H}, \mathrm{d}, J=15.9 \mathrm{~Hz}, 3-\mathrm{H}), 6.27(1 \mathrm{H}, \mathrm{dt}, J=15.9,5.5$ $\mathrm{Hz}, 2-\mathrm{H}), 4.26\left(2 \mathrm{H}, \mathrm{dd}, J=5.6,1.6 \mathrm{~Hz}, 1-\mathrm{H}_{2}\right), 3.28(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta$ 135.5 (C Ar), 131.6 ($2 \times \mathrm{CH}$ Ar), 129.4 (C-3), 129.3 (C-2), 127.9 ($2 \times \mathrm{CH}$ Ar), 121.3 (C Ar), 63.1 (C1).

5. (E)-1-(3-Bromoprop-1-en-1-yl)-4-methoxybenzene, S3a.

To a stirred solution of alcohol $\mathbf{S 2 e}(1.060 \mathrm{~g}, 6.463 \mathrm{mmol})$ in dry $\mathrm{Et}_{2} \mathrm{O}(2.0 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ under Ar was added $\mathrm{PBr}_{3}(0.24 \mathrm{~mL}, 2.6 \mathrm{mmol})$. The reaction was stirred until completion, monitored by TLC analysis and quenched with NaHCO_{3}. The layers were separated and the aqueous layer extracted
with $\mathrm{Et}_{2} \mathrm{O}$ twice. The combined organics were washed with brine, dried over MgSO_{4}, filtered and the solvent was evaporated to give the pure bromide S3a as a white solid ($1.400 \mathrm{~g}, 96 \%$). Spectral properties matched those previously reported. ${ }^{10}$

Data for S3a: $\boldsymbol{R}_{f} 0.80\left(80 \% \mathrm{Et}_{2} \mathrm{O}\right.$ - pentane). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 7.33(2 \mathrm{H}, \mathrm{d}, J=$ $8.4 \mathrm{~Hz}, \mathrm{Ar}), 6.87(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}, \mathrm{Ar}), 6.60(1 \mathrm{H}, \mathrm{d}, J=15.5 \mathrm{~Hz}, 3-\mathrm{H}), 6.27(1 \mathrm{H}, \mathrm{dt}, J=15.7,7.9$ $\mathrm{Hz}, 2-\mathrm{H}), 4.17\left(2 \mathrm{H}, \mathrm{dd}, J=7.8,1.0 \mathrm{~Hz}, 1-\mathrm{H}_{2}\right), 3.82(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta$ 159.8 (C Ar), 134.2 (C-3), 128.5 (C Ar), 128.1 ($2 \times \mathrm{CH} \mathrm{Ar}$), $123.0(\mathrm{C}-2), 114.1$ ($2 \times \mathrm{CH} \mathrm{Ar}$), 55.4 (OMe), $34.3(\mathrm{C}-1)$. HRMS (Cl): calculated for $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{BrO}[\mathrm{M}+\mathrm{H}]^{+}$requires $\mathrm{m} / \mathrm{z} 227.0072$, found m / z 227.0069.

6. General procedure for the preparation of symmetric silyl ethers

To a flame-dried round bottom flask with a stirring bar, a solution of 1.25 eq. of imidazole in dry DCM ($5.0 \mathrm{~mL} / \mathrm{mmol}$) was added under argon. The solution was stirred and cooled down to $0{ }^{\circ} \mathrm{C}$, and 0.53 eq. of silane was added dropwise. After 10 min . of stirring, a solution of 1.0 eq. of alcohol in dry DCM ($2 \mathrm{~mL} / \mathrm{mmol}$) was added dropwise over 1 hour using syringe pump. The reaction was stirred for 10 min . at $0^{\circ} \mathrm{C}$ after the addition of alcohol was completed, and monitored by TLC. The solvent was evaporated under reduced pressure and the crude reaction was purified by chromatography on silica gel using the appropriate mixture of eluents.

6.1. (E)-4-Diisopropylbis[(4-methoxyphenyl)but-3-en-1-yloxy)]silane, 1a.

S2a

From alcohol S2a ($102.0 \mathrm{mg}, 0.573 \mathrm{mmol}$), imidazole ($48.7 \mathrm{mg}, 0.716 \mathrm{mmol}$) and dichlorodiisopropylsilane ($0.054 \mathrm{~mL}, 0.30 \mathrm{mmol}$) following the general procedure, diene $1 \mathbf{1 a}$ was obtained. Chromatographic purification ($3 \% \mathrm{Et}_{2} \mathrm{O}$ - pentane) gave 1a as a colorless oil (76.9 mg , 78\%).

Data for 1a: $\boldsymbol{R}_{f} 0.45$ ($10 \% \mathrm{Et}_{2} \mathrm{O}$ - pentane). ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z , ~ C D C l} 3$) $\delta 7.25(4 \mathrm{H}, \mathrm{d}, J=$ $8.8 \mathrm{~Hz}, \mathrm{Ar}), 6.82(4 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}, \mathrm{Ar}), 6.38(2 \mathrm{H}, \mathrm{d}, J=15.9 \mathrm{~Hz}, 4-\mathrm{H}$ and $8-\mathrm{H}), 6.08(2 \mathrm{H}, \mathrm{dt}, J=$ $15.8,7.1 \mathrm{~Hz}, 3-\mathrm{H}$ and $7-\mathrm{H}), 3.84\left(4 \mathrm{H}, \mathrm{t}, J=6.8 \mathrm{~Hz}, 1-\mathrm{H}_{2}\right.$ and $\left.5-\mathrm{H}_{2}\right), 3.79(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{OMe}), 2.45(4 \mathrm{H}$, $\mathrm{qd}, J=6.9,1.4 \mathrm{~Hz}, 2-\mathrm{H}_{2}$ and $\left.6-\mathrm{H}_{2}\right), 1.01-1.08(14 \mathrm{H}, \mathrm{m}, 4 \mathrm{x} i-\mathrm{Pr}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta$ 158.9 ($2 \times \mathrm{C} \mathrm{Ar}$), 131.2 (C-4 and C-8), 130.6 ($2 \times \mathrm{C} \mathrm{Ar}$), 127.2 ($4 \times \mathrm{CH} \mathrm{Ar}$), 124.9 (C-3 and C-7),
114.0 ($4 \times \mathrm{C}-\mathrm{H} \mathrm{Ar}$), 63.0 ($\mathrm{C}-1$ and C-5), 55.4 ($2 \times \mathrm{OMe}$), 36.7 ($\mathrm{C}-2$ and C-6), 17.5 ($4 \times \mathrm{CH}_{3} i$ - Pr), 12.3 ($2 \times \mathrm{CH} i$-Pr). IR (film) $v_{\max } 3657,2980,2888,1382,1251,1152,1072,954 \mathrm{~cm}^{-1}$. HRMS (ESI): calculated for $\mathrm{C}_{28} \mathrm{H}_{40} \mathrm{O}_{4} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+}$requires $m / z 491.2588$, found $m / z 491.2586$.

6.2. (E)-4-Ditert-butylbis[(4-methoxyphenyl)but-3-en-1-yloxy]silane, 1b.

butylsilanediylbis(trifluoromethanesulfonate) ($0.096 \mathrm{~mL}, 0.30 \mathrm{mmol}$) and 2,4-lutidine ($0.08 \mathrm{~mL}, 0.7$ mmol), following the general procedure, diene $\mathbf{1 b}$ was obtained. Chromatographic purification (5% $\mathrm{Et}_{2} \mathrm{O}$ - pentane) gave $\mathbf{1 b}$ as a colorless oil ($62.1 \mathrm{mg}, 45 \%$).

Data for $\mathbf{1 b}: \boldsymbol{R}_{\boldsymbol{f}} 0.40$ ($10 \% \mathrm{Et}_{2} \mathrm{O}$ - pentane). M.p.: $45{ }^{\circ} \mathrm{C}$ (solvent: 10% diethyl ether in pentane). ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 7.25(4 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}, \mathrm{Ar}), 6.82(4 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}, \mathrm{Ar})$, $6.38(2 \mathrm{H}, \mathrm{d}, J=15.9 \mathrm{~Hz}, 4-\mathrm{H}$ and $8-\mathrm{H}), 6.10(2 \mathrm{H}, \mathrm{dt}, J=15.8,7.1 \mathrm{~Hz}, 3-\mathrm{H}$ and $7-\mathrm{H}), 3.93(4 \mathrm{H}, \mathrm{t}, J=$ $6.7 \mathrm{~Hz}, 1-\mathrm{H}_{2}$ and $\left.5-\mathrm{H}_{2}\right), 3.79(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{OMe}), 2.45\left(4 \mathrm{H}, \mathrm{qd}, J=6.8,1.4 \mathrm{~Hz}, 2-\mathrm{H}_{2}\right.$ and $\left.6-\mathrm{H}_{2}\right), 1.03$ $\left(18 \mathrm{H}, \mathrm{s}, 6 \times \mathrm{CH}_{3} t-\mathrm{Bu}\right) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 158.8(2 \times \mathrm{C} \mathrm{Ar}), 131.1(\mathrm{C}-4$ and C-8), 130.7 ($2 \times \mathrm{C} \mathrm{Ar}$), 127.2 ($4 \times \mathrm{CH} \mathrm{Ar}$), 125.2 ($\mathrm{C}-3$ and C-7), 114.0 ($4 \times \mathrm{CH} \mathrm{Ar}$), 63.9 ($\mathrm{C}-1$ and C-5), 55.4 (2 x OMe), 36.9 ($\mathrm{C}-2$ and C-6), $28.0\left(6 \mathrm{x} \mathrm{CH}_{3} t\right.$-Bu), 21.3 ($2 \times \mathrm{C} t$-Bu). IR (film) $v_{\max } 3667,2980$, 2360, 1382, 1249, 1151, 1086, $955 \mathrm{~cm}^{-1}$. HRMS (ESI): calculated for $\mathrm{C}_{30} \mathrm{H}_{44} \mathrm{O}_{4} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+}$requires m / z 519.2901, found $m / z 519.2899$.

6.3. (E)-Bis[4-(4-methoxyphenyl)but-3-en-1-yloxy]diphenylsilane, 1c.

From alcohol S2a ($80.0 \mathrm{mg}, 0.449 \mathrm{mmol}$), imidazole ($38.2 \mathrm{mg}, 0.562 \mathrm{mmol}$) and dichlorodiphenylsilane ($0.049 \mathrm{~mL}, 0.24 \mathrm{mmol}$) following the general procedure, diene 1c was obtained. Chromatographic purification ($5 \% \mathrm{Et}_{2} \mathrm{O}$ - pentane) gave 1 c as a colorless oil $(21.7 \mathrm{mg}$, $18 \%)$.

Data for 1c: $\boldsymbol{R}_{\boldsymbol{f}} 0.45\left(30 \% \mathrm{Et}_{2} \mathrm{O}\right.$ - pentane). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathbf{C D C l}_{3}\right) \delta 7.65-7.70(4 \mathrm{H}, \mathrm{m}$, Ar), 7.30-7.45 (6H, m, Ar), $7.24(4 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}, \mathrm{Ar}), 6.82(4 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}, \mathrm{Ar}), 6.37(2 \mathrm{H}, \mathrm{d}, J$ $=15.9 \mathrm{~Hz}, 4-\mathrm{H}$ and $8-\mathrm{H}), 6.05(2 \mathrm{H}, \mathrm{dt}, J=15.8,7.0 \mathrm{~Hz}, 3-\mathrm{H}$ and $7-\mathrm{H}), 3.90\left(4 \mathrm{H}, \mathrm{t}, J=6.7 \mathrm{~Hz}, 1-\mathrm{H}_{2}\right.$ and $\left.5-\mathrm{H}_{2}\right), 3.79(6 \mathrm{H}, \mathrm{s}, 2 \mathrm{x} \mathrm{OMe}), 2.49\left(4 \mathrm{H}, \mathrm{qd}, J=6.8,1.4 \mathrm{~Hz}, 2-\mathrm{H}_{2}\right.$ and $\left.6-\mathrm{H}_{2}\right) .{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}(\mathbf{1 0 0} \mathbf{~ M H z}$, CDCl3) $\delta 158.9$ ($2 \times \mathrm{x} \mathrm{Ar}$), 135.1 ($4 \times \mathrm{CH} \mathrm{Ar}$), $133.0(2 \times \mathrm{C} \mathrm{Ar}$), 131.4 (C-4 and C-8), 130.6 ($2 \times \mathrm{C}$ Ar), 130.4 (2 x CH Ar), 128.0 (4 x CH Ar), 127.2 ($4 \times \mathrm{CH} \mathrm{Ar}$), 124.8 (C-3 and C-7), 114.0 ($4 \times \mathrm{CH}$ Ar), 63.1 (C-1 and C-5), $55.4(2 \times \mathrm{OMe}), 36.4$ (C-2 and C-6). IR (film) $v_{\max } 3028,2360,1509$, 1246, 1116, 1080, $700 \mathrm{~cm}^{-1}$. HRMS (ESI): calculated for $\mathrm{C}_{34} \mathrm{H}_{36} \mathrm{O}_{4} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+}$requires m / z 559.2275, found $m / z 559.2277$.

6.4. 1,1,3,3-Tetraisopropyl-1,3-bis $\{(E)$-3-[4-methoxyphenyl)allyloxy]\}disiloxane, 1e.

From alcohol S2e ($80.0 \mathrm{mg}, 0.488 \mathrm{mmol}$), imidazole ($41.5 \mathrm{mg}, 0.610 \mathrm{mmol}$) and 1,3-dichloro-1,1,3,3-tetraisopropyldisiloxane ($0.082 \mathrm{~mL}, 0.26 \mathrm{mmol}$) following the general procedure, diene $\mathbf{1 e}$ was obtained. Chromatographic purification ($6 \% \mathrm{Et}_{2} \mathrm{O}$ - pentane) gave $\mathbf{1 e}$ as a white solid $(95.1 \mathrm{mg}$, $68 \%)$.

Data for $\mathbf{1 e}$: $\boldsymbol{R}_{f} 0.45$ ($20 \% \mathrm{Et}_{2} \mathrm{O}$ - pentane). M.p.: $27^{\circ} \mathrm{C}$ (solvent: 10% diethyl ether in pentane). ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 7.29(4 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}, \mathrm{Ar}), 6.83(4 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}, \mathrm{Ar}), 6.56(2 \mathrm{H}$, $\mathrm{d}, J=15.8 \mathrm{~Hz}, 3-\mathrm{H}$ and $6-\mathrm{H}), 6.16(2 \mathrm{H} \mathrm{dt}, J=15.8,5.1 \mathrm{~Hz}, 2-\mathrm{H}$ and $5-\mathrm{H}), 4.47(4 \mathrm{H}, \mathrm{dd}, J=5.1,1.8$ $\mathrm{Hz}, 1-\mathrm{H}_{2}$ and $4-\mathrm{H}_{2}$), $3.80(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{OMe}), 0.93-1.17\left(28 \mathrm{H}, \mathrm{m}, 4 \mathrm{x}{ }^{i} \mathrm{Pr}\right) .{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right)$ $\delta 159.1$ ($2 \times \mathrm{C} \mathrm{Ar}$), 130.1 ($2 \times \mathrm{C} \mathrm{Ar}$), 129.0 ($\mathrm{C}-3$ and C-6), 127.7 ($4 \times \mathrm{CH} \mathrm{Ar}$), 126.9 (C-2 and C-5), 114.0 ($4 \times \mathrm{CH}$ Ar), 63.4 ($\mathrm{C}-1$ and $\mathrm{C}-4$), 55.4 ($2 \times \mathrm{OMe}$), $17.6\left(4 \mathrm{x} \mathrm{CH}_{3}{ }^{i} \mathrm{Pr}\right.$), $17.5\left(4 \mathrm{x} \mathrm{CH}_{3}{ }^{i} \mathrm{Pr}\right.$), 13.2 ($4 \mathrm{x} \mathrm{CH}^{i} \mathrm{Pr}$). IR (film) $\nu_{\text {max }}$ 2980, 2866, 2360, 2341, 1511, 1249, 1050, $966 \mathrm{~cm}^{-1}$. HRMS (CI): calculated for $\mathrm{C}_{32} \mathrm{H}_{51} \mathrm{O}_{5} \mathrm{Si}_{2}[\mathrm{M}+\mathrm{H}]^{+}$requires $m / z 571.3275$, found $m / z 571.3266$.

6.5. (E)-Diisopropylbis[3-(4-methoxyphenyl)allyloxy]silane, $\mathbf{1 j}$.

S2e

79\%

1j

From alcohol S2e ($100.0 \mathrm{mg}, 0.609 \mathrm{mmol}$), imidazole ($51.9 \mathrm{mg}, 0.763 \mathrm{mmol}$) and dichlorodiisopropylsilane ($0.058 \mathrm{~mL}, 0.32 \mathrm{mmol}$) following the general procedure, diene $\mathbf{~} \mathbf{j}$ was obtained. Chromatographic purification (gradient elution: $3 \% \rightarrow 5 \% \mathrm{Et}_{2} \mathrm{O}$ - pentane) gave $\mathbf{1} \mathbf{j}$ as a colorless oil ($105.4 \mathrm{mg}, 79 \%$).

Data for $\mathbf{1 j}$: $\boldsymbol{R}_{f} 0.5\left(15 \% \mathrm{Et}_{2} \mathrm{O}\right.$ - pentane). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}^{2}\right) \delta 7.31(4 \mathrm{H}, \mathrm{d}, J=8.7$ $\mathrm{Hz}, \mathrm{Ar}), 6.85(4 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}, \mathrm{Ar}), 6.58(4 \mathrm{H}, \mathrm{d}, J=15.8 \mathrm{~Hz}, 3-\mathrm{H}$ and $6-\mathrm{H}), 6.19(2 \mathrm{H}, \mathrm{dt}, J=15.8$, $5.3 \mathrm{~Hz}, 2-\mathrm{H}$ and $5-\mathrm{H}), 4.48\left(4 \mathrm{H}, \mathrm{dd}, J=5.3,1.7 \mathrm{~Hz}, 1-\mathrm{H}_{2}\right.$ and $\left.4-\mathrm{H}_{2}\right), 3.81(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{OMe}), 1.13$ ($14 \mathrm{H}, \mathrm{m}, 2 \times{ }^{i} \mathrm{Pr}$). ${ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 159.2$ ($2 \times \mathrm{C} \mathrm{Ar}$), 129.9 ($2 \times \mathrm{C} \mathrm{Ar}$), 129.4 (C-3 and C-6), 127.7 ($4 \times \mathrm{CH}$ Ar), 126.7 (C-2 and C-5), 114.0 ($4 \times \mathrm{CH} \mathrm{Ar}$), 63.8 (C-1 and C-4), 55.4 (2 x OMe), $17.6\left(4 \mathrm{x} \mathrm{CH}_{3}{ }^{i} \mathrm{Pr}\right.$), 12.4 ($2 \times \mathrm{CH}^{i} \mathrm{Pr}$). IR (film) $v_{\max } 2970,1739,1368,1229,1216,835 \mathrm{~cm}^{-1}$. HRMS (ESI): calculated for $\mathrm{C}_{26} \mathrm{H}_{36} \mathrm{O}_{4} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+}$requires $m / z 463.2275$, found $m / z 463.2273$.

6.6. (E)-Ditert-butylbis[3-(4-methoxyphenyl)allyloxy]silane, 1k.

S2e
0.53 eq. $(t-\mathrm{Bu})_{2} \mathrm{Si}(\mathrm{OTf})_{2}$

70\%

From alcohol S2e (80.0 mg, 0.488 mmol$)$, ditert-butylsilanediyl bis(trifluoromethanesulfonate) ($0.070 \mathrm{~mL}, 0.26 \mathrm{mmol}$) and 2,4-lutidine ($0.07 \mathrm{~mL}, 0.6 \mathrm{mmol}$) following the general procedure, diene $\mathbf{1 k}$ was obtained. Chromatographic purification (gradient elution: $4 \% \rightarrow 8 \% \mathrm{Et}_{2} \mathrm{O}$ - pentane) gave $\mathbf{1 k}$ as a colorless oil ($80.1 \mathrm{mg}, 70 \%$).

Data for 1k: $\boldsymbol{R}_{f} 0.43\left(15 \% \mathrm{Et}_{2} \mathrm{O}\right.$ - pentane). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 7.31(4 \mathrm{H}, \mathrm{d}, J=$ $8.7 \mathrm{~Hz}, \mathrm{Ar}), 6.85(4 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}, \mathrm{Ar}), 6.60(2 \mathrm{H}, \mathrm{d}, J=15.8 \mathrm{~Hz}, 3-\mathrm{H}$ and $6-\mathrm{H}), 6.18(2 \mathrm{H}, \mathrm{dt}, J=$ $15.8,4.9 \mathrm{~Hz}, 2-\mathrm{H}$ and $5-\mathrm{H}), 4.55\left(4 \mathrm{H}, \mathrm{dd}, J=5.0,1.8 \mathrm{~Hz}, 1-\mathrm{H}_{2}\right.$ and $\left.4-\mathrm{H}_{2}\right), 3.81(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{OMe})$, $1.10\left(18 \mathrm{H}, \mathrm{s}, 6 \times \mathrm{CH}_{3} t \mathrm{Bu}\right) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 159.1$ ($2 \times \mathrm{C} \mathrm{Ar}$), 130.1 ($2 \times \mathrm{C} \mathrm{Ar}$), 128.8 (C-3 and C-6), 127.7 ($4 \times \mathrm{CH}$ Ar), 127.0 (C-2 and C-5), 114.0 ($4 \times \mathrm{CH}$ Ar), 64.6 (C-1 and C-4), 55.4 ($2 \times \mathrm{OMe}$), 28.1 ($6 \mathrm{x} \mathrm{CH}_{3} t$ - Bu), 21.5 ($2 \times \mathrm{C} t$-Bu). IR (film) $v_{\text {max }}$ 2970, 2360, 1738, 1463, 1230, 857 cm^{-1}. HRMS (ESI): calculated for $\mathrm{C}_{28} \mathrm{H}_{40} \mathrm{O}_{4} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+}$requires $\mathrm{m} / \mathrm{z} 491.2588$, found m / z 491.2586
6.7. (E)-Bis-[3-(4-methoxyphenyl)allyloxy]diphenylsilane, 11.

From alcohol S2e ($100.0 \mathrm{mg}, 0.609 \mathrm{mmol}$), imidazole ($51.9 \mathrm{mg}, 0.763 \mathrm{mmol}$) and dichlorodiphenylsilane ($0.08 \mathrm{~mL}, 0.3 \mathrm{mmol}$) following the general procedure, diene $\mathbf{1 1}$ was obtained. Chromatographic purification (gradient elution: $7 \% \rightarrow 9 \% \mathrm{Et}_{2} \mathrm{O}$ - pentane) gave $\mathbf{1 1}$ as a colorless oil ($38.5 \mathrm{mg}, 25 \%$).

Data for 11: $\boldsymbol{R}_{f} 0.58$ ($10 \% \mathrm{Et}_{2} \mathrm{O}$ - pentane). ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z , ~} \mathbf{C D C l}_{3}$) $\delta 7.72-7.77(4 \mathrm{H}, \mathrm{m}$, Ar), 7.35-7.48 ($6 \mathrm{H}, \mathrm{m}, \mathrm{Ar}$), $7.26(4 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}, \mathrm{Ar}), 6.82(4 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}, \mathrm{Ar}), 6.54$ (2H, d, J $=15.8 \mathrm{~Hz}, 3-\mathrm{H}$ and $6-\mathrm{H}), 6.19(2 \mathrm{H}, \mathrm{dt}, J=15.8,5.6 \mathrm{~Hz}, 2-\mathrm{H}$ and $5-\mathrm{H}), 4.50(4 \mathrm{H}, \mathrm{dd}, J=5.6,1.6 \mathrm{~Hz}$, $1-\mathrm{H}_{2}$ and $4-\mathrm{H}_{2}$), 3.81 ($6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{OMe}$) ${ }^{\mathbf{1 3}} \mathbf{C} \mathbf{~ N M R ~ (~} \mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 159.3$ (2 x C Ar), 135.1 (4 x CH Ar), 132.8 ($2 \times \mathrm{C} \mathrm{Ar}$), 130.5 ($3 \mathrm{x} \mathrm{CH} \mathrm{Ar)}$,130.3 ($\mathrm{C}-3$ and C-6), 129.8 ($2 \times \mathrm{C} \mathrm{Ar}$), 128.1 (3 x CH Ar), 127.8 ($4 \times \mathrm{CH} \mathrm{Ar}$), 126.0 ($\mathrm{C}-2$ and C-5), 114.0 ($4 \times \mathrm{CH}$ Ar), 64.3 ($\mathrm{C}-1$ and C-4), 55.4 ($2 \times \mathrm{OMe}$). IR (film) $\nu_{\text {max }} 2980,2360,1738,1510,1249,837 \mathrm{~cm}^{-1}$. HRMS (ESI): calculated for $\mathrm{C}_{32} \mathrm{H}_{32} \mathrm{O}_{4} \mathrm{SiNa}$ $[\mathrm{M}+\mathrm{Na}]^{+}$requires $m / z 531.1962$, found $\mathrm{m} / \mathrm{z} 531.1961$.
6.8. (E)-Diethylbis[3-(4-methoxyphenyl)allyloxy]silane, 1m.

