Supporting Information

Hypervalent iodine initiated intramolecular alkene dimerisation: a stereodivergent entry to cyclobutanes

Yuxiang Zhu,^{a,†} Ignacio Colomer^{a,†} and Timothy J. Donohoe^a

Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford, OX1 3TA (UK)

E-mail: timothy.donohoe@chem.ox.ac.uk

[†] These authors contributed equally.

Table	of	Contents
-------	----	----------

1. General experimental detailsS5		
2. General procedure for the synthesis of <i>E</i> -styrenes		
2.1.	Synthesis of S1a	S 5
2.2.	Synthesis of S1b	S6
2.3.	Synthesis of S1c	S6
2.4.	Synthesis of S1d	S7
3. General procedure for acetate deprotection		S7
3.1.	Synthesis of S2a	S7
3.2.	Synthesis of S2b	S8
3.3.	Synthesis of S2c	S8
3.4.	Synthesis of S2d	S9
4. General p	procedure for the reduction of α , β -unsaturated aldehydes	
to allylic	e alcohols	S 9
4.1.	Synthesis of S2e	S 9
4.2.	Synthesis of S2f	S10
5. Synthesis	of S3a	S10
6. General procedure for the preparation of symmetric silyl ethers		S11
6.1.	Synthesis of 1a	S11
6.2.	Synthesis of 1b	S12
6.3.	Synthesis of 1c	S12
6.4.	Synthesis of 1e	S13
6.5.	Synthesis of 1j	S13
6.6.	Synthesis of 1k	S14
6.7.	Synthesis of 11	S14
6.8.	Synthesis of 1m	S15
7. General p	procedure for the preparation of non-symmetric silyl ethers	S16
7.1.	Synthesis of 1d	S16
7.2.	Synthesis of 1f	S17
7.3.	Synthesis of 1g	S17
7.4.	Synthesis of 1h	S18
7.5.	Synthesis of 1i	S18
7.6.	Synthesis of 1n	S19
8. General procedure for the synthesis of ethers S2		
8.1.	Synthesis of 4a	S20

	8.2.	Synthesis of 4b	S20
	8.3.	Synthesis of 4c	S21
	8.4.	Synthesis of 4d	S22
	8.5.	Synthesis of 4e	S22
	8.6.	Synthesis of 4f	S23
	8.7.	Synthesis of 4g	S23
9. Gen	eral p	rocedure for the synthesis of cyclobutanes	S25
	9.1.	Synthesis of 2a	S25
	9.2.	Synthesis of 2b	S25
	9.3.	Synthesis of 2c	S26
	9.4.	Synthesis of 2d	S27
	9.5.	Synthesis of 2e and 3e	S27
	9.6.	Synthesis of 2f	S28
	9.7.	Synthesis of 2g and 3g	S29
	9.8.	Synthesis of 2h and 3h	S30
	9.9.	Synthesis of 2i and 3i	S31
	9.10.	Synthesis of 2j and 3j	S32
	9.11.	Synthesis of 2k and 3k	S33
	9.12.	Synthesis of 21 and 31	S33
	9.13.	Synthesis of 2m and 3m	S34
	9.14.	Synthesis of 2n and 3n	S35
	9.15.	Synthesis of 5a	S36
	9.16.	Synthesis of 5b	S36
	9.17.	Synthesis of 5c	S37
	9.18.	Synthesis of 5d	S38
	9.19.	Synthesis of 5e	S38
	9.20.	Synthesis of 5f	S39
	9.21.	Synthesis of 5g	S39
10.	Gei	neral procedure for silyl ether deprotection	S40
	10.1.	Synthesis of 6a	S40
	10.2.	Synthesis of 6b	S41
	10.3.	Synthesis of 7a	S42
11.	Gei	neral procedure for the Ru-catalyzed oxidation of aromatic rings to c	arboxylic

acids	S42
11.1. Synthesis of 8a	S43

	11.2. Synthesis of 8b	S43
	11.3. Synthesis of 8c	S44
	11.4. Synthesis of 8d	S44
12.	Synthesis of 9	S45
13.	NMR study of compound 3k, 8a and 8c	S46
14.	Limitations in the scope of [2+2] cycloaddition	S48
15.	References	S48

1. General experimental details

¹H NMR and ¹³C NMR spectra were recorded on a 400 MHz or 500MHz spectrometer in CDCl₃ and referenced to residual solvent peaks. Chemical shifts are quoted in ppm (parts per million) to the nearest 0.01 ppm with signal splitting recorded as singlet (s), doublet (d), triplet (t), quartet (q), quintet (quint) septet (sept), multiplet (m) and broad singlet (br s). Coupling constants, J, are measured in Hz to the nearest 0.1 Hz. ¹H and ¹³C NMR spectra were recorded at room temperature. Infrared spectra were recorded as thin films of neat samples on a Bruker Tensor 27 FT-IR spectrometer equipped with Attenuated Total Reflectance sampling accessories. High resolution mass spectra are given to four decimal places and were recorded on a Bruker MicroTof (resolution = 10000 FWHM) under conditions of electrospray ionization (ESI), electronic ionization (EI) or chemical ionization (CI). Melting points (m.p.) were obtained from recrystallized samples using a Lecia VMTG heated-stage microscope and are uncorrected. The solvent systems used for recrystallization are quoted in parentheses. Flash column chromatography was performed using silica gel (60 Å, 0.033-0.070 mm, BDH) or using basic alumina (pH 9.5, 58 Å, 150 mesh, Sigma-Aldrich). TLC analyses were performed on Merck Kiesegel 60 F254 0.25 mm precoated silica plates or Macherey-Nagel Alugram Alox N/UV254 0.20 mm precoated alumina plates. Reagents obtained from Sigma-Aldrich, Alfa, Fluorochem and TCI suppliers were used directly as supplied All anhydrous reactions were carried out in flame dried glassware and under an inert atmosphere of argon provided by a balloon. All reactions were stirred with magnetic followers. THF, toluene and CH₂Cl₂ were dried by purification through two activated alumina purification columns. Brine refers to a saturated aqueous solution of NaCl.

2. General procedure for the synthesis of styrenes using a Ru-catalyzed methatesis reaction

To a flame-dried flask, charged with 1.5 mol% of Ru-catalyst, under Ar, at room temperature, was added 4.0 mL/mmol of dry CH₂Cl₂ (previously degassed, bubling Ar for 30 min.). A solution of the mixture of alkenes in dry and degassed CH₂Cl₂ (1.0 mL/mmol) was added and the mixture was stirred at the appropriate temperature. The reaction was monitored by TLC until completion, and the solvent was evaporated under reduced pressure to give the corresponding styrene, that was purified by chromatography on silica gel using the appropriate mixture of eluents.

2.1. (1*E*)-4-(4-Methoxyphenyl)but-3-en-1-yl acetate, S1a.

From 4-methoxystyrene (5.000 g, 37.31 mmol), 3-butenyl acetate (8.500 g, 74.60 mmol) and Grubbs II (1.500 g, 1.769 mmol), in 150 mL of CH₂Cl₂, following the general procedure, styrene **S1a** was obtained. Chromatographic purification (gradient elution: $1:99 \rightarrow 10:90$ Et₂O – pentane) gave **S1a** (6.800 g, 83%), as a colorless oil. Spectral properties matched those previously reported.¹

Data for **S1a**: $R_f 0.30 (10\% \text{ Et}_2\text{O} - \text{pentane})$. ¹**H NMR (400 MHz, CDCl₃)** δ 7.28 (2H, d, J = 8.4 Hz, Ar), 6.84 (2H, d, J = 8.8 Hz, Ar), 6.41 (1H, d, J = 15.9 Hz, 4-H), 6.02 (1 H, dt, J = 15.8, 7.0 Hz, 3-H), 4.17 (2H, t, J = 6.8 Hz, 1-H₂), 3.79 (3H, s, OMe), 2.52 (2H, qd, J = 6.9, 1.5 Hz, 2-H₂), 2.05 (3H, s, Me OAc). ¹³**C NMR (100 MHz, CDCl₃)** δ 171.1 (C=O), 159.0 (C Ar), 131.8 (C-4), 130.1 (C Ar), 127.2 (2 x CH Ar), 123.3 (C-3), 114.0 (2 x CH Ar), 63.9 (C-1), 55.3 (OMe), 32.4 (C-2), 21.0 (Me OAc). **HRMS** (ESI): calculated for C₁₃H₁₆O₃Na [M+Na]⁺ requires *m*/*z* 243.0991, found *m*/*z* 243.0994.

2.2. (*E*)-4-Phenylbut-3-en-1-yl acetate, S1b.

From styrene (0.456 g, 4.38 mmol), but-3-en-1-yl acetate (1.000 g, 8.772 mmol) and Grubbs II (56.0 mg, 0.0660 mmol) following the general procedure, styrene **S1b** was obtained. Chromatographic purification (gradient elution: $5\% \rightarrow 8\%$ Et₂O - pentane) gave **S1b** as a white solid (510.0 mg, 61%). Spectral properties matched those previously reported.²

Data for **S1b**: R_f 0.50 (20% Et₂O - pentane). ¹H NMR (400 MHz, CDCl₃) δ 7.28-7.38 (4 H, m, Ar), 7.19-7.25 (1 H, m, Ar), 6.48 (1H, d, J = 15.9 Hz, 4-H), 6.18 (1H, dt, J = 15.9, 7.0 Hz, 3-H), 4.20 (2H, t, J = 6.7 Hz, 1-H₂), 2.55 (2H, qd, J = 6.8, 1.5 Hz, 2-H₂), 2.06 (3H, s, Me Ac). ¹³C NMR (100 MHz, CDCl₃) δ 171.1 (C=O), 137.3 (C Ar), 132.4 (C-4), 128.6 (2 x CH Ar), 127.3 (CH Ar), 126.1 (2 x CH Ar), 125.6 (C-3), 63.8 (C-1), 32.4 (C-2), 21.0 (Me Ac). HRMS (ESI): calculated for C₁₂H₁₄O₂Na [M+Na]⁺ requires *m/z* 213.0886, found *m/z* 213.0888.

2.3. (*E*)-4-(*p*-Tolyl)but-3-en-1-yl acetate, S1c.

From 1-methyl-4-vinylbenzene (0.520 g, 4.41 mmol), but-3-en-1-yl acetate (1.000 g, 8.850 mmol) and Grubbs II (56.0 mg, 0.0660 mmol) following the general procedure, styrene **S1c** was

obtained. Chromatographic purification (gradient elution: $5\% \rightarrow 8\%$ Et₂O - pentane) gave **S1c** as a white solid (552.0 mg, 62%).

Data for **S1c**: R_f 0.40 (20% Et₂O - pentane). **M.p.**: 49 °C (solvent: 5% diethyl ether in pentane). ¹H NMR (400 MHz, CDCl₃) δ 7.25 (2H, d, J = 8.2 Hz, Ar), 7.12 (2H, d, J = 8.2 Hz, Ar), 6.44 (1H, d, J = 15.9 Hz, 4-H), 6.12 (1H, dt, J = 15.9, 7.0 Hz, 3-H), 4.18 (2H, t, J = 6.8 Hz, 1-H₂), 2.53 (2H, qd, J = 6.8, 1.5 Hz, 2-H₂), 2.33 (3H, s, Me), 2.06 (3H, s, Me Ac). ¹³C NMR (100 MHz, CDCl₃) δ 171.3 (C=O), 137.2 (C Ar), 134.6 (C Ar), 132.4 (C-4), 129.3 (2 x CH Ar), 126.1 (2 x CH Ar), 124.6 (C-3), 63.9 (C-1), 32.5 (C-2), 21.3 (Me), 21.1 (Me Ac). IR (film) v_{max} 2955, 2360, 2341, 1736, 1232, 1033, 967, 799 cm⁻¹. HRMS (ESI): calculated for C₁₃H₁₆O₂Na [M+Na]⁺ requires *m/z* 227.1043, found *m/z* 227.1044.

2.4. (*E*)-3-(*p*-Tolyl)allyl acetate, S1d.

From 1-methyl-4-vinylbenzene (1.000 g, 8.475 mmol), allyl acetate (1.450 g, 14.50 mmol) and Grubbs II (108.0 mg, 0.1273 mmol) following the general procedure, styrene **S1d** was obtained. Chromatographic purification (gradient elution: $5\% \rightarrow 8\%$ Et₂O - pentane) gave **S1d** as a white solid (871.0 mg, 55%). Spectral properties matched those previously reported.³

Data for S1d: R_f 0.5 (15% Et₂O - pentane). ¹H NMR (400 MHz, CDCl₃) δ 7.29 (2H, d, J = 8.1 Hz, Ar), 7.13 (2H, d, J = 7.6 Hz, Ar), 6.63 (1H, d, J = 15.9 Hz, 3-H), 6.24 (1H, dt, J = 15.9, 6.6 Hz, 2-H), 4.72 (2H, dd, J = 6.6, 1.3 Hz, 1-H₂), 2.34 (3H, s, Me), 2.10 (3H, s, Me Ac). ¹³C NMR (100 MHz, CDCl₃) δ 170.9 (C=O), 138.0 (C Ar), 134.3 (C-3), 133.4 (C Ar), 129.3 (2 x CH Ar), 126.5 (2 x CH Ar), 122.1 (C-2), 65.3 (C-1), 21.3 (Me), 21.1 (Me Ac). HRMS (Cl): calculated for C₁₂H₁₅O₂ [M+H]⁺ requires *m/z* 191.1072, found *m/z* 191.1069.

3. General procedure for acetate deprotection

To a solution of acetate in MeOH (10.0 mL/mmol), 5.0 equiv of K_2CO_3 were added in one portion at room temperature. The reaction was monitored by TLC until completion. The mixture was filtered and the solvent was evaporated under reduced pressure to give the corresponding alcohol, that was purified by chromatography on silica gel using the appropriate mixture of eluents.

3.1. (*E*)-4-(4-Methoxyphenyl)but-3-en-1-ol, S2a.

From acetate **S1a** (3.510 g, 15.95 mmol) and K₂CO₃ (6.580 g, 47.68 mmol) following the general procedure, alcohol **S2a** was obtained. Chromatographic purification (gradient elution: 50% \rightarrow 100% Et₂O - pentane) gave **S2a** as a white solid (2.230 g, 79%). Spectral properties matched those previously reported.⁴

Data for S2a: $R_f 0.33$ (75 % Et₂O - pentane). ¹H NMR (400 MHz, CDCl₃) δ 7.30 (2H, d, J = 8.9 Hz, Ar), 6.84 (2H, d, J = 8.8 Hz, Ar), 6.45 (1H, d, J = 15.9 Hz, 4-H), 6.05 (1H, dt, J = 15.8, 7.2 Hz, 3-H), 3.80 (3H, s, OMe), 3.75 (2H, t, J = 7.5 Hz, 1-H₂), 2.43-2.50 (2 H, m, 2-H₂), 1.47 (1H, br s, OH). ¹³C NMR (100 MHz, CDCl₃) δ 159.0 (C Ar), 132.3 (C-4), 130.1 (C Ar), 127.2 (2 x CH Ar), 124.0 (C-3), 114.0 (2 x CH Ar), 62.1 (C-1), 55.3 (OMe), 36.4 (C-2). HRMS (Cl): calculated for C₁₁H₁₅O₂ [M+H]⁺ requires *m/z* 179.1072, found *m/z* 179.1067.

3.2. (*E*)-4-Phenylbut-3-en-1-ol, S2b.

From acetate **S1b** (0.541 g, 2.85 mmol) and K₂CO₃ (1.970 g, 14.28 mmol) following the general procedure, alcohol **S2b** was obtained. Chromatographic purification (gradient elution: 40% \rightarrow 60% Et₂O - pentane) gave **S2b** as a colorless oil (0.369 g, 88%). Spectral properties matched those previously reported.⁵

Data for **S2b**: R_f 0.4 (75% Et₂O - pentane). ¹H NMR (400 MHz, CDCl₃) δ 7.28-7.39 (4H, m, Ar), 7.19-7.25 (1H, m, Ar), 6.51 (1H, d, J = 15.8 Hz, 4-H), 6.21 (1H, dt, J = 15.9, 7.1 Hz, 3-H), 3.73-3.81 (2H, m, 1-H₂), 2.47-2.53 (2H, m, 2-H₂), 1.47 (1H, br s, OH). ¹³C NMR (100 MHz, CDCl₃) δ 137.2 (C Ar), 132.9 (C-4), 128.6 (2 x CH Ar), 127.3 (CH Ar), 126.3 (C-3), 126.1 (2 x CH Ar), 62.0 (C-1), 36.4 (C-2). HRMS (CI): calculated for C₁₀H₁₇ON [M+NH₄]⁺ requires *m*/*z* 166.1232, found *m*/*z* 166.1227.

3.3. (*E*)-4-(*p*-Tolyl)but-3-en-1-ol, S2c.

From acetate **S1c** (0.452 g, 2.22 mmol) and K₂CO₃ (1.530 g, 11.09 mmol) following the general procedure, styrene **S2c** was obtained. Chromatographic purification (gradient elution: 50% \rightarrow 100% Et₂O - pentane) gave **S2c** as a white solid (0.317 g, 88%). Spectral properties matched those previously reported.⁶

Data for S2c: R_f 0.5 (80% Et₂O - pentane). ¹H NMR (400 MHz, CDCl₃) δ 7.29 (2H, d, J = 8.2 Hz, Ar), 7.14 (2H, d, J = 7.9 Hz, Ar), 6.48 (1H, d, J = 15.9 Hz, 4-H), 6.17 (1H, dt, J = 15.9, 7.1 Hz, 3-H), 3.75 (2H, t, J = 6.4 Hz, 1-H₂), 2.48 (2H, qd, J = 6.5, 1.4 Hz, 2-H₂), 2.44 (1 H, br s, OH), 2.37 (3 H, s, Me). ¹³C NMR (100 MHz, CDCl₃) δ 137.0 (C Ar), 134.6 (C Ar), 132.5 (C-4), 129.3 (2 x CH Ar), 126.0 (2 x CH Ar), 125.4 (C-3), 62.1 (C-1), 36.5 (C-2), 21.2 (Me). HRMS (ESI): calculated for C₁₁H₁₄ONa [M+Na]⁺ requires *m*/*z* 185.0937, found *m*/*z* 185.0935.

3.4. (*E*)-3-(*p*-Tolyl)prop-2-en-1-ol, S2d.

From acetate **S1d** (0.440 g, 2.14 mmol) and K₂CO₃ (1.480 g, 10.72 mmol) following the general procedure, styrene **S2d** was obtained. Chromatographic purification (gradient elution: 50% \rightarrow 100% Et₂O - pentane) gave **S2d** as a light yellow solid (250.0 mg, 79%). Spectral properties matched those previously reported.⁷

Data for S2d: R_f 0.5 (80% Et₂O - pentane). ¹H NMR (400 MHz, CDCl₃) δ 7.30 (2H, d, J = 8.1 Hz, Ar), 7.15 (2H, d, J = 7.9 Hz, Ar), 6.58 (1H, d, J = 15.9 Hz, 3-H), 6.32 (1H, dt, J = 15.8, 5.8 Hz, 2-H), 4.30 (2H, dd, J = 5.8, 1.5 Hz, 1-H₂), 2.92 (1H, br s, OH), 2.38 (3H, s, Me). ¹³C NMR (100 MHz, CDCl₃) δ 137.5 (C Ar), 134.0 (C Ar), 131.0 (C-3), 129.4 (2 x CH Ar), 127.6 (C-2), 126.5 (2 x CH Ar), 63.6 (C-1), 21.3 (Me). HRMS (Cl): calculated for C₁₀H₁₆ON [M+NH4]⁺ requires *m/z* 166.1232, found *m/z* 166.1232.

