# **Electronic Supplementary Information for**

# Boosting hydrogen evolution activity of vanadyl pyrophosphate nanosheets for electrocatalytic overall water splitting

Chaoxiong Zhang et.al.

# **Experimental Section**

## Synthesis of (VO)<sub>2</sub>P<sub>2</sub>O<sub>7</sub> samples

The 2D  $(VO)_2P_2O_7$  nanosheets were fabricated via the hydrothermal process and heat treatment. The details are as follows: 1.0 g V<sub>2</sub>O<sub>5</sub> and 12 ml H<sub>3</sub>PO<sub>4</sub> were dissolved in 24 mL deionized water and stirred about 30 minutes to form a clear solution. Then, the aqueous reagent solution was put into a 50 mL Teflon-lined stainless-steel autoclave, which was sealed and maintained at 104 °C for 20 h. After that, the deposit was filtered, washed with deionized water and alcohol, and dried at 80 °C for 24 h. Finally, 2D  $(VO)_2P_2O_7$  nanosheets were obtained by heated at 250 °C for 12 h in an Ar atmosphere.

The bulk  $(VO)_2P_2O_7$  was also synthesized by the followed method. 1.0 g V<sub>2</sub>O<sub>5</sub> with 5.2 ml H<sub>3</sub>PO<sub>4</sub> was dissolved in 24 ml distilled water and stirred under reflux at 120 °C for 8 h. The yellow solid was recovered by vacuum filtration, washed with distilled water and acetone and then dried in the air at 110 °C for 16 h. After refluxed for 20 h in 80 ml of isobutanol, the obtained materials were filtered out from the solvent, washed with acetone, and dried for 16 h at 110 °C. Finally, the precursors were heated at 550 °C for 4 h under N<sub>2</sub> flow conditions in a tube furnace to get the bulk  $(VO)_2P_2O_7$ .

#### Characterizations

XRD patterns were performed by an X-ray diffractometer (SmartLab 9kW) at a scan rate of 1° min<sup>-1</sup> from 5 to 70°. The N<sub>2</sub>-sorption isotherms and pore size distribution curves for the  $(VO)_2P_2O_7$  nanosheets were obtained by the Brunauer–Emmett–Teller (BET) measurement with an Autosorb-iQ-MP Micromeritics analyzer. The field-emission-gun SEM instruments (Quanta FEG 250 and Verios 460L of FEI) were applied in the SEM characterization. TEM and EDS images were achieved via TEM instruments, namely JEOL JEM-2100 and FEI Talos F200X. XPS results were recorded by a Kratos AXIS Ultra DLD system with the AI K $\alpha$  radiation as the X-ray source. Meanwhile, the C 1s peak has been fixed at the binding energy of 284.8 eV.

#### **Electrochemical measurements**

All electrochemical tests were executed on a CHI electrochemical instrument (760E) under the 1.0 M KOH solution and room temperature (25 °C). HER and OER performances were carried out in a three-electrode system, and the OWS performance was tested in a twoelectrode full cell. In the three-electrode system, Hg/HgO electrode, graphite rod, and rotating disk electrode loaded with the catalyst were used as the reference electrode, counter electrode, and working electrode, respectively. As for HER and OER experiments, linear sweep voltammetry (LSV) was tested with sweep rates of 5 mV s<sup>-1</sup> at a rotation rate of 1600 rpm in the N<sub>2</sub>-saturated and O<sub>2</sub>-saturated solution, respectively. In the full cell system, two (VO)<sub>2</sub>P<sub>2</sub>O<sub>7</sub> electrodes served as both of the anode and cathode at the same time. IrO<sub>2</sub> and Pt/C electrodes were applied as the benchmark sample. *i*R compensation was applied to all initial data except stability data. All of the HER and OER potential values were calculated according to the equation,  $E_{RHE} = E_{Hg/HgO} + 0.098 V + 0.059 pH$ .

To prepare the working electrode, 3.5 mg of the sample was dispersed in a solution, including 500  $\mu$ L 0.5 wt.% Nafion and 500  $\mu$ L deionized water. As for glassy carbon electrode (0.196 cm<sup>-2</sup> for active geometric area), 39  $\mu$ L solution applied in HER and 84  $\mu$ L solution applied in OER were dropped at electrodes and dried in room temperature. The catalyst loadings on electrodes for HER and OER tests were 0.7 mg cm<sup>-2</sup> and 1.5 mg cm<sup>-2</sup>, respectively. As a comparison, the Pt/C and IrO<sub>2</sub> (20 wt.%) electrodes hold the same loading.