From alcohol S2e ($80.0 \mathrm{mg}, 0.488 \mathrm{mmol}$), imidazole ($41.5 \mathrm{mg}, 0.610 \mathrm{mmol}$) and dichlorodiethylsilane ($0.038 \mathrm{~mL}, 0.26 \mathrm{mmol}$) following the general procedure, diene $\mathbf{1 m}$ was obtained. Chromatographic purification (gradient elution: $8 \% \rightarrow 10 \% \mathrm{Et}_{2} \mathrm{O}$ - pentane) gave $\mathbf{1 m}$ as a colorless solid ($70.6 \mathrm{mg}, 70 \%$).

Data for 1m: $\boldsymbol{R}_{f} 0.58$ ($30 \% \mathrm{Et}_{2} \mathrm{O}$ - pentane). M.p.: $49^{\circ} \mathrm{C}$ (solvent: 5% diethyl ether in pentane). ${ }^{1} \mathbf{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.29(4 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}, \mathrm{Ar}), 6.83(4 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}, \mathrm{Ar}), 6.54(2 \mathrm{H}$, d, $J=15.8 \mathrm{~Hz}, 3-\mathrm{H}$ and $6-\mathrm{H}), 6.18(2 \mathrm{H}, \mathrm{dt}, J=15.8,5.6 \mathrm{~Hz}, 2-\mathrm{H}$ and $5-\mathrm{H}), 4.42(4 \mathrm{H}, \mathrm{dd}, J=5.6,1.6$ $\mathrm{Hz}, 1-\mathrm{H}_{2}$ and $\left.4-\mathrm{H}_{2}\right), 3.80(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{OMe}), 1.03\left(6 \mathrm{Ht}, J=8.0 \mathrm{~Hz}, 8-\mathrm{H}_{3}\right.$ and $\left.10-\mathrm{H}_{3}\right), 0.72(4 \mathrm{H}, \mathrm{q}, J=$ $8.0 \mathrm{~Hz}, 7-\mathrm{H}_{2}$ and $9-\mathrm{H}_{2}$). ${ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 159.2$ ($2 \times \mathrm{C} \mathrm{Ar}$), $130.0(2 \times \mathrm{C} \mathrm{Ar}), 129.8$ (C-3 and C-6), 127.8 ($4 \times \mathrm{CH}$ Ar), 126.4 (C-2 and C-5), 114.0 ($4 \times \mathrm{CH}$ Ar), 63.7 (C-1 and C-4), 55.4 (2 x OMe), 6.7 (C-8 and C-10), 4.1 (C-7 and C-9). IR (film) $v_{\max }$ 2960, 2360, 2341, 1607, 1249, 1035,
$833 \mathrm{~cm}^{-1}$; HRMS (CI): calculated for $\mathrm{C}_{24} \mathrm{H}_{32} \mathrm{O}_{4} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}$requires $\mathrm{m} / \mathrm{z} 413.2148$, found m / z 413.2145.

7. General procedure for the preparation of non-symmetric silyl ethers

To a flame-dried flask with a stirring bar, a solution of 3.6 eq. of imidazole in dry DCM (5.0 $\mathrm{mL} / \mathrm{mmol}$) was added under argon. The solution was stirred and cooled to $0^{\circ} \mathrm{C}$, and then 1.5 eq . of silane was added dropwise. After 10 min . of stirring, a solution of 1.0 eq. of the first alcohol in dry DCM ($2 \mathrm{~mL} / \mathrm{mmol}$) was added dropwise over 20 min . by using syringe pump. The solution was stirred for 15 min . at $0^{\circ} \mathrm{C}$ after the addition of the first alcohol was completed. Then a solution of 1.0 eq. of the second alcohol in dry DCM ($1 \mathrm{~mL} / \mathrm{mmol}$) was added dropwise. The reaction was monitored by TLC, until completion. The solvent was evaporated under reduced pressure and the crude reaction was purified by chromatography on silica gel using the appropriate mixture of eluents.

7.1. (E)-4-Diisopropyl[(4-methoxyphenyl)but-3-en-1-yloxy] (E)-4-[(p-tolyl)but-3-en-1yloxy]silane, 1d.

From alcohols S2a ($44.0 \mathrm{mg}, 0.247 \mathrm{mmol}$), S2c ($40.0 \mathrm{mg}, 0.247 \mathrm{mmol}$), imidazole (60.5 mg , 0.890 mmol) and dichlorodiisopropylsilane ($0.067 \mathrm{~mL}, 0.37 \mathrm{mmol}$) following the general procedure, diene $1 \mathbf{d}$ was obtained. Chromatographic purification (gradient elution: $0.6 \% \rightarrow 1.5 \% \mathrm{Et}_{2} \mathrm{O}$ - pentane) gave 1d as a colorless oil ($80.8 \mathrm{mg}, 74 \%$).

Data for 1d: $\boldsymbol{R}_{f} 0.6\left(10 \% \mathrm{Et}_{2} \mathrm{O}\right.$ - pentane). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 7.25(2 \mathrm{H}, \mathrm{d}, J=8.8$ $\mathrm{Hz}, \mathrm{Ar}), 7.22(2 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz}, \mathrm{Ar}), 7.09(2 \mathrm{H}, \mathrm{d}, J=7.9 \mathrm{~Hz}, \mathrm{Ar}), 6.82(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}, \mathrm{Ar}), 6.41$ $(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=15.9 \mathrm{~Hz}, 8-\mathrm{H}), 6.38(1 \mathrm{H}, \mathrm{d}, J=15.8 \mathrm{~Hz}, 4-\mathrm{H}), 6.17(1 \mathrm{H}, \mathrm{dt}, J=15.9,7.1 \mathrm{~Hz}, 7-\mathrm{H}), 6.08$ $(1 \mathrm{H}, \mathrm{dt}, J=15.8,7.0 \mathrm{~Hz}, 3-\mathrm{H}), 3.82-3.88\left(4 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}_{2}\right.$ and $\left.5-\mathrm{H}_{2}\right), 3.79(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 2.46(2 \mathrm{H}, \mathrm{qd}$, $\left.J=6.8,1.5 \mathrm{~Hz}, 6-\mathrm{H}_{2}\right), 2.45\left(2 \mathrm{H}, \mathrm{qd}, J=6.8,1.2 \mathrm{~Hz}, 2-\mathrm{H}_{2}\right), 2.32(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 1.00-1.10(14 \mathrm{H}, \mathrm{m}, 2 \mathrm{x}$ $\left.{ }^{i} \mathrm{Pr}\right) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 158.9$ (C Ar), 136.8 (C Ar), 135.0 (C Ar), 131.7 (C-8), 131.2 (C4), 130.7 (C Ar), 129.3 ($2 \times \mathrm{CH}$ Ar), 127.2 ($2 \times \mathrm{CH}$ Ar), 126.1 (C-7), 126.0 ($2 \times \mathrm{CH}$ Ar), 124.9 (C-3), 114.0 ($2 \times \mathrm{CH}$ Ar), 63.0 and 62.9 ($\mathrm{C}-1$ and $\mathrm{C}-5$), 55.4 (OMe), 36.8 (C-2 and C-6), 21.3 (Me), 17.5 (4 $\left.\mathrm{x} \mathrm{CH}_{3} i-\mathrm{Pr}\right), 12.3$ ($2 \times \mathrm{CH} i$-Pr). IR (film) $v_{\max }$ 2980, 2360, 1510, 1382, 1247, 1088, 964, $796 \mathrm{~cm}^{-1}$. HRMS (ESI): calculated for $\mathrm{C}_{28} \mathrm{H}_{40} \mathrm{O}_{3} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+}$requires $m / z 475.2639$, found $m / z 475.2633$.

7.2. 1,1,3,3-Tetraisopropyl-1-(E)-3-[(4-methoxyphenyl)allyloxy]-3-(E)-4-[(p-tolyl)but-3-en-1-yloxy]disiloxane, 1f.

From alcohols S2e ($60.0 \mathrm{mg}, 0.366 \mathrm{mmol}$), S2c ($61.0 \mathrm{mg}, 0.377 \mathrm{mmol}$), imidazole (90.5 mg , 1.33 mmol) and 1,3-dichloro-1,1,3,3-tetraisopropyldisiloxane ($0.177 \mathrm{~mL}, 0.562 \mathrm{mmol}$) following the general procedure, diene $\mathbf{1 f}$ was obtained. Chromatographic purification (gradient elution: $1.5 \% \rightarrow$ $2.5 \% \mathrm{Et}_{2} \mathrm{O}$ - pentane) to yield $\mathbf{1 f}$ as a colorless oil ($76.2 \mathrm{mg}, 34 \%$).

Data for 1f: $\boldsymbol{R}_{f} 0.55\left(10 \% \mathrm{Et}_{2} \mathrm{O}\right.$ - pentane). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 7.29(2 \mathrm{H}, \mathrm{d}, J=$ $8.7 \mathrm{~Hz}, \mathrm{Ar}), 7.21(2 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz}, \mathrm{Ar}), 7.09(2 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}, \mathrm{Ar}), 6.83(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}, \mathrm{Ar})$, $6.56(1 \mathrm{H}, \mathrm{d}, J=15.8 \mathrm{~Hz}, 3-\mathrm{H}), 6.40(1 \mathrm{H}, \mathrm{d}, J=15.9 \mathrm{~Hz}, 7-\mathrm{H}), 6.16-6.23(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}), 6.10-6.16$ $(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 4.46\left(2 \mathrm{H}, \mathrm{dd}, J=5.1,1.8 \mathrm{~Hz}, 1-\mathrm{H}_{2}\right), 3.86\left(2 \mathrm{H}, \mathrm{t}, J=6.8 \mathrm{~Hz}, 4-\mathrm{H}_{2}\right), 3.80(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe})$, $2.46\left(2 \mathrm{H}, \mathrm{qd}, J=6.9,1.4 \mathrm{~Hz}, 5-\mathrm{H}_{2}\right) 2.32(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 0.88-1.16(28 \mathrm{H}, \mathrm{m}, 4 \mathrm{x} i-\mathrm{Pr}) .{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 0 0}$ $\mathbf{M H z}, \mathbf{C D C l}_{3}$) $\delta 159.1$ (C Ar), 136.8 (C Ar), 135.0 (C Ar), 131.6 (C-7), 130.1 (C Ar), 129.3 ($2 \times \mathrm{CH}$ $\mathrm{Ar}), 129.0$ (C-3), 127.6 ($2 \times \mathrm{CH}$ Ar), 126.9 (C-2), 126.2 (C-6), 126.0 ($2 \times \mathrm{CH} \mathrm{Ar}$), 114.0 ($2 \times \mathrm{CH} \mathrm{Ar}$), 63.3 (C-1), 62.6 (C-4), 55.4 (OMe), 36.7 (C-5), 21.3 (Me), 17.6 ($4 \times \mathrm{CH}_{3} i-\mathrm{Pr}$), 17.5 ($4 \times \mathrm{CH}_{3} i-\mathrm{Pr}$), 13.2 ($2 \times \mathrm{CH} i$-Pr), 13.1 ($2 \times \mathrm{CH} i$-Pr). IR (film) $v_{\max }$ 2980, 2889, 1382, 1250, 1151, 1081, $965 \mathrm{~cm}^{-1}$. HRMS (ESI): calculated for $\mathrm{C}_{33} \mathrm{H}_{52} \mathrm{O}_{4} \mathrm{Si}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$requires m / z 591.3296, found m / z 591.3291.

7.3. (E)-3-Diisopropyl[(4-methoxyphenyl)allyloxy](E)-4-[(p-tolyl)but-3-en-1-yloxy]silane, 1 g .

From alcohols S2e ($50.0 \mathrm{mg}, 0.304 \mathrm{mmol}$), S2c ($49.0 \mathrm{mg}, 0.302 \mathrm{mmol}$), imidazole (74.7 mg , 1.10 mmol) and dichlorodiisopropylsilane ($0.083 \mathrm{~mL}, 0.46 \mathrm{mmol}$) following the general procedure, diene 1 g was obtained. Chromatographic purification (gradient elution: $3 \% \rightarrow 5 \% \mathrm{Et}_{2} \mathrm{O}$ - pentane) to yield $\mathbf{1 g}$ as a colorless oil ($80.5 \mathrm{mg}, 60 \%$).

Data for $\mathbf{1 g}: \boldsymbol{R}_{f} 0.45\left(15 \% \mathrm{Et}_{2} \mathrm{O}\right.$ - pentane). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 7.30(2 \mathrm{H}, \mathrm{d}, J=$ $8.8 \mathrm{~Hz}, \mathrm{Ar}), 7.21(2 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz}, \mathrm{Ar}), 7.09(2 \mathrm{H}, \mathrm{d}, J=7.9 \mathrm{~Hz}, \mathrm{Ar}), 6.84(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}, \mathrm{Ar})$,
$6.55(1 \mathrm{H}, \mathrm{d}, J=15.8 \mathrm{~Hz}, 3-\mathrm{H}), 6.40(1 \mathrm{H}, \mathrm{d}, J=15.9 \mathrm{~Hz}, 7-\mathrm{H}), 6.17-6.22(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}), 6.12-6.17$ $(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 4.45\left(2 \mathrm{H}, \mathrm{dd}, J=5.3,1.7 \mathrm{~Hz}, 1-\mathrm{H}_{2}\right), 3.87\left(2 \mathrm{H}, \mathrm{t}, J=6.8 \mathrm{~Hz}, 4-\mathrm{H}_{2}\right), 3.80(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe})$, $2.47\left(2 \mathrm{H}, \mathrm{qd}, J=6.9,1.4 \mathrm{~Hz}, 5-\mathrm{H}_{2}\right), 2.32(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 1.05-1.11(14 \mathrm{H}, \mathrm{m}, 2 \mathrm{x} i-\mathrm{Pr}) .{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 0 0}$ $\mathbf{M H z}, \mathbf{C D C l}_{3}$) $\delta 159.2$ (C Ar), 136.8 (C Ar), 135.0 (C Ar), 131.7 (C-7), 130.0 (C Ar), 129.30 ($2 \times \mathrm{CH}$ $\mathrm{Ar}), 129.27$ ($\mathrm{C}-3$), 127.7 ($2 \times \mathrm{CH}$ Ar), 126.8 (C-2), 126.1 (C-6), $126.0(2 \times \mathrm{CH} \mathrm{Ar}), 114.1$ ($2 \times \mathrm{CH}$ Ar), 63.7 (C-1), 62.9 (C-4), 55.4 (OMe), 36.7 (C-5), 21.3 (Me), $17.6\left(4 \mathrm{x} \mathrm{CH}_{3} i-\mathrm{Pr}\right), 12.3(2 \times \mathrm{CH} i-$ Pr). IR (film) $v_{\max }$ 2970, 1736, 1436, 1368, 1228, $1216 \mathrm{~cm}^{-1}$. HRMS (ESI): calculated for $\mathrm{C}_{27} \mathrm{H}_{38} \mathrm{O}_{3} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+}$requires $m / z 461.2482$, found $m / z 461.2482$.

7.4. (E)-3-Diisopropyl[(4-methoxyphenyl)allyloxy] (E)-4-(phenylbut-3-en-1-yloxy)silane, 1h.

From alcohols S2e ($50.0 \mathrm{mg}, 0.305 \mathrm{mmol}$), S2b ($45.0 \mathrm{mg}, 0.304 \mathrm{mmol}$), imidazole (82.7 mg , $1.22 \mathrm{mmol})$ and dichlorodiisopropylsilane ($0.091 \mathrm{~mL}, 0.51 \mathrm{mmol}$) following the general procedure, diene $\mathbf{1 h}$ was obtained. Chromatographic purification (radient elution: $1.5 \% \rightarrow 3 \% \mathrm{Et}_{2} \mathrm{O}$ - pentane) to yield $\mathbf{1 h}$ as a colorless oil ($78.8 \mathrm{mg}, 56 \%$).

Data for 1h: $\boldsymbol{R}_{f} 0.6\left(10 \% \mathrm{Et}_{2} \mathrm{O}\right.$ - pentane). ${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 7.26-7.35(6 \mathrm{H}, \mathrm{m}$, Ar), 7.16-7.23 ($1 \mathrm{H}, \mathrm{m}, \mathrm{Ar}$), $6.85(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}, \mathrm{Ar}), 6.56(1 \mathrm{H}, \mathrm{d}, J=15.8 \mathrm{~Hz}, 3-\mathrm{H}), 6.44(1 \mathrm{H}, \mathrm{d}$, $J=15.9 \mathrm{~Hz}, 7-\mathrm{H}), 6.25(1 \mathrm{H}, \mathrm{dt}, J=16.0,7.0 \mathrm{~Hz}, 6-\mathrm{H}), 6.17(1 \mathrm{H}, \mathrm{dt}, J=15.8,5.2 \mathrm{~Hz}, 2-\mathrm{H}), 4.46(2 \mathrm{H}$, dd, $\left.J=5.2,1.7 \mathrm{~Hz}, 1-\mathrm{H}_{2}\right), 3.89\left(2 \mathrm{H}, \mathrm{t}, J=6.8 \mathrm{~Hz}, 4-\mathrm{H}_{2}\right), 3.81(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 2.49(2 \mathrm{H}, \mathrm{qd}, J=6.8$, $1.4 \mathrm{~Hz}, 5-\mathrm{H}_{2}$), 1.06-1.12 (14H, m, $2 \mathrm{x} i$-Pr). ${ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 159.2(\mathrm{C} \mathrm{Ar}), 137.8(\mathrm{C}$ $\mathrm{Ar}), 131.9$ (C-7), 130.0 (C Ar), 129.3 (C-3), $128.6(2 \times \mathrm{CH} \mathrm{Ar}), 127.7$ ($2 \times \mathrm{CH}$ Ar), 127.2 (CH Ar), 127.1 (C-6), 126.8 (C-2), 126.1 ($2 \times \mathrm{CH}$ Ar), 114.1 ($2 \times \mathrm{CH}$ Ar), 63.7 (C-1), 62.8 (C-4), 55.4 (OMe), 36.7 (C-5), 17.6 ($4 \mathrm{x} \mathrm{CH}_{3} i$-Pr), 12.3 ($2 \times \mathrm{CH} i$-Pr). IR (film) $v_{\max } 2864,2360,1607,1510,1247$, 1101, 1037, 963, $691 \mathrm{~cm}^{-1}$. HRMS (ESI): calculated for $\mathrm{C}_{26} \mathrm{H}_{36} \mathrm{O}_{3} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+}$requires m / z 447.2326, found $m / z 447.2326$.
7.5. (E)-4-Diisopropyl[(4-methoxyphenyl)but-3-en-1-yloxy](E)-3-[(p-tolyl)allyloxy]silane, 1 i.

From alcohols S2a ($72.0 \mathrm{mg}, 0.404 \mathrm{mmol}$), S2d ($60.0 \mathrm{mg}, 0.405 \mathrm{mmol}$), imidazole (99.1 mg , $1.46 \mathrm{mmol})$ and dichlorodiisopropylsilane $(0.083 \mathrm{~mL}, 0.46 \mathrm{mmol})$ following the general procedure, diene $\mathbf{1 i}$ was obtained. Chromatographic purification (gradient elution: $1.5 \% \rightarrow 2.5 \% \mathrm{Et}_{2} \mathrm{O}$ - pentane) to yield $\mathbf{1 i}$ as a colorless oil ($121.5 \mathrm{mg}, 70 \%$).

Data for 1i: $\boldsymbol{R}_{f} 0.45\left(10 \% \mathrm{Et}_{2} \mathrm{O}\right.$ - pentane). ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 7.23-7.30(4 \mathrm{H}, \mathrm{m}$, Ar), $7.13(2 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}, \mathrm{Ar}), 6.83(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}, \mathrm{Ar}), 6.60(1 \mathrm{H}, \mathrm{d}, J=15.8 \mathrm{~Hz}, 7-\mathrm{H}), 6.39$ $(1 \mathrm{H}, \mathrm{d}, J=15.9 \mathrm{~Hz}, 4-\mathrm{H}), 6.26(1 \mathrm{H}, \mathrm{dt}, J=15.8,5.1 \mathrm{~Hz}, 6-\mathrm{H}), 6.10(1 \mathrm{H}, \mathrm{dt}, J=15.8,7.1 \mathrm{~Hz}, 3-\mathrm{H})$, $4.48\left(2 \mathrm{H}, \mathrm{dd}, J=5.1,1.8 \mathrm{~Hz}, 5-\mathrm{H}_{2}\right), 3.88\left(2 \mathrm{H}, \mathrm{t}, J=6.8 \mathrm{~Hz}, 1-\mathrm{H}_{2}\right), 3.80(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 2.47(2 \mathrm{H}, \mathrm{qd}$, $\left.J=6.8,1.4 \mathrm{~Hz}, 2-\mathrm{H}_{2}\right), 2.35(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 1.08-1.12(14 \mathrm{H}, \mathrm{m}, 2 \mathrm{x} i-\mathrm{Pr}) .{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right)$ $\delta 158.9$ (C Ar), 137.2 (C Ar), 134.4 (C Ar), 131.2 (C-4), 130.6 (C Ar), 129.5 (C-7), 129.3 ($2 \times \mathrm{CH}$ $\mathrm{Ar}), 127.9$ (C-6), 127.2 ($2 \times \mathrm{CH}$ Ar), 126.4 ($2 \times \mathrm{CH}$ Ar), 124.9 (C-3), 114.0 ($2 \times \mathrm{CH}$ Ar), 63.6 (C-5), 63.0 (C-1), 55.4 (OMe), 36.7 (C-2), 21.3 (Me), 17.6 ($4 \mathrm{x} \mathrm{CH}_{3} i$-Pr), 12.3 ($2 \times \mathrm{CH} i$-Pr). IR (film) $v_{\max }$ 2980, 1382, 1250, 1151, 1072, $965 \mathrm{~cm}^{-1}$. HRMS (ESI): calculated for $\mathrm{C}_{27} \mathrm{H}_{38} \mathrm{O}_{3} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+}$ requires $m / z 461.2482$, found $m / z 461.2478$.

7.6. (E)-3-Diisopropyl[(4-methoxyphenyl)allyloxy] (E)-3-[p-tolyl)allyloxy]silane, 1 n .

From alcohols S2e ($50.0 \mathrm{mg}, 0.304 \mathrm{mmol}$), S2f $(45.0 \mathrm{mg}, 0.304 \mathrm{mmol})$, imidazole (74.7 mg , $1.10 \mathrm{mmol})$ and dichlorodiisopropylsilane $(0.080 \mathrm{~mL}, 0.46 \mathrm{mmol})$ following the general procedure, diene 1 n was obtained. Chromatographic purification (gradient elution: $2 \% \rightarrow 4 \% \mathrm{Et}_{2} \mathrm{O}$ - pentane) gave $\mathbf{1 n}$ as a colorless oil ($45.9 \mathrm{mg}, 36 \%$).

