Electronic Supplementary Information

Cu-Catalyzed Cyanoalkylation of Electron-deficient Alkenes with

Unactivated Alkyl Bromides

Chao Wang, Qinyu Shang, Rupeng Qi, Hongli Chai, Hongying Wang, Mengzhun Guo and Zhaoqing Xu*

Table of contents

1. General information	S2
2. Synthesis of substrates 1 and 2	S2
3. General procedure of cyanoalkylation of alkenes	S 3
4. Characterization of products	S7
5. Synthetic applications	S13
6. The mechanistic studies	S13
7. References	S16
8. NMR spectra of products	S17

1 General information

All commercially available reagents were used without further purification unless otherwise stated. All solvents were purified and dried according to standard methods prior to use. NMR spectra were recorded on a Bruker 300 and a Bruker 400 instrument spectrometer in CDCl₃ using tetramethylsilane (TMS) as internal standard unless otherwise stated. Data for ¹H NMR are recorded as follows: chemical shift (δ , ppm), multiplicity (s = singlet, d = doublet, t = triplet, m = multiplet, q = quartet, dd = doublet of doublets, dt = doublet of triplets, td = triplet of doublets, and br = broad signal, coupling constant (s) in Hz, integration). Data for ¹³C NMR and ¹⁹F NMR are reported in terms of chemical shift (δ , ppm). Reactions were carried out using silica gel GF 254. Melting points were measured on a SCW X-4 and values are uncorrected. All new compounds were further characterized by high resolution mass spectra (ESI-HRMS).

2 Synthesis of substrates 1 and 2

1a, 1b, 1f, 1g, 2a, 2l, 2m and 2n were purchased from reagent companies. $1c^{1}$ $1d^{2}$ $1e^{2}$ $1h^{3}$ $2b-2c^{4}$ $2d^{5}$ $2e-2i^{4}$ $2j^{6}$ and $2k^{7}$ were all prepared according to previous reports.

3 General procedures of cyanoalkylation of alkenes

3.1 Optimization of reaction conditions

 Table S1 Copper salts screening^a

FtO-C	+	+ TMSCN	copper salt (10 mol %)	→ CO ₂ Et
			DIPEA (2 equiv)	∽ ∽ `CN
1a	2			3
0.1 mmol	0.3 mmol	0.3 mmol	<i>nv</i> (254 nm)	

Entry	Copper salt	Yield $(\%)^b$
1	Cu(MeCN)4PF6	32
2^c	Cu(MeCN) ₄ PF ₆	24
3^d	Cu(MeCN) ₄ PF ₆	32
4	Cu(MeCN) ₄ BF ₄	27
5	CuCl	18
6	CuBr	22
7	CuI	22
8	Cu ₂ O	30
9	CuSCN	20
10	CuTc	21
11	Cu(acac) ₂	27
12	CuF ₂	30
13	CuBr ₂	30
14	Cu(OAc) ₂	17
15	Cu(OTf) ₂	20
16	CuSO ₄	12

^{*a*} 0.1 mmol scale. ^{*b*} Yield was determined by ¹H NMR using 1,3,5-trimethoxybenzene as an internal standard. ^{*c*} 5 mol% Cu(MeCN)₄PF₆ was added. ^{*d*} 15 mol% Cu(MeCN)₄PF₆ was added.

	^{Br} ⊂	u(MeCN) ₄ PF ₆ (10 mol %)	CO ₂ Et
EtO ₂ C	+ + TMSCN -	Base (2 equiv)	CN
1a 0.1 mmol	2 0.3 mmol 0.3 mmol	CH ₃ CN, rt, 4 h <i>hv</i> (254 nm)	3
Entry	Base		Yield $(\%)^b$
1	DIPEA	l	32
2^c	DIPEA	1	28
3^d	DIPEA	1	32
4	DABCO	С	10
5	DBU		18
6	Et ₃ N		24
7	DMAF)	12
8	HMPA	1	0
9	2,6-lutidi	ine	0
10	pyridin	e	0
11	TMED	A	15
12	Imidazo	le	0
13	Et ₂ NH	[26
14	Bu ₃ N		28
15	t-BuOL	i	16
16	t-BuON	Ia	0
17	t-BuOk	K	0
18	Cs ₂ CO	3	0
19	K ₃ PO ₄	i i i i i i i i i i i i i i i i i i i	0
20	NaHCC) ₃	0

^{*a*} 0.1 mmol scale. ^{*b*} Yield was determined by ¹H NMR using 1,3,5-trimethoxybenzene as an internal standard. ^{*c*} 1.5 equiv of DIPEA was added. ^{*d*} 2.5 equiv of DIPEA was added.

