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1. Synthesis and characterization of the compounds:
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Scheme S1: Synthetic routes for the preparation of the ligand L1.
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1.1 Materials and Methods:

General chemicals and the solvents were purchased from commercially available suppliers
and were used without further purification. All the reactions were carried out under nitrogen
atmosphere. The NMR spectra of the newly prepared materials were recorded on BRUKER
400 MHz and 500 MHz spectrometers. The chemical shifts (8) in the *H NMR spectra were
reported in ppm relative to the tetramethylsilane, which was used as an internal standard (5 =
0.00 ppm) or the resonance of the proton resulting from partial deutoriation of the NMR
solvents: CDCls (8 = 7.26 ppm), CDsCN (& = 1.94 ppm) and DMSO-ds (& = 2.50 ppm). $3C
NMR spectra were recorded using the same instruments at 100 MHz, 125 MHz and all the
chemical shifts (8) were reported in ppm relative to external CDClszat 77.8-77.2 ppm, CD3CN
at 1.32, 118.26 ppm and DMSO-ds at 39.52 ppm. Electrospray ionization mass spectra were
recorded using Agilent 6538 Ultra-High Definition (UHD) Accurate Mass Q-TOF
spectrometer along with the use of standard spectroscopic grade solvents. Electronic
absorption spectra and emission spectra were recorded on a LAMBDA 750 UV/Vis
spectrophotometer and HORIBA JOBIN YVON made Fluoromax-4 spectrometer.

1.2 Synthesis

Synthesis of (Brl): Brl was synthesized according to the previous literature report.> A two-
neck round-bottom flask was charged with glacial acetic acid (20 mL) followed by addition
of bromobenzaldehyde (12 mmol), p-toluidine (12 mmol) and TsOH(1.2 mmol). The mixture
was stirred at 90°C for 45 min. Then butane-2, 3-dione (6 mmol) was slowly added to it and
the resulting mixture was stirred at 100°C for 4h. The reaction mixture was then cooled to
room temperature. The precipitate was filtered off and washed with cold acetic acid. The
solid was recrystallized from AcOEt and dried under vacuum to give a yellowish compound.
Yield: 1.8 g (3.03 mmol, 25%). *H NMR (CDCls, 400 MHz): § = 7.33 (d, 4H), 7.19-7.13 (m,
8H), 7.07 (d, 4H), 6.35 (s, 2H), 2.38 ppm (s, 6H). *C NMR (100 MHz, CDCls): § = 137.64,
136.24, 135.29, 133.05, 132.42, 131.73, 130.33, 129.94, 125.59, 120.50, 95.01, 21.49 ppm.

Synthesis of (Im1): Im1 was prepared by following previous literature procedure.? An oven-
dried 100 mL two-neck round bottom flask was charged with Cul (16.0 mg, 0.08 mmol),
1,10-phenanthroline (30.3 mg, 0.16 mmol) and dry DMF (5 mL) and degassed. The brown
solution was heated at 120°C for 5 min. Compounds Br1 (500.0 mg, 0.84 mmol), imidazole
(458.4 mg, 6.73 mmol), potassium tert-butoxide (755.6 mg, 6.73 mmol) and a pinch of 18-
crown-6 were added to the above solution and the final mixture was heated at 130°C for 72 h.
The final brown residue was stirred with 100 mL of water for 10 min and then filtered. The
residue was extracted with 300 mL CHCIs followed by treatment with sodium sulphate.
Evaporation of the solvent yielded solid yellow product. Yield: 350 mg (0.61 mmol, 73%).
!H NMR (CDClIs, 400 MHz): § = 7.84 (s, 2H, N-CH-N), 7.32 (d, 4H, imidazole- H), 7.30 (d,
8H), 7.22 (d, 8H), 6.42 (s, 2H), 2.40 ppm (s, 6H). 3C NMR (100 MHz, CDCls): § = 137.64
(N-C-N), 136.45, 135.22, 133.47, 132.64, 131.73, 130.43, 130.33, 129.94, 129.70, 125.68,



125.58, 121.68, 95.21, 21.52 ppm. HRMS (ESI): CsgH3oNg, [M+H] * = 571.2565 (calcd)
found: 571.3889.