Data for $\mathbf{1 n}$: $\boldsymbol{R}_{f} 0.4\left(10 \% \mathrm{Et}_{2} \mathrm{O}-\right.$ pentane). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 7.30(2 \mathrm{H}, \mathrm{d}, J=8.7$ $\mathrm{Hz}, \mathrm{Ar}), 7.26(2 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz}, \mathrm{Ar}), 7.11(2 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}, \mathrm{Ar}), 6.84(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}, \mathrm{Ar}), 6.60$ $(1 \mathrm{H}, \mathrm{d}, J=15.8 \mathrm{~Hz}, 6-\mathrm{H}), 6.57(1 \mathrm{H}, \mathrm{d}, J=15.8 \mathrm{~Hz}, 3-\mathrm{H}), 6.27(1 \mathrm{H}, \mathrm{dt}, J=15.8,5.1 \mathrm{~Hz}, 5-\mathrm{H}), 6.18$ $(1 \mathrm{H}, \mathrm{dt}, J=15.8,5.3 \mathrm{~Hz}, 2-\mathrm{H}), 4.48\left(2 \mathrm{H}, \mathrm{dd}, J=5.1,1.8 \mathrm{~Hz}, 4-\mathrm{H}_{2}\right), 4.47(2 \mathrm{H}, \mathrm{dd}, J=5.2,1.7 \mathrm{~Hz}, 1-$ H_{2}), 3.81 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), 2.34 ($3 \mathrm{H}, \mathrm{s}, \mathrm{Me}$), 1.07-1.14 ($14 \mathrm{H}, \mathrm{m}, 2 \mathrm{x} i$-Pr). ${ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right.$)
$\delta 159.2$ (C Ar), 137.3 (C Ar), 134.4 (C Ar), 130.0 (C Ar), 129.7 and 129.4 (C-3 and C-6), 129.3 (2 x CH Ar), 127.8 (C-5), 127.7 (C-2), 126.7 ($2 \times \mathrm{CH}$ Ar), 126.5 ($2 \times \mathrm{CH}$ Ar), 114.0 ($2 \times \mathrm{CH}$ Ar), 63.8 and 63.7 (C-1 and C-4), 55.4 (OMe), 21.3 (Me), 17.6 ($4 \mathrm{x} \mathrm{CH}_{3} i$-Pr), 12.4 ($2 \times \mathrm{CH} i$-Pr). IR (film) $v_{\text {max }}$ 2943, 2865, 2360, 1510, 1249, 1117, 1055, $965 \mathrm{~cm}^{-1}$. HRMS (ESI): calculated for $\mathrm{C}_{26} \mathrm{H}_{36} \mathrm{O}_{3} \mathrm{SiNa}$ $[\mathrm{M}+\mathrm{Na}]^{+}$requires $\mathrm{m} / \mathrm{z} 447.2326$, found $\mathrm{m} / \mathrm{z} 447.2327$.

8. General procedure for the synthesis of ethers by alkylation of alcohols with bromides.

A flame-dried flask was charged with 1.6 eq. of NaH (60% in mineral oil) and $2 \mathrm{~mL} / \mathrm{mmol}$ of dry THF. To this suspension a solution of 1.0 eq. of alcohol in $3.0 \mathrm{~mL} / \mathrm{mmol}$ of THF was added dropwise, and the reaction was stirred for 30 min . The flask was cooled to $0^{\circ} \mathrm{C}$, and a solution of 1.4 eq. of bromide in $3.0 \mathrm{~mL} / \mathrm{mmol}$ THF was added dropwise. The mixture was gradually warmed to r.t. After 12 h , the reaction was quenched by slow addition of saturated $\mathrm{NH}_{4} \mathrm{Cl}$. The phases were separated, and the aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 5 \mathrm{~mL} / \mathrm{mmol})$. The combined organic layers were washed with brine, dried over MgSO_{4}, and the solvent was evaporated to give the corresponding ether, that was purified by chromatography on silica gel using the appropriate mixture of eluents.

8.1. 4,4'-[(1E, 1' $E)$-Oxybis(prop-1-ene-3,1-diyl)]bis(methoxybenzene, 4a.

From bromide S3a ($1.290 \mathrm{~g}, 5.708 \mathrm{mmol}$), alcohol S2e ($0.670 \mathrm{~g}, 4.09 \mathrm{mmol}$) and $\mathrm{NaH}(261.0$ $\mathrm{mg}, 6.525 \mathrm{mmol}, 60 \%$ in mineral oil) following the general procedure, diene 4 a was obtained. Chromatographic purification (gradient elution: $15 \% \rightarrow 20 \% \mathrm{Et}_{2} \mathrm{O}$ - pentane) gave $\mathbf{4 a}$ as a white solid $(1.052 \mathrm{~g}, 83 \%)$. Spectral properties matched those previously reported. ${ }^{11}$

Data for 4a: $\boldsymbol{R}_{\boldsymbol{f}} 0.5\left(50 \% \mathrm{Et}_{2} \mathrm{O}\right.$ - pentane). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 7.35(4 \mathrm{H}, \mathrm{d}, J=8.8$ $\mathrm{Hz}, \mathrm{Ar}), 6.87(4 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}, \mathrm{Ar}), 6.59(2 \mathrm{H}, \mathrm{d}, J=15.9 \mathrm{~Hz}, 4-\mathrm{H}$ and $7-\mathrm{H}), 6.21(2 \mathrm{H}, \mathrm{dt}, J=15.9$, $6.2 \mathrm{~Hz}, 3-\mathrm{H}$ and $6-\mathrm{H}), 4.19\left(4 \mathrm{H}, \mathrm{dd}, J=6.2,1.4 \mathrm{~Hz}, 2-\mathrm{H}_{2}\right.$ and $\left.5-\mathrm{H}_{2}\right), 3.81(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{OMe}) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 159.3$ ($2 \times \mathrm{C} \mathrm{Ar}$), 132.3 (C-4 and C-7), 129.6 ($2 \times \mathrm{C} \mathrm{Ar}$), 127.7 ($4 \times \mathrm{CH} \mathrm{Ar}$), 123.8 (C-3 and C-6), 114.0 ($4 \times$ CH Ar), 70.9 (C-2 and C-5), 55.3 ($2 \times$ OMe). HRMS (CI): calculated for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$requires $m / z 311.1647$, found $m / z 311.1646$.

8.2. 1-[(E)-3-(Cinnamyloxy)prop-1-en-1-yl]-4-methoxybenzene, 4b.

From (E)-(3-bromoprop-1-en-1-yl)benzene ($273.0 \mathrm{mg}, 1.393 \mathrm{mmol}$), alcohol S2e (164.0 mg , $1.000 \mathrm{mmol})$ and $\mathrm{NaH}(64.0 \mathrm{mg}, 1.60 \mathrm{mmol}, 60 \%$ in mineral oil) following the general procedure, diene $\mathbf{4 b}$ was obtained. Chromatographic purification ($8 \% \mathrm{Et}_{2} \mathrm{O}$ - pentane) gave $\mathbf{4 b}$ as a colorless oil ($218.0 \mathrm{mg}, 78 \%$). Spectral properties matched those previously reported. ${ }^{11}$

Data for 4b: $\boldsymbol{R}_{f} 0.50\left(30 \% \mathrm{Et}_{2} \mathrm{O}\right.$ - pentane). ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 7.44(2 \mathrm{H}, \mathrm{d}, J=$ $8.5 \mathrm{~Hz}, \mathrm{Ar}), 7.38(2 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}, \mathrm{Ar}), 7.36(2 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}, \mathrm{Ar}), 7.30-7.25$ ($1 \mathrm{H}, \mathrm{m}, \mathrm{Ar}$), 6.89 ($2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}, \mathrm{Ar}), 6.68(1 \mathrm{H}, \mathrm{d}, J=15.9 \mathrm{~Hz}, 7-\mathrm{H}), 6.62(1 \mathrm{H}, \mathrm{d}, J=15.9 \mathrm{~Hz}, 4-\mathrm{H}), 6.37(1 \mathrm{H}, \mathrm{dt}$, $J=15.9,6.0 \mathrm{~Hz}, 6-\mathrm{H}), 6.24(1 \mathrm{H}, \mathrm{dt}, J=15.9,6.0 \mathrm{~Hz}, 3-\mathrm{H}), 4.23\left(2 \mathrm{H}, \mathrm{dd}, J=5.1,1.3 \mathrm{~Hz}, 5-\mathrm{H}_{2}\right), 4.22$ $\left(2 \mathrm{H}, \mathrm{dd}, J=5.1,1.3 \mathrm{~Hz}, 2-\mathrm{H}_{2}\right), 3.82(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 159.3$ (C Ar), 136.8 (C Ar), 132.5 and 132.4 (C-4 and C-7), 129.5 (C Ar), 128.6 ($2 \times \mathrm{CH} \mathrm{Ar}$), $127.8(2 \times \mathrm{CH} \mathrm{Ar}$), 127.7 (CH Ar), 126.5 ($2 \times \mathrm{CH}$ Ar), 126.2 (C-6), 123.7 (C-3), 114.0 ($2 \times \mathrm{CH} \mathrm{Ar}$), 71.0 and 70.7 (C-2 and C-5), $55.3(\mathrm{OMe})$. HRMS (Cl): calculated for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$requires $\mathrm{m} / \mathrm{z} 281.1542$, found m/z 281.1530.

8.3. 1-Bromo-4-\{ (E)-3-[(E)-3-(4-methoxyphenyl)allyloxyprop-1-en-1-yl]\}benzene, 4c.

From bromide S3a ($150.0 \mathrm{mg}, 0.664 \mathrm{mmol}$), alcohol S2f ($100.0 \mathrm{mg}, 0.4717 \mathrm{mmol}$) and NaH ($30.4 \mathrm{mg}, 0.760 \mathrm{mmol}, 60 \%$ in mineral oil) following the general procedure, diene $\mathbf{4 c}$ was obtained. Chromatographic purification (gradient elution: $15 \% \rightarrow 20 \% \mathrm{Et}_{2} \mathrm{O}$ - pentane) gave $\mathbf{4 c}$ as a white foam ($119.0 \mathrm{mg}, 70 \%$).

Data for $\mathbf{4 c}$: $\boldsymbol{R}_{f} 0.5\left(50 \% \mathrm{Et}_{2} \mathrm{O}\right.$ - pentane). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 7.44(2 \mathrm{H}, \mathrm{d}, J=8.5$ $\mathrm{Hz}, \mathrm{Ar}), 7.34(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}, \mathrm{Ar}), 7.25(2 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}, \mathrm{Ar}), 6.86(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}, \mathrm{Ar}), 6.58$ $(2 \mathrm{H}, \mathrm{d}, J=15.2 \mathrm{~Hz}, 4-\mathrm{H}$ and $7-\mathrm{H}), 6.32$ and $6.19(2 \mathrm{H}, \mathrm{dt}, J=15.9,6.2 \mathrm{~Hz}, 3-\mathrm{H}$ and $6-\mathrm{H}), 4.15-4.21$ $\left(4 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}_{2}\right.$ and $\left.\left.5-\mathrm{H}_{2}\right), 3.81(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}) .{ }^{\mathbf{1}} \mathbf{C} \mathbf{~ N M R ~ (1 0 0 ~ M H z}, \mathbf{C D C l}_{3}\right) \delta 159.5(\mathrm{C} \mathrm{Ar}), 135.8$ (C Ar), 132.6 and 131.8 (C-4 and C-7), 131.3 ($2 \times \mathrm{CH} \mathrm{Ar}$), 129.5 (C Ar), 128.1 ($2 \times \mathrm{CH} \mathrm{Ar}$), 127.9 (2 x CH Ar), 127.1 and 123.7 (C-3 and C-6), 121.6 (C Ar), 114.1 ($2 \times \mathrm{CH}$ Ar), 71.3 and 70.5 (C-2 and C-
5), 55.4 (OMe). IR (film) $v_{\max } 2982,2890,1380,1255,1150,1081,970 \mathrm{~cm}^{-1}$. HRMS (CI): calculated for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{BrO}_{2}[\mathrm{M}+\mathrm{H}]^{+}$requires m / z 359.0647, found m / z 359.0632.

8.4. 1-((E)-3-\{[(E)-3-(4-Methoxyphenyl)allyloxy]prop-1-en-1-yl\}-3(trifluoromethyl)benzene, 4d.

S3a

4d

From bromide S3a ($125.0 \mathrm{mg}, 0.553 \mathrm{mmol}$), 3-(trifluoromethyl) cinnamic alcohol (80.0 mg , $0.396 \mathrm{mmol})$ and $\mathrm{NaH}(25.2 \mathrm{mg}, 0.630 \mathrm{mmol}, 60 \%$ in mineral oil) following the general procedure, diene $\mathbf{4 d}$ was obtained. Chromatographic purification ($15 \% \mathrm{Et}_{2} \mathrm{O}$ - pentane) gave $\mathbf{4 d}$ as a colorless oil ($83.8 \mathrm{mg}, 60 \%$).

Data for 4d: $\boldsymbol{R}_{f} 0.50\left(50 \% \mathrm{Et}_{2} \mathrm{O}\right.$ - pentane). ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\left.\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l} 3\right) \delta 7.64(1 \mathrm{H}, \mathrm{s}, \mathrm{Ar})$, $7.56(1 \mathrm{H}, \mathrm{d}, J=7.7 \mathrm{~Hz}, \mathrm{Ar}), 7.49(1 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}, \mathrm{Ar}), 7.43(1 \mathrm{H}, \mathrm{t}, J=7.7 \mathrm{~Hz}, \mathrm{Ar}), 7.35(2 \mathrm{H}, \mathrm{d}, J$ $=8.7 \mathrm{~Hz}, \mathrm{Ar}), 6.87(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}, \mathrm{Ar}), 6.68(1 \mathrm{H}, \mathrm{d}, J=16.0 \mathrm{~Hz}, 7-\mathrm{H}), 6.60(1 \mathrm{H}, \mathrm{d}, J=15.9 \mathrm{~Hz}$, $4-\mathrm{H}), 6.41(1 \mathrm{H}, \mathrm{dt}, J=15.9,5.7 \mathrm{~Hz}, 6-\mathrm{H}), 6.21(1 \mathrm{H}, \mathrm{dt}, J=15.9,6.3 \mathrm{~Hz}, 3-\mathrm{H}), 4.22(2 \mathrm{H}, \mathrm{dd}, J=5.9$, $\left.1.6 \mathrm{~Hz}, 5-\mathrm{H}_{2}\right), 4.21\left(2 \mathrm{H}, \mathrm{dd}, J=5.9,1.6 \mathrm{~Hz}, 2-\mathrm{H}_{2}\right), 3.81(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right)$ $\delta 159.5$ (C Ar), 137.7 (C Ar), $132.6(\mathrm{C}-4), 131.1\left(\mathrm{CF}_{3}, \mathrm{q}, J=32.1 \mathrm{~Hz}\right), 130.8(\mathrm{C}-7), 129.7(\mathrm{CH} \mathrm{Ar})$, 129.5 (CH Ar), 129.1 (C Ar), 128.4 (C-6), 127.9 ($2 \times \mathrm{CH} \mathrm{Ar}$), 124.3 (CH Ar, q, $J=3.8 \mathrm{~Hz}$), 123.6 (C3), $123.3(\mathrm{CH} \mathrm{Ar}, \mathrm{q}, J=3.8 \mathrm{~Hz}), 114.1(2 \mathrm{x} \mathrm{CH} \mathrm{Ar}), 71.4$ and $70.3(\mathrm{C}-2$ and $\mathrm{C}-5)$, $55.4(\mathrm{OMe})$. IR (film) $v_{\text {max }}$ 2980, 2890, 1378, 1252, 1151, 1081, $965 \mathrm{~cm}^{-1}$. HRMS (EI): calculated for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~F}_{3} \mathrm{O}_{2}$ $[\mathrm{M}+\mathrm{H}]^{+}$requires $m / z 349.1415$, found $m / z 349.1409$.
8.5. 1-\{(E)-3-[(E)-3-(4-Methoxyphenyl)allyloxy]prop-1-en-1-yl\}-2-methylbenzene, 4e.

S3a

$0^{\circ} \mathrm{C}-\mathrm{rt}$
70%
-
From bromide S3a ($170.0 \mathrm{mg}, 0.7522 \mathrm{mmol}$), (E)-3-(o-tolyl)prop-2-en-1-ol ($80.0 \mathrm{mg}, 0.541$ $\mathrm{mmol})$ and $\mathrm{NaH}(34.8 \mathrm{mg}, 0.870 \mathrm{mmol}, 60 \%$ in mineral oil) following the general procedure, diene
$4 \mathbf{e}$ was obtained. Chromatographic purification (gradient elution: $15 \% \rightarrow 20 \% \mathrm{Et}_{2} \mathrm{O}$ - pentane) gave $\mathbf{4 e}$ as a colorless oil ($111.0 \mathrm{mg}, 70 \%$).

Data for 4e: $\boldsymbol{R}_{f} 0.50\left(50 \% \mathrm{Et}_{2} \mathrm{O}\right.$ - pentane). ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 7.47-7.52(2 \mathrm{H}, \mathrm{m}$, Ar), 7.37 ($2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}, \mathrm{Ar}$), 7.14-7.23 (2H, m, Ar), $6.89(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}, \mathrm{Ar}), 6.87$ ($1 \mathrm{H}, \mathrm{d}, J$ $=15.9 \mathrm{~Hz}, 7-\mathrm{H}), 6.62(1 \mathrm{H}, \mathrm{d}, J=15.9 \mathrm{~Hz}, 4-\mathrm{H}), 6.25(1 \mathrm{H}, \mathrm{dt}, J=15.6,6.0 \mathrm{~Hz}, 6-\mathrm{H}), 6.24(1 \mathrm{H}, \mathrm{dt}, J$ $=15.6,6.0 \mathrm{~Hz}, 3-\mathrm{H}), 4.25$ and $4.23\left(4 \mathrm{H}, \mathrm{dd}, J=6.2,1.4 \mathrm{~Hz}, 2-\mathrm{H}_{2}\right.$ and $\left.5-\mathrm{H}_{2}\right), 3.82(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 2.39$ (3H, s, Me). ${ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}$, CDCl $_{3}$) $\delta 159.5$ (C Ar), 136.0 (C Ar), 135.6 (C Ar), 132.5 (C Ar), 130.6 (C-4), 130.4 (C-7), 129.6 (CH Ar), 127.9 ($2 \times \mathrm{CH}$ Ar), 127.7 (CH Ar), 127.6 (CH Ar), 126.2 (CH Ar), 125.9 (C-6), 123.9 (C-3), 114.1 ($2 \times \mathrm{CH}$ Ar), 71.1 and 71.0 (C-2 and C-5), 55.4 (OMe), 20.0 (Me). IR (film) $\nu_{\max }$ 2985, 2889, 1380, 1251, 1151, 1080, $960 \mathrm{~cm}^{-1}$. HRMS (CI): calculated for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$requires m / z 295.1698, found m / z 295.1688.

8.6. (E)-1-Methoxy-4-[3-(3-methylbut-2-en-1-yloxy)prop-1-en-1-yl]benzene, 4f.

From 1-bromo-3-methylbut-2-ene ($101.0 \mathrm{mg}, 0.682 \mathrm{mmol}$), alcohol S2e $(80.0 \mathrm{mg}, 0.488$ $\mathrm{mmol})$ and $\mathrm{NaH}(31.2 \mathrm{mg}, 0.78 \mathrm{mmol}, 60 \%$ in mineral oil) following the general procedure, diene $\mathbf{4 f}$ was obtained. Chromatographic purification ($8 \% \mathrm{Et}_{2} \mathrm{O}$ - pentane) gave $\mathbf{4 f}$ as a colorless oil (60.4 mg , $54 \%)$. Spectral properties matched those previously reported. ${ }^{11}$

Data for $\mathbf{4 f}: \boldsymbol{R}_{\boldsymbol{f}} 0.55\left(30 \% \mathrm{Et}_{2} \mathrm{O}\right.$ - pentane). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 7.33(2 \mathrm{H}, \mathrm{d}, J=$ $8.7 \mathrm{~Hz}, \mathrm{Ar}), 6.85(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}, \mathrm{Ar}), 6.55(1 \mathrm{H}, \mathrm{d}, J=15.9 \mathrm{~Hz}, 4-\mathrm{H}), 6.18(1 \mathrm{H}, \mathrm{dt}, J=15.9,6.3$ $\mathrm{Hz}, 3-\mathrm{H}), 5.40(1 \mathrm{H}, \mathrm{tt}, J=7.0,1.3 \mathrm{~Hz}, 6-\mathrm{H}), 4.11\left(2 \mathrm{H}, \mathrm{dd}, J=6.2,1.4 \mathrm{~Hz}, 2-\mathrm{H}_{2}\right), 4.01(2 \mathrm{H}, \mathrm{d}, J=6.9$ $\left.\mathrm{Hz}, 5-\mathrm{H}_{2}\right), 3.80(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 1.76(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 1.69(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta$ 159.2 (C Ar), 137.1 (C-7), 132.1 (C-4), 129.6 (C Ar), 127.7 ($2 \times \mathrm{CH} \mathrm{Ar}$), 124.1 (C-3), 121.1 (C-6), 114.0 ($2 \times \mathrm{CH}$ Ar), 70.8 (C-2), 66.5 (C-5), 55.3 (OMe), 25.9 (Me), 18.1 (Me). HRMS (Cl): calculated for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$requires m / z 233.1542, found $m / z 233.1538$.

8.7. (E)-1-[3-(2-Cyclohexylideneethoxy)prop-1-en-1-yl]-4-methoxybenzene, 4g.

To a solution of ethyl cyclohexylideneacetate ($0.525 \mathrm{~g}, 3.13 \mathrm{mmol}$) in anhydrous $\mathrm{PhMe}(25$ mL) under an atmosphere of argon at $-78^{\circ} \mathrm{C}$ was added 1 M DIBAL- H in $\mathrm{PhMe}(7.9 \mathrm{~mL}, 7.8 \mathrm{mmol})$, and the reaction was stirred at this temperature for 3 h . The reaction mixture was warmed to r.t. and $\mathrm{H}_{2} \mathrm{O}(1 \mathrm{~mL})$, then aqueous 1 M NaOH solution (7.5 mL), followed again by $\mathrm{H}_{2} \mathrm{O}(2.5 \mathrm{~mL})$, were added, with 5 minutes between each addition, maintaining vigorous stirring. The mixture was then poured into a separating funnel, and after phase separation, the aqueous phase was extracted with $\mathrm{PhMe}(2 \times 25 \mathrm{~mL})$. The combined organic layers were then washed with brine, dried over MgSO_{4}, filtered through a plug of silica gel, and the solvent removed in vacuo to yield a colourless oil, which is then added a stirring bar and dry $\mathrm{Et}_{2} \mathrm{O}(25 \mathrm{~mL})$. The solution was cooled to $0{ }^{\circ} \mathrm{C}$ and $1 \mathrm{M} \mathrm{PBr}_{3}(1.25$ $\mathrm{mL}, 1.25 \mathrm{mmol}$) was added under Ar. The reaction was stirred until completion, monitored by TLC analysis and quenched with NaHCO_{3}. The layers were separated and the aqueous layer extracted with $\mathrm{Et}_{2} \mathrm{O}$ twice. The combined organics were washed with brine, dried over MgSO_{4}, filtered and the solvent was evaporated to give the pure bromide as a colourless oil ($0.51 \mathrm{~g}, 86 \%$). Then From (2bromoethylidene)cyclohexane ($529.2 \mathrm{mg}, 2.800 \mathrm{mmol}$), alcohol S2e ($328.0 \mathrm{mg}, 2.000 \mathrm{mmol}$) and $\mathrm{NaH}(128.0 \mathrm{mg}, 3.200 \mathrm{mmol}, 60 \%$ in mineral oil) following the general procedure, diene $\mathbf{~} \mathbf{g}$ was obtained. Chromatographic purification ($8 \% \mathrm{Et}_{2} \mathrm{O}$ - pentane) gave $\mathbf{4 g}$ as a colorless oil (390.6 mg , 72%).

Data for S3b: $\boldsymbol{R}_{\boldsymbol{f}} 0.50\left(20 \% \mathrm{Et}_{2} \mathrm{O}\right.$ - pentane). $\left.{ }^{\mathbf{1}} \mathbf{H} \mathbf{~ N M R ~ (~} \mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 7.32(2 \mathrm{H}, \mathrm{d}, J=$ $8.7 \mathrm{~Hz}, \mathrm{Ar}), 6.85(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}, \mathrm{Ar}), 6.55(1 \mathrm{H}, \mathrm{d}, J=15.9 \mathrm{~Hz}, 4-\mathrm{H}), 6.17(1 \mathrm{H}, \mathrm{dt}, J=15.9,6.2$ $\mathrm{Hz}, 3-\mathrm{H}), 5.32(1 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}, 6-\mathrm{H}), 4.11\left(2 \mathrm{H}, \mathrm{dd}, J=6.2,1.4 \mathrm{~Hz}, 2-\mathrm{H}_{2}\right), 4.03(2 \mathrm{H}, \mathrm{d}, J=7.0 \mathrm{~Hz}$, $\left.5-\mathrm{H}_{2}\right), 3.80(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 2.16-2.21\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right.$ cyclohexyl), 2.11-2.15 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}$ cyclohexyl), $1.51-1.59\left(6 \mathrm{H}, \mathrm{m}, 3 \times \mathrm{CH}_{2}\right.$ cyclohexyl). ${ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 159.3(\mathrm{C} \mathrm{Ar}), 145.1(\mathrm{C} \mathrm{Ar})$, 132.1 (C-4), 129.7 (C-7), 127.8 ($2 \times \mathrm{CH}$ Ar), 124.3 (C-3), 117.9 (C-6), 114.1 ($2 \times \mathrm{CH}$ Ar), 70.8 (C2), 65.7 (C-5), $55.4(\mathrm{OMe}), 37.2\left(\mathrm{CH}_{2}\right.$ cyclohexyl), $29.2\left(\mathrm{CH}_{2}\right.$ cyclohexyl), $28.5\left(\mathrm{CH}_{2}\right.$ cyclohexyl), $27.9\left(\mathrm{CH}_{2}\right.$ cyclohexyl), $26.8\left(\mathrm{CH}_{2}\right.$ cyclohexyl). IR (film) $v_{\text {max }} 2923,2849,1380,1251,1151,1178$, $1037 \mathrm{~cm}^{-1}$.HRMS (ESI): calculated for $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$requires m / z 273.1849, found m / z 273.1839.