4. General procedure for the reduction of α , β -unsaturated aldehydes to allylic alcohols

To a solution of 1.0 eq. of aldehyde in MeOH (1.5 mL/mmol) under Ar, 1.0 eq. of NaBH₄ was slowly added at 0 °C. The reaction was stirred for 30 min. and let it warmed up slowly to rt. until completion (usually 12 hours). The reaction was quenched with saturated NH₄Cl solution (5.0 mL/mmol) and the aqueous layer was extracted with Et₂O (3 x 5.0 mL/mmol). The combined organic layers were washed with brine (5.0 mL/mmol), dried over anhydrous MgSO₄ and the solvent was removed under reduced pressure. Recrystalization afforded the corresponding alcohol.

4.1. (*E*)-3-(4-Methoxyphenyl)prop-2-en-1-ol, S2e.

From *p*-methoxycinnamaldehyde (4.800 g, 29.63 mmol) and NaBH₄ (1.125 g, 29.63 mmol) following the general procedure, gave alcohol **S2e** (4.850 g, 99%) as a white solid. Spectral properties matched those previously reported.⁸

Data for S2e: R_f 0.5 (80% Et₂O - pentane). ¹H NMR (400 MHz, CDCl₃) δ 7.32 (2H, d, J = 8.7 Hz, Ar), 6.86 (2H, d, J = 8.7 Hz, Ar), 6.56 (1H, d, J = 15.9 Hz, 3-H), 6.24 (1H, dt, J = 15.8, 6.0 Hz, 2-H), 4.29 (2H, dd, J = 5.9, 1.2 Hz, 1-H₂), 3.81 (3H, s, OMe), 1.53 (1H, br s, OH). ¹³C NMR (100 MHz, CDCl₃) δ 159.5 (C Ar), 131.1 (C-3), 129.6 (C Ar), 127.8 (2 x CH Ar), 126.4 (C-2), 114.2 (2 x CH Ar), 64.07 (C-1), 55.43 (OMe). HRMS (Cl): calculated for C₁₀H₁₃O₂ [M+H]⁺ requires *m/z* 165.0916, found *m/z* 165.0919.

4.2. (*E*)-3-(4-Bromophenyl)prop-2-en-1-ol, S2f.

From (*E*)-3-(4-Bromophenyl)acrylaldehyde (0.500 g, 2.38 mmol) and NaBH₄ (91.0 mg, 2.39 mmol) following the general procedure gaver alcohol **S2f** as a yellow solid (479.0 mg, 95%). Spectral properties matched those previously reported.⁹

Data for **S2f**: R_f 0.45 (80% Et₂O - pentane). ¹H NMR (400 MHz, CDCl₃) δ 7.38 (2H, d, J = 8.4 Hz, Ar), 7.15 (2H, d, J = 8.5 Hz, Ar), 6.48 (1H, d, J = 15.9 Hz, 3-H), 6.27 (1H, dt, J = 15.9, 5.5 Hz, 2-H), 4.26 (2H, dd, J = 5.6, 1.6 Hz, 1-H₂), 3.28 (1H, br s, OH). ¹³C NMR (100 MHz, CDCl₃) δ 135.5 (C Ar), 131.6 (2 x CH Ar), 129.4 (C-3), 129.3 (C-2), 127.9 (2 x CH Ar), 121.3 (C Ar), 63.1 (C-1).

5. (E)-1-(3-Bromoprop-1-en-1-yl)-4-methoxybenzene, S3a.

To a stirred solution of alcohol **S2e** (1.060 g, 6.463 mmol) in dry Et_2O (2.0 mL) at 0 °C under Ar was added PBr₃ (0.24 mL, 2.6 mmol). The reaction was stirred until completion, monitored by TLC analysis and quenched with NaHCO₃. The layers were separated and the aqueous layer extracted with Et_2O twice. The combined organics were washed with brine, dried over MgSO₄, filtered and the solvent was evaporated to give the pure bromide **S3a** as a white solid (1.400 g, 96%). Spectral properties matched those previously reported.¹⁰

Data for S3a: R_f 0.80 (80% Et₂O - pentane). ¹H NMR (400 MHz, CDCl₃) δ 7.33 (2H, d, J = 8.4 Hz, Ar), 6.87 (2H, d, J = 8.8 Hz, Ar), 6.60 (1H, d, J = 15.5 Hz, 3-H), 6.27 (1H, dt, J = 15.7, 7.9 Hz, 2-H), 4.17 (2H, dd, J = 7.8, 1.0 Hz, 1-H₂), 3.82 (3H, s, OMe). ¹³C NMR (100 MHz, CDCl₃) δ 159.8 (C Ar), 134.2 (C-3), 128.5 (C Ar), 128.1 (2 x CH Ar), 123.0 (C-2), 114.1 (2 x CH Ar), 55.4 (OMe), 34.3 (C-1). HRMS (Cl): calculated for C₁₀H₁₂BrO [M+H]⁺ requires *m/z* 227.0072, found *m/z* 227.0069.

6. General procedure for the preparation of symmetric silyl ethers

To a flame-dried round bottom flask with a stirring bar, a solution of 1.25 eq. of imidazole in dry DCM (5.0 mL/mmol) was added under argon. The solution was stirred and cooled down to 0 °C, and 0.53 eq. of silane was added dropwise. After 10 min. of stirring, a solution of 1.0 eq. of alcohol in dry DCM (2 mL/mmol) was added dropwise over 1 hour using syringe pump. The reaction was stirred for 10 min. at 0 °C after the addition of alcohol was completed, and monitored by TLC. The solvent was evaporated under reduced pressure and the crude reaction was purified by chromatography on silica gel using the appropriate mixture of eluents.

6.1. (*E*)-4-Diisopropylbis[(4-methoxyphenyl)but-3-en-1-yloxy)]silane, 1a.

From alcohol **S2a** (102.0 mg, 0.573 mmol), imidazole (48.7 mg, 0.716 mmol) and dichlorodiisopropylsilane (0.054 mL, 0.30 mmol) following the general procedure, diene **1a** was obtained. Chromatographic purification (3% Et_2O - pentane) gave **1a** as a colorless oil (76.9 mg, 78%).

Data for **1a**: R_f 0.45 (10% Et₂O - pentane). ¹H NMR (400 MHz, CDCl₃) δ 7.25 (4H, d, J = 8.8 Hz, Ar), 6.82 (4H, d, J = 8.7 Hz, Ar), 6.38 (2H, d, J = 15.9 Hz, 4-H and 8-H), 6.08 (2H, dt, J = 15.8, 7.1 Hz, 3-H and 7-H), 3.84 (4H, t, J = 6.8 Hz, 1-H₂ and 5-H₂), 3.79 (6H, s, 2 x OMe), 2.45 (4H, qd, J = 6.9, 1.4 Hz, 2-H₂ and 6-H₂), 1.01-1.08 (14H, m, 4 x *i*-Pr). ¹³C NMR (100 MHz, CDCl₃) δ 158.9 (2 x C Ar), 131.2 (C-4 and C-8), 130.6 (2 x C Ar), 127.2 (4 x CH Ar), 124.9 (C-3 and C-7),

114.0 (4 x C-H Ar), 63.0 (C-1 and C-5), 55.4 (2 x OMe), 36.7 (C-2 and C-6), 17.5 (4 x CH₃ *i*-Pr), 12.3 (2 x CH *i*-Pr). **IR** (film) v_{max} 3657, 2980, 2888, 1382, 1251, 1152, 1072, 954 cm⁻¹. **HRMS** (ESI): calculated for C₂₈H₄₀O₄SiNa [M+Na]⁺ requires *m/z* 491.2588, found *m/z* 491.2586.

6.2. (E)-4-Ditert-butylbis[(4-methoxyphenyl)but-3-en-1-yloxy]silane, 1b.

From alcohol **S2a** (100.0 mg, 0.561 mmol), di-*tert*butylsilanediylbis(trifluoromethanesulfonate) (0.096 mL, 0.30 mmol) and 2,4-lutidine (0.08 mL, 0.7 mmol), following the general procedure, diene **1b** was obtained. Chromatographic purification (5% Et_2O - pentane) gave **1b** as a colorless oil (62.1 mg, 45%).

Data for **1b**: R_f 0.40 (10% Et₂O - pentane). **M.p.**: 45 °C (solvent: 10% diethyl ether in pentane). ¹H NMR (400 MHz, CDCl₃) δ 7.25 (4H, d, J = 8.7 Hz, Ar), 6.82 (4H, d, J = 8.8 Hz, Ar), 6.38 (2H, d, J = 15.9 Hz, 4-H and 8-H), 6.10 (2H, dt, J = 15.8, 7.1 Hz, 3-H and 7-H), 3.93 (4H, t, J = 6.7 Hz, 1-H₂ and 5-H₂), 3.79 (6H, s, 2 x OMe), 2.45 (4H, qd, J = 6.8, 1.4 Hz, 2-H₂ and 6-H₂), 1.03 (18H, s, 6 x CH₃*t*-Bu). ¹³C NMR (100 MHz, CDCl₃) δ 158.8 (2 x C Ar), 131.1 (C-4 and C-8), 130.7 (2 x C Ar), 127.2 (4 x CH Ar), 125.2 (C-3 and C-7), 114.0 (4 x CH Ar), 63.9 (C-1 and C-5), 55.4 (2 x OMe), 36.9 (C-2 and C-6), 28.0 (6 x CH₃*t*-Bu), 21.3 (2 x C *t*-Bu). IR (film) v_{max} 3667, 2980, 2360, 1382, 1249, 1151, 1086, 955 cm⁻¹. HRMS (ESI): calculated for C₃₀H₄₄O₄SiNa [M+Na]⁺ requires *m*/z 519.2901, found *m*/z 519.2899.

6.3. (*E*)-Bis[4-(4-methoxyphenyl)but-3-en-1-yloxy]diphenylsilane, 1c.

From alcohol **S2a** (80.0 mg, 0.449 mmol), imidazole (38.2 mg, 0.562 mmol) and dichlorodiphenylsilane (0.049 mL, 0.24 mmol) following the general procedure, diene **1c** was obtained. Chromatographic purification (5% Et_2O - pentane) gave **1c** as a colorless oil (21.7 mg, 18%).

Data for **1c**: R_f 0.45 (30% Et₂O - pentane). ¹**H** NMR (400 MHz, CDCl₃) δ 7.65-7.70 (4H, m, Ar), 7.30-7.45 (6H, m, Ar), 7.24 (4H, d, J = 8.7 Hz, Ar), 6.82 (4H, d, J = 8.8 Hz, Ar), 6.37 (2H, d, J = 15.9 Hz, 4-H and 8-H), 6.05 (2H, dt, J = 15.8, 7.0 Hz, 3-H and 7-H), 3.90 (4H, t, J = 6.7 Hz, 1-H₂ and 5-H₂), 3.79 (6H, s, 2 x OMe), 2.49 (4H, qd, J = 6.8, 1.4 Hz, 2-H₂ and 6-H₂). ¹³C NMR (100 MHz, CDCl₃) δ 158.9 (2 x C Ar), 135.1 (4 x CH Ar), 133.0 (2 x C Ar), 131.4 (C-4 and C-8), 130.6 (2 x C Ar), 130.4 (2 x CH Ar), 128.0 (4 x CH Ar), 127.2 (4 x CH Ar), 124.8 (C-3 and C-7), 114.0 (4 x CH Ar), 63.1 (C-1 and C-5), 55.4 (2 x OMe), 36.4 (C-2 and C-6). IR (film) v_{max} 3028, 2360, 1509, 1246, 1116, 1080, 700 cm⁻¹. HRMS (ESI): calculated for C₃₄H₃₆O₄SiNa [M+Na]⁺ requires *m*/*z* 559.2275, found *m*/*z* 559.2277.

6.4. 1,1,3,3-Tetraisopropyl-1,3-bis{(*E*)-3-[4-methoxyphenyl)allyloxy]}disiloxane, 1e.

From alcohol **S2e** (80.0 mg, 0.488 mmol), imidazole (41.5 mg, 0.610 mmol) and 1,3-dichloro-1,1,3,3-tetraisopropyldisiloxane (0.082 mL, 0.26 mmol) following the general procedure, diene **1e** was obtained. Chromatographic purification (6% Et_2O - pentane) gave **1e** as a white solid (95.1 mg, 68%).

Data for **1e**: R_f 0.45 (20% Et₂O - pentane). **M.p.**: 27 °C (solvent: 10% diethyl ether in pentane). ¹H NMR (400 MHz, CDCl₃) δ 7.29 (4H, d, J = 8.7 Hz, Ar), 6.83 (4H, d, J = 8.7 Hz, Ar), 6.56 (2H, d, J = 15.8 Hz, 3-H and 6-H), 6.16 (2H dt, J = 15.8, 5.1 Hz, 2-H and 5-H), 4.47 (4H, dd, J = 5.1, 1.8 Hz, 1-H₂ and 4-H₂), 3.80 (6H, s, 2 x OMe), 0.93-1.17 (28H, m, 4 x ^{*i*}Pr). ¹³C NMR (100 MHz, CDCl₃) δ 159.1 (2 x C Ar), 130.1 (2 x C Ar), 129.0 (C-3 and C-6), 127.7 (4 x CH Ar), 126.9 (C-2 and C-5), 114.0 (4 x CH Ar), 63.4 (C-1 and C-4), 55.4 (2 x OMe), 17.6 (4 x CH₃ ^{*i*}Pr), 17.5 (4 x CH₃ ^{*i*}Pr), 13.2 (4 x CH ^{*i*}Pr). **IR** (film) ν_{max} 2980, 2866, 2360, 2341, 1511, 1249, 1050, 966 cm⁻¹. **HRMS** (CI): calculated for C₃₂H₅₁O₅Si₂ [M+H]⁺ requires *m/z* 571.3275, found *m/z* 571.3266.

6.5. (E)-Diisopropylbis[3-(4-methoxyphenyl)allyloxy]silane, 1j.

From alcohol **S2e** (100.0 mg, 0.609 mmol), imidazole (51.9 mg, 0.763 mmol) and dichlorodiisopropylsilane (0.058 mL, 0.32 mmol) following the general procedure, diene **1j** was obtained. Chromatographic purification (gradient elution: $3\% \rightarrow 5\%$ Et₂O - pentane) gave **1j** as a colorless oil (105.4 mg, 79%).

Data for **1j**: R_f 0.5 (15% Et₂O - pentane). ¹H NMR (**400** MHz, CDCl₃) δ 7.31 (4H, d, J = 8.7 Hz, Ar), 6.85 (4H, d, J = 8.7 Hz, Ar), 6.58 (4H, d, J = 15.8 Hz, 3-H and 6-H), 6.19 (2H, dt, J = 15.8, 5.3 Hz, 2-H and 5-H), 4.48 (4H, dd, J = 5.3, 1.7 Hz, 1-H₂ and 4-H₂), 3.81 (6H, s, 2 x OMe), 1.13 (14H, m, 2 x ^{*i*}Pr). ¹³C NMR (**100** MHz, CDCl₃) δ 159.2 (2 x C Ar), 129.9 (2 x C Ar), 129.4 (C-3 and C-6), 127.7 (4 x CH Ar), 126.7 (C-2 and C-5), 114.0 (4 x CH Ar), 63.8 (C-1 and C-4), 55.4 (2 x OMe), 17.6 (4 x CH₃ ^{*i*}Pr), 12.4 (2 x CH ^{*i*}Pr). **IR** (film) ν_{max} 2970, 1739, 1368, 1229, 1216, 835 cm⁻¹. **HRMS** (ESI): calculated for C₂₆H₃₆O₄SiNa [M+Na]⁺ requires *m/z* 463.2275, found *m/z* 463.2273.

6.6. (*E*)-Ditert-butylbis[3-(4-methoxyphenyl)allyloxy]silane, 1k.

From alcohol **S2e** (80.0 mg, 0.488 mmol), di*tert*-butylsilanediyl bis(trifluoromethanesulfonate) (0.070 mL, 0.26 mmol) and 2,4-lutidine (0.07 mL, 0.6 mmol) following the general procedure, diene **1k** was obtained. Chromatographic purification (gradient elution: $4\% \rightarrow 8\%$ Et₂O - pentane) gave **1k** as a colorless oil (80.1 mg, 70%).

Data for **1k**: R_f 0.43 (15% Et₂O - pentane). ¹H NMR (400 MHz, CDCl₃) δ 7.31 (4H, d, J = 8.7 Hz, Ar), 6.85 (4H, d, J = 8.8 Hz, Ar), 6.60 (2H, d, J = 15.8 Hz, 3-H and 6-H), 6.18 (2H, dt, J = 15.8, 4.9 Hz, 2-H and 5-H), 4.55 (4H, dd, J = 5.0, 1.8 Hz, 1-H₂ and 4-H₂), 3.81 (6H, s, 2 x OMe), 1.10 (18H, s, 6 x CH₃ *t*Bu). ¹³C NMR (100 MHz, CDCl₃) δ 159.1 (2 x C Ar), 130.1 (2 x C Ar), 128.8 (C-3 and C-6), 127.7 (4 x CH Ar), 127.0 (C-2 and C-5), 114.0 (4 x CH Ar), 64.6 (C-1 and C-4), 55.4 (2 x OMe), 28.1 (6 x CH₃ *t*-Bu), 21.5 (2 x C *t*-Bu). IR (film) v_{max} 2970, 2360, 1738, 1463, 1230, 857 cm⁻¹. HRMS (ESI): calculated for C₂₈H₄₀O₄SiNa [M+Na]⁺ requires *m/z* 491.2588, found *m/z* 491.2586

6.7. (E)-Bis-[3-(4-methoxyphenyl)allyloxy]diphenylsilane, 11.

From alcohol **S2e** (100.0 mg, 0.609 mmol), imidazole (51.9 mg, 0.763 mmol) and dichlorodiphenylsilane (0.08 mL, 0.3 mmol) following the general procedure, diene **11** was obtained. Chromatographic purification (gradient elution: $7\% \rightarrow 9\%$ Et₂O - pentane) gave **11** as a colorless oil (38.5 mg, 25%).

Data for **1**I: R_f 0.58 (10% Et₂O - pentane). ¹H NMR (400 MHz, CDCl₃) δ 7.72-7.77 (4H, m, Ar), 7.35-7.48 (6H, m, Ar), 7.26 (4H, d, J = 8.6 Hz, Ar), 6.82 (4H, d, J = 8.8 Hz, Ar), 6.54 (2H, d, J = 15.8 Hz, 3-H and 6-H), 6.19 (2H, dt, J = 15.8, 5.6 Hz, 2-H and 5-H), 4.50 (4H, dd, J = 5.6, 1.6 Hz, 1-H₂ and 4-H₂), 3.81 (6H, s, 2 x OMe). ¹³C NMR (100 MHz, CDCl₃) δ 159.3 (2 x C Ar), 135.1 (4 x CH Ar), 132.8 (2 x C Ar), 130.5 (3 x CH Ar), 130.3 (C-3 and C-6), 129.8 (2 x C Ar), 128.1 (3 x CH Ar), 127.8 (4 x CH Ar), 126.0 (C-2 and C-5), 114.0 (4 x CH Ar), 64.3 (C-1 and C-4), 55.4 (2 x OMe). **IR** (film) v_{max} 2980, 2360, 1738, 1510, 1249, 837 cm⁻¹. **HRMS** (ESI): calculated for C₃₂H₃₂O₄SiNa [M+Na]⁺ requires *m*/*z* 531.1962, found *m*/*z* 531.1961.

6.8. (E)-Diethylbis[3-(4-methoxyphenyl)allyloxy]silane, 1m.

From alcohol **S2e** (80.0 mg, 0.488 mmol), imidazole (41.5 mg, 0.610 mmol) and dichlorodiethylsilane (0.038 mL, 0.26 mmol) following the general procedure, diene **1m** was obtained. Chromatographic purification (gradient elution: $8\% \rightarrow 10\%$ Et₂O - pentane) gave **1m** as a colorless solid (70.6 mg, 70%).