TOF values were calculated by the following equation:

$$TOF = jA/(2Fn)$$

where *j* is the current density at a given overpotential ( $\eta$ ), A is the surface area of the working electrode (0.196 cm<sup>-2</sup>), F is the Faraday constant and *n* is the mole of active sites on the working electrode. The Tafel plots were derived from the polarization curves. The ECSA values of the samples were believed to be linearly proportional to electrochemical double-layer capacitance ( $C_{dl}$ ) values. The  $C_{dl}$  values were determined by cyclic voltammetry (CV) curves measured in non-Faradaic regions at scan rates of 5, 10, 15, 20 and 25 mV s<sup>-1</sup>. The EIS measurements were performed in 1.0 M KOH at an open-circuit potential state in a frequency range from 0.01 Hz to 100 KHz with an alternating current (AC) voltage amplitude of 5 mV.

### **Computational details**

The details of our DFT calculations are given in our previous work (J. Catal. 2018, 364, 125).



Figure S1. The XRD pattern of bulk VOP.



Figure S2. The SEM image of bulk VOP.



**Figure S3**. The  $N_2$  adsorption–desorption isotherm (a) and the corresponding pore size distribution (b) for VOP NS.



Figure S4. XPS spectra for VOP NS. (a) XPS survey spectrum. (b) V 2p. (c) P 2p. (d) O 1s.



8/16

**Figure S5**. (a–c) CVs of VOP NS, Pt/C and bulk VOP measured in non-Faradaic regions at scan rates of 5, 10, 15, 20 and 25 mV s<sup>-1</sup> under HER condition and (d) corresponding  $C_{dl}$  values, respectively. (e–h) have the same meanings as (a–d) but under OER condition.





**Figure S7.** (a) OER polarization curves and (b) corresponding Tafel plots for VOP NS,  $IrO_2$  and bulk VOP.



**Figure S8**. The EIS results of VOP NS before and after the chronoamperometric test. The red curve of VOP NS in Figure S6 is redrawn here as the black one.

| Electrocatalyst                                    | Electrolyte | η [mV] for<br>j <sub>HER</sub> = 10 mA cm <sup>-2</sup> | Tafel<br>[mV dec <sup>-1</sup> ] | Stability                                                   | Reference                                            |
|----------------------------------------------------|-------------|---------------------------------------------------------|----------------------------------|-------------------------------------------------------------|------------------------------------------------------|
| δ-WN/Co                                            | 1 M KOH     | 76                                                      | 98                               | 36,000 s (97% of −10 mA cm <sup>-2</sup> at −0.076 V)       | J. Mater. Chem. A, <b>2018</b> , <i>6</i> , 10967    |
| Zn <sub>1-x</sub> Fe <sub>x</sub> -LDH/Ni-<br>foam | 1 M KOH     | 221                                                     | 150                              | 10,800 s (100% ~ –0.4 V of at –50 mA cm <sup>-2</sup> )     | Small. <b>2018</b> , 14, 1803638                     |
| W-SAC                                              | 0.1 M KOH   | 85                                                      | 53                               | 10,000 cycles (100%)                                        | Adv. Mater. 2018, 30, 1800396                        |
| Ru <sub>0.33</sub> Se @ TNA                        | 1 M KOH     | 57                                                      | 50                               | 36,000 s (100% ~ −10 mA cm <sup>-2</sup> of at −0.1 V)      | Small <b>2018</b> , 14, 1802132                      |
| V <sub>8</sub> C <sub>7</sub> @GC NSs/NF           | 1 M KOH     | 47                                                      | 44.5                             | 360,000 s (100% ~ –0.051 V of at –10 mA cm <sup>-2</sup> )  | Adv. Energy Mater. <b>2018</b> , <i>8</i> , 1800575  |
| S-MoS <sub>2</sub> @C                              | 1 M KOH     | 155                                                     | 99                               | 86,400 s (100% ~ –0.2 V of at –10 mA cm <sup>-2</sup> )     | Adv. Energy Mater. <b>2019</b> , <i>9</i> , 1802553  |
| Ni₄Mo nanosheets                                   | 1 M KOH     | 35                                                      | 45                               | 1,000 cycles                                                | small <b>2017</b> , 13, 1701648                      |
| MPM-2                                              | 1 M KOH     | 78                                                      | 43                               | 3,000 cycles (100%)                                         | Angew. Chem. <b>2018</b> , 130, 14335                |
| Pt@PCM                                             | 1 M KOH     | 139                                                     | 73.6                             | 18,000 s (>95% of ~ –11 mA cm <sup>-2</sup> at –0.15 V)     | Sci. Adv. <b>2018</b> , 4, 6657                      |
| Ni₃Fe@N-C NT/NFs                                   | 1 M KOH     | 72                                                      | 98                               | 40,000 s (100% of ~ -20 mA at -0.2 V)                       | Adv. Funct. Mater. <b>2018</b> , <i>28</i> , 1805828 |
| porous Ni <sub>2</sub> P NS                        | 1 M KOH     | 168                                                     | 63                               | 36,000 s (100% of -10 mA cm <sup>-2</sup> at -0.4 V vs SCE) | J. Mater. Chem. A, <b>2018</b> , 6, 18720            |
| Rh/SWNTs                                           | 1 M KOH     | 48                                                      | 27                               | 10,000 cycles (100%)                                        | ACS Catal. 2018, 8, 8092                             |
| MoNi <sub>4</sub> /MoO <sub>3-x</sub>              | 1 M KOH     | 17                                                      | 23                               | 72,000 s                                                    | Adv. Mater. <b>2017</b> , 29, 1703311                |