Synthesis of L1: A 50 mL round bottom flask was charged with Im1 (150.0 mg, 0.26 mmol)
and an excess amount of ethyl bromide (114.6 mg, 1.05 mmol). 3.5 mL DMF was added to
the mixture and heated to 110°C for 12 h. A yellow compound was precipitated which was
filtered off, washed with diethyl ether and dried in vacuum to give a yellow solid. This solid
was dissolved in 15 mL methanol and a solution of KPFe (482.24 mg, 2.62 mmol) in water
was added to it. The mixture was stirred for 6 h at room temperature. Again, a yellow
precipitate formed and that was filtered, washed with diethyl ether, dried in vacuum. Yield:
165.0 mg (0.18 mmol; 68.3%). H NMR (DMSO-ds, 500 MHz): § = 9.75 (s, 2H, N-CH-N),
8.28 (s, 2H), 8.01 (s, 2H), 7.68 (d, 4H), 7.44 (d, 4H), 7.30 (d, 4H), 7.23 (d,4H), 6.60 (s, 2H),
4.25 (g, 4H), 2.36 (s, 6H), 1.49 ppm (t, 6H). *C NMR (125 MHz, DMSO-ds): & = 136.75 (N-
C-N), 135.92, 134.87, 134.23, 134.18, 132.47, 132.44, 130.16, 128.55, 125.24, 122.98,
121.53, 120.82, 95.61, 44.79, 20.57, 14.79 ppm. ESI-MS (m/z) = 773.4681 [M-PFe]* (calcd
773.2956), 314.2518 [M-2PF¢]** (calcd 314.1657).

Synthesis of 1: L1 (30 mg, 0.032 mmol) was dissolved in acetonitrile (2.5 mL). Ag.0O (8.32
mg, 0.035 mmol) was added to this solution. The resulting solution was stirred at 70°C for 24
h under exclusion of light. After cooling to room temperature, the suspension was filtered
through celite to obtain a clear solution. The filtrate was concentrated to 2 mL. Excess diethyl
ether was added to this solution which gave a yellow solid. The solid was collected by
filtration, washed with diethyl ether and dried under vacuum. Yield: 20 mg (0.011 mmol,
35%). *H NMR (DMSO-ds, 500 MHz): & = 7.87 (s, 2H), 7.79 (s, 2H), 7.69 (br s, 4H), 7.21
(d, 4H), 7.11 (d, 4H), 6.80 (d, 4H), 6.32 (s, 2H), 4.34 (g, 4H), 2.27 (s, 6H), 1.51 ppm (t, 6H).
13C NMR (125 MHz, DMSO-ds): & = 178.65 (N-C-N), 137.45, 136.66, 135.11, 133.88,
133.15, 131.86, 129.80, 128.68, 124.57, 122.88, 122.07, 95.70, 47.06, 20.52, 17.10 ppm.
ESI-MS (m/z) = 1613.376 [M-PFe]* (calcd 1613.405), 734.1931 [M-2PF¢]*>* (calcd
734.2208).

Synthesis of (Br2): It was synthesized following the procedure used for the synthesis of Br1l.
Here, bromobenzaldehyde (12 mmol), 4-bromoaniline (12 mmol), TsOH (1.2 mmol) and
butane-2, 3-dione (6 mmol) were used as starting materials. Yield: 2.1 g (2.89 mmol, 24%).
'H NMR (CDCls, 400 MHz): & = 7.50 (d, 4H), 7.37 (d, 4H), 7.12 (d, 4H), 7.06 (d, 4H), 6.36
ppm (s, 2H). *C NMR (100 MHz, CDCls): § = 139.37, 135.73, 132.92, 132.49, 131.99,
130.01, 127.09, 121.18, 120.04, 116.85, 95.79 ppm.

Synthesis of (Im2): Im2 was prepared following the same method of Im1. Cul (35.5 mg,
0.18 mmol), 1,10-phenanthroline (67.3 mg, 0.37 mmol), Br2 (1110 mg, 1.86 mmol),
imidazole (1272 mg, 18.68 mmol), potassium tert-butoxide (1886.47 mg, 16.81 mmol) and a
pinch of 18-crown-6 were used as starting materials. Yield: 1.0 g (1.48 mmol, 80%). 'H
NMR (CDCl3, 400 MHz): 6 = 7.91 (s, 2H, N-CH-N), 7.87 (s, 2H, N-CH-N), 7.48-7.42 (m,
8H), 7.38-7.31 (m, 8H), 7.28-7.21 (m, 8H), 6.51 ppm (s, 2H). 1*C NMR (100 MHz, CDCls):
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d =138.88, 135.86, 135.67, 135.53, 135.36, 135.20, 132.40, 132.12, 130.92, 130.71, 129.56,
126.62, 122.47, 121.47, 118.26, 118.09, 95.88 ppm. HRMS (ESI): Ca2H3oN1o, [M+H] * =
675.2688 (calcd) found: 675.424.