Data for **1m**: $R_f 0.58$ (30% Et₂O - pentane). **M.p.**: 49 °C (solvent: 5% diethyl ether in pentane). **¹H NMR (500 MHz, CDCl**₃) δ 7.29 (4H, d, J = 8.7 Hz, Ar), 6.83 (4H, d, J = 8.7 Hz, Ar), 6.54 (2H, d, J = 15.8 Hz, 3-H and 6-H), 6.18 (2H, dt, J = 15.8, 5.6 Hz, 2-H and 5-H), 4.42 (4H, dd, J = 5.6, 1.6 Hz, 1-H₂ and 4-H₂), 3.80 (6H, s, 2 x OMe), 1.03 (6H t, J = 8.0 Hz, 8-H₃ and 10-H₃), 0.72 (4H, q, J =8.0 Hz, 7-H₂ and 9-H₂). ¹³C NMR (**125 MHz, CDCl**₃) δ 159.2 (2 x C Ar), 130.0 (2 x C Ar), 129.8 (C-3 and C-6), 127.8 (4 x CH Ar), 126.4 (C-2 and C-5), 114.0 (4 x CH Ar), 63.7 (C-1 and C-4), 55.4 (2 x OMe), 6.7 (C-8 and C-10), 4.1 (C-7 and C-9). **IR** (film) v_{max} 2960, 2360, 2341, 1607, 1249, 1035, 833 cm⁻¹; **HRMS** (CI): calculated for $C_{24}H_{32}O_4Si [M+H]^+$ requires m/z 413.2148, found m/z 413.2145.

7. General procedure for the preparation of non-symmetric silyl ethers

To a flame-dried flask with a stirring bar, a solution of 3.6 eq. of imidazole in dry DCM (5.0 mL/mmol) was added under argon. The solution was stirred and cooled to 0 °C, and then 1.5 eq. of silane was added dropwise. After 10 min. of stirring, a solution of 1.0 eq. of the first alcohol in dry DCM (2 mL/mmol) was added dropwise over 20 min. by using syringe pump. The solution was stirred for 15 min. at 0 °C after the addition of the first alcohol was completed. Then a solution of 1.0 eq. of the second alcohol in dry DCM (1 mL/mmol) was added dropwise. The reaction was monitored by TLC, until completion. The solvent was evaporated under reduced pressure and the crude reaction was purified by chromatography on silica gel using the appropriate mixture of eluents.

7.1. (*E*)-4-Diisopropyl[(4-methoxyphenyl)but-3-en-1-yloxy](*E*)-4-[(*p*-tolyl)but-3-en-1-yloxy]silane, 1d.

From alcohols **S2a** (44.0 mg, 0.247 mmol), **S2c** (40.0 mg, 0.247 mmol), imidazole (60.5 mg, 0.890 mmol) and dichlorodiisopropylsilane (0.067 mL, 0.37 mmol) following the general procedure, diene **1d** was obtained. Chromatographic purification (gradient elution: $0.6\% \rightarrow 1.5\%$ Et₂O - pentane) gave **1d** as a colorless oil (80.8 mg, 74%).

Data for **1d**: R_f 0.6 (10% Et₂O - pentane). ¹**H NMR** (**400 MHz**, **CDCl**₃) δ 7.25 (2H, d, J = 8.8 Hz, Ar), 7.22 (2H, d, J = 8.1 Hz, Ar), 7.09 (2H, d, J = 7.9 Hz, Ar), 6.82 (2H, d, J = 8.7 Hz, Ar), 6.41 (1H, d, J = 15.9 Hz, 8-H), 6.38 (1H, d, J = 15.8 Hz, 4-H), 6.17 (1H, dt, J = 15.9, 7.1 Hz, 7-H), 6.08 (1H, dt, J = 15.8, 7.0 Hz, 3-H), 3.82-3.88 (4H, m, 1-H₂ and 5-H₂), 3.79 (3H, s, OMe), 2.46 (2H, qd, J = 6.8, 1.5 Hz, 6-H₂), 2.45 (2H, qd, J = 6.8, 1.2 Hz, 2-H₂), 2.32 (3H, s, Me), 1.00-1.10 (14 H, m, 2 x ⁱPr). ¹³C **NMR** (100 MHz, CDCl₃) δ 158.9 (C Ar), 136.8 (C Ar), 135.0 (C Ar), 131.7 (C-8), 131.2 (C-4), 130.7 (C Ar), 129.3 (2 x CH Ar), 127.2 (2 x CH Ar), 126.1 (C-7), 126.0 (2 x CH Ar), 124.9 (C-3), 114.0 (2 x CH Ar), 63.0 and 62.9 (C-1 and C-5), 55.4 (OMe), 36.8 (C-2 and C-6), 21.3 (Me), 17.5 (4 x CH₃ *i*-Pr), 12.3 (2 x CH *i*-Pr). **IR** (film) ν_{max} 2980, 2360, 1510, 1382, 1247, 1088, 964, 796 cm⁻¹. **HRMS** (ESI): calculated for C₂₈H₄₀O₃SiNa [M+Na]⁺ requires *m*/*z* 475.2639, found *m*/*z* 475.2633.

7.2. 1,1,3,3-Tetraisopropyl-1-(*E*)-3-[(4-methoxyphenyl)allyloxy]-3-(*E*)-4-[(*p*-tolyl)but-3-en-1-yloxy]disiloxane, 1f.

From alcohols **S2e** (60.0 mg, 0.366 mmol), **S2c** (61.0 mg, 0.377 mmol), imidazole (90.5 mg, 1.33 mmol) and 1,3-dichloro-1,1,3,3-tetraisopropyldisiloxane (0.177 mL, 0.562 mmol) following the general procedure, diene **1f** was obtained. Chromatographic purification (gradient elution: $1.5\% \rightarrow 2.5\%$ Et₂O - pentane) to yield **1f** as a colorless oil (76.2 mg, 34%).

Data for **1f**: R_f 0.55 (10% Et₂O - pentane). ¹H NMR (**400** MHz, CDCl₃) δ 7.29 (2H, d, J = 8.7 Hz, Ar), 7.21 (2H, d, J = 8.1 Hz, Ar), 7.09 (2H, d, J = 7.8 Hz, Ar), 6.83 (2H, d, J = 8.7 Hz, Ar), 6.56 (1H, d, J = 15.8 Hz, 3-H), 6.40 (1H, d, J = 15.9 Hz, 7-H), 6.16-6.23 (1 H, m, 6-H), 6.10-6.16 (1H, m, 2-H), 4.46 (2H, dd, J = 5.1, 1.8 Hz, 1-H₂), 3.86 (2H, t, J = 6.8 Hz, 4-H₂), 3.80 (3H, s, OMe), 2.46 (2H, qd, J = 6.9, 1.4 Hz, 5-H₂) 2.32 (3H, s, Me), 0.88-1.16 (28 H, m, 4 x *i*-Pr). ¹³C NMR (100 MHz, CDCl₃) δ 159.1 (C Ar), 136.8 (C Ar), 135.0 (C Ar), 131.6 (C-7), 130.1 (C Ar), 129.3 (2 x CH Ar), 129.0 (C-3), 127.6 (2 x CH Ar), 126.9 (C-2), 126.2 (C-6), 126.0 (2 x CH Ar), 114.0 (2 x CH Ar), 63.3 (C-1), 62.6 (C-4), 55.4 (OMe), 36.7 (C-5), 21.3 (Me), 17.6 (4 x CH₃ *i*-Pr), 17.5 (4 x CH₃ *i*-Pr), 13.2 (2 x CH *i*-Pr), 13.1 (2 x CH *i*-Pr). IR (film) ν_{max} 2980, 2889, 1382, 1250, 1151, 1081, 965 cm⁻¹. HRMS (ESI): calculated for C₃₃H₅₂O₄Si₂Na [M+Na]⁺ requires *m*/z 591.3296, found *m*/z 591.3291.

7.3. (*E*)-3-Diisopropyl[(4-methoxyphenyl)allyloxy](*E*)-4-[(*p*-tolyl)but-3-en-1-yloxy]silane, 1g.

From alcohols **S2e** (50.0 mg, 0.304 mmol), **S2c** (49.0 mg, 0.302 mmol), imidazole (74.7 mg, 1.10 mmol) and dichlorodiisopropylsilane (0.083 mL, 0.46 mmol) following the general procedure, diene **1g** was obtained. Chromatographic purification (gradient elution: $3\% \rightarrow 5\%$ Et₂O - pentane) to yield **1g** as a colorless oil (80.5 mg, 60%).

Data for **1g**: R_f 0.45 (15% Et₂O - pentane). ¹H NMR (400 MHz, CDCl₃) δ 7.30 (2H, d, J = 8.8 Hz, Ar), 7.21 (2H, d, J = 8.2 Hz, Ar), 7.09 (2H, d, J = 7.9 Hz, Ar), 6.84 (2H, d, J = 8.8 Hz, Ar),

6.55 (1H, d, J = 15.8 Hz, 3-H), 6.40 (1H, d, J = 15.9 Hz, 7-H), 6.17-6.22 (1 H, m, 6-H), 6.12-6.17 (1H, m, 2-H), 4.45 (2H, dd, J = 5.3, 1.7 Hz, 1-H₂), 3.87 (2H, t, J = 6.8 Hz, 4-H₂), 3.80 (3H, s, OMe), 2.47 (2H, qd, J = 6.9, 1.4 Hz, 5-H₂), 2.32 (3H, s, Me), 1.05-1.11 (14H, m, 2 x *i*-Pr). ¹³C NMR (100 MHz, CDCl₃) δ 159.2 (C Ar), 136.8 (C Ar), 135.0 (C Ar), 131.7 (C-7), 130.0 (C Ar), 129.30 (2 x CH Ar), 129.27 (C-3), 127.7 (2 x CH Ar), 126.8 (C-2), 126.1 (C-6), 126.0 (2 x CH Ar), 114.1 (2 x CH Ar), 63.7 (C-1), 62.9 (C-4), 55.4 (OMe), 36.7 (C-5), 21.3 (Me), 17.6 (4 x CH₃ *i*-Pr), 12.3 (2 x CH *i*-Pr). IR (film) v_{max} 2970, 1736, 1436, 1368, 1228, 1216 cm⁻¹. HRMS (ESI): calculated for C₂₇H₃₈O₃SiNa [M+Na]⁺ requires *m/z* 461.2482, found *m/z* 461.2482.

From alcohols **S2e** (50.0 mg, 0.305 mmol), **S2b** (45.0 mg, 0.304 mmol), imidazole (82.7 mg, 1.22 mmol) and dichlorodiisopropylsilane (0.091 mL, 0.51 mmol) following the general procedure, diene **1h** was obtained. Chromatographic purification (radient elution: $1.5\% \rightarrow 3\%$ Et₂O - pentane) to yield **1h** as a colorless oil (78.8 mg, 56%).

Data for **1h**: R_f 0.6 (10% Et₂O - pentane). ¹H NMR (400 MHz, CDCl₃) δ 7.26-7.35 (6H, m, Ar), 7.16-7.23 (1H, m, Ar), 6.85 (2H, d, J = 8.8 Hz, Ar), 6.56 (1H, d, J = 15.8 Hz, 3-H), 6.44 (1H, d, J = 15.9 Hz, 7-H), 6.25 (1H, dt, J = 16.0, 7.0 Hz, 6-H), 6.17 (1H, dt, J = 15.8, 5.2 Hz, 2-H), 4.46 (2H, dd, J = 5.2, 1.7 Hz, 1-H₂), 3.89 (2H, t, J = 6.8 Hz, 4-H₂), 3.81 (3H, s, OMe), 2.49 (2H, qd, J = 6.8, 1.4 Hz, 5-H₂), 1.06-1.12 (14H, m, 2 x *i*-Pr). ¹³C NMR (100 MHz, CDCl₃) δ 159.2 (C Ar), 137.8 (C Ar), 131.9 (C-7), 130.0 (C Ar), 129.3 (C-3), 128.6 (2 x CH Ar), 127.7 (2 x CH Ar), 127.2 (CH Ar), 127.1 (C-6), 126.8 (C-2), 126.1 (2 x CH Ar), 114.1 (2 x CH Ar), 63.7 (C-1), 62.8 (C-4), 55.4 (OMe), 36.7 (C-5), 17.6 (4 x CH₃ *i*-Pr), 12.3 (2 x CH *i*-Pr). IR (film) ν_{max} 2864, 2360, 1607, 1510, 1247, 1101, 1037, 963, 691 cm⁻¹. HRMS (ESI): calculated for C₂₆H₃₆O₃SiNa [M+Na]⁺ requires *m*/z 447.2326, found *m*/*z* 447.2326.

7.5. (*E*)-4-Diisopropyl[(4-methoxyphenyl)but-3-en-1-yloxy](*E*)-3-[(*p*-tolyl)allyloxy]silane, 1i.

From alcohols **S2a** (72.0 mg, 0.404 mmol), **S2d** (60.0 mg, 0.405 mmol), imidazole (99.1 mg, 1.46 mmol) and dichlorodiisopropylsilane (0.083 mL, 0.46 mmol) following the general procedure, diene **1i** was obtained. Chromatographic purification (gradient elution: $1.5\% \rightarrow 2.5\%$ Et₂O - pentane) to yield **1i** as a colorless oil (121.5 mg, 70%).

Data for **1i**: R_f 0.45 (10% Et₂O - pentane). ¹H NMR (400 MHz, CDCl₃) δ 7.23-7.30 (4H, m, Ar), 7.13 (2H, d, J = 7.8 Hz, Ar), 6.83 (2H, d, J = 8.7 Hz, Ar), 6.60 (1H, d, J = 15.8 Hz, 7-H), 6.39 (1H, d, J = 15.9 Hz, 4-H), 6.26 (1H, dt, J = 15.8, 5.1 Hz, 6-H), 6.10 (1H, dt, J = 15.8, 7.1 Hz, 3-H), 4.48 (2H, dd, J = 5.1, 1.8 Hz, 5-H₂), 3.88 (2H, t, J = 6.8 Hz, 1-H₂), 3.80 (3H, s, OMe), 2.47 (2H, qd, J = 6.8, 1.4 Hz, 2-H₂), 2.35 (3H, s, Me), 1.08-1.12 (14H, m, 2 x *i*-Pr). ¹³C NMR (100 MHz, CDCl₃) δ 158.9 (C Ar), 137.2 (C Ar), 134.4 (C Ar), 131.2 (C-4), 130.6 (C Ar), 129.5 (C-7), 129.3 (2 x CH Ar), 126.4 (2 x CH Ar), 124.9 (C-3), 114.0 (2 x CH Ar), 63.6 (C-5), 63.0 (C-1), 55.4 (OMe), 36.7 (C-2), 21.3 (Me), 17.6 (4 x CH₃ *i*-Pr), 12.3 (2 x CH *i*-Pr). IR (film) v_{max} 2980, 1382, 1250, 1151, 1072, 965 cm⁻¹. HRMS (ESI): calculated for C₂₇H₃₈O₃SiNa [M+Na]⁺ requires *m*/z 461.2482, found *m*/z 461.2478.

7.6. (*E*)-3-Diisopropyl[(4-methoxyphenyl)allyloxy] (*E*)-3- [(*p*-tolyl)allyloxy]silane, 1n.

From alcohols **S2e** (50.0 mg, 0.304 mmol), **S2f** (45.0 mg, 0.304 mmol), imidazole (74.7 mg, 1.10 mmol) and dichlorodiisopropylsilane (0.080 mL, 0.46 mmol) following the general procedure, diene **1n** was obtained. Chromatographic purification (gradient elution: $2\% \rightarrow 4\%$ Et₂O - pentane) gave **1n** as a colorless oil (45.9 mg, 36%).

Data for **1n**: R_f 0.4 (10% Et₂O - pentane). ¹H NMR (**400** MHz, CDCl₃) δ 7.30 (2H, d, J = 8.7 Hz, Ar), 7.26 (2H, d, J = 8.1 Hz, Ar), 7.11 (2H, d, J = 7.8 Hz, Ar), 6.84 (2H, d, J = 8.7 Hz, Ar), 6.60 (1H, d, J = 15.8 Hz, 6-H), 6.57 (1H, d, J = 15.8 Hz, 3-H), 6.27 (1H, dt, J = 15.8, 5.1 Hz, 5-H), 6.18 (1H, dt, J = 15.8, 5.3 Hz, 2-H), 4.48 (2H, dd, J = 5.1, 1.8 Hz, 4-H₂), 4.47 (2H, dd, J = 5.2, 1.7 Hz, 1-H₂), 3.81 (3H, s, OMe), 2.34 (3H, s, Me), 1.07-1.14 (14H, m, 2 x *i*-Pr). ¹³C NMR (100 MHz, CDCl₃)

δ 159.2 (C Ar), 137.3 (C Ar), 134.4 (C Ar), 130.0 (C Ar), 129.7 and 129.4 (C-3 and C-6), 129.3 (2 x CH Ar), 127.8 (C-5), 127.7 (C-2), 126.7 (2 x CH Ar), 126.5 (2 x CH Ar), 114.0 (2 x CH Ar), 63.8 and 63.7 (C-1 and C-4), 55.4 (OMe), 21.3 (Me), 17.6 (4 x CH₃ *i*-Pr), 12.4 (2 x CH *i*-Pr). **IR** (film) v_{max} 2943, 2865, 2360, 1510, 1249, 1117, 1055, 965 cm⁻¹. **HRMS** (ESI): calculated for C₂₆H₃₆O₃SiNa [M+Na]⁺ requires *m/z* 447.2326, found *m/z* 447.2327.

8. General procedure for the synthesis of ethers by alkylation of alcohols with bromides.

A flame-dried flask was charged with 1.6 eq. of NaH (60% in mineral oil) and 2 mL/mmol of dry THF. To this suspension a solution of 1.0 eq. of alcohol in 3.0 mL/mmol of THF was added dropwise, and the reaction was stirred for 30 min. The flask was cooled to 0 °C, and a solution of 1.4 eq. of bromide in 3.0 mL/mmol THF was added dropwise. The mixture was gradually warmed to r.t. After 12 h, the reaction was quenched by slow addition of saturated NH₄Cl. The phases were separated, and the aqueous phase was extracted with Et_2O (2 x 5 mL/mmol). The combined organic layers were washed with brine, dried over MgSO₄, and the solvent was evaporated to give the corresponding ether, that was purified by chromatography on silica gel using the appropriate mixture of eluents.

8.1. 4,4'-[(1*E*,1'*E*)-Oxybis(prop-1-ene-3,1-diyl)]bis(methoxybenzene, 4a.

From bromide S3a (1.290 g, 5.708 mmol), alcohol S2e (0.670 g, 4.09 mmol) and NaH (261.0 mg, 6.525 mmol, 60% in mineral oil) following the general procedure, diene 4a was obtained. Chromatographic purification (gradient elution: $15\% \rightarrow 20\%$ Et₂O - pentane) gave 4a as a white solid (1.052 g, 83%). Spectral properties matched those previously reported. ¹¹

Data for **4a**: $R_f 0.5$ (50% Et₂O - pentane). ¹H NMR (**400** MHz, CDCl₃) δ 7.35 (4H, d, J = 8.8 Hz, Ar), 6.87 (4H, d, J = 8.8 Hz, Ar), 6.59 (2H, d, J = 15.9 Hz, 4-H and 7-H), 6.21 (2H, dt, J = 15.9, 6.2 Hz, 3-H and 6-H), 4.19 (4H, dd, J = 6.2, 1.4 Hz, 2-H₂ and 5-H₂), 3.81 (6H, s, 2 x OMe). ¹³C NMR (**100** MHz, CDCl₃) δ 159.3 (2 x C Ar), 132.3 (C-4 and C-7), 129.6 (2 x C Ar), 127.7 (4 x CH Ar), 123.8 (C-3 and C-6), 114.0 (4 x CH Ar), 70.9 (C-2 and C-5), 55.3 (2 x OMe). HRMS (CI): calculated for C₂₀H₂₃O₃ [M+H]⁺ requires *m/z* 311.1647, found *m/z* 311.1646.