Table S3 Solvents screening^a

EtO ₂ C 1a 0.1 mmol	+ Br + TMSCN 2 0.3 mmol 0.3 mmol $Cu(MeCN)_4PF_6 (10)$ DIPEA (2 equ Solvent (0.5 mL), hv (254 nm)	$\frac{O \mod \%}{V}$ CO_2Et V CNV CNV $CNCN$
Entry	Solvent	Yield $(\%)^b$
1	CF ₃ CH ₂ OH	46
2^c	CF ₃ CH ₂ OH	44
3^d	CF ₃ CH ₂ OH	38
4	CH ₃ OH	38
5	CH ₃ CH ₂ OH	42
6	MeCN	37
7	DMF	trace
8	DCM	6
9	DMSO	0
10	THF	0
11	DME	trace
12	Toluene	11
13	1,4-dioxane	trace
14	Acetone	16

^{*a*} 0.1 mmol scale. ^{*b*} Yield was determined by ¹H NMR using 1,3,5-trimethoxybenzene as an internal standard. ^{*c*} 1.0 mL of CF₃CH₂OH was added. ^{*d*} 1.5 mL of CF₃CH₂OH was added.

Table S4 Additives screening^a

EtO ₂ C 1a 0.1 mmol	+ Br + TMSCN 2 0.3 mmol 0.3 mmol	Cu(MeCN) ₄ PF ₆ (10 mol %) DIPEA (2 equiv) CF ₃ CH ₂ OH (0.5 mL), rt, 4 h Additive hv (254 nm)	CO ₂ Et CN
Entry	Addi	tive	Yield $(\%)^b$
1	H ₂ O (1.0	equiv)	70
2	$H_2O(2.0)$	equiv)	83

^{*a*} 0.1 mmol scale. ^{*b*} Yield was determined by ¹H NMR using 1,3,5-trimethoxybenzene as an internal standard.

Table S5 Influences of reaction time^a

EtO ₂ C 1a 0.1 mmol	+ Br + TMSCN 2 0.3 mmol 0.3 mmol	$ \begin{array}{c} \underbrace{ \text{Cu}(\text{MeCN})_4\text{PF}_6 \text{ (10 mol \%)} } \\ \hline \\ \hline \\ \text{DIPEA (2 equiv)} \\ \text{CF}_3\text{CH}_2\text{OH (0.5 mL), rt, x h} \\ \\ \\ H_2\text{O (2 equiv)} \\ \\ \hline \\ hv \text{ (254 nm)} \end{array} $	CO ₂ Et CN 3
Entry	Х	(h)	Yield $(\%)^b$
1		2	59
2		3	74
3	4	4	83
4	4	5	83
5	(5	83

^a 0.1 mmol scale. ^b Yield was determined by ¹H NMR using 1,3,5-trimethoxybenzene as an internal standard.

Table S6 Influences of alkyl halides^a

EtO ₂ C	+ X +	TMSCN	$\frac{\text{Cu(MeCN)}_{4}\text{PF}_{6} (10 \text{ mol }\%)}{\text{DIPEA} (2 \text{ equiv})}$	CO ₂ Et CN
1a 0.1 mmol	2 0.3 mmol	0.3 mmol	H ₂ O (2 equiv) <i>hv</i> (254 nm)	3
Entry		Х		Yield $(\%)^b$
1		С	1	0
2		B	r	83
3		Ι		45

^a 0.1 mmol scale. ^b Yield was determined by ¹H NMR using 1,3,5-trimethoxybenzene as an internal standard.

Table S7 Influences of light sources^a

Entry	Light sources	Yield $(\%)^b$
1	100 W UVC compact fluorescent light bulbs	83
2	50 W UVC compact fluorescent light bulbs	57
3	80 W low-pressure mercury lamp (365 nm)	0
4	80 W UVB CFL (280-320 nm)	0
5	30 W blue LED	0
6	30 W white LED	0

^a 0.1 mmol scale. ^b Yield was determined by ¹H NMR using 1,3,5-trimethoxybenzene as an internal standard.

3.2 Genreal procedure for the synthesis of 3

To an oven-dried 10 mL quartz test tube with a stirring bar was added $Cu(MeCN)_4PF_6$ (0.04 mmol, 14.9 mg). Then, air was withdrawn and backfilled with Ar (three times). CF₃CH₂OH (2.0 mL), **1** (0.4 mmol), **2** (1.2 mmol), TMSCN (1.2 mmol, 118.8 mg), DIPEA (0.8 mmol, 103.4 mg) and H₂O (0.8 mmol, 14.4 mg) were added in turn by syringe. Thereafter, the test tube was transferred to a UV photoreactor (4×25 W, see Figure S1 for details), where it was irradiated at 254 nm for 4 h. Four hours later, the reaction was quenched with water (2 mL), extracted with ethyl acetate, dried over anhydrous sodium sulfate, concentrated in *vacuo* and purified by column chromatography (hexane/ethyl acetate) to afford the product **3**.