Synthesis of L2: A 100 mL round bottom flask was charged with Im2 (300 mg, 0.44 mmol)
and excess iodomethane (1262.11 mg, 8.89 mmol). 10 mL 1-propanol was added to this
mixture and reaction mixture was heated to 100°C for 18 hr. A yellow compound was
precipitated which was filtered off, washed with diethyl ether and dried in vacuum. This solid
was dissolved in 30 mL methanol and a solution of KPFs (809.86 mg, 1.126 mmol) in water
was added to it. The mixture was stirred for 6 h at room temperature. Again, a yellow
precipitate formed and that was filtered, washed off with diethyl ether, dried in vacuum.
Yield: 450 mg (0.342 mmol, 78%). *H NMR (DMSO-ds, 500 MHz): § = 9.77 (s, 2H), 9.72 (s,
2H), 8.30 (s, 2H), 8.25 (s, 2H), 7.98-7.94 (m, 4H), 7.88 (d, 4H), 7.73 (d, 4H), 7.63 (d, 4H),
7.52 (d, 4H), 6.80 (s, 2H), 3.97 (s, 3H), 3.94 ppm (s, 3H). *C NMR (125 MHz, DMSO-de): &
= 139.94 (N-C-N), 135.98, 135.70, 134.56, 133.77, 132.88, 132.54, 132.21, 129.08, 126.61,
124.66, 124.58, 123.03, 121.67, 120.90, 120.63, 97.38, 36.26, 36.21 ppm. ESI-MS (m/z) =
512.1716 [M-2PFg] 2* (calcd 512.1438), 293.1182 [M-3PF¢]*" (calcd 293.1078), 183.5878
[M-4PFg]** (calcd 183.5898).

Synthesis of 2: Ag'-Cnnc complex 2 was synthesized by following the same synthetic path
used for complex 1. Free ligand L2 (22 mg, 0.016 mmol) and Ag20 (8.4 mg, 0.036 mmol)
were used as starting material. Yield: 18 mg (0.007mmol, 43%). *H NMR (DMSO-dg, 500
MHz): & =7.87 (d, 3H, 2:1, syn:anti), 7.79 (d, 3H, 2:1, syn:anti), 7.75 (d, 3H, 2:1, syn:anti),
7.73 (br s, 3H, 2:1, syn:anti), 7.69 (d, 4H, syn), 7.67 (d, 4H, syn), 7.58 (d, 2H, anti), 7.52 (d,
2H, anti), 7.45 (d, 4H, syn), 7.40 (d, 2H, anti), 7.33 (d, 2H, anti), 7.20 (d, 4H, anti), 6.47 (s,
2H, syn), 6.33 (s, 1H, anti), 4.08 (s, 6H, syn), 4.02 (s, 6H syn), 3.95 (s, 3H, anti), 3.92 ppm (s,
3H, anti). ®C NMR (125 MHz, CDsCN): § = 181.00, 140.46, 140.31, 140.08, 139.33,
138.99, 138.69, 138.14, 136.52, 135.37, 134.57, 134.28, 134.00, 132.76, 130.19, 129.28,
129.15, 126.99, 126.50, 126.12, 125.44, 125.19, 124.99, 124.83, 123.38, 122.97, 122.85,
98.78, 98.52, 98.07, 39.97, 39.69 ppm. ESI-MS (m/z) = 1091.1528 [M-2PFs] 2* (calcd
1091.1024), 679.1064 [M-3PF]** (calcd 679.0802), 473.0744 [M-4PFs]** (calcd 473.069).

