Supplementary Information

Long-cyclic anode based on coral-like Sn nanostructure with binary binder

Yuhang Liu,^a Jinmeng Sun,^a Hongfang Du,^a Song He,^a Linghai Xie,^{a,c} Wei Ai^{*a} and Wei Huang^{*a,b,c}

^aInstitute of Flexible Electronics (IFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an 710072, China

^bKey Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China

^cKey Laboratory for Organic Electronics & Information Displays (KLOEID) and Institute of Advanced Materials (IAM), SICAM, Nanjing University of Posts & Telecommunications, Nanjing 210023, Jiangsu, China

Correspondence and requests for materials should be addressed to

W. Ai (iamwai@nwpu.edu.cn) or to W. Huang (iamwhuang@nwpu.edu.cn).

Experimental procedures

1. Synthesis of Coral-like Sn

The coral-like Sn was prepared through a simple displacement reaction: $4\text{Li} + \text{SnCl}_4 = \text{Sn} + 4\text{LiCl}$. Briefly, 25 pieces of lithium foils (commercially available lithium foils used for LIBs, 20 mg each) were cut into small pieces and transferred into a two-necked flask filled with 50 mL anhydrous m-xylene solution (Sigma-Aldrich) in a glovebox. Next, 5 mL anhydrous SnCl₄ (98%, Sigma-Aldrich) was injected slowly using a syringe under vigorous stirring. After 25 h stirring under argon atmosphere, the mixture was filtered to remove the solid residues, and the gray-black suspension was redispersed in 300 mL ethanol. Finally, the product was collected by centrifugation, and then washed with ethanol/water for several times. The obtained grayish powder was dried in a vacuum oven at 80 °C for 12 h.

2. Materials Characterization

Powder XRD was recorded by a Bruker D8 Advance diffractometer with Cu K_{α} radiation (λ =0.154056 nm). SEM images were collected using a scanning electron microscopy (JEOL JSM-6700F) at an accelerating voltage of 10 kV. TEM analysis was performed by a transmission electron microscopy (FEI Tecnai G² F30) at an accelerating voltage of 300 kV. The elastic modulus was measured using a nanoindentation (Hysitron TI980) at a load of 10 mN.

3. Electrochemical Measurements

For electrochemical tests, the working electrodes were fabricated by mixing active material (coral-like Sn), conductive material (acetylene black) and binder (NaCMC, NaCMC/GO, or GO) into deionized water (See Table S1 for details). The slurry was then uniformly coated on a copper foil and dried in a vacuum oven at 100 °C for 12 h. The as-prepared films were punched into disk electrodes (d = 12 mm), and the active material loaded on each electrode was determined to be ~1 mg cm⁻². Coin-type cells were assembled using lithium foil as the counter electrode, Celgard@2400 polypropylene member as the separator, respectively. 1 M LiPF₆ in a complex solvent (ethylene carbonate, ethyl methyl carbonate and dimethyl carbonate with volume ratio of 1:1:1) was applied as the electrolyte. All the coin cells were assembled in a

glovebox with both H_2O and O_2 content less than 0.1 ppm. Electrochemical tests were measured with CHI 760D electrochemical workstation and NEWARE battery analyzer after ageing for 12 h.

Sample	Sn powder (wt%)	Acetylene black (wt%)	NaCMC (wt%)	GO (wt%)
10% NaCMC	70	20	10	0
5% NaCMC/5% GO	70	20	5	5
10% GO	70	20	0	10

Table S1. The mass ratio of electrode components used in slurry coating technique.

Fig. S1 Size distribution histogram of the as-obtained coral-like metallic Sn.

Fig. S2 The charge-discharge profiles of the 5 wt% NaCMC/5 wt% GO binder electrode at various current densities.

Fig. S3 SEM images of fresh electrodes prepared with (a) 10 wt% NaCMC, (b) 5 wt% NaCMC/5 wt% GO, and (c) 10 wt% GO binders, respectively.

Fig. S4 (a) The force-displacement curve, (b) elastic modulus and (c) hardness of the NaCMC, GO and NaCMC/GO composite films at a load of 10 mN.

Fig. S5 (a, b) Surface and (c, d) cross-section SEM images of the 5 wt% NaCMC/5 wt% GO binder electrode after 50 cycles at a current density of 500 mA g⁻¹.