Figure S1 Placement of CFL around quartz test tube. Four 25 W UVC compact fluorescent light bulbs were placed around the quartz test tube and the distance was about 7 cm. A cardboard box lined with tin foil was placed over the lamps and stir plate. In one side of the cardboard box, part of the side was cut out, and a high-speed fan was set up into for dissipating heat.

4 Characterization of products

ethyl 2-cyano-3-cyclohexylpropanoate (3aa): 65.0 mg, yield: 78%. Colorless oil. ¹H NMR (300 MHz, CDCl₃) δ 4.26 (q, *J* = 7.1 Hz, 2H), 3.56 (dd, *J* = 9.1, 6.4 Hz, 1H), 1.93 – 1.64 (m, 7H), 1.62 – 1.43 (m, 1H), 1.39 – 1.11 (m, 6H), 1.05 – 0.82 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 166.53, 116.67, 62.66, 36.95, 35.26, 35.15, 32.97, 31.90, 26.10, 25.82, 25.70, 13.91. HRMS (ESI) C₁₂H₁₉NNaO₂ [M+Na]⁺ calcd: 232.1308, found: 232.1308.

ethyl 2-cyanododecanoate (3ab): 82.0 mg, yield: 81%. Colorless oil. ¹H NMR (300 MHz, CDCl₃) δ 4.27 (q, *J* = 7.1 Hz, 2H), 3.49 (t, *J* = 7.0 Hz, 1H), 1.94 (dd, *J* = 15.3, 7.5 Hz, 2H), 1.55 – 1.41 (m, 2H), 1.37 – 1.24 (m, 17H), 0.88 (t, *J* = 6.6 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 166.21, 116.58,

62.66, 37.60, 37.50, 31.80, 29.80, 29.45, 29.37, 29.21, 29.13, 28.71, 26.70, 22.61, 14.05. HRMS (ESI) C₁₅H₂₇NNaO₂ [M+Na]⁺ calcd: 276.1934, found: 276.1937.

ethyl 6-chloro-2-cyanohexanoate (3ac): 62.5 mg, yield: 77%. Yellow oil. ¹H NMR (300 MHz, CDCl₃) δ 4.28 (q, *J* = 7.1 Hz, 2H), 3.55 (dt, *J* = 11.7, 6.7 Hz, 3H), 1.99 (dd, *J* = 15.5, 7.5 Hz, 2H), 1.92 – 1.79 (m, 2H), 1.77 – 1.60 (m, 2H), 1.34 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 165.85, 116.27, 62.87, 44.10, 37.39, 31.57, 29.02, 24.09, 13.94. HRMS (ESI) C₉H₁₄ClNNaO₂ [M+Na]⁺ calcd: 226.0605, found: 226.0607.

1-ethyl 7-methyl 2-cyanoheptanedioate (3ad): 67.0 mg, yield: 74%. Colorless oil. ¹H NMR (300 MHz, CDCl₃) δ 4.27 (q, *J* = 7.1 Hz, 2H), 3.68 (s, 3H), 3.52 (t, *J* = 7.0 Hz, 1H), 2.36 (t, *J* = 7.3 Hz, 2H), 1.97 (dd, *J* = 15.3, 7.4 Hz, 2H), 1.77 – 1.63 (m, 2H), 1.62 – 1.47 (m, 2H), 1.33 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 173.46, 165.94, 116.33, 62.78, 51.55, 37.35, 33.43, 29.40, 26.19, 23.98, 13.93. HRMS (ESI) C₁₁H₁₇NNaO₄ [M+Na]⁺ calcd: 250.1050, found: 250.1055.

ethyl 2-cyano-4-(tetrahydrofuran-2-yl)butanoate (3ae): 61.0 mg, yield: 72%. 1:1 d.r. Colorless oil. ¹H NMR (300 MHz, CDCl₃) δ 4.26 (qd, J = 7.1, 1.0 Hz, 2H), 3.92 – 3.78 (m, 2H), 3.78 – 3.65 (m, 1.55H), 3.61 (dd, J = 7.8, 6.3 Hz, 0.49H), 2.24 – 1.95 (m, 3H), 1.95 – 1.82 (m, 2H), 1.77 – 1.63 (m, 2H), 1.57 – 1.41 (m, 1H), 1.32 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 166.18, 166.03, 116.61, 116.49, 78.50, 77.76, 67.80, 67.74, 62.68, 62.66, 37.57, 37.23, 32.53, 32.33, 31.52, 31.26, 27.30, 26.68, 25.56, 25.49, 13.94. HRMS (ESI) C₁₁H₁₇NNaO₃ [M+Na]⁺ calcd: 234.1101, found: 234.1100.