9. General procedure \mathbf{C} - hypervalent iodine promoted cycloaddition:

To a solution of 1.0 eq. of diene in HFIP ($10 \mathrm{~mL} / \mathrm{mmol}$), under argon, $10 \mathrm{~mol} \%$ of hypervalent iodine reagent was added. The reaction was monitored by TLC until completion, and the solvent was evaporated under reduced pressure to give the corresponding cyclobutane, that was purified by chromatography on silica gel using the appropriate mixture of eluents.

9.1. (\pm)-(1R,9R,10S,11S)-5,5-Diisopropyl-10,11-bis(4-methoxyphenyl)-4,6-dioxa-5silabicyclo[7.2.0]undecane, 2a.

From diene $\mathbf{1 a}(20.0 \mathrm{mg}, 0.0427 \mathrm{mmol})$ and PIDA $(1.38 \mathrm{mg}, 0.00429 \mathrm{mmol})$ following the general procedure, cyclobutane 2a was obtained. Chromatographic purification (gradient elution: 8\% $\rightarrow 10 \% \mathrm{Et}_{2} \mathrm{O}$ - pentane) gave $\mathbf{2 a}$ as a colorless oil ($11.4 \mathrm{mg}, 55 \%$).

Data for 2a: $\boldsymbol{R}_{f} 0.5\left(30 \% \mathrm{Et}_{2} \mathrm{O}\right.$ - pentane). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 7.10-7.16(4 \mathrm{H}, \mathrm{m}$, $\mathrm{Ar}), 6.78-6.84(4 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 3.78(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{OMe}), 3.71\left(4 \mathrm{H}, \mathrm{t}, J=7.1 \mathrm{~Hz}, 3-\mathrm{H}_{2}\right.$ and $\left.7-\mathrm{H}_{2}\right), 2.83-2.89$ $(2 \mathrm{H}, \mathrm{m}, 10-\mathrm{H}$ and $11-\mathrm{H}), 2.19-2.09(2 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}$ and $9-\mathrm{H}), 1.84-1.94\left(4 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}_{2}\right.$ and $\left.8-\mathrm{H}_{2}\right), 0.86-$ 1.03 ($14 \mathrm{H}, \mathrm{m}, 2 \times i$-Pr). ${ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z , ~ C D C l} 3$) $\delta 158.2$ ($2 \times \mathrm{C} \mathrm{Ar}$), 136.0 ($2 \times \mathrm{C} \mathrm{Ar}$), 128.0 (4 x CH Ar), 113.8 ($4 \times \mathrm{CH}$ Ar), 60.9 (C-3 and C-7), 55.4 ($2 \times \mathrm{OMe}$), 52.04 and 51.96 (C-10 and C-11), 42.5 (C-1 and C-9), 39.6 (C-2 and C-8), 17.6, 17.52 and $17.48\left(4 \times \mathrm{CH}_{3} i-\mathrm{Pr}\right), 12.2$ and $12.0(2 \times \mathrm{CH}$ i-Pr). IR (film) $v_{\max }$ 2926, 2865, 1511, 1462, 1245, 1176, $1088 \mathrm{~cm}^{-1}$. HRMS (EI): calculated for $\mathrm{C}_{28} \mathrm{H}_{40} \mathrm{O}_{4} \mathrm{Si}[\mathrm{M}]^{+}$requires $m / z 468.2696$, found $m / z 468.2689$.

9.2. (\pm)-(1R,9R,10S,11S)-5,5-Ditert-butyl-10,11-bis(4-methoxyphenyl)-4,6-dioxa-5-

 silabicyclo[7.2.0]undecane, 2 b .

From diene 1b ($20.5 \mathrm{mg}, 0.0413 \mathrm{mmol}$) and PIDA ($1.33 \mathrm{mg}, 0.00413 \mathrm{mmol}$) following the general procedure, cyclobutane 2b was obtained. Chromatographic purification (gradient elution: 8\% $\rightarrow 10 \% \mathrm{Et}_{2} \mathrm{O}$ - pentane) gave $\mathbf{2 b}$ as a colorless oil ($8.6 \mathrm{mg}, 42 \%$).

Data for 2b: $\boldsymbol{R}_{f} 0.45$ ($30 \% \mathrm{Et}_{2} \mathrm{O}$ - pentane). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 7.16(2 \mathrm{H}, \mathrm{d}, J=$ $8.7 \mathrm{~Hz}, \mathrm{Ar}), 7.14(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}, \mathrm{Ar}), 6.81(4 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}, \mathrm{Ar}), 3.78-3.84\left(4 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}_{2}\right.$ and $7-$ H_{2}), $3.77(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{OMe}), 2.83-2.90(2 \mathrm{H}, \mathrm{m}, 10-\mathrm{H}$ and $11-\mathrm{H}), 2.12-2.19(2 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}$ and $9-\mathrm{H}), 1.94-$ $1.83\left(4 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}_{2}\right.$ and $\left.\left.8-\mathrm{H}_{2}\right), 0.87-0.96\left(18 \mathrm{H}, \mathrm{m}, 6 \times \mathrm{CH}_{3} t-\mathrm{Bu}\right) .{ }^{13} \mathbf{C} \mathbf{~ N M R ~ (1 2 5 ~ M H z}, \mathbf{C D C l}_{3}\right) \delta$ 158.2 ($2 \times \mathrm{C} \mathrm{Ar}$), 136.06 (C Ar), 136.04 (C Ar), 128.00 ($2 \times \mathrm{CH}$ Ar), 127.97 ($2 \times \mathrm{CH}$ Ar), 113.87 (2 x CH Ar), 113.85 ($2 \times \mathrm{CH} \mathrm{Ar}$), 61.82 and 61.80 ($\mathrm{C}-3$ and $\mathrm{C}-7$), 55.4 ($2 \times \mathrm{OMe}$), 52.2 and 52.0 (C-10 and C-11), 42.6 and 42.4 (C-1 and C-9), 40.1 and 39.8 (C-2 and C-8), 27.98 ($4 \mathrm{x} \mathrm{CH}_{3} t$-Bu), 27.95 (2 $\mathrm{x} \mathrm{CH}_{3} t$-Bu), $21.2\left(2 \times \mathrm{C} t\right.$-Bu). IR (film) $v_{\max }$ 2980, 2888, 2360, 2341, 1383, 1249, 1151, 1087, 668 cm^{-1}. HRMS: calculated for $\mathrm{C}_{30} \mathrm{H}_{45} \mathrm{O}_{4} \mathrm{Si}[\mathrm{M}]^{+}$requires $m / z 497.3087$, found $m / z 497.3091$.

9.3. (\pm)-(1R,9R,10S,11S)-10,11-Bis(4-methoxyphenyl)-5,5-diphenyl-4,6-dioxa-5silabicyclo[7.2.0]undecane, 2c.

From diene $1 \mathbf{c}(14.0 \mathrm{mg}, 0.0261 \mathrm{mmol})$ and PIDA $(0.84 \mathrm{mg}, 0.0026 \mathrm{mmol})$ following the general procedure, cyclobutane 2c was obtained. Chromatographic purification (gradient elution: $10 \% \rightarrow 30 \% \mathrm{Et}_{2} \mathrm{O}$ - pentane) gave $\mathbf{2 c}$ as a colorless oil ($3.1 \mathrm{mg}, 21 \%$).

Data for 2c: $\boldsymbol{R}_{f} 0.5\left(30 \% \mathrm{Et}_{2} \mathrm{O}\right.$ - pentane). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(500 \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 7.47-7.59(4 \mathrm{H}, \mathrm{m}$, Ar), 7.28-7.43 ($6 \mathrm{H}, \mathrm{m}, \mathrm{Ar}$), 7.06-7.10 (4H, m, Ar), 6.74-6.82 (4H, m, Ar), 3.74-3.90 (4H, m, 3-H2 and $7-\mathrm{H}_{2}$), $3.77(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{OMe}), 2.80-2.86(2 \mathrm{H}, \mathrm{m}, 10-\mathrm{H}$ and $11-\mathrm{H}), 2.18-2.23(2 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}$ and $9-$ H), 1.89-1.99 ($4 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}_{2}$ and $8-\mathrm{H}_{2}$). ${ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 158.2(\mathrm{C} \mathrm{Ar}), 158.1(\mathrm{C} \mathrm{Ar})$, 135.92 (C Ar), 135.85 (C Ar), 135.0 ($2 \times \mathrm{CH} \mathrm{Ar}$), 134.9 (C Ar), 133.1 (C Ar), 130.0 ($2 \times \mathrm{CH} \mathrm{Ar}$), 128.03 ($2 \times \mathrm{CH} \mathrm{Ar}$), 128.01 ($2 \times \mathrm{CH} \mathrm{Ar}$), $128.0(2 \times \mathrm{CH} \mathrm{Ar}$), 127.9 ($2 \times \mathrm{CH} \mathrm{Ar}$), 113.84 ($2 \times \mathrm{CH} \mathrm{Ar}$), 113.84 ($2 \times \mathrm{CH}$ Ar), 61.4 and 61.3 (C-3 and C-7), 55.4 ($2 \times \mathrm{OMe}$), 52.1 and 51.9 ($\mathrm{C}-10$ and $\mathrm{C}-11$), 42.5 (C-1 and C-9), 39.2 and 39.1 (C-2 and C-8). IR (film) $v_{\max }$ 2980, 2360, 2341, 1510, 1249, 1075 cm^{-1}. HRMS: calculated for $\mathrm{C}_{34} \mathrm{H}_{37} \mathrm{O}_{4} \mathrm{Si}[\mathrm{M}]^{+}$requires $m / z 537.2461$, found $m / z 537.2465$.

9.4. (\pm)-(1R,9R,10S,11S)-5,5-Diisopropyl-10-(4-methoxyphenyl)-11-(p-tolyl)-4,6-dioxa-5-

 silabicyclo[7.2.0]undecane, 2d.

From diene 1d ($20.0 \mathrm{mg}, 0.043 \mathrm{mmol}$) and PIDA ($1.40 \mathrm{mg}, 0.0043 \mathrm{mmol}$) following the general procedure except using 0.02 M of HFIP, cyclobutane 2 d was obtained. Chromatographic purification (gradient elution: $1.5 \% \rightarrow 3 \% \mathrm{Et}_{2} \mathrm{O}$ - pentane) gave $\mathbf{2 d}$ as a colorless oil ($8.0 \mathrm{mg}, 40 \%$).

Data for 2d: $\boldsymbol{R}_{f} 0.55\left(20 \% \mathrm{Et}_{2} \mathrm{O}\right.$ - pentane). ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\left.\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 7.13(2 \mathrm{H}, \mathrm{d}, J=$ $8.7 \mathrm{~Hz}, \mathrm{Ar}), 7.07-7.11(4 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 6.83(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}, \mathrm{Ar}), 3.99(2 \mathrm{H}, \mathrm{ddd}, J=11.1,7.6,2.2 \mathrm{~Hz}$, $3-\mathrm{H}_{\mathrm{A}}$ and $\left.7-\mathrm{H}_{\mathrm{A}}\right), 3.84-3.89\left(2 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}_{\mathrm{B}}\right.$ and $\left.7-\mathrm{H}_{\mathrm{B}}\right), 3.78(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 2.90(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}, 10-$ H and $11-\mathrm{H}), 2.28-2.33(2 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}$ and $9-\mathrm{H}), 2.31(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 2.00-2.10\left(2 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}_{\mathrm{A}}\right.$ and $\left.8-\mathrm{H}_{\mathrm{A}}\right)$, 1.81-1.72 $\left(2 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}_{\mathrm{B}}\right.$ and $\left.8-\mathrm{H}_{\mathrm{B}}\right), 1.05-1.08(14 \mathrm{H}, \mathrm{m}, 2 \mathrm{x} i-\mathrm{Pr}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta$ 158.2 (C Ar), 140.8 (C Ar), 136.1 (C Ar), 135.8 (C Ar), 129.2 ($2 \times \mathrm{CH}$ Ar), $128.0(2 \times \mathrm{CH}$ Ar), 126.9 ($2 \times \mathrm{CH}$ Ar), 113.9 ($2 \times \mathrm{CH} \mathrm{Ar}$), 62.58 and 62.55 (C-3 and C-7), 55.4 (OMe), 52.1 and 51.6 (C-10 and C-11), 44.4 and 44.2 (C-1 and C-9), 38.83 and 38.79 (C-2 and C-8), $21.2(\mathrm{Me}), 17.7\left(2 \mathrm{x} \mathrm{CH}_{3} i-\right.$ Pr), 17.6 ($2 \mathrm{x} \mathrm{CH}_{3} i$-Pr), 12.1 ($2 \times \mathrm{CH} i$-Pr). IR (film) $v_{\text {max }}$ 2926, 2867, 1512, 1249, 1124, $1035 \mathrm{~cm}^{-1}$. HRMS (El): calculated for $\mathrm{C}_{28} \mathrm{H}_{40} \mathrm{O}_{3} \mathrm{Si}[\mathrm{M}]^{+}$requires $m / z 452.2747$, found $\mathrm{m} / \mathrm{z} 452.2751$
9.5. (\pm)-($1 S, 9 S, 10 R, 11 R)-4,4,6,6-T e t r a i s o p r o p y l-10,11-b i s(4-m e t h o x y p h e n y l)-3,5,7-t r i o x a-~$ 4,6-disilabicyclo[7.2.0]undecane, 2 e and $(\pm)-(1 R, 9 S, 10 R, 11 S)-4,4,6,6-T e t r a i s o p r o p y l-10,11-$ bis(4-methoxyphenyl)-3,5,7-trioxa-4,6-disilabicyclo[7.2.0]undecane, 3e.

From diene $\mathbf{1 e}(18.1 \mathrm{mg}, 0.0318 \mathrm{mmol})$ and PIDA $(1.00 \mathrm{mg}, 0.00310 \mathrm{mmol})$ following the general procedure, a $4: 1$ mixture of cyclobutanes $\mathbf{2 e}: 3 \mathrm{e}$ was obtained. Chromatographic purification $\left(8 \% \mathrm{Et}_{2} \mathrm{O}\right.$ - pentane) gave an inseparable $4: 1$ mixture of $\mathbf{2 e}: 3 \mathrm{e}$ as a colorless oil ($7.5 \mathrm{mg}, 50 \%$).

Data for $\mathbf{2 e}$ (from the mixture): $\boldsymbol{R}_{\boldsymbol{f}} 0.55$ ($30 \% \mathrm{Et}_{2} \mathrm{O}$ - pentane). M.p.: $60^{\circ} \mathrm{C}$ (solvent: 5% diethyl ether in pentane). ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 7.12(4 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}, \mathrm{Ar}), 6.81(4 \mathrm{H}, \mathrm{d}, J=8.6$ $\mathrm{Hz}, \mathrm{Ar}), 4.10\left(2 \mathrm{H}, \mathrm{dd}, J=11.5,2.8 \mathrm{~Hz}, 2-\mathrm{H}_{\mathrm{A}}\right.$ and $\left.8-\mathrm{H}_{\mathrm{A}}\right), 3.78-3.81\left(2 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}_{\mathrm{B}}\right.$ and $\left.8-\mathrm{H}_{\mathrm{B}}\right), 3.78$ $(6 \mathrm{H}, \mathrm{s}, 2 \mathrm{x} \mathrm{OMe}), 3.03-3.07(2 \mathrm{H}, \mathrm{m}, 10-\mathrm{H}$ and $11-\mathrm{H}), 2.47-2.11(2 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}$ and $9-\mathrm{H}), 0.99-1.13$ ($28 \mathrm{H}, \mathrm{m}, 4 \times i$-Pr). ${ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 158.2$ ($2 \times \mathrm{C} \mathrm{Ar}$), 134.9 ($2 \times \mathrm{C} \mathrm{Ar}$), 128.1 ($4 \times \mathrm{CH}$ Ar), 113.9 ($4 \times \mathrm{CH}$ Ar), 64.9 (C-2 and C-8), 55.4 ($2 \times \mathrm{OMe}$), 46.5 (C-10 and C-11), 45.4 (C-1 and C9), 17.7 ($4 \mathrm{xCH}_{3} i-\mathrm{Pr}$), 17.5 ($4 \mathrm{x} \mathrm{CH}_{3} i-\mathrm{Pr}$), 13.3 ($2 \times \mathrm{CH} i-\mathrm{Pr}$), 13.2 ($2 \times \mathrm{CH} i$-Pr). IR (film) $v_{\max }$ 2980, 2969, 2360, 2341, 1513, 1248, $1045 \mathrm{~cm}^{-1}$. HRMS (ESI): calculated for $\mathrm{C}_{32} \mathrm{H}_{51} \mathrm{O}_{5} \mathrm{Si}[\mathrm{M}]^{+}$ requires $m / z 571.3270$, found $m / z 571.3269$.

Data for $\mathbf{3 e}$ (from the mixture): ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 6.85(4 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}, \mathrm{Ar})$, $6.64(4 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}, \mathrm{Ar}), 4.20\left(2 \mathrm{H}, \mathrm{dd}, J=7.4,3.1 \mathrm{~Hz}, 2-\mathrm{H}_{\mathrm{A}}\right.$ and $\left.8-\mathrm{H}_{\mathrm{A}}\right), 4.10(2 \mathrm{H}, \mathrm{dd}, J=11.5$, $2.8 \mathrm{~Hz}, 2-\mathrm{H}_{\mathrm{B}}$ and $\left.8-\mathrm{H}_{\mathrm{B}}\right), 3.75(2 \mathrm{H}, \mathrm{d}, J=6.1 \mathrm{~Hz}, 10-\mathrm{H}$ and $11-\mathrm{H}), 3.70(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{OMe}), 2.96-3.00$ ($2 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}$ and $9-\mathrm{H}$), 0.99-1.13 ($28 \mathrm{H}, \mathrm{m}, 4 \mathrm{x} i$-Pr). ${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 157.6$ (2 x C $\mathrm{Ar})$, 133.1 ($2 \times \mathrm{C} \mathrm{Ar}$), 129.3 ($4 \times \mathrm{CH} \mathrm{Ar}$), 113.3 ($4 \times \mathrm{CH} \mathrm{Ar}$), 62.4 (C-2 and C-8), 55.4 ($2 \times \mathrm{OMe}$), $42.5(\mathrm{C}-10$ and $\mathrm{C}-11)$, 41.4 ($\mathrm{C}-1$ and $\mathrm{C}-9$), 17.6 ($4 \mathrm{xCH}_{3} i-\mathrm{Pr}$), $17.5\left(4 \times \mathrm{CH}_{3} i-\mathrm{Pr}\right)$, 13.3 ($4 \times \mathrm{CH} i-$ Pr).

9.6. (\pm)-(1R,10S,11S,12R)-4,4,6,6-Tetraisopropyl-12-(4-methoxyphenyl)-11-(p-tolyl)-3,5,7-trioxa-4,6-disilabicyclo[8.2.0]dodecane, 2 f .

From diene $\mathbf{1 f}(39.9 \mathrm{mg}, 0.0702 \mathrm{mmol})$ and PIDA ($2.26 \mathrm{mg}, 0.00702 \mathrm{mmol}$) following the general procedure, cyclobutane $2 \mathbf{f}$ was obtained. Chromatographic purification ($3 \% \mathrm{Et}_{2} \mathrm{O}$ - pentane) gave $\mathbf{2 f}$ as a colorless oil ($21.0 \mathrm{mg}, 53 \%$).

Data for 2f: $\boldsymbol{R}_{f} 0.6\left(30 \% \mathrm{Et}_{2} \mathrm{O}\right.$ - pentane). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 7.15(2 \mathrm{H}, \mathrm{d}, J=8.6$ $\mathrm{Hz}, \mathrm{Ar}), 7.05-7.12$ ($4 \mathrm{H}, \mathrm{m}, \mathrm{Ar}$), $6.83(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}, \mathrm{Ar}), 4.00(1 \mathrm{H}, \mathrm{ddd}, J=11.8,9.9,2.1 \mathrm{~Hz}, 3-$ $\left.\mathrm{H}_{\mathrm{A}}\right), 3.94\left(1 \mathrm{H}, \mathrm{dd}, J=10.8,2.4 \mathrm{~Hz}, 4-\mathrm{H}_{\mathrm{A}}\right), 3.79-3.84\left(2 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}_{\mathrm{B}}\right.$ and $\left.4-\mathrm{H}_{\mathrm{B}}\right), 3.78(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe})$, $3.06(1 \mathrm{H}, \mathrm{t}, J=9.7 \mathrm{~Hz}, 6-\mathrm{H}), 2.89(1 \mathrm{H}, \mathrm{t}, J=9.7 \mathrm{~Hz}, 7-\mathrm{H}), 2.60(1 \mathrm{H}, \mathrm{dtd}, J=11.7,9.0,2.8 \mathrm{~Hz}, 1-\mathrm{H})$, $2.30(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 2.13-2.00\left(2 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}_{\mathrm{A}}\right.$ and $\left.5-\mathrm{H}\right), 1.50\left(1 \mathrm{H}, \mathrm{dtd}, J=14.0,11.5,2.6 \mathrm{~Hz}, 2-\mathrm{H}_{\mathrm{B}}\right), 1.00-$ 1.12 ($28 \mathrm{H}, \mathrm{m}, 4 \mathrm{x} i$-Pr). ${ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 158.2$ (C Ar), 140.4 (C Ar), 135.7 (C Ar),
135.5 (C Ar), 129.1 ($2 \times \mathrm{CH}$ Ar), 128.3 ($2 \times \mathrm{CH} \mathrm{Ar}$), 127.0 ($2 \times \mathrm{CH} \mathrm{Ar}$), 113.9 ($2 \times \mathrm{CH}$ Ar), 64.5 (C4), 60.4 (C-3), 55.4 (OMe), 50.8 (C-7), 49.7 (C-5), 45.7 (C-6), 40.2 (C-1), 37.8 (C-2), 21.2 (Me), $17.73\left(\mathrm{CH}_{3} i-\mathrm{Pr}\right), 17.71\left(\mathrm{CH}_{3} i-\mathrm{Pr}\right), 17.68\left(\mathrm{CH}_{3} i-\mathrm{Pr}\right), 17.66\left(3 \mathrm{XCH}_{3} i-\mathrm{Pr}\right), 17.64\left(\mathrm{CH}_{3} i-\mathrm{Pr}\right), 17.58$ ($\mathrm{CH}_{3} i-\mathrm{Pr}$), 13.7 ($\mathrm{CH} i-\mathrm{Pr}$), 13.5 ($\mathrm{CH} i-\mathrm{Pr}$), 13.3 ($\mathrm{CH} i-\mathrm{Pr}$), 13.2 ($\mathrm{CH} i$-Pr). IR (film) $v_{\max }$ 2980, 2889, 2360, 1462, 1250, 1151, $1073 \mathrm{~cm}^{-1}$. HRMS (CI): calculated for $\mathrm{C}_{33} \mathrm{H}_{53} \mathrm{O}_{4} \mathrm{Si}_{2}[\mathrm{M}+\mathrm{H}]^{+}$requires m / z 569.3482, found $m / z 569.3469$.

9.7. (\pm)(1R,8S,9S,10R)-4,4-Diisopropyl-9-(4-methoxyphenyl)-10-(p-tolyl)-3,5-dioxa-4

silabicyclo[6.2.0]decane, 2 g and $(\pm)-(1 R, 8 R, 9 R, 10 R)-4,4$-diisopropyl-9-(4-methoxy phenyl)-10(p-tolyl)-3,5-dioxa-4-silabicyclo[6.2.0]decane, 3g.