8.2. 1-[(*E*)-3-(Cinnamyloxy)prop-1-en-1-yl]-4-methoxybenzene, 4b.

From (*E*)-(3-bromoprop-1-en-1-yl)benzene (273.0 mg, 1.393 mmol), alcohol **S2e** (164.0 mg, 1.000 mmol) and NaH (64.0 mg, 1.60 mmol, 60% in mineral oil) following the general procedure, diene **4b** was obtained. Chromatographic purification (8% Et₂O - pentane) gave **4b** as a colorless oil (218.0 mg, 78%). Spectral properties matched those previously reported.¹¹

Data for **4b**: R_f 0.50 (30% Et₂O - pentane). ¹H NMR (**400** MHz, CDCl₃) δ 7.44 (2H, d, J = 8.5 Hz, Ar), 7.38 (2H, d, J = 8.6 Hz, Ar), 7.36 (2H, d, J = 8.5 Hz, Ar), 7.30-7.25 (1H, m, Ar), 6.89 (2H, d, J = 8.8 Hz, Ar), 6.68 (1H, d, J = 15.9 Hz, 7-H), 6.62 (1H, d, J = 15.9 Hz, 4-H), 6.37 (1H, dt, J = 15.9, 6.0 Hz, 6-H), 6.24 (1H, dt, J = 15.9, 6.0 Hz, 3-H), 4.23 (2H, dd, J = 5.1, 1.3 Hz, 5-H₂), 4.22 (2H, dd, J = 5.1, 1.3 Hz, 2-H₂), 3.82 (3 H, s, OMe). ¹³C NMR (100 MHz, CDCl₃) δ 159.3 (C Ar), 136.8 (C Ar), 132.5 and 132.4 (C-4 and C-7), 129.5 (C Ar), 128.6 (2 x CH Ar), 127.8 (2 x CH Ar), 127.7 (CH Ar), 126.5 (2 x CH Ar), 126.2 (C-6), 123.7 (C-3), 114.0 (2 x CH Ar), 71.0 and 70.7 (C-2 and C-5), 55.3 (OMe). HRMS (Cl): calculated for C₁₉H₂₁O₂ [M+H]⁺ requires *m*/*z* 281.1542, found *m*/*z* 281.1530.

8.3. 1-Bromo-4-{(*E*)-3-[(*E*)-3-(4-methoxyphenyl)allyloxyprop-1-en-1-yl]}benzene, 4c.

From bromide S3a (150.0 mg, 0.664 mmol), alcohol S2f (100.0 mg, 0.4717 mmol) and NaH (30.4 mg, 0.760 mmol, 60% in mineral oil) following the general procedure, diene 4c was obtained. Chromatographic purification (gradient elution: $15\% \rightarrow 20\%$ Et₂O - pentane) gave 4c as a white foam (119.0 mg, 70%).

Data for **4c**: R_f 0.5 (50% Et₂O - pentane). ¹H NMR (**400** MHz, CDCl₃) δ 7.44 (2H, d, J = 8.5 Hz, Ar), 7.34 (2H, d, J = 8.7 Hz, Ar), 7.25 (2H, d, J = 8.4 Hz, Ar), 6.86 (2H, d, J = 8.7 Hz, Ar), 6.58 (2H, d, J = 15.2 Hz, 4-H and 7-H), 6.32 and 6.19 (2H, dt, J = 15.9, 6.2 Hz, 3-H and 6-H), 4.15-4.21 (4H, m, 2-H₂ and 5-H₂), 3.81 (3H, s, OMe). ¹³C NMR (**100** MHz, CDCl₃) δ 159.5 (C Ar), 135.8 (C Ar), 132.6 and 131.8 (C-4 and C-7), 131.3 (2 x CH Ar), 129.5 (C Ar), 128.1 (2 x CH Ar), 127.9 (2 x CH Ar), 127.1 and 123.7 (C-3 and C-6), 121.6 (C Ar), 114.1 (2 x CH Ar), 71.3 and 70.5 (C-2 and C-6))

5), 55.4 (OMe). **IR** (film) v_{max} 2982, 2890, 1380, 1255, 1150, 1081, 970 cm⁻¹. **HRMS** (CI): calculated for C₁₉H₂₀BrO₂ [M+H]⁺ requires *m/z* 359.0647, found *m/z* 359.0632.

8.4. 1-((*E*)-3-{[(*E*)-3-(4-Methoxyphenyl)allyloxy]prop-1-en-1-yl}-3-

(trifluoromethyl)benzene, 4d.

From bromide **S3a** (125.0 mg, 0.553 mmol), 3-(trifluoromethyl) cinnamic alcohol (80.0 mg, 0.396 mmol) and NaH (25.2 mg, 0.630 mmol, 60% in mineral oil) following the general procedure, diene **4d** was obtained. Chromatographic purification (15% Et₂O - pentane) gave **4d** as a colorless oil (83.8 mg, 60%).

Data for **4d**: R_f 0.50 (50% Et₂O - pentane). ¹H NMR (500 MHz, CDCl₃) δ 7.64 (1H, s, Ar), 7.56 (1H, d, J = 7.7 Hz, Ar), 7.49 (1H, d, J = 7.8 Hz, Ar), 7.43 (1H, t, J = 7.7 Hz, Ar), 7.35 (2H, d, J = 8.7 Hz, Ar), 6.87 (2H, d, J = 8.7 Hz, Ar), 6.68 (1H, d, J = 16.0 Hz, 7-H), 6.60 (1H, d, J = 15.9 Hz, 4-H), 6.41 (1H, dt, J = 15.9, 5.7 Hz, 6-H), 6.21 (1H, dt, J = 15.9, 6.3 Hz, 3-H), 4.22 (2H, dd, J = 5.9, 1.6 Hz, 5-H₂), 4.21 (2H, dd, J = 5.9, 1.6 Hz, 2-H₂), 3.81 (3H, s, OMe). ¹³C NMR (125 MHz, CDCl₃) δ 159.5 (C Ar), 137.7 (C Ar), 132.6 (C-4), 131.1 (CF₃, q, J = 32.1 Hz), 130.8 (C-7), 129.7 (CH Ar), 129.5 (CH Ar), 129.1 (C Ar), 128.4 (C-6), 127.9 (2 x CH Ar), 124.3 (CH Ar, q, J = 3.8 Hz), 123.6 (C-3), 123.3 (CH Ar, q, J = 3.8 Hz), 114.1 (2 x CH Ar), 71.4 and 70.3 (C-2 and C-5), 55.4 (OMe). IR (film) v_{max} 2980, 2890, 1378, 1252, 1151, 1081, 965 cm⁻¹. HRMS (EI): calculated for C₂₀H₂₀F₃O₂ [M+H]⁺ requires *m*/*z* 349.1415, found *m*/*z* 349.1409.

8.5. $1-\{(E)-3-[(E)-3-(4-Methoxyphenyl)allyloxy]$ prop-1-en-1-yl}-2-methylbenzene, 4e.

From bromide **S3a** (170.0 mg, 0.7522 mmol), (*E*)-3-(*o*-tolyl)prop-2-en-1-ol (80.0 mg, 0.541 mmol) and NaH (34.8 mg, 0.870 mmol, 60% in mineral oil) following the general procedure, diene

4e was obtained. Chromatographic purification (gradient elution: $15\% \rightarrow 20\%$ Et₂O - pentane) gave 4e as a colorless oil (111.0 mg, 70 %).

Data for **4e**: R_f 0.50 (50% Et₂O - pentane). ¹**H** NMR (500 MHz, CDCl₃) δ 7.47-7.52 (2H, m, Ar), 7.37 (2H, d, J = 8.7 Hz, Ar), 7.14-7.23 (2H, m, Ar), 6.89 (2H, d, J = 8.8 Hz, Ar), 6.87 (1H, d, J = 15.9 Hz, 7-H), 6.62 (1H, d, J = 15.9 Hz, 4-H), 6.25 (1H, dt, J = 15.6, 6.0 Hz, 6-H), 6.24 (1H, dt, J = 15.6, 6.0 Hz, 3-H), 4.25 and 4.23 (4H, dd, J = 6.2, 1.4 Hz, 2-H₂ and 5-H₂), 3.82 (3H, s, OMe), 2.39 (3H, s, Me). ¹³C NMR (125 MHz, CDCl₃) δ 159.5 (C Ar), 136.0 (C Ar), 135.6 (C Ar), 132.5 (C Ar), 130.6 (C-4), 130.4 (C-7), 129.6 (CH Ar), 127.9 (2 x CH Ar), 127.7 (CH Ar), 127.6 (CH Ar), 126.2 (CH Ar), 125.9 (C-6), 123.9 (C-3), 114.1 (2 x CH Ar), 71.1 and 71.0 (C-2 and C-5), 55.4 (OMe), 20.0 (Me). IR (film) ν_{max} 2985, 2889, 1380, 1251, 1151, 1080, 960 cm⁻¹. HRMS (CI): calculated for C₂₀H₂₃O₂ [M+H]⁺ requires *m/z* 295.1698, found *m/z* 295.1688.

8.6. (E)-1-Methoxy-4-[3-(3-methylbut-2-en-1-yloxy)prop-1-en-1-yl]benzene, 4f.

From 1-bromo-3-methylbut-2-ene (101.0 mg, 0.682 mmol), alcohol **S2e** (80.0 mg, 0.488 mmol) and NaH (31.2 mg, 0.78 mmol, 60% in mineral oil) following the general procedure, diene **4f** was obtained. Chromatographic purification (8% Et₂O - pentane) gave **4f** as a colorless oil (60.4 mg, 54%). Spectral properties matched those previously reported.¹¹

Data for **4f**: R_f 0.55 (30% Et₂O - pentane). ¹**H** NMR (**400** MHz, CDCl₃) δ 7.33 (2H, d, J = 8.7 Hz, Ar), 6.85 (2H, d, J = 8.8 Hz, Ar), 6.55 (1H, d, J = 15.9 Hz, 4-H), 6.18 (1H, dt, J = 15.9, 6.3 Hz, 3-H), 5.40 (1H, tt, J = 7.0, 1.3 Hz, 6-H), 4.11 (2H, dd, J = 6.2, 1.4 Hz, 2-H₂), 4.01 (2H, d, J = 6.9 Hz, 5-H₂), 3.80 (3H, s, OMe), 1.76 (3H, s, Me), 1.69 (3H, s, Me). ¹³C NMR (**100** MHz, CDCl₃) δ 159.2 (C Ar), 137.1 (C-7), 132.1 (C-4), 129.6 (C Ar), 127.7 (2 x CH Ar), 124.1 (C-3), 121.1 (C-6), 114.0 (2 x CH Ar), 70.8 (C-2), 66.5 (C-5), 55.3 (OMe), 25.9 (Me), 18.1 (Me). HRMS (Cl): calculated for C₁₅H₂₀O₂ [M+H]⁺ requires *m/z* 233.1542, found *m/z* 233.1538.

8.7. (*E*)-1-[3-(2-Cyclohexylideneethoxy)prop-1-en-1-yl]-4-methoxybenzene, 4g.

To a solution of ethyl cyclohexylideneacetate (0.525 g, 3.13 mmol) in anhydrous PhMe (25 mL) under an atmosphere of argon at -78 °C was added 1 M DIBAL-H in PhMe (7.9 mL, 7.8 mmol), and the reaction was stirred at this temperature for 3 h. The reaction mixture was warmed to r.t. and H₂O (1 mL), then aqueous 1M NaOH solution (7.5 mL), followed again by H₂O (2.5 mL), were added, with 5 minutes between each addition, maintaining vigorous stirring. The mixture was then poured into a separating funnel, and after phase separation, the aqueous phase was extracted with PhMe (2 x 25 mL). The combined organic layers were then washed with brine, dried over MgSO₄, filtered through a plug of silica gel, and the solvent removed in vacuo to yield a colourless oil, which is then added a stirring bar and dry Et₂O (25 mL). The solution was cooled to 0 °C and 1M PBr₃ (1.25 mL, 1.25 mmol) was added under Ar. The reaction was stirred until completion, monitored by TLC analysis and quenched with NaHCO₃. The layers were separated and the aqueous layer extracted with Et₂O twice. The combined organics were washed with brine, dried over MgSO₄, filtered and the solvent was evaporated to give the pure bromide as a colourless oil (0.51 g, 86%). Then From (2bromoethylidene)cyclohexane (529.2 mg, 2.800 mmol), alcohol S2e (328.0 mg, 2.000 mmol) and NaH (128.0 mg, 3.200 mmol, 60% in mineral oil) following the general procedure, diene 4g was obtained. Chromatographic purification (8% Et₂O - pentane) gave 4g as a colorless oil (390.6 mg, 72%).

Data for **S3b**: $R_f 0.50$ (20% Et₂O - pentane). ¹H NMR (400 MHz, CDCl₃) δ 7.32 (2H, d, J = 8.7 Hz, Ar), 6.85 (2H, d, J = 8.7 Hz, Ar), 6.55 (1H, d, J = 15.9 Hz, 4-H), 6.17 (1H, dt, J = 15.9, 6.2 Hz, 3-H), 5.32 (1H, t, J = 7.0 Hz, 6-H), 4.11 (2H, dd, J = 6.2, 1.4 Hz, 2-H₂), 4.03 (2H, d, J = 7.0 Hz, 5-H₂), 3.80 (3H, s, OMe), 2.16-2.21 (2H, m, CH₂ cyclohexyl), 2.11-2.15 (2H, m, CH₂ cyclohexyl), 1.51-1.59 (6H, m, 3 x CH₂ cyclohexyl).¹³C NMR (100 MHz, CDCl₃) δ 159.3 (C Ar), 145.1 (C Ar), 132.1 (C-4), 129.7 (C-7), 127.8 (2 x CH Ar), 124.3 (C-3), 117.9 (C-6), 114.1 (2 x CH Ar), 70.8 (C-2), 65.7 (C-5), 55.4 (OMe), 37.2 (CH₂ cyclohexyl), 29.2 (CH₂ cyclohexyl), 28.5 (CH₂ cyclohexyl), 27.9 (CH₂ cyclohexyl), 26.8 (CH₂ cyclohexyl). IR (film) v_{max} 2923, 2849, 1380, 1251, 1151, 1178, 1037 cm⁻¹.HRMS (ESI): calculated for C₁₈H₂₅O₂ [M+H]⁺ requires *m*/*z* 273.1849, found *m*/*z* 273.1839.

9. General procedure C - hypervalent iodine promoted cycloaddition:

To a solution of 1.0 eq. of diene in HFIP (10 mL/mmol), under argon, 10 mol% of hypervalent iodine reagent was added. The reaction was monitored by TLC until completion, and the solvent was evaporated under reduced pressure to give the corresponding cyclobutane, that was purified by chromatography on silica gel using the appropriate mixture of eluents.

9.1. (±)-(1*R*,9*R*,10*S*,11*S*)-5,5-Diisopropyl-10,11-bis(4-methoxyphenyl)-4,6-dioxa-5-silabicyclo[7.2.0]undecane, 2a.

From diene **1a** (20.0 mg, 0.0427 mmol) and PIDA (1.38 mg, 0.00429 mmol) following the general procedure, cyclobutane **2a** was obtained. Chromatographic purification (gradient elution: 8% \rightarrow 10% Et₂O - pentane) gave **2a** as a colorless oil (11.4 mg, 55%).

Data for **2a**: R_f 0.5 (30% Et₂O - pentane). ¹H NMR (**400** MHz, CDCl₃) δ 7.10-7.16 (4H, m, Ar), 6.78-6.84 (4H, m, Ar), 3.78 (6H, s, 2 x OMe), 3.71 (4H, t, J = 7.1 Hz, 3-H₂ and 7-H₂), 2.83-2.89 (2H, m, 10-H and 11-H), 2.19-2.09 (2 H, m, 1-H and 9-H), 1.84-1.94 (4H, m, 2-H₂ and 8-H₂), 0.86-1.03 (14 H, m, 2 x *i*-Pr). ¹³C NMR (**100** MHz, CDCl₃) δ 158.2 (2 x C Ar), 136.0 (2 x C Ar), 128.0 (4 x CH Ar), 113.8 (4 x CH Ar), 60.9 (C-3 and C-7), 55.4 (2 x OMe), 52.04 and 51.96 (C-10 and C-11), 42.5 (C-1 and C-9), 39.6 (C-2 and C-8), 17.6, 17.52 and 17.48 (4 x CH₃ *i*-Pr), 12.2 and 12.0 (2 x CH *i*-Pr). IR (film) v_{max} 2926, 2865, 1511, 1462, 1245, 1176, 1088 cm⁻¹. HRMS (EI): calculated for C₂₈H₄₀O₄Si [M]⁺ requires *m/z* 468.2696, found *m/z* 468.2689.

9.2. (±)-(1*R*,9*R*,10*S*,11*S*)-5,5-Di*tert*-butyl-10,11-bis(4-methoxyphenyl)-4,6-dioxa-5-silabicyclo[7.2.0]undecane, 2b.

From diene **1b** (20.5 mg, 0.0413 mmol) and PIDA (1.33 mg, 0.00413 mmol) following the general procedure, cyclobutane **2b** was obtained. Chromatographic purification (gradient elution: 8% \rightarrow 10% Et₂O - pentane) gave **2b** as a colorless oil (8.6 mg, 42%).

Data for **2b**: R_f 0.45 (30% Et₂O - pentane). ¹H NMR (500 MHz, CDCl₃) δ 7.16 (2H, d, J = 8.7 Hz, Ar), 7.14 (2H, d, J = 8.7 Hz, Ar), 6.81 (4H, d, J = 8.5 Hz, Ar), 3.78-3.84 (4H, m, 3-H₂ and 7-H₂), 3.77 (6H, s, 2 x OMe), 2.83-2.90 (2H, m, 10-H and 11-H), 2.12-2.19 (2H, m, 1-H and 9-H), 1.94-1.83 (4H, m, 2-H₂ and 8-H₂), 0.87-0.96 (18H, m, 6 x CH₃ *t*-Bu). ¹³C NMR (125 MHz, CDCl₃) δ 158.2 (2 x C Ar), 136.06 (C Ar), 136.04 (C Ar), 128.00 (2 x CH Ar), 127.97 (2 x CH Ar), 113.87 (2 x CH Ar), 113.85 (2 x CH Ar), 61.82 and 61.80 (C-3 and C-7), 55.4 (2 x OMe), 52.2 and 52.0 (C-10 and C-11), 42.6 and 42.4 (C-1 and C-9), 40.1 and 39.8 (C-2 and C-8), 27.98 (4 x CH₃ *t*-Bu), 27.95 (2 x CH₃ *t*-Bu), 21.2 (2 x C *t*-Bu). IR (film) ν_{max} 2980, 2888, 2360, 2341, 1383, 1249, 1151, 1087, 668 cm⁻¹. HRMS: calculated for C₃₀H₄₅O₄Si [M]⁺ requires *m/z* 497.3087, found *m/z* 497.3091.

9.3. (±)-(1*R*,9*R*,10*S*,11*S*)-10,11-Bis(4-methoxyphenyl)-5,5-diphenyl-4,6-dioxa-5-silabicyclo[7.2.0]undecane, 2c.

From diene **1c** (14.0 mg, 0.0261 mmol) and PIDA (0.84 mg, 0.0026 mmol) following the general procedure, cyclobutane **2c** was obtained. Chromatographic purification (gradient elution: $10\% \rightarrow 30\%$ Et₂O - pentane) gave **2c** as a colorless oil (3.1 mg, 21%).