tert-butyl 4-(2-cyano-3-ethoxy-3-oxopropyl)piperidine-1-carboxylate (3af): 101.5 mg, yield: 82%. Colorless oil. ¹H NMR (300 MHz, CDCl₃) δ 4.28 (q, J = 7.1 Hz, 2H), 4.12 (d, J = 7.1 Hz,

2H), 3.59 (dd, J = 9.2, 6.1 Hz, 1H), 2.71 (br, 2H), 2.01 – 1.79 (m, 2H), 1.75 – 1.67 (m, 3H), 1.46 (s, 9H), 1.33 (t, J = 7.1 Hz, 3H), 1.28 – 1.04 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 166.02, 154.50, 116.25, 79.31, 62.76, 43.23, 35.87, 34.97, 33.62, 31.67, 30.82, 28.26, 13.82. HRMS (ESI) C₁₆H₂₆N₂NaO₄ [M+Na]⁺ calcd: 333.1784, found: 333.1785.

benzyl 4-(2-cyano-3-ethoxy-3-oxopropyl)piperidine-1-carboxylate (3ag): 107.0 mg, yield: 78%. Colorless oil. ¹H NMR (300 MHz, CDCl₃) δ 7.36 (br, 5H), 5.12 (br, 2H), 4.27 (dd, J = 14.3, 7.1 Hz, 4H), 3.57 (dd, J = 9.2, 6.1 Hz, 1H), 2.79 (d, J = 8.3 Hz, 2H), 2.01 – 1.77 (m, 2H), 1.72 (d, J = 3.7 Hz, 3H), 1.33 (t, J = 7.1 Hz, 3H), 1.27 – 1.11 (m, 2H). ¹³C NMR (75 MHz, CDCl₃) δ 166.06, 155.07, 136.64, 128.44, 127.96, 127.83, 116.29, 67.03, 66.76, 62.98, 43.52, 35.86, 35.09, 33.56, 31.74, 30.73, 13.87. HRMS (ESI) C₁₉H₂₄N₂NaO₄ [M+Na]⁺ calcd: 367.1628, found: 367.1624.

ethyl 2-cyano-4-methylnonanoate (3ah): 63.0 mg, yield: 70%. 1:1 d.r. Colorless oil. ¹H NMR (300 MHz, CDCl₃) δ 4.19 (q, J = 7.1 Hz, 2H), 3.51 – 3.41 (m, 1H), 1.96 – 1.81 (m, 1H), 1.79 – 1.55 (m, 2H), 1.30 – 1.18 (m, 11H), 0.92 – 0.78 (m, 6H). ¹³C NMR (75 MHz, CDCl₃) δ 166.57, 166.46, 116.77, 116.54, 62.72, 62.70, 36.94, 36.73, 35.90, 35.66, 35.58, 31.87, 30.75, 30.70, 26.33, 26.11, 22.55, 19.25, 18.50, 14.00, 13.94. HRMS (ESI) C₁₃H₂₃NNaO₂ [M+Na]⁺ calcd: 248.1621, found: 248.1621.

ethyl 2-cyano-3-(tetrahydro-2H-pyran-4-yl)propanoate (3ai): 63.4 mg, yield: 75%. Yellow oil. ¹H NMR (300 MHz, CDCl₃) δ 4.28 (q, *J* = 7.1 Hz, 2H), 4.02 – 3.94 (m, 2H), 3.57 (dd, *J* = 9.1, 6.0 Hz, 1H), 3.40 (td, *J* = 11.8, 1.7 Hz, 2H), 2.01 – 1.72 (m, 3H), 1.69 – 1.61 (m, 2H), 1.46 – 1.23 (m, 5H). ¹³C NMR (101 MHz, CDCl₃) δ 166.15, 116.33, 67.51, 67.42, 62.89, 36.34, 34.88, 32.70, 32.59, 31.80, 13.93. HRMS (ESI) C₁₁H₁₇NNaO₃ [M+Na]⁺ calcd: 234.1101, found: 234.1097.

ethyl 3-((3r,5r,7r)-adamantan-1-yl)-2-cyanopropanoate (3aj): 68.0 mg, yield: 65%. Colorless

oil. ¹H NMR (300 MHz, CDCl₃) δ 4.26 (q, J = 7.1 Hz, 2H), 3.47 (dd, J = 7.9, 5.3 Hz, 1H), 2.00 (br, 3H), 1.83 – 1.49 (m, 14H), 1.33 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 167.09, 118.04, 62.84, 43.84, 41.81, 36.64, 32.55, 31.90, 28.33, 13.94. HRMS (ESI) C₁₆H₂₃NNaO₂ [M+Na]⁺ calcd: 284.1621, found: 284.1615.