1g

2g

3g

From diene $\mathbf{1 g}(19.4 \mathrm{mg}, 0.0443 \mathrm{mmol})$ and PIDA ($1.40 \mathrm{mg}, 0.00435 \mathrm{mmol}$) following the general procedure, a 1:1.5 mixture of cyclobutanes $\mathbf{2 g} \mathbf{3 g}$ was obtained. Chromatographic purification (gradient elution: $2 \% \rightarrow 6 \% \mathrm{Et}_{2} \mathrm{O}$ - pentane) gave an inseparable $1: 1$ mixture of $\mathbf{2 g} \mathbf{g} \mathbf{3 g}$ as a colorless oil ($11.9 \mathrm{mg}, 60 \%$).

Data for $\mathbf{2 g}$ (from the mixture): $\boldsymbol{R}_{f} 0.6\left(10 \% \mathrm{Et}_{2} \mathrm{O}\right.$ - pentane). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta$ 7.08-7.13 ($6 \mathrm{H}, \mathrm{m}, \mathrm{Ar}$), $6.83(2 \mathrm{H}, \mathrm{d}, J=6.3 \mathrm{~Hz}, \mathrm{Ar}), 4.12-4.15\left(1 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}_{\mathrm{A}}\right), 3.97-4.01(1 \mathrm{H}, \mathrm{m}, 3-$ $\left.\mathrm{H}_{\mathrm{A}}\right), 3.84-3.89\left(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}_{\mathrm{B}}\right), 3.74-3.80\left(1 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}_{\mathrm{B}}\right), 3.78(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 2.98(1 \mathrm{H}, \mathrm{t}, J=9.4 \mathrm{~Hz}$, $10-\mathrm{H}), 2.91(1 \mathrm{H}, \mathrm{t}, J=9.4 \mathrm{~Hz}, 9-\mathrm{H}), 2.49(1 \mathrm{H}, \mathrm{dtd}, J=10.7,8.6,4.1 \mathrm{~Hz}, 8-\mathrm{H}), 2.32(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 2.18-$ $2.26(1 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}), 2.08\left(1 \mathrm{H}, \mathrm{ddt}, J=15.6,7.9,4.0 \mathrm{~Hz}, 2-\mathrm{H}_{\mathrm{A}}\right), 1.61\left(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}_{\mathrm{B}}\right), 1.02-1.11(14 \mathrm{H}$, $\mathrm{m}, 2 \mathrm{x} i$-Pr). ${ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 158.1$ (C Ar), 140.2 (C Ar), 135.9 (C Ar), 135.2 (C Ar), 129.1 ($2 \times \mathrm{CH}$ Ar), 128.6 ($2 \times \mathrm{CH} \mathrm{Ar}$), 126.7 ($2 \times \mathrm{CH} \mathrm{Ar}$), 113.8 ($2 \times \mathrm{CH}$ Ar), 68.6 (C-7), 61.6 (C-3), 55.3 (OMe), 51.8 (C-10), 47.5 (C-9), 46.4 (C-8), $44.3(\mathrm{C}-1), 36.6(\mathrm{C}-2), 21.0(\mathrm{Me}), 17.72\left(\mathrm{CH}_{3} i-\mathrm{Pr}\right)$, $17.71\left(\mathrm{CH}_{3} i-\mathrm{Pr}\right), 17.67\left(\mathrm{CH}_{3} i-\mathrm{Pr}\right), 17.65\left(\mathrm{CH}_{3} i-\mathrm{Pr}\right), 12.69(\mathrm{CH} i-\mathrm{Pr}), 12.67(\mathrm{CH} i-\mathrm{Pr}) . \mathbf{I R}$ (film) $v_{\max }$ 2926, 2360, 2341, 1513, 1248, $1112 \mathrm{~cm}^{-1}$. HRMS (CI): calculated for $\mathrm{C}_{27} \mathrm{H}_{39} \mathrm{O}_{3} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}$requires $m / z 439.2668$, found $m / z 439.2269$.

Data for $\mathbf{3 g}$ (from the mixture): ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\left.\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 6.89(4 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 6.81(2 \mathrm{H}$, $\mathrm{d}, J=6.3 \mathrm{~Hz}, \mathrm{Ar}), 6.65(2 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}, \mathrm{Ar}), 4.21\left(1 \mathrm{H}, \mathrm{t}, J=11.5 \mathrm{~Hz}, 7-\mathrm{H}_{\mathrm{A}}\right), 4.08-4.12(1 \mathrm{H}, \mathrm{m}, 3-$ $\left.\mathrm{H}_{\mathrm{A}}\right), 3.92-3.96\left(1 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}_{\mathrm{B}}\right), 3.80-3.84\left(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}_{\mathrm{B}}\right), 3.71(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.44(1 \mathrm{H}, \mathrm{dd}, J=9.8,6.4$ $\mathrm{Hz}, 10-\mathrm{H}), 3.40(1 \mathrm{H}, \mathrm{dd}, J=9.9,6.5 \mathrm{~Hz}, 9-\mathrm{H}), 3.16(1 \mathrm{H}, \mathrm{dtd}, J=15.3,7.6,6.6,4.0 \mathrm{~Hz}, 8-\mathrm{H}), 2.83-$
$2.88(1 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}), 2.32-2.39\left(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}_{\mathrm{A}}\right), 2.21(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 1.67-1.71\left(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}_{\mathrm{B}}\right), 1.02-1.11$ ($14 \mathrm{H}, \mathrm{m}, 2 \times i$-Pr). ${ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 157.6$ (C Ar), 137.3 (C Ar), 135.2 (C Ar), 132.1 (C Ar), 129.0 ($4 \times \mathrm{CH} \mathrm{Ar}$), 128.0 ($2 \times \mathrm{CH}$ Ar), 113.2 ($2 \times \mathrm{CH} \mathrm{Ar}$), 64.9 (C-3), 64.1 (C-7), 55.1 (OMe), 48.8 (C-10), 44.3 (C-9), 41.9 (C-8), 40.0 (C-1), 33.5 (C-2), $21.0(\mathrm{Me}), 17.61\left(\mathrm{CH}_{3} i-\mathrm{Pr}\right), 17.57\left(\mathrm{CH}_{3}\right.$ $i-\mathrm{Pr}), 17.54\left(\mathrm{CH}_{3} i-\mathrm{Pr}\right), 17.49\left(\mathrm{CH}_{3} i-\mathrm{Pr}\right), 12.4(\mathrm{CH} i-\mathrm{Pr}), 11.8(\mathrm{CH} i-\mathrm{Pr})$.

9.8. (\pm)-(1R,8S,9S,10R)-4,4-Diisopropyl-9-(4-methoxyphenyl)-10-phenyl-3,5-dioxa-4silabicyclo[6.2.0]decane, 2 h and (\pm)-($1 R, 8 R, 9 R, 10 R$)-4,4-diisopropyl-9-(4-methoxy phenyl)-10-phenyl-3,5-dioxa-4-silabicyclo[6.2.0]decane, 3h.

From diene $\mathbf{1 h}(16.7 \mathrm{mg}, 0.0394 \mathrm{mmol})$ and PIDA ($1.30 \mathrm{mg}, 0.00404 \mathrm{mmol}$) following the general procedure, a 1:1.7 mixture of cyclobutanes $\mathbf{2 h} \mathbf{3 h}$ was obtained. Chromatographic purification (gradient elution: $3 \% \rightarrow 20 \% \mathrm{Et}_{2} \mathrm{O}$ - pentane) gave an inseparable 1:1.7 mixture of $\mathbf{2 h}: \mathbf{3 h}$ as a colorless oil ($3.6 \mathrm{mg}, 20 \%$).

Data for $\mathbf{2 h}$ (from the mixture): $\boldsymbol{R}_{f} 0.45$ ($10 \% \mathrm{Et}_{2} \mathrm{O}$ - pentane). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right)$ $\delta 7.27-7.31(2 H, m, A r), 7.18-7.22(3 H, m, A r), 7.10-7.14(2 H, m, A r), 6.83(2 H, d, J=8.8 \mathrm{~Hz}, \mathrm{Ar})$, 4.12-4.14 ($\left.1 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}_{\mathrm{A}}\right), 3.97-4.01\left(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}_{\mathrm{A}}\right), 3.88\left(1 \mathrm{H}, \mathrm{dt}, \mathrm{J}=9.5,2.7 \mathrm{~Hz}, 3-\mathrm{H}_{\mathrm{B}}\right), 3.79-3.81$ $\left(1 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}_{\mathrm{B}}\right), 3.78(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.03(1 \mathrm{H}, \mathrm{t}, J=9.5 \mathrm{~Hz}, 10-\mathrm{H}), 2.93(1 \mathrm{H}, \mathrm{t}, J=9.4 \mathrm{~Hz}, 9-\mathrm{H}), 2.47-$ $2.51(1 \mathrm{H}, \mathrm{m}, 8-\mathrm{H}), 2.24-2.28(1 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}), 2.06-2.14\left(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}_{\mathrm{A}}\right), 1.58-1.67\left(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}_{\mathrm{B}}\right), 1.02-$ 1.11 ($14 \mathrm{H}, \mathrm{m}, 2 \mathrm{x} i$-Pr). ${ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 158.3$ (C Ar), 143.3 (C Ar), 135.2 (C Ar), 128.6 ($2 \times \mathrm{CH}$ Ar), 127.9 ($2 \times \mathrm{CH} \mathrm{Ar}$), 126.8 ($3 \times \mathrm{CH} \mathrm{Ar}$), 113.9 ($2 \times \mathrm{CH} \mathrm{Ar}$), 68.6 (C-7), 61.6 (C-3), 55.4 (OMe), 52.2 (C-10), 47.5 (C-9), $46.6(\mathrm{C}-8), 44.2(\mathrm{C}-1), 36.7(\mathrm{C}-2), 17.8\left(\mathrm{CH}_{3} i-\mathrm{Pr}\right), 17.7\left(\mathrm{CH}_{3}\right.$ i-Pr), $17.5\left(\mathrm{CH}_{3} i-\mathrm{Pr}\right), 17.3\left(\mathrm{CH}_{3} i-\mathrm{Pr}\right), 12.5(\mathrm{CH} i-\mathrm{Pr}), 11.9(\mathrm{CH} i-\mathrm{Pr})$. NOESY- 2D ($\mathbf{5 0 0} \mathbf{~ M H z}$, $\mathbf{C D C l}_{3}$): between $9-\mathrm{H}$ and $1-\mathrm{H}$, between $10-\mathrm{H}$ and $8-\mathrm{H}$, between $10-\mathrm{H}$ and $2-\mathrm{H}_{\mathrm{B}}$. IR (film) $\mathrm{v}_{\text {max }} 3026$, 2942, 1738, 1513, 1365, $1228 \mathrm{~cm}^{-1}$. HRMS (Cl): calculated for $\mathrm{C}_{26} \mathrm{H}_{37} \mathrm{O}_{3} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}$requires m / z 425.2512 , found $m / z 425.2500$.

Data for 3h (from the mixture): ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\left.\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l} 3\right) \delta 7.09(2 \mathrm{H}, \mathrm{d}, J=7.7 \mathrm{~Hz}, \mathrm{Ar})$, 6.99-7.05 (1H, m, Ar), $6.93(2 \mathrm{H}, \mathrm{d}, J=7.2 \mathrm{~Hz}, \mathrm{Ar}), 6.86(2 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}, \mathrm{Ar}), 6.63(2 \mathrm{H}, \mathrm{d}, J=8.7$ $\mathrm{Hz}, \mathrm{Ar}), 4.21\left(1 \mathrm{H}, \mathrm{t}, J=11.4 \mathrm{~Hz}, 7-\mathrm{H}_{\mathrm{A}}\right), 4.07-4.11\left(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}_{\mathrm{A}}\right), 3.92-3.97\left(1 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}_{\mathrm{B}}\right), 3.81-$ $3.85\left(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}_{\mathrm{B}}\right), 3.69(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.48(1 \mathrm{H}, \mathrm{dd}, J=9.9,6.6 \mathrm{~Hz}, 10-\mathrm{H}), 3.42(1 \mathrm{H}, \mathrm{dd}, J=9.9$,
$6.6 \mathrm{~Hz}, 9-\mathrm{H}), 3.12-3.22(1 \mathrm{H}, \mathrm{m}, 8-\mathrm{H}), 2.88-2.92(1 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}), 2.31-2.42\left(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}_{\mathrm{A}}\right), 1.69-1.73$ $\left(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}_{\mathrm{B}}\right), 1.02-1.11(14 \mathrm{H}, \mathrm{m}, 2 \mathrm{x} i-\mathrm{Pr}) .{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 157.8(\mathrm{C} \mathrm{Ar}), 140.5(\mathrm{C}$ $\mathrm{Ar}), 132.0$ (C Ar), 129.1 ($2 \times \mathrm{CH} \mathrm{Ar}$), 128.2 ($2 \times \mathrm{CH} \mathrm{Ar}$), 127.9 ($2 \times \mathrm{CH} \mathrm{Ar}$), 125.9 (CH Ar), 113.3 (2 x CH Ar), 64.9 (C-3), 64.1 (C-7), 55.2 (OMe), 49.2 (C-10), 44.5 (C-9), 42.0 (C-8), 39.8 (C-1), 33.7 $(\mathrm{C}-2), 17.8\left(\mathrm{CH}_{3} i-\mathrm{Pr}\right), 17.7\left(\mathrm{CH}_{3} i-\mathrm{Pr}\right), 17.68\left(\mathrm{CH}_{3} i-\mathrm{Pr}\right), 17.62\left(\mathrm{CH}_{3} i-\mathrm{Pr}\right), 12.82(\mathrm{CH} i-\mathrm{Pr}), 12.80$
 between $10-\mathrm{H}$ and $2-\mathrm{H}_{\mathrm{A}} \& 2-\mathrm{H}_{\mathrm{B}}$, between $10-\mathrm{H}$ and $7-\mathrm{H}_{\mathrm{A}}$.

9.9. (\pm)-($1 R, 8 S, 9 S, 10 R)-4,4-$ Diisopropyl-9-(4-methoxyphenyl)-10-(p-tolyl)-3,5-dioxa-4-

silabicyclo[6.2.0]decane, 2 i and (\pm)-($1 S, 8 S, 9 S, 10 S$)-4,4-Diisopropyl-9-(4-methoxy phenyl)-10-(p-tolyl)-3,5-dioxa-4-silabicyclo[6.2.0]decane, 3i.

From diene $1 \mathbf{i}$ ($33.9 \mathrm{mg}, 0.0774 \mathrm{mmol}$) and PIDA ($2.50 \mathrm{mg}, 0.00776 \mathrm{mmol}$) following the general procedure, a $1: 1.5$ mixture of cyclobutanes $\mathbf{2 i} \mathbf{i} \mathbf{3 i}$ was obtained. Chromatographic purification (gradient elution: $3 \% \rightarrow 4 \% \mathrm{Et}_{2} \mathrm{O}$ - pentane) gave an inseparable 1:1.5 mixture of $\mathbf{2 i}: \mathbf{3 i}$ as a colorless oil ($6.9 \mathrm{mg}, 21 \%$).

Data for $\mathbf{2 i}$ (from the mixture): $\boldsymbol{R}_{f} 0.6\left(10 \% \mathrm{Et}_{2} \mathrm{O}\right.$ - pentane). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta$ $7.13(2 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}, \mathrm{Ar}), 7.04-7.11(4 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 6.81-6.83(2 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 4.12-4.15\left(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}_{\mathrm{A}}\right)$, 3.97-4.00 $\left(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}_{\mathrm{A}}\right), 3.85-3.89\left(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}_{\mathrm{B}}\right), 3.76-3.79\left(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}_{\mathrm{B}}\right), 3.78(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 2.97$ $(1 \mathrm{H}, \mathrm{t}, J=9.4 \mathrm{~Hz}, 9-\mathrm{H}), 2.91(1 \mathrm{H}, \mathrm{t}, J=9.3 \mathrm{~Hz}, 10-\mathrm{H}), 2.50(1 \mathrm{H}, \mathrm{dtd}, J=10.9,8.6,4.2 \mathrm{~Hz}, 1-\mathrm{H})$, $2.31(3 H, s, M e), 2.18-2.23(1 H, m, 8-H), 2.01-2.12\left(1 H, m, 7-H_{A}\right), 1.59-1.64\left(1 H, m, 7-H_{B}\right), 1.02-$ $1.10\left(14 \mathrm{H}, \mathrm{m}, 2 \mathrm{x} i\right.$-Pr). ${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 158.3$ (C Ar), 140.1 (C Ar), 136.0 (C Ar), 135.3 (C Ar), 129.24 ($2 \times \mathrm{CH} \mathrm{Ar}$), 127.9 ($2 \times \mathrm{CH} \mathrm{Ar}$), 126.8 ($2 \times \mathrm{CH} \mathrm{Ar}$), $114.0(2 \times \mathrm{CH} \mathrm{Ar}), 68.8$ (C2), 61.7 (C-6), $55.4(\mathrm{OMe}), 51.5(\mathrm{C}-9), 48.2(\mathrm{C}-10), 46.3(\mathrm{C}-1), 44.6(\mathrm{C}-8), 36.7(\mathrm{C}-7), 21.2(\mathrm{Me})$, $17.72\left(\mathrm{CH}_{3} i-\mathrm{Pr}\right), 17.6\left(\mathrm{CH}_{3} i-\mathrm{Pr}\right), 17.5\left(\mathrm{CH}_{3} i-\mathrm{Pr}\right), 17.0\left(\mathrm{CH}_{3} i-\mathrm{Pr}\right), 12.6(\mathrm{CH} i-\mathrm{Pr}), 11.9(\mathrm{CH} i-\mathrm{Pr})$. IR (film) $v_{\max }$ 2926, 2360, 2341, 1513, 1248, $1112 \mathrm{~cm}^{-1}$. HRMS (ESI): calculated for $\mathrm{C}_{27} \mathrm{H}_{38} \mathrm{O}_{3} \mathrm{SiNa}$ [M+Na] ${ }^{+}$requires $m / z 461.2482$, found $m / z 461.2484$.

Data for $\mathbf{3 i}$ (from the mixture): ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\left.500 \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 6.91(2 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}, \mathrm{Ar})$, 6.83-6.96 ($4 \mathrm{H}, \mathrm{m}, \mathrm{Ar}$), $6.64(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}, \mathrm{Ar}), 4.21\left(1 \mathrm{H}, \mathrm{t}, J=11.4 \mathrm{~Hz}, 2-\mathrm{H}_{\mathrm{A}}\right), 4.07-4.14(1 \mathrm{H}$, $\left.\mathrm{m}, 6-\mathrm{H}_{\mathrm{A}}\right), 3.93-3.97\left(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}_{\mathrm{B}}\right), 3.80-3.84\left(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}_{\mathrm{B}}\right), 3.70(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.44(1 \mathrm{H}, \mathrm{dd}, J=$
$10.0,6.7 \mathrm{~Hz}, 9-\mathrm{H}), 3.39(1 \mathrm{H}, \mathrm{dd}, J=9.9,6.6 \mathrm{~Hz}, 10-\mathrm{H}), 3.13-3.22(1 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}), 2.82-2.89(1 \mathrm{H}, \mathrm{m}$, $8-\mathrm{H}), 2.30-2.33\left(1 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}_{\mathrm{A}}\right), 2.21(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 1.65-1.72\left(1 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}_{\mathrm{B}}\right), 1.02-1.10(14 \mathrm{H}, \mathrm{m}, 2 \mathrm{x} i-$ Pr). ${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 157.7$ (C Ar), 137.0 (C Ar), 135.5 (C Ar), 132.7 (C Ar), 129.20 ($2 \times \mathrm{CH} \mathrm{Ar}$), 128.7 ($2 \times \mathrm{CH} \mathrm{Ar}$), 128.1 ($2 \times \mathrm{CH} \mathrm{Ar}$), 113.4 ($2 \times \mathrm{CH} \mathrm{Ar}$), 65.0 (C-6), 64.2 (C-2), 55.3 (OMe), 48.5 (C-9), 44.9 (C-10), 41.7 (C-1), 40.5 (C-8), 33.7 (C-7), 21.7 (Me), $17.9\left(\mathrm{CH}_{3} i\right.$ - Pr), 17.80 $\left(\mathrm{CH}_{3} i-\mathrm{Pr}\right), 17.75\left(\mathrm{CH}_{3} i-\mathrm{Pr}\right), 17.6\left(\mathrm{CH}_{3} i-\mathrm{Pr}\right), 12.85(\mathrm{CH} i-\mathrm{Pr}), 12.81(\mathrm{CH} i-\mathrm{Pr})$.

9.10. (\pm)-(1S,7S,8R,9R)-4,4-Diisopropyl-8,9-bis(4-methoxyphenyl)-3,5-dioxa-4-

silabicyclo[5.2.0]nonane, 2 j and (\pm)-(1R,7S,8R,9S)-4,4-Diisopropyl-8,9-bis(4-methoxyphenyl)-3,5-dioxa-4-silabicyclo[5.2.0]nonane, 3j.

From diene $\mathbf{1 j}(21.2 \mathrm{mg}, 0.0482 \mathrm{mmol})$ and PIDA ($1.60 \mathrm{mg}, 0.00497 \mathrm{mmol}$) following the general procedure except conducting the reaction at $0^{\circ} \mathrm{C}$, a $1: 2$ mixture of cyclobutanes $\mathbf{2 j} \mathbf{j} \mathbf{j}$ was obtained. Chromatographic purification (gradient elution: $5 \% \rightarrow 10 \% \mathrm{Et}_{2} \mathrm{O}$ - pentane) gave a separable $1: 2$ mixture of $\mathbf{2 j} \mathbf{j} \mathbf{3} \mathbf{j}$ as a colorless oil ($13.0 \mathrm{mg}, \mathbf{6 0 \%}$).

Data for $\mathbf{2 j}$: $\boldsymbol{R}_{f} 0.54\left(30 \% \mathrm{Et}_{2} \mathrm{O}\right.$ - pentane). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(500 \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 7.11(4 \mathrm{H}, \mathrm{d}, J=$ $8.6 \mathrm{~Hz}, \mathrm{Ar}), 6.84(4 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}, \mathrm{Ar}), 4.17-4.21\left(2 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}_{\mathrm{A}}\right.$ and $\left.6-\mathrm{H}_{\mathrm{A}}\right), 3.74-3.81\left(2 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}_{\mathrm{B}}\right.$ and $\left.6-\mathrm{H}_{\mathrm{B}}\right), 3.79(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{OMe}), 3.02(2 \mathrm{H}, \mathrm{d}, J=9.4 \mathrm{~Hz}, 8-\mathrm{H}$ and $9-\mathrm{H}), 2.33-2.41(2 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}$ and 7-H), 1.03-1.06 ($14 \mathrm{H}, \mathrm{m}, 2 \mathrm{x} i$-Pr). ${ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 158.5$ ($2 \times \mathrm{C} \mathrm{Ar}$), 134.5 (2 x C Ar), 127.8 ($4 \times \mathrm{C}-\mathrm{H} \mathrm{Ar}$), 114.1 ($4 \times \mathrm{CH} \mathrm{Ar}$), 68.6 (C-2 and C-6), 55.4 ($2 \times \mathrm{OMe}$), 49.9 ($\mathrm{C}-1$ and C-7), 47.1 (C-8 and C-9), 17.6 ($2 \mathrm{x} \mathrm{CH}_{3} i-\mathrm{Pr}$), 17.5 ($2 \mathrm{x} \mathrm{CH}_{3} i$-Pr), 13.4 ($2 \times \mathrm{CH} i$-Pr). IR (film) $v_{\text {max }} 2980$, 2360, 1611, 1513, 1247, $1121 \mathrm{~cm}^{-1}$. HRMS (CI): calculated for $\mathrm{C}_{26} \mathrm{H}_{37} \mathrm{O}_{4} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}$requires 441.2461, found 441.2463 .