Data for **2c**: R_f 0.5 (30% Et₂O - pentane). ¹H NMR (500 MHz, CDCl₃) δ 7.47-7.59 (4H, m, Ar), 7.28-7.43 (6H, m, Ar), 7.06-7.10 (4H, m, Ar), 6.74-6.82 (4H, m, Ar), 3.74-3.90 (4H, m, 3-H₂ and 7-H₂), 3.77 (6H, s, 2 x OMe), 2.80-2.86 (2H, m, 10-H and 11-H), 2.18-2.23 (2H, m, 1-H and 9-H), 1.89-1.99 (4H, m, 2-H₂ and 8-H₂). ¹³C NMR (125 MHz, CDCl₃) δ 158.2 (C Ar), 158.1 (C Ar), 135.92 (C Ar), 135.85 (C Ar), 135.0 (2 x CH Ar), 134.9 (C Ar), 133.1 (C Ar), 130.0 (2 x CH Ar), 128.03 (2 x CH Ar), 128.01 (2 x CH Ar), 128.0 (2 x CH Ar), 127.9 (2 x CH Ar), 113.84 (2 x CH Ar), 113.84 (2 x CH Ar), 61.4 and 61.3 (C-3 and C-7), 55.4 (2 x OMe), 52.1 and 51.9 (C-10 and C-11), 42.5 (C-1 and C-9), 39.2 and 39.1 (C-2 and C-8). IR (film) v_{max} 2980, 2360, 2341, 1510, 1249, 1075 cm⁻¹. HRMS: calculated for C₃₄H₃₇O₄Si [M]⁺ requires *m/z* 537.2461, found *m/z* 537.2465.

9.4. (±)-(1*R*,9*R*,10*S*,11*S*)-5,5-Diisopropyl-10-(4-methoxyphenyl)-11-(*p*-tolyl)-4,6-dioxa-5-silabicyclo[7.2.0]undecane, 2d.

From diene **1d** (20.0 mg, 0.043 mmol) and PIDA (1.40 mg, 0.0043 mmol) following the general procedure except using 0.02M of HFIP, cyclobutane **2d** was obtained. Chromatographic purification (gradient elution: $1.5\% \rightarrow 3\%$ Et₂O - pentane) gave **2d** as a colorless oil (8.0 mg, 40%).

Data for **2d**: R_f 0.55 (20% Et₂O - pentane). ¹H NMR (500 MHz, CDCl₃) δ 7.13 (2H, d, J = 8.7 Hz, Ar), 7.07-7.11 (4H, m, Ar), 6.83 (2H, d, J = 8.7 Hz, Ar), 3.99 (2H, ddd, J = 11.1, 7.6, 2.2 Hz, 3-H_A and 7-H_A), 3.84-3.89 (2H, m, 3-H_B and 7-H_B), 3.78 (3H, s, OMe), 2.90 (2H, d, J = 8.7 Hz, 10-H and 11-H), 2.28-2.33 (2H, m, 1-H and 9-H), 2.31 (3H, s, Me), 2.00-2.10 (2 H, m, 2-H_A and 8-H_A), 1.81-1.72 (2H, m, 2-H_B and 8-H_B), 1.05-1.08 (14 H, m, 2 x *i*-Pr). ¹³C NMR (125 MHz, CDCl₃) δ 158.2 (C Ar), 140.8 (C Ar), 136.1 (C Ar), 135.8 (C Ar), 129.2 (2 x CH Ar), 128.0 (2 x CH Ar), 126.9 (2 x CH Ar), 113.9 (2 x CH Ar), 62.58 and 62.55 (C-3 and C-7), 55.4 (OMe), 52.1 and 51.6 (C-10 and C-11), 44.4 and 44.2 (C-1 and C-9), 38.83 and 38.79 (C-2 and C-8), 21.2 (Me), 17.7 (2 x CH₃ *i*-Pr), 17.6 (2 x CH₃ *i*-Pr), 12.1 (2 x CH *i*-Pr). IR (film) v_{max} 2926, 2867, 1512, 1249, 1124, 1035 cm⁻¹. HRMS (El): calculated for C₂₈H₄₀O₃Si [M]⁺ requires *m/z* 452.2747, found *m/z* 452.2751

9.5. (\pm) -(1S,9S,10R,11R)-4,4,6,6-Tetraisopropyl-10,11-bis(4-methoxyphenyl)-3,5,7-trioxa-4,6-disilabicyclo[7.2.0]undecane, 2e and (\pm) -(1R,9S,10R,11S)-4,4,6,6-Tetraisopropyl-10,11-bis(4-methoxyphenyl)-3,5,7-trioxa-4,6-disilabicyclo[7.2.0]undecane, 3e.

From diene **1e** (18.1 mg, 0.0318 mmol) and PIDA (1.00 mg, 0.00310 mmol) following the general procedure, a 4:1 mixture of cyclobutanes **2e**:**3e** was obtained. Chromatographic purification (8% Et₂O - pentane) gave an inseparable 4:1 mixture of **2e**:**3e** as a colorless oil (7.5 mg, 50%).

Data for **2e** (from the mixture): $R_f 0.55$ (30% Et₂O - pentane). **M.p.**: 60 °C (solvent: 5% diethyl ether in pentane). ¹H NMR (500 MHz, CDCl₃) δ 7.12 (4H, d, J = 8.7 Hz, Ar), 6.81 (4H, d, J = 8.6 Hz, Ar), 4.10 (2H, dd, J = 11.5, 2.8 Hz, 2-H_A and 8-H_A), 3.78-3.81 (2H, m, 2-H_B and 8-H_B), 3.78 (6H, s, 2 x OMe), 3.03-3.07 (2H, m, 10-H and 11-H), 2.47-2.11 (2H, m, 1-H and 9-H), 0.99-1.13 (28H, m, 4 x *i*-Pr). ¹³C NMR (125 MHz, CDCl₃) δ 158.2 (2 x C Ar), 134.9 (2 x C Ar), 128.1 (4 x CH Ar), 113.9 (4 x CH Ar), 64.9 (C-2 and C-8), 55.4 (2 x OMe), 46.5 (C-10 and C-11), 45.4 (C-1 and C-9), 17.7 (4 x CH₃ *i*-Pr), 17.5 (4 x CH₃ *i*-Pr), 13.3 (2 x CH *i*-Pr), 13.2 (2 x CH *i*-Pr). IR (film) v_{max} 2980, 2969, 2360, 2341, 1513, 1248, 1045 cm⁻¹. HRMS (ESI): calculated for C₃₂H₅₁O₅Si [M]⁺ requires *m*/*z* 571.3270, found *m*/*z* 571.3269.

Data for **3e** (from the mixture): ¹**H NMR** (**500 MHz, CDCl**₃) δ 6.85 (4H, d, J = 8.7 Hz, Ar), 6.64 (4H, d, J = 8.7 Hz, Ar), 4.20 (2H, dd, J = 7.4, 3.1 Hz, 2-H_A and 8-H_A), 4.10 (2H, dd, J = 11.5, 2.8 Hz, 2-H_B and 8-H_B), 3.75 (2H, d, J = 6.1 Hz, 10-H and 11-H), 3.70 (6H, s, 2 x OMe), 2.96-3.00 (2H, m, 1-H and 9-H), 0.99-1.13 (28H, m, 4 x *i*-Pr). ¹³C NMR (125 MHz, CDCl₃) δ 157.6 (2 x C Ar), 133.1 (2 x C Ar), 129.3 (4 x CH Ar), 113.3 (4 x CH Ar), 62.4 (C-2 and C-8), 55.4 (2 x OMe), 42.5 (C-10 and C-11), 41.4 (C-1 and C-9), 17.6 (4 x CH₃ *i*-Pr), 17.5 (4 x CH₃ *i*-Pr), 13.3 (4 x CH *i*-Pr).

9.6. (±)-(1*R*,10*S*,11*S*,12*R*)-4,4,6,6-Tetraisopropyl-12-(4-methoxyphenyl)-11-(*p*-tolyl)-3,5,7trioxa-4,6-disilabicyclo[8.2.0]dodecane, 2f.

From diene **1f** (39.9 mg, 0.0702 mmol) and PIDA (2.26 mg, 0.00702 mmol) following the general procedure, cyclobutane **2f** was obtained. Chromatographic purification (3% Et_2O - pentane) gave **2f** as a colorless oil (21.0 mg, 53%).

Data for **2f**: R_f 0.6 (30% Et₂O - pentane). ¹H NMR (**400** MHz, CDCl₃) δ 7.15 (2H, d, J = 8.6 Hz, Ar), 7.05-7.12 (4H, m, Ar), 6.83 (2H, d, J = 8.7 Hz, Ar), 4.00 (1H, ddd, J = 11.8, 9.9, 2.1 Hz, 3-H_A), 3.94 (1H, dd, J = 10.8, 2.4 Hz, 4-H_A), 3.79-3.84 (2H, m, 3-H_B and 4-H_B), 3.78 (3H, s, OMe), 3.06 (1H, t, J = 9.7 Hz, 6-H), 2.89 (1H, t, J = 9.7 Hz, 7-H), 2.60 (1H, dtd, J = 11.7, 9.0, 2.8 Hz, 1-H), 2.30 (3H, s, Me), 2.13-2.00 (2H, m, 2-H_A and 5-H), 1.50 (1H, dtd, J = 14.0, 11.5, 2.6 Hz, 2-H_B), 1.00-1.12 (28H, m, 4 x *i*-Pr). ¹³C NMR (125 MHz, CDCl₃) δ 158.2 (C Ar), 140.4 (C Ar), 135.7 (C Ar),

135.5 (C Ar), 129.1 (2 x CH Ar), 128.3 (2 x CH Ar), 127.0 (2 x CH Ar), 113.9 (2 x CH Ar), 64.5 (C-4), 60.4 (C-3), 55.4 (OMe), 50.8 (C-7), 49.7 (C-5), 45.7 (C-6), 40.2 (C-1), 37.8 (C-2), 21.2 (Me), 17.73 (CH₃ *i*-Pr), 17.71 (CH₃ *i*-Pr), 17.68 (CH₃ *i*-Pr), 17.66 (3 x CH₃ *i*-Pr), 17.64 (CH₃ *i*-Pr), 17.58 (CH₃ *i*-Pr), 13.7 (CH *i*-Pr), 13.5 (CH *i*-Pr), 13.3 (CH *i*-Pr), 13.2 (CH *i*-Pr). **IR** (film) v_{max} 2980, 2889, 2360, 1462, 1250, 1151, 1073 cm⁻¹. **HRMS** (CI): calculated for C₃₃H₅₃O₄Si₂ [M+H]⁺ requires *m*/*z* 569.3482, found *m*/*z* 569.3469.

9.7. $(\pm)(1R,8S,9S,10R)$ -4,4-Diisopropyl-9-(4-methoxyphenyl)-10-(*p*-tolyl)-3,5-dioxa-4 silabicyclo[6.2.0]decane, 2g and (\pm) -(1R,8R,9R,10R)-4,4-diisopropyl-9-(4-methoxy phenyl)-10-(*p*-tolyl)-3,5-dioxa-4-silabicyclo[6.2.0]decane, 3g.

From diene **1g** (19.4 mg, 0.0443 mmol) and PIDA (1.40 mg, 0.00435 mmol) following the general procedure, a 1:1.5 mixture of cyclobutanes **2g**:**3g** was obtained. Chromatographic purification (gradient elution: $2\% \rightarrow 6\%$ Et₂O - pentane) gave an inseparable 1:1 mixture of **2g**:**3g** as a colorless oil (11.9 mg, 60%).

Data for **2g** (from the mixture): $R_f 0.6 (10\% \text{ Et}_2\text{O} - \text{pentane})$. ¹H NMR (500 MHz, CDCl₃) δ 7.08-7.13 (6 H, m, Ar), 6.83 (2H, d, J = 6.3 Hz, Ar), 4.12-4.15 (1H, m, 7-H_A), 3.97-4.01 (1H, m, 3-H_A), 3.84-3.89 (1H, m, 3-H_B), 3.74-3.80 (1H, m, 7-H_B), 3.78 (3H, s, OMe), 2.98 (1H, t, J = 9.4 Hz, 10-H), 2.91 (1H, t, J = 9.4 Hz, 9-H), 2.49 (1H, dtd, J = 10.7, 8.6, 4.1 Hz, 8-H), 2.32 (3H, s, Me), 2.18-2.26 (1H, m, 1-H), 2.08 (1H, ddt, J = 15.6, 7.9, 4.0 Hz, 2-H_A), 1.61 (1H, m, 2-H_B), 1.02-1.11 (14H, m, 2 x *i*-Pr). ¹³C NMR (125 MHz, CDCl₃) δ 158.1 (C Ar), 140.2 (C Ar), 135.9 (C Ar), 135.2 (C Ar), 129.1 (2 x CH Ar), 128.6 (2 x CH Ar), 126.7 (2 x CH Ar), 113.8 (2 x CH Ar), 68.6 (C-7), 61.6 (C-3), 55.3 (OMe), 51.8 (C-10), 47.5 (C-9), 46.4 (C-8), 44.3 (C-1), 36.6 (C-2), 21.0 (Me), 17.72 (CH₃ *i*-Pr), 17.71 (CH₃ *i*-Pr), 17.67 (CH₃ *i*-Pr), 17.65 (CH₃ *i*-Pr), 12.69 (CH *i*-Pr), 12.67 (CH *i*-Pr). IR (film) v_{max} 2926, 2360, 2341, 1513, 1248, 1112 cm⁻¹. HRMS (CI): calculated for C₂₇H₃₉O₃Si [M+H]⁺ requires *m/z* 439.2668, found *m/z* 439.2269.

Data for **3g** (from the mixture): ¹**H NMR** (**500 MHz, CDCl**₃) δ 6.89 (4H, m, Ar), 6.81 (2H, d, *J* = 6.3 Hz, Ar), 6.65 (2H, d, *J* = 8.6 Hz, Ar), 4.21 (1H, t, *J* = 11.5 Hz, 7-H_A), 4.08-4.12 (1H, m, 3-H_A), 3.92-3.96 (1H, m, 7-H_B), 3.80-3.84 (1H, m, 3-H_B), 3.71 (3H, s, OMe), 3.44 (1H, dd, *J* = 9.8, 6.4 Hz, 10-H), 3.40 (1H, dd, *J* = 9.9, 6.5 Hz, 9-H), 3.16 (1H, dtd, *J* = 15.3, 7.6, 6.6, 4.0 Hz, 8-H), 2.83-

2.88 (1H, m, 1-H), 2.32-2.39 (1H, m, 2-H_A), 2.21 (3H, s, Me), 1.67-1.71 (1H, m, 2-H_B), 1.02-1.11 (14H, m, 2 x *i*-Pr). ¹³C NMR (125 MHz, CDCl₃) δ 157.6 (C Ar), 137.3 (C Ar), 135.2 (C Ar), 132.1 (C Ar), 129.0 (4 x CH Ar), 128.0 (2 x CH Ar), 113.2 (2 x CH Ar), 64.9 (C-3), 64.1 (C-7), 55.1 (OMe), 48.8 (C-10), 44.3 (C-9), 41.9 (C-8), 40.0 (C-1), 33.5 (C-2), 21.0 (Me), 17.61 (CH₃ *i*-Pr), 17.57 (CH₃ *i*-Pr), 17.54 (CH₃ *i*-Pr), 17.49 (CH₃ *i*-Pr), 12.4 (CH *i*-Pr), 11.8 (CH *i*-Pr).

9.8. (\pm) -(1R,8S,9S,10R)-4,4-Diisopropyl-9-(4-methoxyphenyl)-10-phenyl-3,5-dioxa-4-silabicyclo[6.2.0]decane, 2h and (\pm) -(1R,8R,9R,10R)-4,4-diisopropyl-9-(4-methoxy phenyl)-10-phenyl-3,5-dioxa-4-silabicyclo[6.2.0]decane, 3h.

From diene **1h** (16.7 mg, 0.0394 mmol) and PIDA (1.30 mg, 0.00404 mmol) following the general procedure, a 1:1.7 mixture of cyclobutanes **2h:3h** was obtained. Chromatographic purification (gradient elution: $3\% \rightarrow 20\%$ Et₂O - pentane) gave an inseparable 1:1.7 mixture of **2h:3h** as a colorless oil (3.6 mg, 20%).

Data for **2h** (from the mixture): $R_f 0.45$ (10% Et₂O - pentane). ¹H NMR (**500** MHz, CDCl₃) δ 7.27-7.31 (2H, m, Ar), 7.18-7.22 (3H, m, Ar), 7.10-7.14 (2H, m, Ar), 6.83 (2H, d, J = 8.8 Hz, Ar), 4.12-4.14 (1H, m, 7-H_A), 3.97-4.01 (1H, m, 3-H_A), 3.88 (1H, dt, J = 9.5, 2.7 Hz, 3-H_B), 3.79-3.81 (1H, m, 7-H_B), 3.78 (3H, s, OMe), 3.03 (1H, t, J = 9.5 Hz, 10-H), 2.93 (1H, t, J = 9.4 Hz, 9-H), 2.47-2.51 (1H, m, 8-H), 2.24-2.28 (1H, m, 1-H), 2.06-2.14 (1H, m, 2-H_A), 1.58-1.67 (1H, m, 2-H_B), 1.02-1.11 (14H, m, 2 x *i*-Pr). ¹³C NMR (125 MHz, CDCl₃) δ 158.3 (C Ar), 143.3 (C Ar), 135.2 (C Ar), 128.6 (2 x CH Ar), 127.9 (2 x CH Ar), 126.8 (3 x CH Ar), 113.9 (2 x CH Ar), 68.6 (C-7), 61.6 (C-3), 55.4 (OMe), 52.2 (C-10), 47.5 (C-9), 46.6 (C-8), 44.2 (C-1), 36.7 (C-2), 17.8 (CH₃ *i*-Pr), 17.7 (CH₃ *i*-Pr), 17.5 (CH₃ *i*-Pr), 17.3 (CH₃ *i*-Pr), 12.5 (CH *i*-Pr), 11.9 (CH *i*-Pr). NOESY- 2D (500 MHz, CDCl₃): between 9-H and 1-H, between 10-H and 8-H, between 10-H and 2-H_B. IR (film) v_{max} 3026, 2942, 1738, 1513, 1365, 1228 cm⁻¹. HRMS (Cl): calculated for C₂₆H₃₇O₃Si [M+H]⁺ requires *m*/z 425.2512, found *m*/z 425.2500.

Data for **3h** (from the mixture): ¹**H NMR** (**500 MHz, CDCl**₃) δ 7.09 (2H, d, J = 7.7 Hz, Ar), 6.99-7.05 (1H, m, Ar), 6.93 (2H, d, J = 7.2 Hz, Ar), 6.86 (2H, d, J = 8.6 Hz, Ar), 6.63 (2H, d, J = 8.7 Hz, Ar), 4.21 (1H, t, J = 11.4 Hz, 7-H_A), 4.07-4.11 (1H, m, 3-H_A), 3.92-3.97 (1H, m, 7-H_B), 3.81-3.85 (1H, m, 3-H_B), 3.69 (3H, s, OMe), 3.48 (1H, dd, J = 9.9, 6.6 Hz, 10-H), 3.42 (1H, dd, J = 9.9,

6.6 Hz, 9-H), 3.12-3.22 (1H, m, 8-H), 2.88-2.92 (1H, m, 1-H), 2.31-2.42 (1H, m, 2-H_A), 1.69-1.73 (1H, m, 2-H_B), 1.02-1.11 (14H, m, 2 x *i*-Pr). ¹³C NMR (125 MHz, CDCl₃) δ 157.8 (C Ar), 140.5 (C Ar), 132.0 (C Ar), 129.1 (2 x CH Ar), 128.2 (2 x CH Ar), 127.9 (2 x CH Ar), 125.9 (CH Ar), 113.3 (2 x CH Ar), 64.9 (C-3), 64.1 (C-7), 55.2 (OMe), 49.2 (C-10), 44.5 (C-9), 42.0 (C-8), 39.8 (C-1), 33.7 (C-2), 17.8 (CH₃ *i*-Pr), 17.7 (CH₃ *i*-Pr), 17.68 (CH₃ *i*-Pr), 17.62 (CH₃ *i*-Pr), 12.82 (CH *i*-Pr), 12.80 (CH *i*-Pr). NOESY- 2D (500 MHz, CDCl₃): between 9-H and 2-H_A, between 9-H and 7-H_A & 7-H_B, between 10-H and 2-H_A & 2-H_B, between 10-H and 7-H_A.