ethyl 2-cyano-4-cyclopentyl-4-methylpentanoate (3ak): 74.0 mg, yield: 78%. Colorless oil. ¹H NMR (300 MHz, CDCl₃) δ 4.19 (q, *J* = 7.1 Hz, 2H), 3.39 (dd, *J* = 8.2, 4.9 Hz, 1H), 1.96 – 1.78 (m, 2H), 1.77 – 1.62 (m, 1H), 1.58 – 1.39 (m, 6H), 1.30 – 1.11 (m, 5H), 0.86 (d, *J* = 8.0 Hz, 6H). ¹³C NMR (75 MHz, CDCl₃) δ 167.07, 117.91, 62.83, 49.17, 41.19, 34.98, 33.14, 33.04, 26.77, 25.62, 23.94, 13.85. HRMS (ESI) C₁₄H₂₃NNaO₂ [M+Na]⁺ calcd: 260.1621, found: 260.1616.

diethyl 2-cyanopentanedioate (3al): 61.4 mg, yield: 72%. Colorless oil. ¹H NMR (300 MHz, CDCl₃) δ 4.28 (q, *J* = 7.1 Hz, 2H), 4.16 (q, *J* = 7.1 Hz, 2H), 3.76 (dd, *J* = 8.4, 6.0 Hz, 1H), 2.57 (t, *J* = 7.3 Hz, 2H), 2.41 – 2.12 (m, 2H), 1.31 (dt, *J* = 17.3, 7.1 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 171.47, 165.49, 115.91, 62.84, 60.78, 36.31, 30.55, 24.68, 14.01, 13.84. HRMS (ESI) C₁₀H₁₅NNaO₄ [M+Na]⁺ calcd: 236.0893, found: 236.0897.

diethyl 2-cyano-4-methylpentanedioate (3am): 69.0 mg, yield: 76%. 1:1 d.r. Colorless oil. ¹H NMR (300 MHz, CDCl₃) δ 4.27 (q, J = 7.1 Hz, 2H), 4.17 (qd, J = 7.1, 3.3 Hz, 2H), 3.72 (dd, J = 10.5, 5.3 Hz, 0.52H), 3.62 (t, J = 7.6 Hz, 0.46H), 2.82 – 2.59 (m, 1H), 2.41 – 2.26 (m, 1H), 2.07 (dt, J = 14.0, 7.0 Hz, 0.50H), 1.94 (ddd, J = 14.3, 10.5, 4.2 Hz, 0.54H), 1.37 – 1.22 (m, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 174.61, 174.56, 165.71, 116.15, 116.04, 62.95, 62.91, 60.92, 60.89, 36.95, 36.86, 35.89, 35.32, 32.89, 17.69, 16.86, 14.09, 13.91. HRMS (ESI) C₁₁H₁₇NNaO₄ [M+Na]⁺ calcd: 250.1050 found: 250.1048.

tert-butyl 2-cyano-3-cyclohexylpropanoate (3ba): 77.0 mg, yield: 81%. Colorless oil. ¹H NMR (300 MHz, CDCl₃) δ 3.45 (dd, J = 9.0, 6.5 Hz, 1H), 1.89 – 1.64 (m, 8H), 1.50 (s, 9H), 1.35 – 1.11 (m, 3H), 1.05 – 0.82 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 165.49, 117.05, 83.69, 36.96, 36.29, 35.21, 32.99, 31.99, 27.70, 26.13, 25.86, 25.74. HRMS (ESI) C₁₄H₂₃NNaO₂ [M+Na]⁺ calcd: 260.1621, found: 260.1614.

benzyl 2-cyano-3-cyclohexylpropanoate (3ca): 91.0 mg, yield: 84%. Colorless oil. ¹H NMR (300 MHz, CDCl₃) δ 7.38 (br, 5H), 5.23 (s, 2H), 3.60 (dd, J = 9.0, 6.6 Hz, 1H), 1.93 – 1.66 (m, 7H), 1.56 – 1.43 (m, 1H), 1.30 – 1.08 (m, 3H), 1.01 – 0.81 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 166.44, 134.59, 128.74, 128.71, 128.41, 116.53, 68.22, 37.02, 35.35, 35.16, 32.96, 32.00, 26.13, 25.84, 25.73. HRMS (ESI) C₁₇H₂₁NNaO₂ [M+Na]⁺ calcd: 294.1465, found: 294.1454.

N-butyl-2-cyano-3-cyclohexylpropanamide (3da): 72.0 mg, yield: 76%. Colorless oil. ¹H NMR (300 MHz, CDCl₃) δ 6.38 (br, 1H), 3.45 (dd, *J* = 9.3, 6.3 Hz, 1H), 3.29 (dd, *J* = 13.0, 6.9 Hz, 2H), 1.93 – 1.64 (m, 7H), 1.59 – 1.46 (m, 3H), 1.44 – 1.11 (m, 5H), 1.06 – 0.89 (m, 5H). ¹³C NMR (101 MHz, CDCl₃) δ 164.93, 118.57, 39.98, 37.36, 36.29, 35.41, 33.16, 31.92, 31.22, 26.12, 25.86, 25.74, 19.88, 13.60. HRMS (ESI) C₁₄H₂₄N₂NaO [M+Na]⁺ calcd: 259.1781, found: 259.1773.