Data for 3j: ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\left.\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 6.83(4 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}, \mathrm{Ar}), 6.64(4 \mathrm{H}, \mathrm{d}, J=8.7$ $\mathrm{Hz}, \mathrm{Ar}), 4.21-4.23\left(2 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}_{\mathrm{A}}\right.$ and $\left.6-\mathrm{H}_{\mathrm{A}}\right), 4.07-4.11\left(2 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}_{\mathrm{B}}\right.$ and $\left.6-\mathrm{H}_{\mathrm{B}}\right), 3.71(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{OMe})$, $3.60(2 \mathrm{H}, \mathrm{d}, J=6.0 \mathrm{~Hz}, 8-\mathrm{H}$ and $9-\mathrm{H}), 3.12(2 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}$ and $7-\mathrm{H}), 1.06-1.09,1.07-1.16(14 \mathrm{H}, \mathrm{m}, 2$ $\mathrm{x} i$-Pr). ${ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 157.8(2 \times \mathrm{C} \mathrm{Ar}), 132.4(2 \times \mathrm{C} \mathrm{Ar}), 129.2(4 \times \mathrm{CH}$ Ar), 113.4 (4 x CH Ar), 64.2 (C-2 and C-6), 55.3 ($2 \times \mathrm{OMe}$), 42.9 (C-8 and C-9), 42.0 ($\mathrm{C}-1$ and C-7), 17.6 (2 x $\left.\mathrm{CH}_{3} i-\mathrm{Pr}\right)$, 17.3 (2 x CH3$\left.i-\mathrm{Pr}\right), 12.3(\mathrm{CH} i-\mathrm{Pr}), 11.9(\mathrm{CH} i-\mathrm{Pr})$.

9.11. (\pm)-(1S,7S,8R,9R)-4,4-Di-tert-butyl-8,9-bis(4-methoxyphenyl)-3,5-dioxa-4-

 silabicyclo[5.2.0]nonane, 2 k and (\pm)-(1R,7S,8R,9S)-4,4-Di-tert-butyl-8,9-bis(4-methoxyphenyl) -3,5-dioxa-4-silabicyclo[5.2.0]nonane, 3k.

From diene $\mathbf{1 k}(15.6 \mathrm{mg}, 0.0333 \mathrm{mmol})$ and PIDA ($1.10 \mathrm{mg}, 0.00333 \mathrm{mmol}$) following the general procedure except conducting the reaction at $0^{\circ} \mathrm{C}$, a $1: 2.5$ mixture of cyclobutanes $\mathbf{2 k}: 3 \mathbf{k}$ was obtained. Chromatographic purification (gradient elution: $4 \% \rightarrow 9 \% \mathrm{Et}_{2} \mathrm{O}$ - pentane) gave a separable 1:2.5 mixture of $\mathbf{2 k}: 3 \mathbf{k}$ as a colorless oil ($7.5 \mathrm{mg}, 49 \%$).

Data for 2k: $\boldsymbol{R}_{f} 0.45$ ($30 \% \mathrm{Et}_{2} \mathrm{O}$ - pentane). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 7.10(4 \mathrm{H}, \mathrm{d}, J=$ $8.6 \mathrm{~Hz}, \mathrm{Ar}), 6.84(4 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}, \mathrm{Ar}), 4.22\left(2 \mathrm{H}, \mathrm{dd}, J=10.6,3.4 \mathrm{~Hz}, 2-\mathrm{H}_{\mathrm{A}}\right.$ and $\left.6-\mathrm{H}_{\mathrm{A}}\right), 3.85(2 \mathrm{H}$, $\mathrm{t}, J=10.4 \mathrm{~Hz}, 2-\mathrm{H}_{\mathrm{B}}$ and $\left.6-\mathrm{H}_{\mathrm{B}}\right), 3.78(6 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.02(2 \mathrm{H}, \mathrm{d}, J=9.5 \mathrm{~Hz}, 8-\mathrm{H}$ and $9-\mathrm{H}), 2.28-2.37$ $(2 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}$ and $7-\mathrm{H}), 1.00\left(18 \mathrm{H}, \mathrm{s}, 6 \times \mathrm{CH}_{3} t-\mathrm{Bu}\right) .{ }^{13} \mathbf{C}$ NMR ($\left.\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 158.4(2 \times \mathrm{C} \mathrm{Ar})$, 134.6 ($2 \times \mathrm{C} \mathrm{Ar}$), 127.9 ($4 \times \mathrm{C}-\mathrm{H} \mathrm{Ar}$), 114.1 ($4 \times \mathrm{C}-\mathrm{H} \mathrm{Ar}$), 69.6 ($\mathrm{C}-2$ and C-6), 55.4 ($2 \times \mathrm{OMe}$), 50.3 (C-1 and C-7), 46.8 (C-8 and C-9), 27.9 ($6 \times \mathrm{CH}_{3} t$ - Bu), 22.0 ($2 \times \mathrm{C} t$-Bu). IR (film) $v_{\max }$ 2980, 2932, 1513, 1249, 1124, 1078, $826 \mathrm{~cm}^{-1}$. HRMS (CI): calculated for $\mathrm{C}_{28} \mathrm{H}_{40} \mathrm{O}_{4} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}$requires 469.2744, found 469.2767.

Data for 3k: ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 6.83(4 \mathrm{H}, \mathrm{d}, J=7.9 \mathrm{~Hz}, \mathrm{Ar}), 6.64(4 \mathrm{H}, \mathrm{d}, J=8.7$ $\mathrm{Hz}, \mathrm{Ar}), 4.34-4.43\left(2 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}_{\mathrm{A}}\right.$ and $\left.6-\mathrm{H}_{\mathrm{A}}\right), 4.10\left(2 \mathrm{H}, \mathrm{dd}, J=11.7,4.7 \mathrm{~Hz}, 2-\mathrm{H}_{\mathrm{B}}\right.$ and $\left.6-\mathrm{H}_{\mathrm{B}}\right), 3.70$ ($6 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), $3.42(2 \mathrm{H}, \mathrm{d}, J=5.7 \mathrm{~Hz}, 8-\mathrm{H}$ and $9-\mathrm{H}), 3.15-3.25(2 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}$ and $7-\mathrm{H}), 1.10(9 \mathrm{H}, \mathrm{s}, 3$ $\left.\mathrm{x} \mathrm{CH}_{3} t-\mathrm{Bu}\right), 1.04\left(9 \mathrm{H}, \mathrm{s}, 3 \times \mathrm{CH}_{3} t-\mathrm{Bu}\right) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 157.7(2 \times \mathrm{C} \mathrm{Ar}), 132.5(2$ x C Ar), 129.1 ($4 \times \mathrm{C}-\mathrm{H}$ Ar), 113.4 ($4 \times \mathrm{C}-\mathrm{H} \mathrm{Ar}$), 66.0 (C-2 and C-6), 55.3 (2 x OMe), 42.6 (C-8 and $\mathrm{C}-9), 41.7$ ($\mathrm{C}-1$ and C-7), 28.1 ($3 \mathrm{xCH}_{3} t$-Bu), 27.5 ($3 \mathrm{xCH}_{3} t$-Bu), 22.8 ($\mathrm{C} t-\mathrm{Bu}$), 20.3 ($\mathrm{C} t-\mathrm{Bu}$). NOESY- 2D ($\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): between $1-\mathrm{H} / 7-\mathrm{H}$ and $8-\mathrm{H} / 9-\mathrm{H}$, between $1-\mathrm{H} / 7-\mathrm{H}$ and $2-\mathrm{H}_{2}$, between $1-\mathrm{H} / 7-\mathrm{H}$ and $6-\mathrm{H}_{2}$.

9.12. (\pm)-(1S,7S,8R,9R)-8,9-Bis(4-methoxyphenyl)-4,4-diphenyl-3,5-dioxa-4-

silabicyclo[5.2.0]nonane, 21 and (\pm)-(1R,7S,8R,9S)-8,9-Bis(4-methoxyphenyl)-4,4-diphenyl-3,5-dioxa-4-silabicyclo[5.2.0]nonane, 31.

From diene $1 \mathbf{1 1}(16.1 \mathrm{mg}, 0.0317 \mathrm{mmol})$ and PIDA ($1.10 \mathrm{mg}, 0.00317 \mathrm{mmol}$) following the general procedure except conducting the reaction at $0^{\circ} \mathrm{C}$, a 1:2 mixture of cyclobutanes $\mathbf{2 1}: 31$ was obtained. Chromatographic purification ($15 \% \mathrm{Et}_{2} \mathrm{O}$ - pentane) gave an inseparable 1:2 mixture of $\mathbf{2 1}: 31$ as a colorless oil ($6.5 \mathrm{mg}, 40 \%$).

Data for $\mathbf{2 l}$ (from the mixture): $\boldsymbol{R}_{f} 0.54$ ($30 \% \mathrm{Et}_{2} \mathrm{O}$ - pentane). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta$ 7.79 ($3 \mathrm{H}, \mathrm{dd}, J=7.9,1.5 \mathrm{~Hz}, \mathrm{Ar}$), 7.79 ($7 \mathrm{H}, \mathrm{dd}, J=7.9,1.5 \mathrm{~Hz}, \mathrm{Ar}$), $7.00-7.05$ ($4 \mathrm{H}, \mathrm{m}, \mathrm{Ar}$), 6.79$6.82(4 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 4.39\left(2 \mathrm{H}, \mathrm{dd}, J=10.7,3.8 \mathrm{~Hz}, 2-\mathrm{H}_{\mathrm{A}}\right.$ and $\left.6-\mathrm{H}_{\mathrm{A}}\right), 3.92\left(2 \mathrm{H}, \mathrm{t}, J=10.7 \mathrm{~Hz}, 2-\mathrm{H}_{\mathrm{B}}\right.$ and $\left.6-\mathrm{H}_{\mathrm{B}}\right), 3.77(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{OMe}), 2.95(2 \mathrm{H}, \mathrm{d}, J=9.3 \mathrm{~Hz}, 8-\mathrm{H}$ and $9-\mathrm{H}), 2.48-2.55(2 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}$ and $7-$ H). ${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 158.5(2 \times \mathrm{C} \mathrm{Ar}), 134.5(2 \times \mathrm{C} \mathrm{Ar}), 132.0(2 \times \mathrm{C} \mathrm{Ar}), 135.1(2 \mathrm{x}$ CH Ar), 134.8 ($2 \times \mathrm{CH} \mathrm{Ar}$), 134.5 ($6 \times \mathrm{CH} \mathrm{Ar}$), 127.8 ($4 \times \mathrm{CH} \mathrm{Ar}$), 114.1 ($4 \times \mathrm{CH}$ Ar), 68.8 ($\mathrm{C}-2$ and C-6), 55.4 (2 x OMe), 48.8 (C-1 and C-7), 47.4 (C-8 and C-9). IR (film) $v_{\text {max }}$ 2980, 1513, 1382, 1249, 1125, $830 \mathrm{~cm}^{-1}$. HRMS (CI): calculated for $\mathrm{C}_{32} \mathrm{H}_{33} \mathrm{O}_{4} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}$requires 509.2148, found 509.2147.

Data for $\mathbf{3 1}$ (from the mixture): ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 7.35-7.52(10 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 6.82-$ $6.85(4 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 6.63-6.67(4 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 4.25-4.31\left(2 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}_{\mathrm{A}}\right.$ and $\left.6-\mathrm{H}_{\mathrm{A}}\right), 4.19-4.25\left(2 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}_{\mathrm{B}}\right.$ and $\left.6-\mathrm{H}_{\mathrm{B}}\right), 3.71(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{OMe}), 3.67-3.70(2 \mathrm{H}, \mathrm{m}, 8-\mathrm{H}$ and $9-\mathrm{H}), 3.21-3.26(2 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}$ and $7-$ H). ${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 157.8(2 \times \mathrm{C} \mathrm{Ar}), 132.6(2 \times \mathrm{C} \mathrm{Ar}), 130.4(2 \times \mathrm{C} \mathrm{Ar}), 129.3$ (4 x CH Ar), 128.3 ($2 \times \mathrm{C}-\mathrm{H} \mathrm{Ar}$), 128.27 ($2 \times \mathrm{CH} \mathrm{Ar}$), 128.20 ($4 \times \mathrm{CH} \mathrm{Ar}$), 128.15 ($2 \times \mathrm{CH}$ Ar), 113.4 (4 x CH Ar), 64.2 (C-2 and C-6), 55.3 ($2 \times \mathrm{OMe}$), 43.1 (C-8 and C-9), 42.0 (C-1 and C-7).

9.13. (\pm)-($1 S, 7 S, 8 R, 9 R$)-4,4-Diethyl-8,9-bis(4-methoxyphenyl)-3,5-dioxa-4-

silabicyclo[5.2.0]nonane, 2 m and (\pm)-(1R,7S,8R,9S)-4,4-Diethyl-8,9-bis(4-methoxyphenyl)-3,5-dioxa-4-silabicyclo[5.2.0]nonane, 3 m .

From diene $\mathbf{1 m}(22.0 \mathrm{mg}, 0.0534 \mathrm{mmol})$ and PIDA $(1.70 \mathrm{mg}, 0.00534 \mathrm{mmol})$ following the general procedure except conducting the reaction at $0^{\circ} \mathrm{C}$, a $1: 3$ mixture of cyclobutanes $\mathbf{2 m}: \mathbf{3 m}$ was obtained. Chromatographic purification (gradient elution: $5 \% \rightarrow 9 \% \mathrm{Et}_{2} \mathrm{O}$ - pentane) gave separable
cyclobutanes $\mathbf{2 m}$ and $\mathbf{3 m}$ as colorless oils ($12.5 \mathrm{mg}, 57 \%$).
Data for 2m: $\boldsymbol{R}_{f} 0.54$ ($30 \% \mathrm{Et}_{2} \mathrm{O}$ - pentane). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 7.10(4 \mathrm{H}, \mathrm{d}, J=$ $8.6 \mathrm{~Hz}, \mathrm{Ar}), 6.81-6.87(4 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 4.17\left(2 \mathrm{H}, \mathrm{dd}, J=10.8,3.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}_{\mathrm{A}}\right.$ and $\left.6-\mathrm{H}_{\mathrm{A}}\right), 3.71-3.81$ $\left(2 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}_{\mathrm{B}}\right.$ and $\left.6-\mathrm{H}_{\mathrm{B}}\right), 3.79(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{OMe}), 2.98-3.04(2 \mathrm{H}, \mathrm{m}, 8-\mathrm{H}$ and $9-\mathrm{H}), 2.40-2.47(2 \mathrm{H}, \mathrm{m}$, $1-\mathrm{H}$ and $7-\mathrm{H}), 0.99\left(6 \mathrm{H}, \mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \times \mathrm{CH}_{3} \mathrm{Et}\right), 0.66\left(4 \mathrm{H}, \mathrm{q}, J=8.0 \mathrm{~Hz}, 2 \times \mathrm{CH}_{2} \mathrm{Et}\right) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 158.5$ ($2 \times \mathrm{C} \mathrm{Ar}$), 134.4 ($2 \times \mathrm{C} \mathrm{Ar}$), 127.8 ($4 \times \mathrm{CH} \mathrm{Ar}$), 114.1 ($4 \times \mathrm{CH} \mathrm{Ar}$), 68.1 (C-2 and C-6), 55.4 ($2 \times \mathrm{OMe}$), 49.5 ($\mathrm{C}-1$ and C-7), 47.3 (C-8 and C-9), 6.8 ($2 \mathrm{x} \mathrm{CH}_{3} \mathrm{Et}$), 5.7 (2 x CH_{2} Et). IR (film) $v_{\text {max }}$ 2980, 2360, 1513, 1247, 1122, $828 \mathrm{~cm}^{-1}$. HRMS (Cl): calculated for $\mathrm{C}_{24} \mathrm{H}_{33} \mathrm{O}_{4} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}$requires $m / z 413.2148$, found $m / z 413.2139$.

Data for $\mathbf{3 m}:{ }^{1} \mathbf{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}$) $\delta 6.83(4 \mathrm{H}, \mathrm{d}, J=6.2 \mathrm{~Hz}, \mathrm{Ar}), 6.64(4 \mathrm{H}, \mathrm{d}, J=8.7$ $\mathrm{Hz}, \mathrm{Ar})$, 4.11-4.16 ($2 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}_{\mathrm{A}}$ and $6-\mathrm{H}_{\mathrm{A}}$), 4.04-4.10 $\left(2 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}_{\mathrm{B}}\right.$ and $\left.6-\mathrm{H}_{\mathrm{B}}\right), 3.71(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{OMe})$, $3.66(2 \mathrm{H}, \mathrm{d}, J=6.0 \mathrm{~Hz}, 8-\mathrm{H}$ and $9-\mathrm{H}), 3.11(2 \mathrm{H}, \mathrm{ddd}, J=7.6,4.6,2.3 \mathrm{~Hz}, 1-\mathrm{H}$ and $7-\mathrm{H}), 1.08(3 \mathrm{H}, \mathrm{t}$, $\left.J=8.0 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{Et}\right), 1.03\left(3 \mathrm{H}, \mathrm{t}, J=8.0 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{Et}\right), 0.76\left(2 \mathrm{H}, \mathrm{q}, J=8.0 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Et}\right), 0.70(2 \mathrm{H}, \mathrm{q}$, $\left.J=8.0 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Et}\right) .{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 157.8(2 \times \mathrm{C} \mathrm{Ar}), 132.3(2 \times \mathrm{C} \mathrm{Ar}), 129.3(4 \mathrm{x}$ CH Ar), 113.4 ($4 \times \mathrm{CH}$ Ar), 63.6 (C-2 and C-6), 55.3 ($2 \times \mathrm{OMe}$), 43.1 (C-8 and C-9), 42.0 (C-1 and $\mathrm{C}-7), 6.7\left(\mathrm{CH}_{3} \mathrm{Et}\right), 6.5\left(\mathrm{CH}_{3} \mathrm{Et}\right), 3.9\left(\mathrm{CH}_{2} \mathrm{Et}\right), 3.8\left(\mathrm{CH}_{2} \mathrm{Et}\right)$.

9.14. (\pm)-(1S,7S,8R,9R)-4,4-Diisopropyl-8-(4-methoxyphenyl)-9-(p-tolyl)-3,5-dioxa-4-

 silabicyclo[5.2.0]nonane, 2 n and (\pm)-($1 R, 7 S, 8 R, 9 S$)-4,4-diisopropyl-8-(4-methoxyphenyl) -9-(p-tolyl)-3,5-dioxa-4-silabicyclo[5.2.0]nonane, 3n.

From diene $1 \mathbf{n}(19.2 \mathrm{mg}, 0.0453 \mathrm{mmol})$ and PIDA ($1.50 \mathrm{mg}, 0.00453 \mathrm{mmol}$) following the general procedure except conducting the reaction at $0^{\circ} \mathrm{C}$ and using 0.02 M of HFIP, a $1: 2$ mixture (d.r. was based on crude NMR) of cyclobutanes $\mathbf{2 n}: 3 \mathbf{n}$ was obtained. Chromatographic purification (3% $\mathrm{Et}_{2} \mathrm{O}$ - pentane) gave an inseparable 1:4 mixture of $\mathbf{2 n}$ and $\mathbf{3 n}$ as a colorless oils ($7.7 \mathrm{mg}, 40 \%$).

Data for $\mathbf{2 n}$ (from the mixture): $\boldsymbol{R}_{\boldsymbol{f}} 0.35\left(10 \% \mathrm{Et}_{2} \mathrm{O}\right.$ - pentane). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right)$ $\delta 7.07-7.13(6 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 6.81-6.86(2 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 4.16-4.22\left(2 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}_{\mathrm{A}}\right.$ and $\left.6-\mathrm{H}_{\mathrm{A}}\right), 3.77-3.82(2 \mathrm{H}$, $\mathrm{m}, 2-\mathrm{H}_{\mathrm{B}}$ and $\left.6-\mathrm{H}_{\mathrm{B}}\right), 3.78(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.04(2 \mathrm{H}, \mathrm{d}, J=9.4 \mathrm{~Hz}, 8-\mathrm{H}$ and $9-\mathrm{H}), 2.35-2.42(2 \mathrm{H}, \mathrm{m}, 1-$ H and $7-\mathrm{H}$), $2.32(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 1.01-1.06(14 \mathrm{H}, \mathrm{m}, 2 \mathrm{x} i-\mathrm{Pr}) .{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{~ N M R}\left(\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 157.7$ (C Ar), 139.3 (C Ar), 135.3 (C Ar), 134.5 (C Ar), 129.4 ($2 \times \mathrm{CH}$ Ar), 127.9 ($2 \times \mathrm{CH}$ Ar), 126.8 ($2 \times \mathrm{CH}$ Ar), 114.0 ($2 \times \mathrm{CH}$ Ar), 68.6 (C-2 and C-6), 55.3 (OMe), 49.9 and 49.7 (C-1 and C-7), 47.4 and 46.8
(C-8 and C-9), $21.1(\mathrm{Me}), 17.6$ and $17.5\left(4 \times \mathrm{CH}_{3} i\right.$-Pr), 13.4 ($2 \times \mathrm{CH} i$-Pr). IR (film) $v_{\text {max }}$ 2980, 2360, 1513, 1462, 1382, 1250, 1511, 1073, $954 \mathrm{~cm}^{-1}$. HRMS (ESI): calculated for $\mathrm{C}_{26} \mathrm{H}_{37} \mathrm{O}_{3} \mathrm{Si}[\mathrm{M}]^{+}$requires $m / z 425.2507$, found $m / z 425.2506$.

Data for $\mathbf{3 n}$ (from the mixture): ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 6.90(2 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}, \mathrm{Ar})$, 6.78-6.86 $(4 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 6.62-6.66(2 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 4.21\left(2 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}_{\mathrm{A}}\right.$ and $\left.6-\mathrm{H}_{\mathrm{A}}\right), 4.09(2 \mathrm{H}, \mathrm{dd}, J=11.9$, $3.9 \mathrm{~Hz}, 2-\mathrm{H}_{\mathrm{B}}$ and $6-\mathrm{H}_{\mathrm{B}}$), $3.70(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.56-3.64(2 \mathrm{H}, \mathrm{m}, 8-\mathrm{H}$ and $9-\mathrm{H}), 3.07-3.19(2 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}$ and 7-H), $2.21(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 1.12-1.16(7 \mathrm{H}, \mathrm{m}, i-\mathrm{Pr}), 1.06-1.10(7 \mathrm{H}, \mathrm{m}, i-\mathrm{Pr}) .{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{~ N M R}(\mathbf{1 2 5} \mathbf{~ M H z}$, $\mathbf{C D C l}_{3}$) $\delta 157.7$ (C Ar), 137.2 (C Ar), 135.3 (C Ar), 132.5 (C Ar), 129.2 ($2 \times \mathrm{CH} \mathrm{Ar}$), 128.7 ($2 \times \mathrm{CH}$ $\mathrm{Ar})$, 128.1 ($2 \times \mathrm{CH}$ Ar), 113.4 ($2 \times \mathrm{CH} \mathrm{Ar}$), 64.3 and 64.2 ($\mathrm{C}-2$ and C-6), 55.3 (OMe), 43.3 and 42.9 (C-8 and C-9), 42.2 and $41.8(\mathrm{C}-1$ and $\mathrm{C}-7)$, $21.1(\mathrm{Me})$, 17.6 ($2 \mathrm{xCH}_{3} i-\mathrm{Pr}$), $17.3\left(2 \mathrm{xCH}_{3} i-\mathrm{Pr}\right), 12.3$ (CH i - Pr), 11.9 ($\mathrm{CH} i-\mathrm{Pr}$).
9.15. $(\pm)-(1 R, 5 S, 6 R, 7 S)-6,7-B i s(4-m e t h o x y p h e n y l)-3-o x a b i c y c l o[3.2 .0] h e p t a n e s, 5 a$.