9.9. (\pm) -(1R,8S,9S,10R)-4,4-Diisopropyl-9-(4-methoxyphenyl)-10-(p-tolyl)-3,5-dioxa-4-silabicyclo[6.2.0]decane, 2i and (\pm) -(1S,8S,9S,10S)-4,4-Diisopropyl-9-(4-methoxy phenyl)-10-(p-tolyl)-3,5-dioxa-4-silabicyclo[6.2.0]decane, 3i.

From diene **1i** (33.9 mg, 0.0774 mmol) and PIDA (2.50 mg, 0.00776 mmol) following the general procedure, a 1:1.5 mixture of cyclobutanes **2i**:**3i** was obtained. Chromatographic purification (gradient elution: $3\% \rightarrow 4\%$ Et₂O - pentane) gave an inseparable 1:1.5 mixture of **2i**:**3i** as a colorless oil (6.9 mg, 21%).

Data for **2i** (from the mixture): $R_f 0.6$ (10% Et₂O - pentane). ¹H NMR (**500** MHz, CDCl₃) δ 7.13 (2H, d, J = 8.6 Hz, Ar), 7.04-7.11 (4H, m, Ar), 6.81-6.83 (2H, m, Ar), 4.12-4.15 (1H, m, 2-H_A), 3.97-4.00 (1H, m, 6-H_A), 3.85-3.89 (1H, m, 6-H_B), 3.76-3.79 (1H, m, 2-H_B), 3.78 (3H, s, OMe), 2.97 (1H, t, J = 9.4 Hz, 9-H), 2.91 (1H, t, J = 9.3 Hz, 10-H), 2.50 (1H, dtd, J = 10.9, 8.6, 4.2 Hz, 1-H), 2.31 (3H, s, Me), 2.18-2.23 (1H, m, 8-H), 2.01-2.12 (1H, m, 7-H_A), 1.59-1.64 (1H, m, 7-H_B), 1.02-1.10 (14H, m, 2 x *i*-Pr). ¹³C NMR (125 MHz, CDCl₃) δ 158.3 (C Ar), 140.1 (C Ar), 136.0 (C Ar), 135.3 (C Ar), 129.24 (2 x CH Ar), 127.9 (2 x CH Ar), 126.8 (2 x CH Ar), 114.0 (2 x CH Ar), 68.8 (C-2), 61.7 (C-6), 55.4 (OMe), 51.5 (C-9), 48.2 (C-10), 46.3 (C-1), 44.6 (C-8), 36.7 (C-7), 21.2 (Me), 17.72 (CH₃ *i*-Pr), 17.6 (CH₃ *i*-Pr), 17.5 (CH₃ *i*-Pr), 17.0 (CH₃ *i*-Pr), 12.6 (CH *i*-Pr), 11.9 (CH *i*-Pr). **IR** (film) v_{max} 2926, 2360, 2341, 1513, 1248, 1112 cm⁻¹. HRMS (ESI): calculated for C₂₇H₃₈O₃SiNa [M+Na]⁺ requires *m/z* 461.2482, found *m/z* 461.2484.

Data for **3i** (from the mixture): ¹**H NMR** (**500 MHz, CDCl**₃) δ 6.91 (2H, d, J = 8.0 Hz, Ar), 6.83-6.96 (4H, m, Ar), 6.64 (2H, d, J = 8.7 Hz, Ar), 4.21 (1H, t, J = 11.4 Hz, 2-H_A), 4.07-4.14 (1H, m, 6-H_A), 3.93-3.97 (1H, m, 2-H_B), 3.80-3.84 (1H, m, 6-H_B), 3.70 (3H, s, OMe), 3.44 (1H, dd, J = 1.4 Hz, 2-H_A), 4.07-4.14 (1H, dd, J = 1.4 Hz, 2-H_A), 4.07-4.14 (1H, m, 6-H_A), 3.93-3.97 (1H, m, 2-H_B), 3.80-3.84 (1H, m, 6-H_B), 3.70 (3H, s, OMe), 3.44 (1H, dd, J = 1.4 Hz, 2-H_A), 4.07-4.14 (1H, dd, J = 1.4 Hz, 2-H_A), 4.07-4.14 (1H, m, 6-H_A), 3.93-3.97 (1H, m, 2-H_B), 3.80-3.84 (1H, m, 6-H_B), 3.70 (3H, s, OMe), 3.44 (1H, dd, J = 1.4 Hz, 2-H_A), 4.07-4.14 (1H, dd, J =

10.0, 6.7 Hz, 9-H), 3.39 (1H, dd, J = 9.9, 6.6 Hz, 10-H), 3.13-3.22 (1H, m, 1-H), 2.82-2.89 (1H, m, 8-H), 2.30-2.33 (1H, m, 7-H_A), 2.21 (3H, s, Me), 1.65-1.72 (1H, m, 7-H_B), 1.02-1.10 (14H, m, 2 x *i*-Pr). ¹³C NMR (125 MHz, CDCl₃) δ 157.7 (C Ar), 137.0 (C Ar), 135.5 (C Ar), 132.7 (C Ar), 129.20 (2 x CH Ar), 128.7 (2 x CH Ar), 128.1 (2 x CH Ar), 113.4 (2 x CH Ar), 65.0 (C-6), 64.2 (C-2), 55.3 (OMe), 48.5 (C-9), 44.9 (C-10), 41.7 (C-1), 40.5 (C-8), 33.7 (C-7), 21.7 (Me), 17.9 (CH₃ *i*-Pr), 17.80 (CH₃ *i*-Pr), 17.6 (CH₃ *i*-Pr), 12.85 (CH *i*-Pr), 12.81 (CH *i*-Pr).

9.10. (\pm) -(1S,7S,8R,9R)-4,4-Diisopropyl-8,9-bis(4-methoxyphenyl)-3,5-dioxa-4silabicyclo[5.2.0]nonane, 2j and (\pm) -(1R,7S,8R,9S)-4,4-Diisopropyl-8,9-bis(4-methoxyphenyl)-3,5-dioxa-4-silabicyclo[5.2.0]nonane, 3j.

From diene **1j** (21.2 mg, 0.0482 mmol) and PIDA (1.60 mg, 0.00497 mmol) following the general procedure except conducting the reaction at 0°C, a 1:2 mixture of cyclobutanes **2j**:**3j** was obtained. Chromatographic purification (gradient elution: 5% \rightarrow 10% Et₂O - pentane) gave a separable 1:2 mixture of **2j**:**3j** as a colorless oil (13.0 mg, 60%).

Data for **2j**: R_f 0.54 (30% Et₂O - pentane). ¹H NMR (500 MHz, CDCl₃) δ 7.11 (4H, d, J = 8.6 Hz, Ar), 6.84 (4H, d, J = 8.5 Hz, Ar), 4.17-4.21 (2H, m, 2-H_A and 6-H_A), 3.74-3.81 (2H, m, 2-H_B and 6-H_B), 3.79 (6H, s, 2 x OMe), 3.02 (2H, d, J = 9.4 Hz, 8-H and 9-H), 2.33-2.41 (2H, m, 1-H and 7-H), 1.03-1.06 (14 H, m, 2 x *i*-Pr). ¹³C NMR (125 MHz, CDCl₃) δ 158.5 (2 x C Ar), 134.5 (2 x C Ar), 127.8 (4 x C-H Ar), 114.1 (4 x CH Ar), 68.6 (C-2 and C-6), 55.4 (2 x OMe), 49.9 (C-1 and C-7), 47.1 (C-8 and C-9), 17.6 (2 x CH₃ *i*-Pr), 17.5 (2 x CH₃ *i*-Pr), 13.4 (2 x CH *i*-Pr). IR (film) v_{max} 2980, 2360, 1611, 1513, 1247, 1121 cm⁻¹. HRMS (CI): calculated for C₂₆H₃₇O₄Si [M+H]⁺ requires 441.2461, found 441.2463.

Data for **3j**: ¹**H NMR** (**500 MHz**, **CDCl**₃) δ 6.83 (4H, d, J = 8.6 Hz, Ar), 6.64 (4H, d, J = 8.7 Hz, Ar), 4.21-4.23 (2H, m, 2-H_A and 6-H_A), 4.07-4.11 (2H, m, 2-H_B and 6-H_B), 3.71 (6H, s, 2 x OMe), 3.60 (2H, d, J = 6.0 Hz, 8-H and 9-H), 3.12 (2 H, m, 1-H and 7-H), 1.06-1.09, 1.07-1.16 (14H, m, 2 x *i*-Pr). ¹³**C NMR** (**125 MHz**, **CDCl**₃) δ 157.8 (2 x C Ar), 132.4 (2 x C Ar), 129.2 (4 x CH Ar), 113.4 (4 x CH Ar), 64.2 (C-2 and C-6), 55.3 (2 x OMe), 42.9 (C-8 and C-9), 42.0 (C-1 and C-7), 17.6 (2 x CH₃ *i*-Pr), 17.3 (2 x CH₃ *i*-Pr), 12.3 (CH *i*-Pr), 11.9 (CH *i*-Pr).

9.11. (±)-(1*S*,7*S*,8*R*,9*R*)-4,4-Di-*tert*-butyl-8,9-bis(4-methoxyphenyl)-3,5-dioxa-4silabicyclo[5.2.0]nonane, 2k and (±)-(1*R*,7*S*,8*R*,9*S*)-4,4-Di-*tert*-butyl-8,9-bis(4-methoxyphenyl) -3,5-dioxa-4-silabicyclo[5.2.0]nonane, 3k.

From diene **1k** (15.6 mg, 0.0333 mmol) and PIDA (1.10 mg, 0.00333 mmol) following the general procedure except conducting the reaction at 0°C, a 1:2.5 mixture of cyclobutanes **2k:3k** was obtained. Chromatographic purification (gradient elution: $4\% \rightarrow 9\%$ Et₂O - pentane) gave a separable 1:2.5 mixture of **2k:3k** as a colorless oil (7.5 mg, 49%).

Data for **2k**: R_f 0.45 (30% Et₂O - pentane). ¹H NMR (500 MHz, CDCl₃) δ 7.10 (4H, d, J = 8.6 Hz, Ar), 6.84 (4H, d, J = 8.7 Hz, Ar), 4.22 (2H, dd, J = 10.6, 3.4 Hz, 2-H_A and 6-H_A), 3.85 (2H, t, J = 10.4 Hz, 2-H_B and 6-H_B), 3.78 (6H, s, OMe), 3.02 (2H, d, J = 9.5 Hz, 8-H and 9-H), 2.28-2.37 (2H, m, 1-H and 7-H), 1.00 (18 H, s, 6 x CH₃ *t*-Bu). ¹³C NMR (125 MHz, CDCl₃) δ 158.4 (2 x C Ar), 134.6 (2 x C Ar), 127.9 (4 x C-H Ar), 114.1 (4 x C-H Ar), 69.6 (C-2 and C-6), 55.4 (2 x OMe), 50.3 (C-1 and C-7), 46.8 (C-8 and C-9), 27.9 (6 x CH₃ *t*-Bu), 22.0 (2 x C *t*-Bu). IR (film) v_{max} 2980, 2932, 1513, 1249, 1124, 1078, 826cm⁻¹. HRMS (Cl): calculated for C₂₈H₄₀O₄Si [M+H]⁺ requires 469.2764, found 469.2767.

Data for **3k**: ¹**H NMR** (**500 MHz**, **CDCl**₃) δ 6.83 (4H, d, *J* = 7.9 Hz, Ar), 6.64 (4H, d, *J* = 8.7 Hz, Ar), 4.34-4.43 (2H, m, 2-H_A and 6-H_A), 4.10 (2H, dd, *J* = 11.7, 4.7 Hz, 2-H_B and 6-H_B), 3.70 (6H, s, OMe), 3.42 (2H, d, *J* = 5.7 Hz, 8-H and 9-H), 3.15-3.25 (2H, m, 1-H and 7-H), 1.10 (9H, s, 3 x CH₃ *t*-Bu), 1.04 (9 H, s, 3 x CH₃ *t*-Bu). ¹³**C NMR** (**125 MHz**, **CDCl**₃) δ 157.7 (2 x C Ar), 132.5 (2 x C Ar), 129.1 (4 x C-H Ar), 113.4 (4 x C-H Ar), 66.0 (C-2 and C-6), 55.3 (2 x OMe), 42.6 (C-8 and C-9), 41.7 (C-1 and C-7), 28.1 (3 x CH₃ *t*-Bu), 27.5 (3 x CH₃ *t*-Bu), 22.8 (C *t*-Bu), 20.3 (C *t*-Bu). **NOESY- 2D** (**500 MHz**, **CDCl**₃): between 1-H/7-H and 8-H/9-H, between 1-H/7-H and 2-H₂, between 1-H/7-H and 6-H₂.

9.12. (\pm) -(1S,7S,8R,9R)-8,9-Bis(4-methoxyphenyl)-4,4-diphenyl-3,5-dioxa-4-silabicyclo[5.2.0]nonane, 2l and (\pm) -(1R,7S,8R,9S)-8,9-Bis(4-methoxyphenyl)-4,4-diphenyl-3,5-dioxa-4-silabicyclo[5.2.0]nonane, 3l.

From diene **11** (16.1 mg, 0.0317 mmol) and PIDA (1.10 mg, 0.00317 mmol) following the general procedure except conducting the reaction at 0°C, a 1:2 mixture of cyclobutanes **21:31** was obtained. Chromatographic purification (15% Et_2O - pentane) gave an inseparable 1:2 mixture of **21:31** as a colorless oil (6.5 mg, 40%).

Data for **2l** (from the mixture): $R_f 0.54$ (30% Et₂O - pentane). ¹H NMR (**500** MHz, CDCl₃) δ 7.79 (3H, dd, J = 7.9, 1.5 Hz, Ar), 7.79 (7H, dd, J = 7.9, 1.5 Hz, Ar), 7.00-7.05 (4H, m, Ar), 6.79-6.82 (4H, m, Ar), 4.39 (2H, dd, J = 10.7, 3.8 Hz, 2-H_A and 6-H_A), 3.92 (2H, t, J = 10.7 Hz, 2-H_B and 6-H_B), 3.77 (6H, s, 2 x OMe), 2.95 (2H, d, J = 9.3 Hz, 8-H and 9-H), 2.48-2.55 (2H, m, 1-H and 7-H). ¹³C NMR (**125** MHz, CDCl₃) δ 158.5 (2 x C Ar), 134.5 (2 x C Ar), 132.0 (2 x C Ar), 135.1 (2 x CH Ar), 134.8 (2 x CH Ar), 134.5 (6 x CH Ar), 127.8 (4 x CH Ar), 114.1 (4 x CH Ar), 68.8 (C-2 and C-6), 55.4 (2 x OMe), 48.8 (C-1 and C-7), 47.4 (C-8 and C-9). IR (film) v_{max} 2980, 1513, 1382, 1249, 1125, 830 cm⁻¹. HRMS (CI): calculated for C₃₂H₃₃O₄Si [M+H]⁺ requires 509.2148, found 509.2147.

Data for **3l** (from the mixture): ¹**H NMR** (**500 MHz, CDCl**₃) δ 7.35-7.52 (10H, m, Ar), 6.82-6.85 (4H, m, Ar), 6.63-6.67 (4H, m, Ar), 4.25-4.31 (2H, m, 2-H_A and 6-H_A), 4.19-4.25 (2H, m, 2-H_B and 6-H_B), 3.71 (6H, s, 2 x OMe), 3.67-3.70 (2 H, m, 8-H and 9-H), 3.21-3.26 (2 H, m, 1-H and 7-H). ¹³**C NMR (125 MHz, CDCl**₃) δ 157.8 (2 x C Ar), 132.6 (2 x C Ar), 130.4 (2 x C Ar), 129.3 (4 x CH Ar), 128.3 (2 x C-H Ar), 128.27 (2 x CH Ar), 128.20 (4 x CH Ar), 128.15 (2 x CH Ar), 113.4 (4 x CH Ar), 64.2 (C-2 and C-6), 55.3 (2 x OMe), 43.1 (C-8 and C-9), 42.0 (C-1 and C-7).

9.13. (\pm) -(1S,7S,8R,9R)-4,4-Diethyl-8,9-bis(4-methoxyphenyl)-3,5-dioxa-4silabicyclo[5.2.0]nonane, 2m and (\pm) -(1R,7S,8R,9S)-4,4-Diethyl-8,9-bis(4-methoxyphenyl)-3,5dioxa-4-silabicyclo[5.2.0]nonane, 3m.

From diene **1m** (22.0 mg, 0.0534 mmol) and PIDA (1.70 mg, 0.00534 mmol) following the general procedure except conducting the reaction at 0°C, a 1:3 mixture of cyclobutanes **2m**:**3m** was obtained. Chromatographic purification (gradient elution: $5\% \rightarrow 9\%$ Et₂O - pentane) gave separable

cyclobutanes 2m and 3m as colorless oils (12.5 mg, 57%).

Data for **2m**: R_f 0.54 (30% Et₂O - pentane). ¹H NMR (500 MHz, CDCl₃) δ 7.10 (4H, d, J = 8.6 Hz, Ar), 6.81-6.87 (4H, m, Ar), 4.17 (2H, dd, J = 10.8, 3.8 Hz, 2H, m, 2-H_A and 6-H_A), 3.71-3.81 (2H, m, 2-H_B and 6-H_B), 3.79 (6H, s, 2 x OMe), 2.98-3.04 (2H, m, 8-H and 9-H), 2.40-2.47 (2H, m, 1-H and 7-H), 0.99 (6H, t, J = 8.0 Hz, 2 x CH₃ Et), 0.66 (4H, q, J = 8.0 Hz, 2 x CH₂ Et). ¹³C NMR (125 MHz, CDCl₃) δ 158.5 (2 x C Ar), 134.4 (2 x C Ar), 127.8 (4 x CH Ar), 114.1 (4 x CH Ar), 68.1 (C-2 and C-6), 55.4 (2 x OMe), 49.5 (C-1 and C-7), 47.3 (C-8 and C-9), 6.8 (2 x CH₃ Et), 5.7 (2 x CH₂ Et). IR (film) v_{max} 2980, 2360, 1513, 1247, 1122, 828 cm⁻¹. HRMS (Cl): calculated for C₂₄H₃₃O₄Si [M+H]⁺ requires *m*/*z* 413.2148, found *m*/*z* 413.2139.

Data for **3m**: ¹**H NMR** (**500 MHz**, **CDCl**₃) δ 6.83 (4H, d, J = 6.2 Hz, Ar), 6.64 (4H, d, J = 8.7 Hz, Ar), 4.11-4.16 (2H, m, 2-H_A and 6-H_A), 4.04-4.10 (2H, m, 2-H_B and 6-H_B), 3.71 (6H, s, 2 x OMe), 3.66 (2H, d, J = 6.0 Hz, 8-H and 9-H), 3.11 (2H, ddd, J = 7.6, 4.6, 2.3 Hz, 1-H and 7-H), 1.08 (3H, t, J = 8.0 Hz, CH₃ Et), 1.03 (3 H, t, J = 8.0 Hz, CH₃ Et), 0.76 (2H, q, J = 8.0 Hz, CH₂ Et), 0.70 (2H, q, J = 8.0 Hz, CH₂ Et). ¹³C **NMR** (**125 MHz**, **CDCl**₃) δ 157.8 (2 x C Ar), 132.3 (2 x C Ar), 129.3 (4 x CH Ar), 113.4 (4 x CH Ar), 63.6 (C-2 and C-6), 55.3 (2 x OMe), 43.1 (C-8 and C-9), 42.0 (C-1 and C-7), 6.7 (CH₃ Et), 6.5 (CH₃ Et), 3.9 (CH₂ Et), 3.8 (CH₂ Et).