Table S1. HER electrocatalysis results of this work and those reported in the literature.

| NFP/C-3                      | 1 M KOH | 95  | 72   | 43,200 s (100% of ~ –0.1 V at –10 mA cm <sup>-2</sup> )   | Sci. Adv. <b>2019</b> , <i>5</i> , 6009       |
|------------------------------|---------|-----|------|-----------------------------------------------------------|-----------------------------------------------|
| Ni₃N/Ni/NF                   | 1 M KOH | 12  | 29.3 | 180,000 s (100% of ~ –0.02 V at –10 mA cm <sup>-2</sup> ) | Nat. Commun. <b>2018</b> , <i>9</i> , 4531    |
| S-MoP NPL                    | 1 M KOH | 104 | 56   | 30,000 s (100% of ~ –0.12 V at –10 mA cm <sup>-2</sup> )  | ACS Catal. <b>2019</b> , <i>9</i> , 651       |
| CoP/Co-MOF                   | 1 M KOH | 34  | 56   | 30,000 s (100% of ~ –0.07 V at –20 mA cm <sup>-2</sup> )  | Angew. Chem. <b>2019</b> , 131, 4727          |
| EBP@NG                       | 1 M KOH | 190 | 76   | 57,600 s (~ 90% at -20 mA cm <sup>-2</sup> )              | J. Am. Chem. Soc. <b>2019</b> , 141, 4972     |
| N-Co <sub>2</sub> P/CC       | 1 M KOH | 34  | 51   | 120000 s (100% of ~ –0.05 V at –10 mA cm <sup>-2</sup> )  | ACS Catal. <b>2019</b> , <i>9</i> , 3744      |
| Ni NP Ni-N-C                 | 1 M KOH | 147 | 114  | 36,000 s (100% of ~ –30 mA cm <sup>-2</sup> at –0.3 V)    | Energy Environ. Sci., <b>2019</b> , 12, 149   |
| Ni, Zn dual-doped<br>CoO NRs | 1 M KOH | 53  | 47   | 36,000 s (100% of ~ –10 mA cm <sup>-2</sup> at –0.53 V)   | Adv. Mater. <b>2019</b> , <i>31</i> , 1807771 |
| VOP NS                       | 1 M KOH | 30  | 40   | 72,000 s & 1,000 cycles (100%)                            | This work                                     |