From diene $4 \mathbf{a}(50.5 \mathrm{mg}, 0.163 \mathrm{mmol})$ and PIDA ($5.30 \mathrm{mg}, 0.0163 \mathrm{mmol}$) following the general procedure, cyclobutane $\mathbf{5 a}$ was obtained. Chromatographic purification (gradient elution: $15 \% \rightarrow 20 \% \mathrm{Et}_{2} \mathrm{O}$ - pentane) gave $\mathbf{5 a}$ as a white solid ($29.1 \mathrm{mg}, 58 \%$). Spectral properties matched those previously reported. ${ }^{11}$

Data for 5a: $\boldsymbol{R}_{f} 0.4\left(50 \% \mathrm{Et}_{2} \mathrm{O}\right.$ - pentane). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 6.85(4 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.7$ $\mathrm{Hz}, \mathrm{Ar}), 6.64(4 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}, \mathrm{Ar}), 4.08\left(2 \mathrm{H}, \mathrm{d}, J=9.4 \mathrm{~Hz}, 2-\mathrm{H}_{\mathrm{A}}\right.$ and $\left.4-\mathrm{H}_{\mathrm{A}}\right), 3.70(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{OMe})$, 3.66-3.71 $\left(2 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}_{\mathrm{B}}\right.$ and $\left.4-\mathrm{H}_{\mathrm{B}}\right), 3.65(2 \mathrm{H}, \mathrm{d}, J=4.4 \mathrm{~Hz}, 6-\mathrm{H}$ and $7-\mathrm{H}), 3.20-3.24(2 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}$ and 5-H). ${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 157.4$ ($2 \times \mathrm{C} \mathrm{Ar}$), 133.1 ($2 \times \mathrm{C} \mathrm{Ar}$), $129.0(4 \times \mathrm{CH}$ Ar), 113.2 ($4 \times \mathrm{CH}$ Ar), 74.0 (C-2 and C-4), 55.1 ($2 \times \mathrm{OMe}$), 46.5 ($\mathrm{C}-6$ and C-7), 42.5 ($\mathrm{C}-1$ and C-5). HRMS (Cl) : calculated for $\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{O}_{3} \mathrm{~N}_{4}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$requires $\mathrm{m} / \mathrm{z} 328.1913$, found $\mathrm{m} / \mathrm{z} 328.1903$.
9.16. (\pm)-($1 R, 5 S, 6 R, 7 S)-6-(4-M e t h o x y p h e n y l)-7-p h e n y l-3-o x a b i c y c l o[3.2 .0] h e p t a n e s, ~ 5 b . ~$

From diene $\mathbf{4 b}$ ($21.4 \mathrm{mg}, 0.0764 \mathrm{mmol}$) and PIDA ($2.50 \mathrm{mg}, 0.00764 \mathrm{mmol}$) following the general procedure, cyclobutane $\mathbf{5 b}$ was obtained. Chromatographic purification (gradient elution: $11 \% \rightarrow 14 \% \mathrm{Et}_{2} \mathrm{O}$ - pentane) gave $\mathbf{5 b}$ as a colorless oil ($17.1 \mathrm{mg}, 80 \%$). Spectral properties matched those previously reported. ${ }^{11}$

Data for 5b: $\boldsymbol{R}_{\boldsymbol{f}} 0.4\left(40 \% \mathrm{Et}_{2} \mathrm{O}\right.$ - pentane). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 7.06-7.12(2 \mathrm{H}, \mathrm{m}$, Ar), 6.98-7.03 ($1 \mathrm{H}, \mathrm{m}, \mathrm{Ar}$), 6.92-6.96 ($2 \mathrm{H}, \mathrm{m}, \mathrm{Ar}$), $6.85(2 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}, \mathrm{Ar}), 6.62(2 \mathrm{H}, \mathrm{d}, J=8.7$ $\mathrm{Hz}, \mathrm{Ar}), 4.09\left(2 \mathrm{H}, \mathrm{d}, J=9.4 \mathrm{~Hz}, 2-\mathrm{H}_{\mathrm{A}}\right.$ and $\left.4-\mathrm{H}_{\mathrm{A}}\right), 3.68-3.74\left(4 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}_{\mathrm{B}}, 4-\mathrm{H}_{\mathrm{B}}, 1-\mathrm{H}\right.$ and $\left.5-\mathrm{H}\right), 3.69$ (3H, s, OMe), 3.21-3.33 (2H, m, 6-H and 7-H). ${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z , ~ C D C l} 3$) $\delta 157.5$ (C Ar), 140.9 (C Ar), 133.0 (C Ar), 129.1 ($2 \times \mathrm{CH}$ Ar), 128.1 ($2 \times \mathrm{CH}$ Ar), 127.7 ($2 \times \mathrm{CH}$ Ar), 125.6 (CH Ar), 113.1 (2 x CH Ar), 74.0 (C-2 and C-4), 55.1 (OMe), 49.5 and 47.2 (C-1 and C-5), 42.6 and 42.0 (C-6 and C-7). HRMS (Cl): calculated for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$requires m / z 281.1542, found m / z 281.1531.
9.17. (\pm)-(1S,5R,6S,7R)-6-(4-Bromophenyl)-7-(4-methoxyphenyl)-3-oxabicyclo[3.2.0]heptane, 5c.

From diene $4 \mathbf{c}(17.5 \mathrm{mg}, 0.0489 \mathrm{mmol})$ and PIDA $(1.60 \mathrm{mg}, 0.00489 \mathrm{mmol})$ following the general procedure, cyclobutane $\mathbf{5 c}$ was obtained. Chromatographic purification (gradient elution: $15 \% \rightarrow 30 \% \mathrm{Et}_{2} \mathrm{O}$ - pentane) gave $\mathbf{5 c}$ as a colorless oil ($13.1 \mathrm{mg}, 75 \%$).

Data for $\mathbf{5 c}$: $\boldsymbol{R}_{f} 0.5\left(50 \% \mathrm{Et}_{2} \mathrm{O}\right.$ - pentane). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 7.20(2 \mathrm{H}, \mathrm{d}, J=8.5$ $\mathrm{Hz}, \mathrm{Ar}), 6.84(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}, \mathrm{Ar}), 6.80(2 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}, \mathrm{Ar}), 6.65(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}, \mathrm{Ar}), 4.08$ $\left(2 \mathrm{H}, \mathrm{dd}, J=9.5,3.0 \mathrm{~Hz}, 2-\mathrm{H}_{\mathrm{A}}\right.$ and $\left.4-\mathrm{H}_{\mathrm{A}}\right), 3.71(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.67-3.73(2 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}$ and $5-\mathrm{H}), 3.63-$
 (C Ar), 140.1 (C Ar), 132.7 (C Ar), 130.9 ($2 \times \mathrm{CH} \mathrm{Ar}$), 129.9 ($2 \times \mathrm{CH} \mathrm{Ar}$), 129.1 ($2 \times \mathrm{CH}$ Ar), 121.5 (C Ar), 113.5 (2 x CH Ar), 74.1 and 73.1 ($\mathrm{C}-2$ and $\mathrm{C}-4$), 55.2 (OMe), 46.7 and 46.5 ($\mathrm{C}-1$ and $\mathrm{C}-5$),
42.6 and 42.3 (C-6 and C-7). IR (film) $v_{\text {max }}$ 2980, 2894, 1380, 1255, 1150, 1081, $970 \mathrm{~cm}^{-1}$. HRMS (Cl): calculated for $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{BrNO}_{2}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$requires $\mathrm{m} / \mathrm{z} 376.0912$, found $\mathrm{m} / \mathrm{z} 376.0911$.

9.18. (\pm)-(1R,5S,6R,7S)-6-(4-Methoxyphenyl)-7-(3-(trifluoromethyl)phenyl)-3oxabicyclo[3.2.0]heptane, 5d.

From diene 4 d $(44.6 \mathrm{mg}, 0.128 \mathrm{mmol})$ and PIDA ($4.10 \mathrm{mg}, 0.0128 \mathrm{mmol}$) following the general procedure, cyclobutane 5d was obtained. Chromatographic purification (gradient elution: $15 \% \rightarrow 20 \% \mathrm{Et}_{2} \mathrm{O}$ - pentane) to yield $\mathbf{5 d}$ as a colorless oil ($30.9 \mathrm{mg}, 70 \%$).

Data for 5d: $\boldsymbol{R}_{\boldsymbol{f}} 0.45\left(50 \% \mathrm{Et}_{2} \mathrm{O}\right.$ - pentane). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 7.25(1 \mathrm{H}, \mathrm{d}, J=$ $7.5 \mathrm{~Hz}, \mathrm{Ar}), 7.17(2 \mathrm{H}, \mathrm{t}, J=7.8 \mathrm{~Hz}, \mathrm{Ar}), 7.06(1 \mathrm{H}, \mathrm{d}, J=7.7 \mathrm{~Hz}, \mathrm{Ar}), 6.83(2 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}, \mathrm{Ar})$, $6.62(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}, \mathrm{Ar}), 4.11\left(2 \mathrm{H}, \mathrm{dd}, J=9.3,2.0 \mathrm{~Hz}, 2-\mathrm{H}_{\mathrm{A}}\right.$ and $\left.4-\mathrm{H}_{\mathrm{A}}\right), 3.72-3.76(2 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}$ and 5-H), 3.69-3.72 $\left(2 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}_{\mathrm{B}}\right.$ and $\left.4-\mathrm{H}_{\mathrm{B}}\right), 3.23-3.34(2 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}$ and $7-\mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{~ N M R ~ (1 0 0 ~ M H z}$, $\left.\mathbf{C D C l}_{3}\right) \delta 157.9(\mathrm{C} \mathrm{Ar}), 141.0(\mathrm{C} \mathrm{Ar}), 132.3(\mathrm{C} \mathrm{Ar}), 131.7(\mathrm{CH} \mathrm{Ar}), 130.0\left(\mathrm{CF}_{3}, \mathrm{q}, J=31.9 \mathrm{~Hz}\right), 129.1$ (CH Ar and C Ar), 128.2 ($2 \times \mathrm{CH} \mathrm{Ar}$), $124.8(\mathrm{CH} \mathrm{Ar}, \mathrm{q}, J=3.8 \mathrm{~Hz}$), $122.5(\mathrm{CH} \mathrm{Ar}, \mathrm{q}, J=3.8 \mathrm{~Hz})$, 113.5 ($2 \times \mathrm{CH} \mathrm{Ar}$), 74.1 and 74.0 (C-2 and C-4), 55.3 (OMe), 47.1 and 46.7 (C-1 and C-5), 42.3 and 42.0 (C-6 and C-7). IR (film) $v_{\max }$ 2980, 2889, 1382, 1250, 1150, $1081 \mathrm{~cm}^{-1}$. HRMS (Cl): calculated for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{~F}_{3} \mathrm{NO}_{2}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$requires $\mathrm{m} / \mathrm{z} 366.1681$, found $\mathrm{m} / \mathrm{z} 366.1670$.
9.19. (\pm)- ($1 R, 5 S, 6 R, 7 S)-6-(4-M e t h o x y p h e n y l)-7$-(o-tolyl)-3-oxabicyclo[3.2.0]heptane, 5e.

From diene $4 \mathbf{e}(38.3 \mathrm{mg}, 0.130 \mathrm{mmol})$ and PIDA $(4.20 \mathrm{mg}, 0.0130 \mathrm{mmol})$ following the general procedure, cyclobutane $\mathbf{5 e}$ was obtained. Chromatographic purification (gradient elution: $10 \% \rightarrow 20 \% \mathrm{Et}_{2} \mathrm{O}$ - pentane) gave $\mathbf{5 e}$ as a colorless oil ($18.3 \mathrm{mg}, 64 \%$).

Data for 5e: $\boldsymbol{R}_{f} 0.45\left(50 \% \mathrm{Et}_{2} \mathrm{O}\right.$ - pentane). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 7.29(1 \mathrm{H}, \mathrm{d}, J=$ $7.7 \mathrm{~Hz}, \mathrm{Ar}), 7.09(1 \mathrm{H}, \mathrm{t}, J=8.5 \mathrm{~Hz}, \mathrm{Ar}), 6.96(1 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}, \mathrm{Ar}), 6.86-6.91(3 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 6.58$
$(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}, \mathrm{Ar}), 4.13\left(1 \mathrm{H}, \mathrm{d}, J=9.4 \mathrm{~Hz}, 4-\mathrm{H}_{\mathrm{A}}\right), 4.03\left(1 \mathrm{H}, \mathrm{d}, J=9.2 \mathrm{~Hz}, 2-\mathrm{H}_{\mathrm{A}}\right), 3.81-3.90(1 \mathrm{H}$, $\mathrm{m}, 7-\mathrm{H}), 3.70\left(2 \mathrm{H}, \mathrm{dd}, J=9.4,5.5 \mathrm{~Hz}, 2-\mathrm{H}_{\mathrm{A}}\right.$ and $\left.4-\mathrm{H}_{\mathrm{A}}\right), 3.67(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.63(1 \mathrm{H}, \mathrm{dd}, J=10.0$, $4.6 \mathrm{~Hz}, 6-\mathrm{H}), 3.53-3.60(1 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}), 2.99-3.07(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 2.01(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}) .{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}$, $\mathbf{C D C l}_{3}$) $\delta 157.7$ (C Ar), 138.3 (C Ar), 136.5 (C Ar), 133.7 (C Ar), 130.0 (CH Ar), 129.3 ($2 \times \mathrm{CH} \mathrm{Ar}$), $126.5(\mathrm{CH} \mathrm{Ar}), 126.0(\mathrm{CH} \mathrm{Ar}), 125.3(\mathrm{CH} \mathrm{Ar}), 113.1$ ($2 \times \mathrm{CH} \mathrm{Ar}$), 74.3 (C-2 and C-4), 55.2 (OMe), 47.5 (C-6), 44.6 (C-7), 44.0 (C-5), 40.2 (C-1), 20.0 (Me). IR (film) $v_{\max }$ 2982, 2890, 1380, 1250, 1151, 1081, $970 \mathrm{~cm}^{-1}$. HRMS (Cl): calculated for $\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{NO}_{2}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$requires $\mathrm{m} / \mathrm{z} 312.1964$, found $m / z 312.1962$.
9.20. (\pm)-(1S,5S,7S)-7-(4-Methoxyphenyl)-6,6-dimethyl-3-oxabicyclo[3.2.0]heptane, 5f.

From diene $4 \mathbf{f}(20.0 \mathrm{mg}, 0.0862 \mathrm{mmol})$ and PIDA ($2.80 \mathrm{mg}, 0.00862 \mathrm{mmol}$) following the general procedure, cyclobutane $\mathbf{5 f}$ was obtained. Chromatographic purification gradient elution: 11% $\rightarrow 20 \% \mathrm{Et}_{2} \mathrm{O}$ - pentane) gave $\mathbf{5 f}$ as a colorless oil ($4.0 \mathrm{mg}, 20 \%$). Spectral properties matched those previously reported. ${ }^{11}$

Data for 5f: $\boldsymbol{R}_{f} 0.5\left(40 \% \mathrm{Et}_{2} \mathrm{O}\right.$ - pentane). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 7.06(2 \mathrm{H}, \mathrm{d}, J=8.8$ $\mathrm{Hz}, \mathrm{Ar}), 6.85(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}, \mathrm{Ar}), 4.16\left(1 \mathrm{H}, \mathrm{d}, J=10.1 \mathrm{~Hz}, 2-\mathrm{H}_{\mathrm{A}}\right), 3.80(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.78(1 \mathrm{H}$, d, $\left.J=9.1 \mathrm{~Hz}, 4-\mathrm{H}_{\mathrm{A}}\right), 3.50\left(1 \mathrm{H}, \mathrm{dd}, J=10.1,7.0 \mathrm{~Hz}, 2-\mathrm{H}_{\mathrm{B}}\right), 3.43\left(1 \mathrm{H}, \mathrm{dd}, J=9.1,4.3 \mathrm{~Hz}, 4-\mathrm{H}_{\mathrm{B}}\right), 3.18-$ $3.24(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 2.91(1 \mathrm{H}, \mathrm{d}, J=7.4 \mathrm{~Hz}, 6-\mathrm{H}), 2.39(1 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}, 1-\mathrm{H}), 1.08(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 0.73$ (3H, s, Me). ${ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 157.9$ (C Ar), 132.7 (C Ar), 128.6 ($2 \times \mathrm{CH}$ Ar), 113.4 (2 x CH Ar), 72.0 (C-4), 69.1 (C-2), 55.2 (OMe), 51.2 (C-6), 46.5 (C-1), 38.4 (C-5), 37.2 (C-7), 26.2 (Me), 24.1 (Me).
9.21. (\pm)-($15,5 S, 7 S)$-7-(4-Methoxyphenyl)-3-oxaspiro\{bicyclo[3.2.0]heptane-6,1'cyclohexane $\}$, 5 g

From diene $\mathbf{4 g}$ ($60.0 \mathrm{mg}, 0.221 \mathrm{mmol}$) and PIDA ($7.1 \mathrm{mg}, 0.022 \mathrm{mmol}$) following the general procedure except conducting the reaction at $40^{\circ} \mathrm{C}$, cyclobutane $\mathbf{5 g}$ was obtained. Chromatographic purification gradient elution: $4 \% \rightarrow 6 \% \mathrm{Et}_{2} \mathrm{O}$ - pentane) gave 5 g as a colorless oil ($12.0 \mathrm{mg}, 20 \%$).

Data for $\mathbf{5 g}: \boldsymbol{R}_{f} 0.4\left(20 \% \mathrm{Et}_{2} \mathrm{O}\right.$ - pentane). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 7.08(2 \mathrm{H}, \mathrm{d}, J=8.7$ $\mathrm{Hz}, \mathrm{Ar}), 6.85(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}, \mathrm{Ar}), 4.13\left(1 \mathrm{H}, \mathrm{dd}, J=9.9,1.2 \mathrm{~Hz}, 2-\mathrm{H}_{\mathrm{A}}\right), 3.80(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.76$ $\left(1 \mathrm{H}, \mathrm{dd}, J=9.0,1.2 \mathrm{~Hz}, 4-\mathrm{H}_{\mathrm{A}}\right), 3.57\left(1 \mathrm{H}, \mathrm{dd}, J=10.0,6.8 \mathrm{~Hz}, 2-\mathrm{H}_{\mathrm{B}}\right), 3.43(1 \mathrm{H}, \mathrm{dd}, J=9.0,4.5 \mathrm{~Hz}$, $\left.4-\mathrm{H}_{\mathrm{B}}\right), 3.18(1 \mathrm{H}, \mathrm{td}, J=7.8,4.4 \mathrm{~Hz}, 5-\mathrm{H}), 2.84(1 \mathrm{H}, \mathrm{d}, J=7.5 \mathrm{~Hz}, 6-\mathrm{H}), 2.45-2.54(1 \mathrm{H}, \mathrm{m}, 1-\mathrm{H})$, 1.74-1.94 ($1 \mathrm{H}, \mathrm{m}, 1 / 2 \times \mathrm{CH}_{2}$ cyclohexyl), 1.45-1.53 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}$ cyclohexyl), 1.27-1.39 ($3 \mathrm{H}, \mathrm{m}, 1 / 2$ x_{2} and CH_{2} cyclohexyl), 1.12-1.23 $\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right.$ cyclohexyl), $1.00-1.09\left(1 \mathrm{H}, \mathrm{m}, 1 / 2 \mathrm{XCH}_{2}\right.$ cyclohexyl), $0.81-0.92\left(1 \mathrm{H}, \mathrm{m}, 1 / 2 \times \mathrm{CH}_{2}\right.$ cyclohexyl). ${ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 158.1$ (C Ar), 132.5 (C Ar), 129.2 ($2 \times \mathrm{CH} \mathrm{Ar}$), 113.5 ($2 \times \mathrm{CH} \mathrm{Ar}$), 72.4 (C-4), 69.2 (C-2), 55.4 (OMe), 51.7 (C-6), 44.4 (C-1), $41.0(\mathrm{C}-7), 39.0(\mathrm{C}-5), 34.7\left(\mathrm{CH}_{2}\right.$ cyclohexyl), $33.4\left(\mathrm{CH}_{2}\right.$ cyclohexyl), $26.0\left(\mathrm{CH}_{2}\right.$ cyclohexyl), $23.2\left(\mathrm{CH}_{2}\right.$ cyclohexyl), $21.9\left(\mathrm{CH}_{2}\right.$ cyclohexyl). IR (film) $v_{\max } 2923,2849,1512,1447$, 1246, 1178, $1037 \mathrm{~cm}^{-1}$. HRMS (ESI): calculated for $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$requires $m / z 273.1849$, found $m / z 273.1839$.

10. General procedure for silyl ether deprotection

To a cold $\left(0^{\circ} \mathrm{C}\right)$ solution of 1.0 eq. of cyclobutane in $20 \mathrm{~mL} / \mathrm{mmol}$ of dry THF, under $\mathrm{Ar}, 3.0$ eq. of TBAF (1 M in THF) was added slowly. After 10 min . the reaction was let to warm up to rt and was stirred for 3 hours. The reaction was quenched with phosphate buffer and extract with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic layer was washed with brine and dry with MgSO_{4}, and the solvent was evaporated under reduced pressure to give the corresponding diol, that was purified by chromatography on silica gel using the appropriate mixture of eluents.
10.1. (\pm)-[(1R,2R,3S,4S)-3,4-Bis(4-methoxyphenyl)cyclobutane]-1,2-bis(2-hydroxyethyl), 6a.

From cyclobutane 2a ($19.9 \mathrm{mg}, 0.0425 \mathrm{mmol}$) and 1.0 M TBAF ($0.17 \mathrm{ml}, 0.17 \mathrm{mmol}$) following the general procedure, diol $\mathbf{6 a}$ was obtained. Chromatographic purification (gradient elution: $50 \% \rightarrow 100 \%$ EtOAc - pentane) gave $\mathbf{6 a}$ as a colorless oil ($12.9 \mathrm{mg}, 85 \%$).

Data for 6a: $\boldsymbol{R}_{f} 0.5(100 \% \mathrm{EtOAc}) .{ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 7.13(4 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}$, $\mathrm{Ar}), 6.82(4 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}, \mathrm{Ar}), 3.77(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{OMe}), 3.56-3.70\left(4 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}_{2}\right.$ and $\left.8-\mathrm{H}_{2}\right), 2.86(2 \mathrm{H}$, d, $J=9.2 \mathrm{~Hz}, 3-\mathrm{H}$ and $4-\mathrm{H}), 2.16-2.20(2 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}$ and $2-\mathrm{H}), 1.86-1.90\left(4 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}_{2}\right.$ and $\left.7-\mathrm{H}_{2}\right), 1.66$
 Ar), 114.0 ($4 \times \mathrm{CH}$ Ar), 61.0 ($\mathrm{C}-6$ and C-8), 55.4 ($2 \times \mathrm{OMe}$), 52.2 (C-3 and C-4), 43.0 ($\mathrm{C}-1$ and C-2), 38.1 (C-5 and C-7). IR (film) $v_{\max }$ 2980, 2360, 1738, 1378, 1230, 1152, $954 \mathrm{~cm}^{-1}$. HRMS (ESI): calculated for $\mathrm{C}_{22} \mathrm{H}_{29} \mathrm{O}_{4} \mathrm{Si}[M]^{+}$requires $m / z 357.2060$, found $m / z 357.2061$.
10.2. (\pm)-($1 S, 2 S, 3 R, 4 R)-3,4-b i s(4-m e t h o x y p h e n y l) c y c l o b u t a n e]-1,2-b i s(h y d r o x y l m e t h y l), ~ 6 b . ~$

From cyclobutane $\mathbf{2 j}$ ($20.0 \mathrm{mg}, 0.0454 \mathrm{mmol}$) and 1.0 M TBAF ($0.19 \mathrm{ml}, 0.19 \mathrm{mmol}$) following the general procedure, diol $\mathbf{6 b}$ was obtained. Chromatographic purification (gradient elution: $40 \% \rightarrow 100 \%$ acetone - pentane) gave $\mathbf{6 b}$ as a colorless oil ($15.8 \mathrm{mg}, 99 \%$).

Data for $\mathbf{6 b}$: $\boldsymbol{R}_{f} 0.5\left(50 \%\right.$ acetone - pentane). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 7.12(4 \mathrm{H}, \mathrm{d}, J=$ $8.6 \mathrm{~Hz}, \mathrm{Ar}), 6.84(4 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}, \mathrm{Ar}), 3.92\left(2 \mathrm{H}, \mathrm{dd}, J=10.2,3.3 \mathrm{~Hz}, 5-\mathrm{H}_{\mathrm{A}}\right.$ and $\left.6-\mathrm{H}_{\mathrm{A}}\right), 3.78(6 \mathrm{H}$, $\mathrm{s}, 2 \mathrm{x} \mathrm{OMe}), 3.58-3.64\left(2 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}_{\mathrm{B}}\right.$ and $\left.6-\mathrm{H}_{\mathrm{B}}\right), 3.03(2 \mathrm{H}, \mathrm{d}, J=9.4 \mathrm{~Hz}, 3-\mathrm{H}$ and $4-\mathrm{H}), 2.28-2.36$ $(2 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}$ and $2-\mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 158.4$ (2 x C Ar), 134.6 (2 x C Ar), 127.9 (4 x CH Ar), 114.0 ($4 \times$ CH Ar), 65.6 (C-5 and C-6), 55.4 ($2 \times \mathrm{OMe}$), 47.8 (C-1 and C-2), 47.3 (C-3 and C-4). IR (film) $v_{\max }$ 2980, 2360, 1738, 1378, 1230, 1152, $954 \mathrm{~cm}^{-1}$. HRMS (ESI): calculated for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{O} 4 \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$requires $m / z 351.1567$, found $m / z 351.1568$.
10.3. (\pm)-[(1R,2S,3R,4S)-3,4-Bis(4-methoxyphenyl)cyclobutane]-1,2-bis(hydroxymethyl), 7a.