9.14. (\pm) -(1S,7S,8R,9R)-4,4-Diisopropyl-8-(4-methoxyphenyl)-9-(*p*-tolyl)-3,5-dioxa-4-silabicyclo[5.2.0]nonane, 2n and (\pm) -(1R,7S,8R,9S)-4,4-diisopropyl-8-(4-methoxyphenyl) -9-(*p*-tolyl)-3,5-dioxa-4-silabicyclo[5.2.0]nonane, 3n.

From diene **1n** (19.2 mg, 0.0453 mmol) and PIDA (1.50 mg, 0.00453 mmol) following the general procedure except conducting the reaction at 0°C and using 0.02M of HFIP, a 1:2 mixture (d.r. was based on crude NMR) of cyclobutanes **2n**:**3n** was obtained. Chromatographic purification (3% Et₂O - pentane) gave an inseparable 1:4 mixture of **2n** and **3n** as a colorless oils (7.7 mg, 40%).

Data for **2n** (from the mixture): $R_f 0.35$ (10% Et₂O - pentane). ¹H NMR (**500** MHz, CDCl₃) δ 7.07-7.13 (6H, m, Ar), 6.81-6.86 (2H, m, Ar), 4.16-4.22 (2H, m, 2-H_A and 6-H_A), 3.77-3.82 (2H, m, 2-H_B and 6-H_B), 3.78 (3H, s, OMe), 3.04 (2H, d, J = 9.4 Hz, 8-H and 9-H), 2.35-2.42 (2H, m, 1-H and 7-H), 2.32 (3H, s, Me), 1.01-1.06 (14H, m, 2 x *i*-Pr). ¹³C NMR (125 MHz, CDCl₃) δ 157.7 (C Ar), 139.3 (C Ar), 135.3 (C Ar), 134.5 (C Ar), 129.4 (2 x CH Ar), 127.9 (2 x CH Ar), 126.8 (2 x CH Ar), 114.0 (2 x CH Ar), 68.6 (C-2 and C-6), 55.3 (OMe), 49.9 and 49.7 (C-1 and C-7), 47.4 and 46.8

(C-8 and C-9), 21.1 (Me), 17.6 and 17.5 (4 x CH₃ *i*-Pr), 13.4 (2 x CH *i*-Pr). **IR** (film) v_{max} 2980, 2360, 1513, 1462, 1382, 1250, 1511, 1073, 954 cm⁻¹. **HRMS** (ESI): calculated for C₂₆H₃₇O₃Si [M]⁺ requires *m/z* 425.2507, found *m/z* 425.2506.

Data for **3n** (from the mixture): ¹**H NMR (500 MHz, CDCl**₃) δ 6.90 (2H, d, J = 7.8 Hz, Ar), 6.78-6.86 (4H, m, Ar), 6.62-6.66 (2H, m, Ar), 4.21 (2H, m, 2-H_A and 6-H_A), 4.09 (2H, dd, J = 11.9, 3.9 Hz, 2-H_B and 6-H_B), 3.70 (3H, s, OMe), 3.56-3.64 (2H, m, 8-H and 9-H), 3.07-3.19 (2H, m, 1-H and 7-H), 2.21 (3H, s, Me), 1.12-1.16 (7H, m, *i*-Pr), 1.06-1.10 (7H, m, *i*-Pr). ¹³C NMR (125 MHz, CDCl₃) δ 157.7 (C Ar), 137.2 (C Ar), 135.3 (C Ar), 132.5 (C Ar), 129.2 (2 x CH Ar), 128.7 (2 x CH Ar), 128.1 (2 x CH Ar), 113.4 (2 x CH Ar), 64.3 and 64.2 (C-2 and C-6), 55.3 (OMe), 43.3 and 42.9 (C-8 and C-9), 42.2 and 41.8 (C-1 and C-7), 21.1 (Me), 17.6 (2 x CH₃ *i*-Pr), 17.3 (2 x CH₃ *i*-Pr), 12.3 (CH *i*-Pr), 11.9 (CH *i*-Pr).

9.15. (±)-(1*R*,5*S*,6*R*,7*S*)-6,7-Bis(4-methoxyphenyl)-3-oxabicyclo[3.2.0]heptanes, 5a.

From diene **4a** (50.5 mg, 0.163 mmol) and PIDA (5.30 mg, 0.0163 mmol) following the general procedure, cyclobutane **5a** was obtained. Chromatographic purification (gradient elution: $15\% \rightarrow 20\%$ Et₂O - pentane) gave **5a** as a white solid (29.1 mg, 58%). Spectral properties matched those previously reported.¹¹

Data for **5a**: $R_f 0.4$ (50% Et₂O - pentane). ¹H NMR (**400** MHz, CDCl₃) δ 6.85 (4H, d, J = 8.7 Hz, Ar), 6.64 (4H, d, J = 8.7 Hz, Ar), 4.08 (2H, d, J = 9.4 Hz, 2-H_A and 4-H_A), 3.70 (6H, s, 2 x OMe), 3.66-3.71 (2H, m, 2-H_B and 4-H_B), 3.65 (2H, d, J = 4.4 Hz, 6-H and 7-H), 3.20-3.24 (2H, m, 1-H and 5-H). ¹³C NMR (**100** MHz, CDCl₃) δ 157.4 (2 x C Ar), 133.1 (2 x C Ar), 129.0 (4 x CH Ar), 113.2 (4 x CH Ar), 74.0 (C-2 and C-4), 55.1 (2 x OMe), 46.5 (C-6 and C-7), 42.5 (C-1 and C-5). HRMS (Cl): calculated for C₂₀H₂₆O₃N₄ [M+NH₄]⁺ requires *m/z* 328.1913, found *m/z* 328.1903.

From diene **4b** (21.4 mg, 0.0764 mmol) and PIDA (2.50 mg, 0.00764 mmol) following the general procedure, cyclobutane **5b** was obtained. Chromatographic purification (gradient elution: $11\% \rightarrow 14\%$ Et₂O - pentane) gave **5b** as a colorless oil (17.1 mg, 80%). Spectral properties matched those previously reported.¹¹

Data for **5b**: $R_f 0.4$ (40% Et₂O - pentane). ¹H NMR (400 MHz, CDCl₃) δ 7.06-7.12 (2H, m, Ar), 6.98-7.03 (1H, m, Ar), 6.92-6.96 (2H, m, Ar), 6.85 (2H, d, J = 8.6 Hz, Ar), 6.62 (2H, d, J = 8.7 Hz, Ar), 4.09 (2H, d, J = 9.4 Hz, 2-H_A and 4-H_A), 3.68-3.74 (4H, m, 2-H_B, 4-H_B, 1-H and 5-H), 3.69 (3H, s, OMe), 3.21-3.33 (2H, m, 6-H and 7-H). ¹³C NMR (100 MHz, CDCl₃) δ 157.5 (C Ar), 140.9 (C Ar), 133.0 (C Ar), 129.1 (2 x CH Ar), 128.1 (2 x CH Ar), 127.7 (2 x CH Ar), 125.6 (CH Ar), 113.1 (2 x CH Ar), 74.0 (C-2 and C-4), 55.1 (OMe), 49.5 and 47.2 (C-1 and C-5), 42.6 and 42.0 (C-6 and C-7). HRMS (Cl): calculated for C₁₉H₂₀O₂ [M+H]⁺ requires *m/z* 281.1542, found *m/z* 281.1531.

9.17. (±)-(1*S*,5*R*,6*S*,7*R*)-6-(4-Bromophenyl)-7-(4-methoxyphenyl)-3-oxabicyclo[3.2.0]heptane, 5c.

From diene **4c** (17.5 mg, 0.0489 mmol) and PIDA (1.60 mg, 0.00489 mmol) following the general procedure, cyclobutane **5c** was obtained. Chromatographic purification (gradient elution: $15\% \rightarrow 30\%$ Et₂O - pentane) gave **5c** as a colorless oil (13.1 mg, 75%).

Data for **5c**: R_f 0.5 (50 % Et₂O - pentane). ¹H NMR (400 MHz, CDCl₃) δ 7.20 (2H, d, J = 8.5 Hz, Ar), 6.84 (2H, d, J = 8.7 Hz, Ar), 6.80 (2H, d, J = 8.4 Hz, Ar), 6.65 (2H, d, J = 8.7 Hz, Ar), 4.08 (2H, dd, J = 9.5, 3.0 Hz, 2-H_A and 4-H_A), 3.71 (3H, s, OMe), 3.67-3.73 (2H, m, 1-H and 5-H), 3.63-3.67 (2H, m, 2-H_B and 4-H_B), 3.18-3.26 (2H, m, 6-H and 7-H). ¹³C NMR (100 MHz, CDCl₃) δ 157.7 (C Ar), 140.1 (C Ar), 132.7 (C Ar), 130.9 (2 x CH Ar), 129.9 (2 x CH Ar), 129.1 (2 x CH Ar), 121.5 (C Ar), 113.5 (2 x CH Ar), 74.1 and 73.1 (C-2 and C-4), 55.2 (OMe), 46.7 and 46.5 (C-1 and C-5),

42.6 and 42.3 (C-6 and C-7). **IR** (film) v_{max} 2980, 2894, 1380, 1255, 1150, 1081, 970 cm⁻¹. **HRMS** (Cl): calculated for C₁₉H₂₃BrNO₂ [M+NH₄]⁺ requires *m/z* 376.0912, found *m/z* 376.0911.

9.18. (±)-(1R,5S,6R,7S)-6-(4-Methoxyphenyl)-7-(3-(trifluoromethyl)phenyl)-3oxabicyclo[3.2.0]heptane, 5d.

From diene **4d** (44.6 mg, 0.128 mmol) and PIDA (4.10 mg, 0.0128 mmol) following the general procedure, cyclobutane **5d** was obtained. Chromatographic purification (gradient elution: $15\% \rightarrow 20\%$ Et₂O - pentane) to yield **5d** as a colorless oil (30.9 mg, 70%).

Data for **5d**: R_f 0.45 (50% Et₂O - pentane). ¹H NMR (400 MHz, CDCl₃) δ 7.25 (1H, d, J = 7.5 Hz, Ar), 7.17 (2H, t, J = 7.8 Hz, Ar), 7.06 (1H, d, J = 7.7 Hz, Ar), 6.83 (2H, d, J = 8.6 Hz, Ar), 6.62 (2H, d, J = 8.7 Hz, Ar), 4.11 (2H, dd, J = 9.3, 2.0 Hz, 2-H_A and 4-H_A), 3.72-3.76 (2H, m, 1-H and 5-H), 3.69-3.72 (2H, m, 2-H_B and 4-H_B), 3.23-3.34 (2H, m, 6-H and 7-H). ¹³C NMR (100 MHz, CDCl₃) δ 157.9 (C Ar), 141.0 (C Ar), 132.3 (C Ar), 131.7 (CH Ar), 130.0 (CF₃, q, J = 31.9 Hz), 129.1 (CH Ar and C Ar), 128.2 (2 x CH Ar), 124.8 (CH Ar, q, J = 3.8 Hz), 122.5 (CH Ar, q, J = 3.8 Hz), 113.5 (2 x CH Ar), 74.1 and 74.0 (C-2 and C-4), 55.3 (OMe), 47.1 and 46.7 (C-1 and C-5), 42.3 and 42.0 (C-6 and C-7). IR (film) v_{max} 2980, 2889, 1382, 1250, 1150, 1081 cm⁻¹. HRMS (Cl): calculated for C₂₀H₂₃F₃NO₂ [M+NH₄]⁺ requires *m*/*z* 366.1681, found *m*/*z* 366.1670.

9.19. (±)- (1*R*,5*S*,6*R*,7*S*)-6-(4-Methoxyphenyl)-7-(*o*-tolyl)-3-oxabicyclo[3.2.0]heptane, 5e.

From diene **4e** (38.3 mg, 0.130 mmol) and PIDA (4.20 mg, 0.0130 mmol) following the general procedure, cyclobutane **5e** was obtained. Chromatographic purification (gradient elution: $10\% \rightarrow 20\%$ Et₂O - pentane) gave **5e** as a colorless oil (18.3 mg, 64%).

Data for **5e**: $R_f 0.45$ (50% Et₂O - pentane). ¹H NMR (400 MHz, CDCl₃) δ 7.29 (1H, d, J = 7.7 Hz, Ar), 7.09 (1H, t, J = 8.5 Hz, Ar), 6.96 (1H, t, J = 7.5 Hz, Ar), 6.86-6.91 (3H, m, Ar), 6.58

(2H, d, J = 8.7 Hz, Ar), 4.13 (1H, d, J = 9.4 Hz, 4-H_A), 4.03 (1H, d, J = 9.2 Hz, 2-H_A), 3.81-3.90 (1H, m, 7-H), 3.70 (2H, dd, J = 9.4, 5.5 Hz, 2-H_A and 4-H_A), 3.67 (3H, s, OMe), 3.63 (1H, dd, J = 10.0, 4.6 Hz, 6-H), 3.53-3.60 (1H, m, 1-H), 2.99-3.07 (1H, m, 5-H), 2.01 (3H, s, Me). ¹³C NMR (100 MHz, CDCl₃) δ 157.7 (C Ar), 138.3 (C Ar), 136.5 (C Ar), 133.7 (C Ar), 130.0 (CH Ar), 129.3 (2 x CH Ar), 126.5 (CH Ar), 126.0 (CH Ar), 125.3 (CH Ar), 113.1 (2 x CH Ar), 74.3 (C-2 and C-4), 55.2 (OMe), 47.5 (C-6), 44.6 (C-7), 44.0 (C-5), 40.2 (C-1), 20.0 (Me). IR (film) v_{max} 2982, 2890, 1380, 1250, 1151, 1081, 970 cm⁻¹. HRMS (Cl): calculated for C₂₀H₂₆NO₂ [M+NH₄]⁺ requires *m*/*z* 312.1964, found *m*/*z* 312.1962.

9.20. (±)-(15,55,75)-7-(4-Methoxyphenyl)-6,6-dimethyl-3-oxabicyclo[3.2.0]heptane, 5f.

From diene **4f** (20.0 mg, 0.0862 mmol) and PIDA (2.80 mg, 0.00862 mmol) following the general procedure, cyclobutane **5f** was obtained. Chromatographic purification gradient elution: 11% \rightarrow 20% Et₂O - pentane) gave **5f** as a colorless oil (4.0 mg, 20%). Spectral properties matched those previously reported.¹¹

Data for **5f**: R_f 0.5 (40% Et₂O - pentane). ¹H NMR (**500** MHz, CDCl₃) δ 7.06 (2H, d, J = 8.8 Hz, Ar), 6.85 (2H, d, J = 8.8 Hz, Ar), 4.16 (1H, d, J = 10.1 Hz, 2-H_A), 3.80 (3H, s, OMe), 3.78 (1H, d, J = 9.1 Hz, 4-H_A), 3.50 (1H, dd, J = 10.1, 7.0 Hz, 2-H_B), 3.43 (1H, dd, J = 9.1, 4.3 Hz, 4-H_B), 3.18-3.24 (1H, m, 5-H), 2.91 (1H, d, J = 7.4 Hz, 6-H), 2.39 (1H, t, J = 7.5 Hz, 1-H), 1.08 (3H, s, Me), 0.73 (3H, s, Me). ¹³C NMR (125 MHz, CDCl₃) δ 157.9 (C Ar), 132.7 (C Ar), 128.6 (2 x CH Ar), 113.4 (2 x CH Ar), 72.0 (C-4), 69.1 (C-2), 55.2 (OMe), 51.2 (C-6), 46.5 (C-1), 38.4 (C-5), 37.2 (C-7), 26.2 (Me), 24.1 (Me).

9.21. (±)-(1*S*,5*S*,7*S*)-7-(4-Methoxyphenyl)-3-oxaspiro{bicyclo[3.2.0]heptane-6,1'cyclohexane}, 5g

From diene **4g** (60.0 mg, 0.221 mmol) and PIDA (7.1 mg, 0.022 mmol) following the general procedure except conducting the reaction at 40°C, cyclobutane **5g** was obtained. Chromatographic purification gradient elution: $4\% \rightarrow 6\%$ Et₂O - pentane) gave **5g** as a colorless oil (12.0 mg, 20%).

Data for **5g**: R_f 0.4 (20% Et₂O - pentane). ¹H NMR (**500** MHz, **CDCl**₃) δ 7.08 (2H, d, J = 8.7 Hz, Ar), 6.85 (2H, d, J = 8.7 Hz, Ar), 4.13 (1H, dd, J = 9.9, 1.2 Hz, 2-H_A), 3.80 (3H, s, OMe), 3.76 (1H, dd, J = 9.0, 1.2 Hz, 4-H_A), 3.57 (1H, dd, J = 10.0, 6.8 Hz, 2-H_B), 3.43 (1H, dd, J = 9.0, 4.5 Hz, 4-H_B), 3.18 (1H, td, J = 7.8, 4.4 Hz, 5-H), 2.84 (1H, d, J = 7.5 Hz, 6-H), 2.45- 2.54 (1H, m, 1-H), 1.74-1.94 (1H, m, 1/2 x CH₂ cyclohexyl), 1.45-1.53 (2H, m, CH₂ cyclohexyl), 1.27-1.39 (3H, m, 1/2 x CH₂ and CH₂ cyclohexyl), 1.12-1.23 (2H, m, CH₂ cyclohexyl), 1.00-1.09 (1H, m, 1/2 x CH₂ cyclohexyl), 0.81-0.92 (1H, m, 1/2 x CH₂ cyclohexyl). ¹³C NMR (125 MHz, CDCl₃) δ 158.1 (C Ar), 132.5 (C Ar), 129.2 (2 x CH Ar), 113.5 (2 x CH Ar), 72.4 (C-4), 69.2 (C-2), 55.4 (OMe), 51.7 (C-6), 44.4 (C-1), 41.0 (C-7), 39.0 (C-5), 34.7 (CH₂ cyclohexyl), 33.4 (CH₂ cyclohexyl), 26.0 (CH₂ cyclohexyl), 23.2 (CH₂ cyclohexyl), 21.9 (CH₂ cyclohexyl). IR (film) v_{max} 2923, 2849, 1512, 1447, 1246, 1178, 1037 cm⁻¹.HRMS (ESI): calculated for C₁₈H₂₅O₂ [M+H]⁺ requires *m/z* 273.1849, found *m/z* 273.1839.

10. General procedure for silyl ether deprotection

To a cold (0 °C) solution of 1.0 eq. of cyclobutane in 20 mL/mmol of dry THF, under Ar, 3.0 eq. of TBAF (1 M in THF) was added slowly. After 10 min. the reaction was let to warm up to rt and was stirred for 3 hours. The reaction was quenched with phosphate buffer and extract with Et₂O. The combined organic layer was washed with brine and dry with MgSO₄, and the solvent was evaporated under reduced pressure to give the corresponding diol, that was purified by chromatography on silica gel using the appropriate mixture of eluents.

10.1. (\pm) -[(1R,2R,3S,4S)-3,4-Bis(4-methoxyphenyl)cyclobutane]-1,2-bis(2-hydroxyethyl), 6a.

From cyclobutane **2a** (19.9 mg, 0.0425 mmol) and 1.0 M TBAF (0.17 ml, 0.17 mmol) following the general procedure, diol **6a** was obtained. Chromatographic purification (gradient elution: $50\% \rightarrow 100\%$ EtOAc - pentane) gave **6a** as a colorless oil (12.9 mg, 85%).