Transmetalation of 1 to 3: A clear solution of complex 1 (12 mg, 0.006 mmol) in DMSO
was treated with solid [Au(THT)CI] (4.8 mg, 0.015 mmol). The reaction mixture was stirred
at room temperature for 12 h and the resulting suspension was passed through a celite bed.
The filtrate was treated with excess ethyl acetate which gave light yellow precipitate. The
solid was collected by filtration, washed with diethyl ether and dried in vacuum. Yield: 9 mg
(0.004 mmol, 68%). *H NMR (DMSO-ds, 500 MHz): & = 7.77 (s, 2H), 7.74 (s, 2H), 7.62 (d,
4H), 7.36 (d, 4H), 7.28 (d, 4H), 7.22 (d, 4H), 6.56 (s, 2H), 4.25 (g, 4H), 2.35 (s, 6H), 1.45
ppm (t, 6H). *C NMR (125 MHz, DMSO-ds): § = 167.53, 136.84, 136.79, 135.68, 134.33,
133.54, 132.13, 130.17, 128.13, 125.04, 124.76, 122.48, 121.96, 95.53, 47.23, 20.63, 16.33



ppm. ESI-MS (m/z) = 1791.5382 [M-PFe] * (calcd 1791.5288), 823.2855 [M-2PFs]?* (calcd
823.2823).

Transmetalation of 2 to 4: Transmetalation reaction of Ag'-Cnnc complex 2 (20.0 mg, 0.011
mmol) followed the same synthetic path like complex 3 using four equivalents of
[Au(THT)CI] (8.0 mg, 0.025 mmol). Yield: 11 mg (0.003 mmol, 34%). *H NMR (DMSO-ds,
500 MHz): 6 =7.89 (s, 4H, syn), 7.83 (s, 2H, anti), 7.81 (s, 4H, syn), 7.79 (s, 2H, anti), 7.75
(d, 4H, syn), 7.68 (d, 4H, syn), 7.63 (d, 2H, anti), 7.51 (d, 2H, anti), 7.48 (d, 4H, syn), 7.42
(d, 2H, anti), 7.33 (d, 2H, anti), 7.20 (d, 4H, syn), 6.50 (s, 2H, syn), 6.38 (s, 1H, anti), 4.12 (s,
3H, anti), 4.11 (s, 6H, syn), 4.07 (s, 3H, anti), 4.06 (s, 6H, syn) ppm. 3C NMR (125 MHz,
DMSO-dg): 6 = 179.65, 138.82, 138.74, 137.65, 137.45, 137.03, 136.81, 134.02, 133.93,
133.12, 132.84, 132.63, 132.48, 131.55, 128.68, 128.07, 125.87, 125.52, 125.10, 124.61,
124,50, 124.13, 123.59, 123.46, 122.74, 122.27, 122.07, 121.78, 97.52, 97.48 ppm. ESI-MS
(m/z) = 1269.6527 [M-2PFs] #* (calcd 1269.7253), 798.1018 [M-3PFs]** (calcd 798.1621),
562.2297 [M-4PF¢]** (calcd 562.3805).

Preparation of solution for AIE study: Initially, stock solutions (10* M) of Im1, Im2 were
prepared using spectroscopy grade DCM. The required amounts of the aliquots from the
stock solutions were transferred to 4 mL glass vials. After addition of the appropriate amount
of DCM for dilution, spectroscopy grade hexane was added to the solutions under vigorous
stirring to afford (10° M) solutions with varying hexane-DCM ratios (10%-90%). The
photophysical studies were carried out immediately.

Fluorescence quantum yield measurement: For fluorescence quantum yield measurement,
quinine sulphate was chosen as reference. The quantum vyields were measured using the
following equation
¢c= [0 {(1 - 20)xNc?xDc}] / {(1- 104) xN/*xDr}

Where ¢m and ¢ is the radiative quantum yields of the compounds and reference respectively;
Ac is the absorbance of the compound and Ay is the absorbance of the reference; D is the area
of emission of the compound and Dy is the area of emission of the reference, Nc and N, are
the refractive indices of the compound and reference solutions, respectively.

Optimisation methods: All the theoretical calculations were performed using Gaussian 09
package.® 1, 2, 3 and 4 were optimized using hybrid B3LYP functional with a mixed basis set
6-31G (for C, H and N) and LANL2DZ (for Ag/Au).* No symmetry constraints were used
during the optimization procedure. All the TD-DFT calculations were carried out using
hybrid B3LYP functional with mixed basis set 6-31G (for C, H and N) and SDD (for Ag/Au).