2-cyano-3-cyclohexyl-*N,N***-diethylpropanamide (3ea):** 71.0 mg, yield: 75%. White solid. M. p. 47 –48 °C.¹H NMR (300 MHz, CDCl₃) δ 3.67 (dd, *J* = 9.5, 5.9 Hz, 1H), 3.50 – 3.25 (m, 4H), 2.00 – 1.87 (m, 1H), 1.85 – 1.65 (m, 6H), 1.56 – 1.44 (m, 1H), 1.35 – 1.10 (m, 9H), 1.06 – 0.81 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 164.11, 117.82, 42.38, 41.07, 37.37, 35.22, 33.24, 32.32, 32.31, 26.16, 25.87, 25.76, 14.30, 12.62. HRMS (ESI) C₁₄H₂₄N₂NaO [M+Na]⁺ calcd: 259.1781, found: 259.1774.

3-cyclohexyl-2-(phenylsulfonyl)propanenitrile (3fa): 80.0 mg, yield: 72%. Colorless oil. ¹H NMR (300 MHz, CDCl₃) δ 8.02 (d, J = 7.7 Hz, 2H), 7.78 (t, J = 7.4 Hz, 1H), 7.66 (t, J = 7.7 Hz, 2H), 4.00 (dd, J = 11.8, 4.2 Hz, 1H), 2.01 (ddd, J = 13.8, 9.9, 4.2 Hz, 1H), 1.91 – 1.63 (m, 6H), 1.59 – 1.48 (m, 1H), 1.34 – 0.83 (m, 5H). ¹³C NMR (101 MHz, CDCl₃) δ 135.56, 135.19, 129.63, 129.56, 114.17, 55.70, 35.09, 33.40, 31.61, 25.99, 25.80, 25.56. HRMS (ESI) C₁₅H₁₉NNaO₂S [M+Na]⁺ calcd: 300.1029, found: 300.1022.

diethyl 2-cyano-3-cyclohexylsuccinate (3ga): 84.4 mg, yield: 75%. 1:1 d.r. Colorless oil. ¹H NMR (300 MHz, CDCl₃) δ 4.33 – 4.12 (m, 4H), 4.04 (d, J = 10.3 Hz, 0.48H), 3.79 (d, J = 5.6 Hz, 0.51H), 2.92 (ddd, J = 13.6, 9.1, 4.9 Hz, 1H), 1.92 – 1.65 (m, 6H), 1.37 – 0.91 (m, 11H). ¹³C NMR (101 MHz, CDCl₃) δ 171.02, 170.79, 165.30, 165.16, 115.16, 115.00, 63.05, 61.19, 61.16, 50.38, 49.53, 38.46, 37.93, 37.55, 37.41, 31.60, 30.56, 30.39, 28.25, 26.38, 26.06, 25.95, 25.92, 25.80, 25.77, 14.12, 14.03, 13.86, 13.79. HRMS (ESI) C₁₅H₂₃NNaO₄ [M+Na]⁺ calcd: 304.1519, found: 304.1510.

(S)-methyl 2-((S)-2-((tert-butoxycarbonyl)amino)-2-cyano-3-cyclohexylpropanamido)-3-phe nylpropanoate (3ha): 111.8 mg, yield: 61%. 1:1 d.r. White solid. M. p. 98 –99 °C. ¹H N MR (300 MHz, CDCl₃) δ 7.36 – 7.21 (m, 3H), 7.16 (d, J = 6.1 Hz, 2H), 6.97 (d, J = 7. 7 Hz, 0.48H), 6.80 (d, J = 8.0 Hz, 0.45H), 5.65 – 5.28 (m, 1H), 4.92 – 4.78 (m, 1H), 3. 73 (s, 3H), 3.18 – 3.01 (m, 2H), 1.78 – 1.59 (m, 6H), 1.45 (d, J = 1.3 Hz, 9H), 1.31 – 1.06 (m, 4H), 1.05 – 0.81 (m, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 171.11, 153.52, 153. 44, 135.47, 135.16, 129.28, 129.08, 128.73, 127.36, 127.29, 117.57, 54.02, 53.64, 53.39, 5 2.45, 52.42, 44.05, 37.90, 37.79, 33.85, 33.77, 33.72, 33.57, 33.51, 28.08, 25.85, 25.79. H RMS (ESI) C₂₅H₃₅N₃NaO₅ [M+Na]⁺ calcd: 480.2469, found: 480.2446.