Data for **6a**: $R_f 0.5$ (100% EtOAc). ¹H NMR (**400** MHz, CDCl₃) δ 7.13 (4H, d, J = 8.7 Hz, Ar), 6.82 (4H, d, J = 8.7 Hz, Ar), 3.77 (6H, s, 2 x OMe), 3.56-3.70 (4H, m, 6-H₂ and 8-H₂), 2.86 (2H, d, J = 9.2 Hz, 3-H and 4-H), 2.16-2.20 (2H, m, 1-H and 2-H), 1.86-1.90 (4H, m, 5-H₂ and 7-H₂), 1.66 (2H, br s, OH). ¹³C NMR (**100** MHz, CDCl₃) δ 158.3 (2 x C Ar), 135.4 (2 x C Ar), 128.0 (4 x CH Ar), 114.0 (4 x CH Ar), 61.0 (C-6 and C-8), 55.4 (2 x OMe), 52.2 (C-3 and C-4), 43.0 (C-1 and C-2), 38.1 (C-5 and C-7). IR (film) v_{max} 2980, 2360, 1738, 1378, 1230, 1152, 954 cm⁻¹.HRMS (ESI): calculated for C₂₂H₂₉O₄Si [M]⁺ requires *m/z* 357.2060, found *m/z* 357.2061.

From cyclobutane **2j** (20.0 mg, 0.0454 mmol) and 1.0 M TBAF (0.19 ml, 0.19 mmol) following the general procedure, diol **6b** was obtained. Chromatographic purification (gradient elution: $40\% \rightarrow 100\%$ acetone - pentane) gave **6b** as a colorless oil (15.8 mg, 99%).

Data for **6b**: $R_f 0.5$ (50% acetone - pentane). ¹H NMR (500 MHz, CDCl₃) δ 7.12 (4H, d, J = 8.6 Hz, Ar), 6.84 (4H, d, J = 8.6 Hz, Ar), 3.92 (2H, dd, J = 10.2, 3.3 Hz, 5-H_A and 6-H_A), 3.78 (6H, s, 2 x OMe), 3.58-3.64 (2H, m, 5-H_B and 6-H_B), 3.03 (2H, d, J = 9.4 Hz, 3-H and 4-H), 2.28-2.36 (2H, m, 1-H and 2-H). ¹³C NMR (125 MHz, CDCl₃) δ 158.4 (2 x C Ar), 134.6 (2 x C Ar), 127.9 (4 x CH Ar), 114.0 (4 x CH Ar), 65.6 (C-5 and C-6), 55.4 (2 x OMe), 47.8 (C-1 and C-2), 47.3 (C-3 and C-4). IR (film) v_{max} 2980, 2360, 1738, 1378, 1230, 1152, 954 cm⁻¹. HRMS (ESI): calculated for C₂₀H₂₄O₄Na [M+Na]⁺ requires *m/z* 351.1567, found *m/z* 351.1568.

10.3. (\pm) -[(1R,2S,3R,4S)-3,4-Bis(4-methoxyphenyl)cyclobutane]-1,2-bis(hydroxymethyl), 7a.

From cyclobutane **3j** (20.0 mg, 0.0454 mmol) and 1.0 M TBAF (0.19 ml, 0.19 mmol) following the general procedure, diol **7a** was obtained. Chromatographic purification (gradient elution: $40\% \rightarrow 100\%$ acetone - pentane) gave **7a** as a colorless oil (15.8 mg, 99%).

Data for **7a**: $R_f 0.5$ (50% acetone - pentane). ¹H NMR (500 MHz, CDCl₃) δ 6.83 (4H, d, J = 8.6 Hz, Ar), 6.64 (4H, d, J = 8.7 Hz, Ar), 4.05 (2H, dd, J = 11.3, 9.9 Hz, 5-H_A and 6-H_A), 3.85-3.89 (2H, m, 5-H_B and 6-H_B), 3.70 (6H, s, 2 x OMe), 3.51 (2H, d, J = 6.0 Hz, 3-H and 4-H), 3.10-3.14 (2H, m, 1-H and 2-H). ¹³C NMR (125 MHz, CDCl₃) δ 157.8 (2 x C Ar), 132.1 (2 x C Ar), 129.1 (4 x CH Ar), 113.4 (4 x CH Ar), 62.9 (C-5 and C-6), 55.3 (2 x OMe), 43.7 (C-3 and C-4), 40.8 (C-1 and C-2). IR (film) v_{max} 2980, 2360, 1738, 1378, 1230, 1152, 954 cm⁻¹. HRMS (ESI): calculated for C₂₀H₂₄O₄Na [M+Na]⁺ requires *m/z* 351.1567, found *m/z* 351.1568.

11. General procedure for the Ru-catalyzed oxidation of aromatic rings to carboxylic acids

To a cold (0 °C) solution of cyclobutane in 10.0 mL/mmol of a 2:2:3 mixture of CCl₄:MeCN:pH 7 buffer (Na₂HPO₄), NaIO₄ (20.0 equiv) was added in one portion. The mixture was stirred at that temperature for 15 min and RuCl₃ (5 or 10 mol%) was added in one portion. The mixture was warmed up to room temperature. The reaction was monitored by TLC until completion, diluted with Et₂O and H₂O and extracted with Et₂O (3 x 3 mL/mmol). The water layer was acidified until pH 1 using concentrated HCl, and extracted with Et₂O (3 x 3 mL/mmol). The combined organic layers were dried using Na₂SO₄, filtered and the solvent was evaporated under reduced pressure to give the corresponding carboxylic acid, that was purified by chromatography on silica gel using the appropriate mixture of eluents.

11.1. (±)-(1*S*,7*R*,8*R*,9*S*)-4,4-Diisopropyl-9-(4-methoxyphenyl)-3,5-dioxa-4-

silabicyclo[5.2.0]nonane-8-carboxylic acid, 8a.

From cyclobutane **2j** (10.0 mg, 0.0227 mmol), RuCl₃ (0.47 mg, 0.0023 mmol) and NaIO₄ (98.0 mg, 0.454 mmol) following the general procedure, carboxylic acid **8a** was obtained. Chromatographic purification (gradient elution: $2\% \rightarrow 4\%$ methanol - DCM) gave **8a** as a colorless oil (3.7 mg, 56%).

Data for **8a**: R_f 0.5 (10% MeOH - DCM).¹H NMR (500 MHz, CDCl₃) δ 7.16 (2H, d, J = 8.5 Hz, Ar), 6.87 (2H, d, J = 8.6 Hz, Ar), 4.13-4.20 (2H, m, 2-H_A and 6-H_A), 3.79 (3H, s, OMe), 3.66-3.78 (2H, m, 2-H_B and 6-H_B), 3.27 (1H, t, J = 9.6 Hz, 9-H), 2.73 (1H, t, J = 9.5 Hz, 8-H), 2.49-2.57 (1H, m, 7-H), 2.32-2.42 (1H, m, 1-H), 0.92-1.07 (14H, m, 2 x *i*-Pr). ¹³C NMR (125 MHz, CDCl₃) δ 177.0 (C=O), 158.7 (C Ar), 133.2 (C Ar), 127.7 (2 x CH Ar), 114.2 (2 x CH Ar), 68.1 and 68.0 (C-2 and C-6), 55.5 (OMe), 49.2 (C-1), 45.4 (C-7), 44.9 (C-8), 42.7 (C-9), 17.57, 17.55, 17.5, 17.4 and 13.4 (2 x *i*-Pr). NOESY- 2D (500 MHz, CDCl₃): between 9-H and 2-H_B, between 9-H and 7-H, between 9-H and Ar C-H, between 8-H and 1-H, between 8-H and 6-H_B. IR (film) v_{max} 2935, 2857, 1722, 1712, 1033 cm⁻¹. HRMS (ESI): calculated for C₂₀H₂₉O₅Si [M-H]⁺ requires *m*/*z* 377.17897, found *m*/*z* 377.17892.

11.2. (±)-(1*R*,5*R*,6*R*,7*R*)-7-Phenyl-3-oxabicyclo[3.2.0]heptane-6-carboxylic acid, 8b.

From cyclobutane **5b** (20.0 mg, 0.0714 mmol), RuCl₃ (0.70 mg, 0.0036 mmol) and NaIO₄ (302.0 mg, 1.422 mmol) following the general procedure, carboxylic acid **8b** was obtained. Chromatographic purification (gradient elution: $5\% \rightarrow 20\%$ methanol - DCM) gave **8b** as a colorless oil (8.5 mg, 55%). Data for **8b**: R_f 0.5 (10% MeOH - DCM). ¹H NMR (**500 MHz, CDCl₃**) δ 7.14-7.34 (5H, m, Ar), 3.98 (2H, d, J = 9.6 Hz, 2-H_A and 4-H_A), 3.52-3.63 (3H, m, 2-H_A, 4-H_A and 7-H), 3.34-3.42 (1H, m, 6-H), 3.24-3.32 (1H, m, 1-H), 3.10-3.24 (1H, m, 5-H). ¹³C NMR (**125 MHz, CDCl₃**) δ 183.7 (C=O), 140.2 (C Ar), 128.4 (2 x CH Ar), 127.7 (2 x CH Ar), 126.9 (CH Ar), 73.7 and 73.1 (C-2 and C-4), 45.3 (C-7), 43.2 (C-5), 41.6 (C-6), 38.1 (C-1). IR (film) ν_{max} 2925, 2853, 1725, 1702, 1412, 1611, 699 cm⁻¹. HRMS (CI): calculated for C₁₃H₁₈O₃N [M+NH₄]⁺ requires *m*/*z* 236.1287, found *m*/*z* 236.1285.

11.3. (±)-(1*R*,5*R*,6*R*,7*R*)-7-[3-(Trifluoromethyl)phenyl]-3-oxabicyclo[3.2.0]heptane-6-carboxylic acid, 8c.

From cyclobutane **5d** (18.0 mg, 0.0517 mmol), RuCl₃ (0.54 mg, 0.0052 mmol) and NaIO₄ (226.0 mg, 1.034 mmol) following the general procedure, carboxylic acid **8c** was obtained. Chromatographic purification (gradient elution: $5\% \rightarrow 20\%$ methanol - DCM) gave **8c** as a colorless oil (8.3 mg, 56%)

Data for **8c**: R_f 0.5 (10% MeOH - DCM). ¹H NMR (500 MHz, CDCl₃) δ 7.45-7.50 (2H, m, Ar), 7.38-7.45 (2H, m, Ar), 4.01 (2H, dd, J = 9.7, 3.9 Hz, 2-H_A and 4-H_A), 3.66 (1H, dd, J = 10.6, 5.5 Hz, 7-H), 3.55-3.64 (2H, m, 2-H_B and 4-H_B), 3.37-3.43 (1H, m, 1-H), 3.33 (1H, dd, J = 10.5, 4.9 Hz, 6-H), 3.21-3.27 (1H, m, 5-H). ¹³C NMR (¹⁹F-decoupled, 125 MHz, CDCl₃) δ 174.9 (C=O), 141.1 (C Ar), 131.2 (CH Ar and CF₃), 128.9 (C Ar and CH Ar), 124.6 (CH Ar), 123.9 (CH Ar), 73.6 and 73.1 (C-2 and C-4), 46.3 (C-6), 44.9 (C-7), 43.1 (C-5), 38.2 (C-5). NOESY- 2D (500 MHz, CDCl₃): between 5-H and 1-H, between 5-H and Ar C-H, between 6-H and 7-H, between 6-H and 2-H_B & 4-H_B, between 7-H and 2-H_B & 4-H_B. IR (film) ν_{max} 2925, 2855, 1725, 1705, 1412, 701 cm⁻¹. HRMS (CI): calculated for C₁₄H₁₇F₃NO₃ [M+NH₄]⁺ requires *m/z* 304.1161, found *m/z* 304.1157.

11.4. (±)-(1*R*,5*R*,6*R*,7*R*)-7-(*o*-Tolyl)-3-oxabicyclo[3.2.0]heptane-6-carboxylic acid, 8d.

From cyclobutane **5e** (11.3 mg, 0.0384 mmol), RuCl₃ (0.80 mg, 0.0038 mmol) and NaIO₄ (164.0 mg, 0.768 mmol) following the general procedure, carboxylic acid **5e** was obtained. Chromatographic purification (gradient elution: $5\% \rightarrow 20\%$ methanol - DCM) gave **8d** as a colorless oil (4.4 mg, 50%).

Data for 8d: R_f 0.5 (10% MeOH - DCM). ¹H NMR (500 MHz, CDCl₃) δ 7.34 (1 H, d, J = 7.6 Hz, Ar), 7.15-7.20 (1H, m, Ar), 7.10-7.14 (2H, m, Ar), 4.04 (1H, d, J = 9.7 Hz, 4-H_A), 4.12 (1H, d, J = 9.7 Hz, 2-H_A), 3.79-3.89 (1H, m, 7-H), 3.65 (1H, dd, J = 9.8, 6.0 Hz, 4-H_B), 3.56 (1H, dd, J = 9.6, 5.1 Hz, 2-H_B), 3.42-3.48 (1H, m, 6-H), 3.27-3.33 (2H, m, 1-H and 5-H), 2.26 (3H, s, Me). ¹³C NMR (125 MHz, CDCl₃) δ 175.3 (C=O), 137.4 (C Ar), 136.9 (C Ar), 130.2 (CH Ar), 126.9 (CH Ar), 126.4 (CH Ar), 125.9 (CH Ar), 73.9 and 73.2 (C-2 and C-4), 46.2 and 37.2 (C-1 and C-5), 41.6 and 41.5 (C-6 and C-7), 19.9 (Me). IR (film) v_{max} 2925, 2853, 1725, 1702, 1412, 1611, 699 cm⁻¹. HRMS (CI): calculated for C₁₄H₂₀NO₃ [M+NH₄]⁺ requires *m/z* 250.1443, found *m/z* 250.1433.

12. (±)-(1S,2S,3R,4R) 3,4-Bis(2-bromoethyl)-1,2-bis(4-methoxyphenyl)cyclobutane, 9

To a stirred solution of diol **6a** (28.8 mg, 0.0809 mmol) in dry Et_2O (0.5 mL) at 0 °C under Ar was added PBr₃ (0.07 mL, 0.7 mmol). The reaction was stirred until completion, monitored by TLC analysis and quenched with NaHCO₃. The layers were separated and the aqueous layer extracted with Et_2O twice. The combined organics were washed with brine, dried over MgSO₄, filtered and the solvent was evaporated to give the pure bromide **9** as a white solid (34.9 mg, 90%). Spectral properties matched those previously reported.¹

Data for **9**: R_f 0.25 (5% Et₂O – pentane). ¹H NMR (400 MHz, CDCl₃) δ 7.11 (4H, d, J = 8.6 Hz, Ar), 6.83 (4H, d, J = 8.6 Hz, Ar), 3.78 (6H, s, 2 x OMe), 3.40-3.18 (4H, m, 6-H₂ and 8-H₂), 2.83 (2 H, m, 3-H and 4-H), 2.30-2.12 (6H, m, 1-H, 2-H, 6-H₂ and 8-H₂). ¹³C NMR (100 MHz, CDCl₃) δ 158.4 (2 x C Ar), 134.7 (2 x C Ar), 128.0 (4 x CH Ar), 114.0 (4 x CH Ar), 55.4 (2 x OMe), 52.5 (C-3 and C-4), 43.8 (C-1 and C-2), 39.4 (C-5 and C-7), 31.1 (C-6 and C-8). HRMS (ESI): calculated for C₂₂H₂₆O₂⁷⁹Br₂Na [M+Na]+ requires m/z 503.0192, found m/z 503.0193.

13. NMR study of compound 3k, 8a and 8c.

The ¹H NMR spectrum of **3k** presents 1-H and 7-H as a multiplet that has COSY cross peaks with 8-H, 9-H, 2-H_A and 6-H_A, while 8-H and 9-H is a doublet (J = 5.7 Hz) that has COSY cross-peaks with 1-H and 7-H.

Additional support for the structure was found upon inspection of the NOESY 2D spectra of 3k, that showed interactions between 8-H/9-H and 2-H₂, between 8-H/9-H and 6-H₂, but no interactions between 1-H/7-H and 8-H/9-H, among others, confirming the *trans-cis-trans* relative stereochemistry.

3k

The ¹H NMR spectrum of **8a** presents 1-H and 7-H as a multiplet that has COSY cross peaks with 7-H, 9-H, 2-H₂ and 1-H and 8-H, 6-H₂ respectively, while 8-H and 9-H is a triplet (J = 9.6 Hz) that has COSY cross-peaks with 9-H, 7-H and 1-H, 8-H respectively.

Additional support for the structure was found upon inspection of the NOESY 2D spectra of 8a, that showed interactions between 9-H and 2-H_B, between 9-H and 7-H, between 9-H and Ar C-H, between 8-H and 1-H, between 8-H and 6-H_B, confirming the all-*trans* relative stereochemistry.

The ¹H NMR spectrum of **8c** presents 1-H and 5-H as a multiplet that has COSY cross peaks with 7-H, 5-H, 2-H₂ and 1-H and 4-H, 6-H₂ respectively, while 6-H and 7-H is a doublet of doublet (J = 10.5, 9.6 Hz and J = 10.5, 5.5 Hz) that has COSY cross-peaks with 5-H, 7-H and 1-H, 6-H respectively.

Additional support for the structure was found upon inspection of the NOESY 2D spectra of **8a**, that showed interactions between 5-H and 1-H, between 5-H and Ar C-H, between 6-H and 7-H, between 6-H and $2-H_B \& 4-H_B$, between 7-H and $2-H_B \& 4-H_B$.

8c

14. Limitations in the scope of [2+2] cycloaddition

For the silicon tethered [2+2]-cycloaddition, the silyl ether **10** bearing a tri-substituted aliphatic allyl alcohol gave a complex mixture under standard conditions; no desired cyclobutene was observed.

For the intramolecular bis-allylether [2+2]-cycloaddition, the ether **4h** bearing a di-substituted aliphatic allyl alcohol gave recovery of starting material under standard conditions, no desired cyclobutene was observed. However, an ether bearing a tri-substituted aliphatic allyl alcohol gave desired cyclobutene product (see cycloaddition of ethers **4f** and **4g**).

¹ I. Colomer, R. Coura Barcelos and T. J. Donohoe, *Angew. Chem. Int. Ed.* 2016, **55**, 4748.

² J. E. Baldwin and D. R. Kelly, J. Chem. Soc., Chem. Commun. 1985, 682.

³ S. L. You, X. Z. Zhu, Y. M. Luo, X. L. Hou, and L. X. Dai, J. Am. Chem. Soc. 2001, **123**, 7471.

⁴ J. Mo, L. Xu, J. Ruan, S. Liu, and J. Xiao, *Chem. Commun.* 2006, 3591.

⁵ Melpolder, J. B., & Heck, R. F. J. Org. Chem. 1976, **41**, 265.

⁶ X. Zeng, C. Miao, S. Wang, C. Xia, and W. Sun, *Chem. Commun.* 2013, **49**, 2418.

⁷ Mori, M., & Watanuki, S. J. Chem. Soc., Chem. Commun., 1992, 1082.

⁸ Satterfield, A. D., Kubota, A., & Sanford, M. S. Org. Lett. 2011, **13**, 1076.

⁹ Y. Wang, F. Chen, H. Di, Y. Xu, Q. Xiao, X. Wang and J. Li, J. Med. Chem. 2016, 59, 3215.

¹⁰ H. Ohno, T. Mizutani, Y. Kadoh, A. Aso, K. Miyamura, N. Fujii and T. Tanaka, J. Org. Chem. 2007, **72**, 4378.

¹¹ (a) M. A. Ischay, Z. Lu, and T. P. Yoon, J. Am. Chem. Soc. 2010, **132**, 8572. (b) M. A. Ischay, M.

S. Ament, and T. P. Yoon, Chem. Sci. 2012, 3, 2807.