1.3 Synthesis and characterization of 1
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1.4 Synthesis and characterization of 3
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1.5 Synthesis and characterization of 2 and 4
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Fig. S12. Optimised structures of the complex 2: a) side view of syn-2 b) top view of syn-2

c) side view of anti-2 d) top view of anti-2. Color codes: Carbon (grey), Nitrogen (blue),

Silver (light yellow). H-atoms are omitted for clarity.
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a) experimental (red) b) theoretical (blue) of the [M-2PF¢]?* fragment and c) experimental

(red) d) theoretical (blue) of the [M-3PFs]** fragment.
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b)

Fig. S16. Optimised structures of the complex 4: a) side view of syn-4 b) top view of syn-4 c)
side view of anti-4 d) top view of anti-4. Color codes: Carbon (grey), Nitrogen (blue), Gold
(golden yellow). H-atoms are omitted for clarity.

2. Normalized absorption and emission spectra of the metal complexes and free ligands
in acetonitrile:
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E 0.8 1 —— Absorbance of 4 Fluorescence of 4
5 5 6.0x10°
3 06 s
< ’ 2
b 2 4.0x10°
N 044 2
g £

2.0x10°

2 0.2 1

0.0 T T T T T T T 0.0 T T T T T T

350 400 450 500 550 600 650 700 400 450 500 550 600 650 700
Wavelength (nm) Wavelength (nm)

Fig. S17: (Left) Normalized absorbance spectra of L2, 2 and 4 at room temperature in
CH3CN (10°M solution); (Right) Emission spectra of compounds L2, 2 and 4 at room
temperature in CH3CN (10°M solution).
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Fig. S18: (Left): Solid state emission spectra of L1, 1. (Right): Solid state emission spectra of
compounds L2, 2.

Fig. S19: Images of L1, Ag-complex 1 (Left) and L2, Ag-complex 2 (Right) in CH3CN
under UV radiation of 365nm.

18



v

-8.008eV

. ~

-8.038eV

Fig. S20. Frontier molecular orbitals in ground state: (left) Ag-complex 1 and (right) Au-

complex 3.
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Fig. S21: Frontier molecular orbital in ground state: (left): Ag-complex 2 and (Right): Au-

complex 4.

Table 1. Absorption and emission maxima of the free ligands, Ag'-Cnuc and Au'-Cnuc
complexes, and their corresponding quantum yields.

Compound Absorption Emission Quantum
Maxima (nm) | Maxima (nm) | Yield

L1 380 498 3.2

1 366 453 32

3 377 457 17.5

L2 374 472 3.4

2 365 451 28

4 381 443 9.5
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Fig. S22: Bar diagram showing the comparison in emission intensities between Im2 in
different hexane fractions in dichloromethane (DCM) (10°M solution) and 2 in acetonitrile (10
M solution).

3. NMR spectra of the intermediate compounds:
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Fig. S23:*H NMR spectrum of compound Br1 (CDCls, 298 K).
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Fig. S24:*C NMR spectrum of compound Br1 (CDCls, 298 K).
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Fig. S25:*H NMR spectrum of compound Im1 (CDCls, 298 K).
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Fig. S26:13C NMR spectrum of compound Im1 (CDCls, 298 K).
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Fig. S27: *H NMR spectrum of compound L1 (DMSO-ds, 298 K).
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Fig. S28:1H - 'H COSY spectrum of L1 (DMSO-ds, 298 K). The rectangular position shows
the interaction between neighbouring protons.
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Fig. S29: 3C NMR spectrum of compound L1 (DMSO-ds, 298 K).
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Fig. S30:*H NMR spectrum of compound Br2 (CDCls, 298 K).
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Fig. S31:C NMR spectrum of compound Br2 (CDCls, 298 K).



§¢'1L—

LI'e—

159
(Y42
¥e'l
92’
82'L
1L
(4
€8’
g’
8e'L
ct's
er'l
Sl
9L
8t'L
182
L6 L

W

e

ppm

Fig. S32:'H NMR spectrum of compound Im2 (CDCls, 298 K).
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Fig. S33:1C NMR spectrum of compound Im2 (CDCls, 298).
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Fig. S36: 3C NMR spectrum of compound L2 (DMSO-ds, 298 K).

4. Mass spectra of the building blocks:
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Fig. S37: Mass spectrum of compound Im1.
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Fig. S38: Mass spectrum of compound L1.
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Fig. S39: Mass spectrum of compound Im2.
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Fig. S40: Mass spectrum of compound L2.
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