5 Synthetic application⁸

To a 10 mL round bottom flask with a stirring bar was added **3ea** (0.4 mmol, 94.5 mg), AcOH (1.0 mL), H₂O (1.0 mL), H₂SO₄ (1.0 mL), and heated to 120 °C for 1 h. Then, reaction mixture was heated to reflux for additional 6 h. The resulting mixture was cooled to room temperature and sodium hydroxide was added to adjust pH to 14. The suspension was diluted with H₂O until all the solids dissolved. The solution was washed with EA (2×20 ml) and the hydrochloric acid was added dropwise until pH = 1. The resulting mixture was extracted with EA (3×20 ml), washed with brine, dried over Na₂SO₄, filtered, and concentrated in *vacuo*. The crude material was purified by flash chromatography on silicagel to afford derivative product **4**. **2-(cyclohexylmethyl)-3-(diethylamino)-3-oxopropanoic acid (4):** 82.5 mg, yield: 81%. Colorless oil. ¹H NMR (300 MHz, CDCl₃) δ 3.64 – 3.48 (m, 2H), 3.42 – 3.23 (m, 3H), 1.87 (br, 2H), 1.66 (br, 5H), 1.38 – 1.09 (m, 10H), 0.98 – 0.81 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 172.51, 45.55, 42.42, 41.16, 39.98, 35.25, 33.63, 32.62, 26.35, 26.04, 25.92, 14.45, 12.71. HRMS (ESI) C₁₄H₂₅NNaO₃ [M+Na]⁺ calcd: 278.1727, found: 278.1716.

6 The mechanistic study

6.1 Radical trapping experiments

To an oven-dried 10 mL quartz test tube with a stirring bar was added Cu(MeCN)₄PF₆ (0.02 mmol, 7.4 mg), TEMPO (0.8 mmol, 125.0 mg) or BHT (0.8 mmol, 176.3 mg). Then, air was withdrawn and backfilled with Ar (three times). CF₃CH₂OH (1.0 mL), **1a** (0.2 mmol, 20.0 mg), **2a** (0.6 mmol, 97.2 mg), TMSCN (0.6 mmol, 59.4 mg), DIPEA (0.4 mmol, 51.7 mg) and H₂O (0.4 mmol, 7.2 mg) were added in turn by syringe. Thereafter, the test tube was transferred to a UV photoreactor (4×25 W, see Figure S1 for details), where it was irradiated at 254 nm for 4 h. Four hours later, the reaction was quenched with water (2 mL), extracted with ethyl acetate, dried over anhydrous sodium sulfate, concentrated in *vacuo* and purified by column chromatography (hexane/ethyl acetate) to afford the product **5**. **5**: 25.0 mg, yield: 52%. The NMR data are consistent with a previous report.⁹

6.2 Radical clock experiment

To an oven-dried 10 mL quartz test tube with a stirring bar was added $Cu(MeCN)_4PF_6$ (0.04 mmol, 14.9 mg). Then, air was withdrawn and backfilled with Ar (three times). CF₃CH₂OH (2.0 mL), 1a (0.4 mmol, 40.0 mg), 2 (1.2 mmol, 194.4 mg), TMSCN (1.2 mmol, 118.8 mg), DIPEA (0.8 mmol, 103.4 mg) and H₂O (0.8 mmol, 14.4 mg) were added in turn by syringe. Thereafter, the test tube was transferred to a UV photoreactor (4×25 W, see Figure S1 for details), where it was irradiated at 254 nm for 4 h. Four hours later, the reaction was quenched with water (2 mL), extracted with ethyl acetate, dried over anhydrous sodium sulfate, concentrated in vacuo and purified by column chromatography (hexane/ethyl acetate) afford the to product 3an. ethvl 2-cyano-4-cyclopentylbutanoate (3an): 47.4 mg, yield: 57%. Colorless oil. ¹H NMR (300 MHz, CDCl₃) δ 4.27 (q, J = 7.1 Hz, 2H), 3.48 (t, J = 6.9 Hz, 1H), 2.02 - 1.90 (m, 2H), 1.85 - 1.68 (m, 3H), 1.67 - 1.45 (m, 6H), 1.33 (t, J = 7.1 Hz, 3H), 1.15 - 1.07 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) & 166.23, 116.62, 62.69, 39.35, 37.78, 33.06, 32.50, 32.34, 29.13, 25.06, 13.99. HRMS (ESI) C₁₂H₁₉NNaO₂ [M+Na]⁺ calcd: 232.1308, found: 232.1305.

6.3 Analysis of by-product

When the reaction mixture was taken out from UV photoreactor, we found that white precipitate was separated out. The residue was filtered, washed by EtOAc and vacuum drying. According to the analysis of NMR spectra, the white precipitate is $(i-Pr)_2$ EtN•HBr. ¹H NMR (300 MHz, DMSO) δ 8.18 (br, 1H), 3.70 – 3.52 (m, 2H), 3.21 – 3.06 (m, 2H), 1.31 – 1.16 (m, 15H). ¹³C NMR (75 MHz, DMSO) δ 53.52, 18.04, 16.66.