From cyclobutane $\mathbf{3 j}$ ($20.0 \mathrm{mg}, 0.0454 \mathrm{mmol}$) and $1.0 \mathrm{M} \mathrm{TBAF} \mathrm{(} 0.19 \mathrm{ml}, 0.19 \mathrm{mmol}$) following the general procedure, diol 7a was obtained. Chromatographic purification (gradient elution: $40 \% \rightarrow 100 \%$ acetone - pentane) gave 7 a as a colorless oil ($15.8 \mathrm{mg}, 99 \%$).

Data for 7a: $\boldsymbol{R}_{f} 0.5\left(50 \%\right.$ acetone - pentane). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 6.83(4 \mathrm{H}, \mathrm{d}, J=$ $8.6 \mathrm{~Hz}, \mathrm{Ar}), 6.64(4 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}, \mathrm{Ar}), 4.05\left(2 \mathrm{H}, \mathrm{dd}, J=11.3,9.9 \mathrm{~Hz}, 5-\mathrm{H}_{\mathrm{A}}\right.$ and $\left.6-\mathrm{H}_{\mathrm{A}}\right), 3.85-3.89$ $\left(2 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}_{\mathrm{B}}\right.$ and $\left.6-\mathrm{H}_{\mathrm{B}}\right), 3.70(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{OMe}), 3.51(2 \mathrm{H}, \mathrm{d}, J=6.0 \mathrm{~Hz}, 3-\mathrm{H}$ and $4-\mathrm{H}), 3.10-3.14$ ($2 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}$ and $2-\mathrm{H}$). ${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 157.8(2 \times \mathrm{C} \mathrm{Ar}), 132.1(2 \times \mathrm{C} \mathrm{Ar}), 129.1$ (4 x CH Ar), 113.4 ($4 \times \mathrm{CH}$ Ar), 62.9 (C-5 and C-6), 55.3 ($2 \times \mathrm{OMe}$), 43.7 (C-3 and C-4), 40.8 (C-1 and C-2). IR (film) $v_{\max }$ 2980, 2360, 1738, 1378, 1230, 1152, $954 \mathrm{~cm}^{-1}$. HRMS (ESI): calculated for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{O} 4 \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$requires $m / z 351.1567$, found $m / z 351.1568$.

11. General procedure for the Ru-catalyzed oxidation of aromatic rings to carboxylic acids

To a cold $\left(0{ }^{\circ} \mathrm{C}\right)$ solution of cyclobutane in $10.0 \mathrm{~mL} / \mathrm{mmol}$ of a $2: 2: 3$ mixture of $\mathrm{CCl}_{4}: \mathrm{MeCN}: \mathrm{pH} 7$ buffer $\left(\mathrm{Na}_{2} \mathrm{HPO}_{4}\right), \mathrm{NaIO}_{4}$ (20.0 equiv) was added in one portion. The mixture was stirred at that temperature for 15 min and RuCl_{3} (5 or $10 \mathrm{~mol} \%$) was added in one portion. The mixture was warmed up to room temperature. The reaction was monitored by TLC until completion, diluted with $\mathrm{Et}_{2} \mathrm{O}$ and $\mathrm{H}_{2} \mathrm{O}$ and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 3 \mathrm{~mL} / \mathrm{mmol})$. The water layer was acidified until pH 1 using concentrated HCl , and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 3 \mathrm{~mL} / \mathrm{mmol})$. The combined organic layers were dried using $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and the solvent was evaporated under reduced pressure to give the corresponding carboxylic acid, that was purified by chromatography on silica gel using the appropriate mixture of eluents.

11.1. (\pm)-(1S, $7 R, 8 R, 9 S)-4,4-$ Diisopropyl-9-(4-methoxyphenyl)-3,5-dioxa-4-

silabicyclo[5.2.0]nonane-8-carboxylic acid, 8a.

From cyclobutane $2 \mathbf{j}$ ($10.0 \mathrm{mg}, 0.0227 \mathrm{mmol}$), $\mathrm{RuCl}_{3}(0.47 \mathrm{mg}, 0.0023 \mathrm{mmol})$ and NaIO_{4} ($98.0 \mathrm{mg}, 0.454 \mathrm{mmol}$) following the general procedure, carboxylic acid 8 a was obtained. Chromatographic purification (gradient elution: $2 \% \rightarrow 4 \%$ methanol - DCM) gave 8a as a colorless oil ($3.7 \mathrm{mg}, 56 \%$).

Data for 8a: $\boldsymbol{R}_{f} 0.5(10 \% \mathrm{MeOH}-\mathrm{DCM}) .{ }^{\mathbf{1}} \mathbf{H}$ NMR ($\left.\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 7.16(2 \mathrm{H}, \mathrm{d}, J=8.5$ $\mathrm{Hz}, \mathrm{Ar}), 6.87(2 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}, \mathrm{Ar}), 4.13-4.20\left(2 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}_{\mathrm{A}}\right.$ and $\left.6-\mathrm{H}_{\mathrm{A}}\right), 3.79(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.66-$ $3.78\left(2 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}_{\mathrm{B}}\right.$ and $\left.6-\mathrm{H}_{\mathrm{B}}\right), 3.27(1 \mathrm{H}, \mathrm{t}, J=9.6 \mathrm{~Hz}, 9-\mathrm{H}), 2.73(1 \mathrm{H}, \mathrm{t}, J=9.5 \mathrm{~Hz}, 8-\mathrm{H}), 2.49-2.57$ $(1 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}), 2.32-2.42(1 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}), 0.92-1.07(14 \mathrm{H}, \mathrm{m}, 2 \mathrm{x} i-\mathrm{Pr}) .{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta$ $177.0(\mathrm{C}=\mathrm{O})$, 158.7 (C Ar), 133.2 (C Ar), 127.7 ($2 \times \mathrm{CH} \mathrm{Ar}$), 114.2 ($2 \times \mathrm{CH} \mathrm{Ar}$), 68.1 and $68.0(\mathrm{C}-2$ and C-6), 55.5 (OMe), 49.2 (C-1), 45.4 (C-7), 44.9 (C-8), 42.7 (C-9), 17.57, 17.55, 17.5, 17.4 and 13.4 ($2 \mathrm{x} i$-Pr). NOESY- 2D ($\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): between $9-\mathrm{H}$ and $2-\mathrm{H}_{\mathrm{B}}$, between $9-\mathrm{H}$ and $7-\mathrm{H}$, between 9-H and Ar C-H, between 8-H and 1-H, between $8-\mathrm{H}$ and $6-\mathrm{H}_{\mathrm{B}}$. IR (film) $v_{\max }$ 2935, 2857, 1722, 1712, $1033 \mathrm{~cm}^{-1}$. HRMS (ESI): calculated for $\mathrm{C}_{20} \mathrm{H}_{29} \mathrm{O}_{5} \mathrm{Si}[\mathrm{M}-\mathrm{H}]^{+}$requires m / z 377.17897, found $m / z 377.17892$.

11.2. (\pm)-($1 R, 5 R, 6 R, 7 R)$-7-Phenyl-3-oxabicyclo[3.2.0]heptane-6-carboxylic acid, $8 \mathrm{8b}$.

5b

55\%

8b

From cyclobutane 5b ($20.0 \mathrm{mg}, 0.0714 \mathrm{mmol}$), $\mathrm{RuCl}_{3}(0.70 \mathrm{mg}, 0.0036 \mathrm{mmol})$ and NaIO_{4} $(302.0 \mathrm{mg}, 1.422 \mathrm{mmol})$ following the general procedure, carboxylic acid $\mathbf{8 b}$ was obtained. Chromatographic purification (gradient elution: $5 \% \rightarrow 20 \%$ methanol - DCM) gave $\mathbf{8 b}$ as a colorless oil ($8.5 \mathrm{mg}, \mathbf{5 5 \%}$). Data for $\mathbf{8 b}: \boldsymbol{R}_{\boldsymbol{f}} 0.5(10 \% \mathrm{MeOH}-\mathrm{DCM}) .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 7.14-$ $7.34(5 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 3.98\left(2 \mathrm{H}, \mathrm{d}, J=9.6 \mathrm{~Hz}, 2-\mathrm{H}_{\mathrm{A}}\right.$ and $\left.4-\mathrm{H}_{\mathrm{A}}\right), 3.52-3.63\left(3 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}_{\mathrm{A}}, 4-\mathrm{H}_{\mathrm{A}}\right.$ and $\left.7-\mathrm{H}\right)$, 3.34-3.42 $(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}), 3.24-3.32(1 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}), 3.10-3.24(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{~ N M R}(\mathbf{1 2 5} \mathbf{~ M H z}$, CDCl_{3}) $\delta 183.7$ ($\mathrm{C}=\mathrm{O}$), 140.2 (C Ar), 128.4 ($2 \times \mathrm{CH} \mathrm{Ar}$), 127.7 ($2 \times \mathrm{CH} \mathrm{Ar}$), 126.9 (CH Ar), 73.7 and 73.1 (C-2 and C-4), 45.3 (C-7), 43.2 (C-5), 41.6 (C-6), 38.1 (C-1). IR (film) $v_{\max } 2925,2853,1725$, 1702, 1412, 1611, $699 \mathrm{~cm}^{-1}$. HRMS (CI): calculated for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{3} \mathrm{~N}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$requires m / z 236.1287, found $m / z 236.1285$.

11.3. (\pm)-($1 R, 5 R, 6 R, 7 R)-7-[3$-(Trifluoromethyl)phenyl]-3-oxabicyclo[3.2.0]heptane-6-

 carboxylic acid, 8c.

From cyclobutane $5 \mathbf{5 d}(18.0 \mathrm{mg}, 0.0517 \mathrm{mmol}), \mathrm{RuCl}_{3}(0.54 \mathrm{mg}, 0.0052 \mathrm{mmol})$ and NaIO_{4} ($226.0 \mathrm{mg}, 1.034 \mathrm{mmol}$) following the general procedure, carboxylic acid 8 c was obtained. Chromatographic purification (gradient elution: $5 \% \rightarrow 20 \%$ methanol - DCM) gave $\mathbf{8 c}$ as a colorless oil ($8.3 \mathrm{mg}, 56 \%$)

Data for 8c: $\boldsymbol{R}_{f} 0.5(10 \% \mathrm{MeOH}-\mathrm{DCM}) .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(500 \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 7.45-7.50(2 \mathrm{H}, \mathrm{m}$, Ar), 7.38-7.45 ($2 \mathrm{H}, \mathrm{m}, \mathrm{Ar}$), $4.01\left(2 \mathrm{H}, \mathrm{dd}, J=9.7,3.9 \mathrm{~Hz}, 2-\mathrm{H}_{\mathrm{A}}\right.$ and $\left.4-\mathrm{H}_{\mathrm{A}}\right), 3.66(1 \mathrm{H}, \mathrm{dd}, J=10.6,5.5$ $\mathrm{Hz}, 7-\mathrm{H}), 3.55-3.64\left(2 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}_{\mathrm{B}}\right.$ and $\left.4-\mathrm{H}_{\mathrm{B}}\right), 3.37-3.43(1 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}), 3.33(1 \mathrm{H}, \mathrm{dd}, J=10.5,4.9 \mathrm{~Hz}$, 6-H), 3.21-3.27 ($1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}$). ${ }^{13} \mathbf{C}$ NMR (${ }^{\mathbf{1 9}} \mathbf{F}$-decoupled, $\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 174.9$ ($\mathrm{C}=\mathrm{O}$), 141.1 (C Ar), 131.2 (CH Ar and CF_{3}), 128.9 (C Ar and CH Ar), 124.6 (CH Ar), 123.9 (CH Ar), 73.6 and 73.1 (C-2 and C-4), 46.3 (C-6), 44.9 (C-7), 43.1 (C-5), 38.2 (C-5). NOESY- 2D ($500 \mathbf{~ M H z , ~ C D C l ~}{ }_{3}$): between $5-\mathrm{H}$ and $1-\mathrm{H}$, between $5-\mathrm{H}$ and $\mathrm{Ar} \mathrm{C}-\mathrm{H}$, between $6-\mathrm{H}$ and $7-\mathrm{H}$, between $6-\mathrm{H}$ and $2-\mathrm{H}_{\mathrm{B}}$ \& $4-$ H_{B}, between 7-H and $2-\mathrm{H}_{\mathrm{B}} \& 4-\mathrm{H}_{\mathrm{B}}$. IR (film) $v_{\max } 2925,2855,1725,1705,1412,701 \mathrm{~cm}^{-1}$. HRMS (CI): calculated for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{~F}_{3} \mathrm{NO}_{3}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$requires $m / z 304.1161$, found $\mathrm{m} / \mathrm{z} 304.1157$.

11.4. (\pm)-(1R,5R,6R,7R)-7-(o-Tolyl)-3-oxabicyclo[3.2.0]heptane-6-carboxylic acid, 8d.

From cyclobutane $5 \mathbf{e}(11.3 \mathrm{mg}, 0.0384 \mathrm{mmol}), \mathrm{RuCl}_{3}(0.80 \mathrm{mg}, 0.0038 \mathrm{mmol})$ and NaIO_{4} ($164.0 \mathrm{mg}, 0.768 \mathrm{mmol}$) following the general procedure, carboxylic acid 5 e was obtained. Chromatographic purification (gradient elution: $5 \% \rightarrow 20 \%$ methanol - DCM) gave $\mathbf{8 d}$ as a colorless oil ($4.4 \mathrm{mg}, 50 \%$).

Data for 8d: $\boldsymbol{R}_{f} 0.5(10 \% \mathbf{M e O H}-\mathrm{DCM}) .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 7.34(1 \mathrm{H}, \mathrm{d}, J=$ $7.6 \mathrm{~Hz}, \mathrm{Ar}), 7.15-7.20(1 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 7.10-7.14(2 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 4.04\left(1 \mathrm{H}, \mathrm{d}, J=9.7 \mathrm{~Hz}, 4-\mathrm{H}_{\mathrm{A}}\right), 4.12(1 \mathrm{H}$, d, $\left.J=9.7 \mathrm{~Hz}, 2-\mathrm{H}_{\mathrm{A}}\right), 3.79-3.89(1 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}), 3.65\left(1 \mathrm{H}, \mathrm{dd}, J=9.8,6.0 \mathrm{~Hz}, 4-\mathrm{H}_{\mathrm{B}}\right), 3.56(1 \mathrm{H}, \mathrm{dd}, J=$ $9.6,5.1 \mathrm{~Hz}, 2-\mathrm{H}_{\mathrm{B}}$), 3.42-3.48 (1H, m, 6-H), 3.27-3.33 (2H, m, 1-H and 5-H), $2.26(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}) .{ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl3) $\delta 175.3$ (C=O), 137.4 (C Ar), 136.9 (C Ar), 130.2 (CH Ar), 126.9 (CH Ar), 126.4 (CH Ar), 125.9 (CH Ar), 73.9 and 73.2 (C-2 and C-4), 46.2 and 37.2 (C-1 and C-5), 41.6 and 41.5 (C-6 and C-7), 19.9 (Me). IR (film) $v_{\max }$ 2925, 2853, 1725, 1702, 1412, 1611, $699 \mathrm{~cm}^{-1}$. HRMS (CI): calculated for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{NO}_{3}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$requires $\mathrm{m} / \mathrm{z} 250.1443$, found $\mathrm{m} / \mathrm{z} 250.1433$.
12. (\pm)-(1S,2S,3R,4R) 3,4-Bis(2-bromoethyl)-1,2-bis(4-methoxyphenyl)cyclobutane, 9

To a stirred solution of diol $\mathbf{6 a}(28.8 \mathrm{mg}, 0.0809 \mathrm{mmol})$ in dry $\mathrm{Et}_{2} \mathrm{O}(0.5 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ under Ar was added $\mathrm{PBr}_{3}(0.07 \mathrm{~mL}, 0.7 \mathrm{mmol})$. The reaction was stirred until completion, monitored by TLC analysis and quenched with NaHCO_{3}. The layers were separated and the aqueous layer extracted with $\mathrm{Et}_{2} \mathrm{O}$ twice. The combined organics were washed with brine, dried over MgSO_{4}, filtered and the solvent was evaporated to give the pure bromide $\mathbf{9}$ as a white solid ($34.9 \mathrm{mg}, 90 \%$). Spectral properties matched those previously reported. ${ }^{1}$

Data for 9: $\boldsymbol{R}_{f} 0.25\left(5 \% \mathrm{Et}_{2} \mathrm{O}\right.$ - pentane). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 7.11(4 \mathrm{H}, \mathrm{d}, J=8.6$ $\mathrm{Hz}, \mathrm{Ar}), 6.83(4 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}, \mathrm{Ar}), 3.78(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{OMe}), 3.40-3.18\left(4 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}_{2}\right.$ and $\left.8-\mathrm{H}_{2}\right), 2.83$ ($2 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}$ and $4-\mathrm{H}$), 2.30-2.12 ($6 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}, 2-\mathrm{H}, 6-\mathrm{H}_{2}$ and $8-\mathrm{H}_{2}$). ${ }^{\mathbf{1 3}} \mathbf{C} \mathbf{~ N M R ~ (~} \mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l} 3$) δ 158.4 ($2 \times \mathrm{C} \mathrm{Ar}$), 134.7 ($2 \times \mathrm{C} \mathrm{Ar}$), 128.0 ($4 \times \mathrm{CH} \mathrm{Ar}$), 114.0 ($4 \times \mathrm{CH} \mathrm{Ar}$), 55.4 ($2 \times \mathrm{OMe}$), 52.5 (C3 and C-4), 43.8 (C-1 and C-2), 39.4 (C-5 and C-7), 31.1 (C-6 and C-8). HRMS (ESI): calculated for $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{O}_{2}{ }^{79} \mathrm{Br}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]+$ requires $\mathrm{m} / \mathrm{z} 503.0192$, found $\mathrm{m} / \mathrm{z} 503.0193$.

13. NMR study of compound $3 \mathrm{k}, 8 \mathrm{a}$ and 8 c .

The ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 k}$ presents $1-\mathrm{H}$ and $7-\mathrm{H}$ as a multiplet that has COSY cross peaks with $8-\mathrm{H}, 9-\mathrm{H}, 2-\mathrm{H}_{\mathrm{A}}$ and $6-\mathrm{H}_{\mathrm{A}}$, while $8-\mathrm{H}$ and $9-\mathrm{H}$ is a doublet $(J=5.7 \mathrm{~Hz})$ that has COSY crosspeaks with 1-H and 7-H.

Additional support for the structure was found upon inspection of the NOESY 2D spectra of $\mathbf{3 k}$, that showed interactions between $8-\mathrm{H} / 9-\mathrm{H}$ and $2-\mathrm{H}_{2}$, between $8-\mathrm{H} / 9-\mathrm{H}$ and $6-\mathrm{H}_{2}$, but no interactions between $1-\mathrm{H} / 7-\mathrm{H}$ and $8-\mathrm{H} / 9-\mathrm{H}$, among others, confirming the trans-cis-trans relative stereochemistry.

3k
The ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{8 a}$ presents $1-\mathrm{H}$ and $7-\mathrm{H}$ as a multiplet that has COSY cross peaks with $7-\mathrm{H}, 9-\mathrm{H}, 2-\mathrm{H}_{2}$ and $1-\mathrm{H}$ and $8-\mathrm{H}, 6-\mathrm{H}_{2}$ respectively, while $8-\mathrm{H}$ and $9-\mathrm{H}$ is a triplet ($J=9.6 \mathrm{~Hz}$) that has COSY cross-peaks with 9-H, 7-H and 1-H, 8-H respectively.

Additional support for the structure was found upon inspection of the NOESY 2D spectra of 8a, that showed interactions between $9-\mathrm{H}$ and $2-\mathrm{H}_{\mathrm{B}}$, between $9-\mathrm{H}$ and $7-\mathrm{H}$, between $9-\mathrm{H}$ and $\mathrm{Ar} \mathrm{C}-\mathrm{H}$, between $8-\mathrm{H}$ and $1-\mathrm{H}$, between $8-\mathrm{H}$ and $6-\mathrm{H}_{\mathrm{B}}$, confirming the all-trans relative stereochemistry.

The ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{8 c}$ presents $1-\mathrm{H}$ and $5-\mathrm{H}$ as a multiplet that has COSY cross peaks with $7-\mathrm{H}, 5-\mathrm{H}, 2-\mathrm{H}_{2}$ and $1-\mathrm{H}$ and $4-\mathrm{H}, 6-\mathrm{H}_{2}$ respectively, while $6-\mathrm{H}$ and $7-\mathrm{H}$ is a doublet of doublet $(J=10.5,9.6 \mathrm{~Hz}$ and $J=10.5,5.5 \mathrm{~Hz})$ that has COSY cross-peaks with $5-\mathrm{H}, 7-\mathrm{H}$ and $1-\mathrm{H}, 6-\mathrm{H}$ respectively.

Additional support for the structure was found upon inspection of the NOESY 2D spectra of 8a, that showed interactions between $5-\mathrm{H}$ and $1-\mathrm{H}$, between $5-\mathrm{H}$ and $\mathrm{Ar} \mathrm{C}-\mathrm{H}$, between $6-\mathrm{H}$ and $7-\mathrm{H}$, between $6-\mathrm{H}$ and $2-\mathrm{H}_{\mathrm{B}} \& 4-\mathrm{H}_{\mathrm{B}}$, between $7-\mathrm{H}$ and $2-\mathrm{H}_{\mathrm{B}} \& 4-\mathrm{H}_{\mathrm{B}}$.

8c

14. Limitations in the scope of $[2+2]$ cycloaddition

For the silicon tethered [2+2]-cycloaddition, the silyl ether $\mathbf{1 0}$ bearing a tri-substituted aliphatic allyl alcohol gave a complex mixture under standard conditions; no desired cyclobutene was observed.

For the intramolecular bis-allylether [2+2]-cycloaddition, the ether $\mathbf{4 h}$ bearing a di-substituted aliphatic allyl alcohol gave recovery of starting material under standard conditions, no desired cyclobutene was observed. However, an ether bearing a tri-substituted aliphatic allyl alcohol gave desired cyclobutene product (see cycloaddition of ethers $\mathbf{4 f}$ and $\mathbf{4 g}$).

5h

[^1]
[^0]: Yuxiang Zhu, ${ }^{\mathbf{a}, \dagger}$ Ignacio Colomer ${ }^{\mathbf{a}, \dagger}$ and Timothy J. Donohoe ${ }^{\text {a }}$
 Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford, OX1 3TA (UK)
 E-mail: timothy.donohoe@chem.ox.ac.uk
 \dagger These authors contributed equally.

[^1]: ${ }^{1}$ I. Colomer, R. Coura Barcelos and T. J. Donohoe, Angew. Chem. Int. Ed. 2016, 55, 4748.
 ${ }^{2}$ J. E. Baldwin and D. R. Kelly, J. Chem. Soc., Chem. Commun. 1985, 682.
 ${ }^{3}$ S. L. You, X. Z. Zhu, Y. M. Luo, X. L. Hou, and L. X. Dai, J. Am. Chem. Soc. 2001, 123, 7471.
 ${ }^{4}$ J. Mo, L. Xu, J. Ruan, S. Liu, and J. Xiao, Chem. Commun. 2006, 3591.
 ${ }^{5}$ Melpolder, J. B., \& Heck, R. F. J. Org. Chem. 1976, 41, 265.
 ${ }^{6}$ X. Zeng, C. Miao, S. Wang, C. Xia, and W. Sun, Chem. Commun. 2013, 49, 2418.
 ${ }^{7}$ Mori, M., \& Watanuki, S. J. Chem. Soc., Chem. Commun., 1992, 1082.
 ${ }^{8}$ Satterfield, A. D., Kubota, A., \& Sanford, M. S. Org. Lett. 2011, 13, 1076.
 ${ }^{9}$ Y. Wang, F. Chen, H. Di, Y. Xu, Q. Xiao, X. Wang and J. Li, J. Med. Chem. 2016, 59, 3215.
 ${ }^{10}$ H. Ohno, T. Mizutani, Y. Kadoh, A. Aso, K. Miyamura, N. Fujii and T. Tanaka, J. Org. Chem. 2007, 72, 4378.
 ${ }^{11}$ (a) M. A. Ischay, Z. Lu, and T. P. Yoon, J. Am. Chem. Soc. 2010, 132, 8572. (b) M. A. Ischay, M. S. Ament, and T. P. Yoon, Chem. Sci. 2012, 3, 2807.