6.4 Calculation of Apparent Quantum Efficiency (A. Q. E)

In theory, one photon can motivate one C-Br bond to produce an alkyl radical. The energy of one photon (E_{photon}) with wavelength of λ_{inc} (nm) is calculated using the following equation:

$$E_{photon} = \frac{hc}{\lambda_{inc}} = \frac{6.63 \times 10^{-34} \,\mathrm{J \cdot s} \times 3 \times 10^8 \,\mathrm{m \cdot s^{-1}}}{254 \times 10^{-9} \,\mathrm{m}} = 7.8 \times 10^{-19} \,\mathrm{J}$$

where h (J·s) is Planck's constant, c (m·s⁻¹) is the speed of light and λ_{inc} (m) is the wavelength of

the incident light. And the total energy of the incident monochromatic light (E_{total}) is calculated using the following equation:

 $E_{total} = PSt = 0.11 \text{ W} \cdot \text{cm}^{-2} \times 1.05 \text{ cm}^2 \times 4 \times 3600 \text{ s} = 1.66 \times 10^3 \text{ J}$ where $P (\text{W} \cdot \text{cm}^{-2})$ is the power density of the incident light, $S (\text{cm}^2)$ is the irradiation area and t (s) is the photoreaction time. The total number of incident photons can be obtained through the following equation:

Number of incident photons
$$=\frac{E_{total}}{E_{photon}} = \frac{1.66 \times 10^3 \text{ J}}{7.8 \times 10^{-19} \text{ J}} = 2.13 \times 10^{21} = 3.5 \text{ mmol}$$

As a result, the apparent quantum yield (A.Q.Y.) is defined as follows:

A. Q. Y. (%) =
$$\frac{Number \ of \ product \ 3a}{Number \ of \ incident \ photons} = \frac{0.083 \ mmol}{3.5 \ mmol} = 2.37\%$$

7 References

- 1. M. Pittelkow and J. B. Christensen, Org. Lett., 2005, 7, 12958.
- 2. M. Fu, L. Chen, Y. Jiang, Z.-X. Jiang and Z. Yang, Org. Lett., 2016, 18, 3481.
- 3. F. Bartoccini, S. Bartolucci, S. Lucarini and G. Piersanti, *Eur. J. Org. Chem.*, 2015, 2015, 3352.
- H.-Q. Do, S. Bachman, A. C. Bissember, J. C. Peters and G. C. Fu, *J. Am. Chem. Soc.*, 2014, 136, 2162.
- 5. A. Nortcliffe, I. N. Fleming, N. P. Botting and D. O'Hagan, *Tetrahedron*, 2014, 70, 8343.
- 6. A. S. Dudnik and G. C. Fu, J. Am. Chem. Soc., 2012, 134, 10693.
- 7. B. Yang and Z. Lu, J. Org. Chem., 2016, 81, 7288.
- 8. Q. Guo, M. Wang, Y. Wang, Z. Xu and R. Wang, Chem. Commun., 2017, 53, 12317.
- 9. C. Wang, Y. Lei, M. Guo, Q. Shang, H. Liu, Z. Xu and R. Wang, Org. Lett., 2017, 19, 6412.

	116.67	$\overbrace{77}^{77}.32$ 76.68	36.95 35.15 35.15 32.97 31.90 26.10 25.70 25.70	
CO ₂ Et CN 3aa ¹³ C NMR (101 MHz, CDCl ₃)			ſ	
				sen hillen fra 1907 val de hanspilen over
210 200 190 180 170 160 15	50 140 130 120 110 100	90 80 70 60	50 40 30 20 10	0 ppm

<pre>174.61 174.56 165.71</pre>	<pre>116.15 </pre>	$ \begin{array}{c} 77.32 \\ 776.68 \\ 76.68 \\ 62.91 \\ 60.89 \\ 60.89 \end{array} $	$ \begin{array}{c} 36.95 \\ 36.86 \\ 35.89 \\ 35.89 \\ 32.89 \\ 32.89 \\ 14.09 \\ 13.91 \\ 13.91 \\ \end{array} $	
$EtO_2C \xrightarrow{CO_2Et}_{CN}$ $3am$ ¹³ C NMR (101 MHz, CDCl ₃)				
	ander all were plan with a plan with a plan were plan and a plan with a plan were plan and a plan were plan and			niya waxaya ku daga katan tanan
210 200 190 180 170 160 150 140	130 120 110 100	90 80 70 60 5	0 40 30 20 10 0	mqq

	1	· · · · · ·	1	1					1				1	1	1			1	1		
210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	1

ppm