| Electrocatalyst                                         | Electrolyte | OWS operating voltage<br>[V] | Stability                                               | Reference                                            |
|---------------------------------------------------------|-------------|------------------------------|---------------------------------------------------------|------------------------------------------------------|
| (Ni <sub>0.33</sub> Fe <sub>0.67</sub> ) <sub>2</sub> P | 1 M KOH     | 1.49                         | 39,600 s (96.6% of 100 mA cm <sup>-2</sup> at 1.7 V)    | Adv. Funct. Mater. <b>2017</b> , <i>27</i> , 1702513 |
| Cu@NiFe LDH                                             | 1 M KOH     | 1.54                         | 172,800 s (100% of ~ 1.54 V at 10 mA cm <sup>-2</sup> ) | Energy Environ. Sci., <b>2017</b> ,10, 1820          |
| FeP/Ni2P                                                | 1 M KOH     | 1.57                         | 144,000 s (100% of ~ 1.7 V at 500 mA cm^2)              | Nat. Commun. <b>2018</b> , 9, 2551                   |
| NC-NiCu-NiCuN                                           | 1 M KOH     | 1.56                         | 180,000 s (100% of ~ 9 mA cm $^{-2}$ at 1.52 V)         | Adv. Funct. Mater. <b>2018</b> , <i>28</i> , 1803278 |
| Pt-CoS <sub>2</sub> /CC                                 | 1 M KOH     | 1.55                         | 72,000 s (100% of ~ 1.55 V at 10 mA cm <sup>-2</sup> )  | Adv. Energy Mater. <b>2018</b> , <i>8</i> , 1800935  |
| $Ni_{0.75}Fe_{0.125}V_{0.125}$ -LDHs                    | 1 M KOH     | 1.59                         | 54,000 s (100% of ~ 1.7 V at 30 mA cm^2)                | Small <b>2018</b> , <i>14</i> , 1703257              |
| FeB <sub>2</sub> -NF                                    | 1 M KOH     | 1.57                         | 86,400 s                                                | Adv. Energy Mater. 2017, 7, 1700513                  |
| Se-(NiCo)S/OH                                           | 1 M KOH     | 1.60                         | 237,600 s (100% of ~ 10 mA cm <sup>-2</sup> at 1.6 V)   | Adv. Mater. 2018, 30, 1705538                        |
| CoP-Co2P@PC/PG                                          | 1 M KOH     | 1.57                         | 108,400 s (100% of ~ 10 mA cm $^{-2}$ at 1.567 V)       | Small <b>2019</b> , <i>15</i> , 1804546              |
| Co <sub>1</sub> Mn <sub>1</sub> CH                      | 1 M KOH     | 1.68                         | 50,400 s (100% of ~ 1.68 V at 10 mA cm <sup>-2</sup> )  | J. Am. Chem. Soc. <b>2017</b> , 139, 8320            |
| Co <sub>3</sub> Se <sub>4</sub> /CF                     | 1 M KOH     | 1.59                         | 3581 h (100% of ~ 1.6V at 10 mA cm <sup>-2</sup> )      | Adv. Energy Mater. <b>2017</b> , 7, 1602579          |
| EBP@NG                                                  | 1 M KOH     | 1.54                         | 21,600 s (> 97% of 1.54 V at 10 mA cm <sup>-2</sup> )   | J. Am. Chem. Soc. <b>2019</b> , 141, 4972            |
| CoSn <sub>2</sub> /NF                                   | 1 M KOH     | 1.55                         | 57,600 s (100% of 10 mA cm <sup>-2</sup> at 1.55 V)     | Angew. Chem. <b>2018</b> , 130, 15457                |

Table S2. OWS electrocatalysis results of this work and those reported in the literature.

| NiFe NTAs-NF                                            | 1 M KOH | 1.62                          | 72,000 s (100% of ~ 1.62 V at 10 mA cm^2)              | ACS Appl. Energy Mater. <b>2018</b> , 1, 1210 |
|---------------------------------------------------------|---------|-------------------------------|--------------------------------------------------------|-----------------------------------------------|
| PdP <sub>2</sub> @CB                                    | 1 M KOH | 1.72(50 mA cm <sup>-2</sup> ) | 36,000 s (100% of ~ 50 mA cm $^{-2}$ at 1.72 V)        | Angew. Chem. <b>2018</b> , 130, 15078         |
| Co <sub>0.75</sub> Ni <sub>0.25</sub> (OH) <sub>2</sub> | 1 M KOH | 1.56                          | 54,000 s (100% of ~ 1.57 V at 10 mA cm^-2)             | Small <b>2019</b> , 15, 1804832               |
| C/CuCo/CuCoO <sub>x</sub>                               | 1 M KOH | 1.53                          | 360,000 s (100% of ~ 49 mA cm <sup>-2</sup> at 1.65 V) | Adv. Funct. Mater. <b>2018</b> , 28, 1704447  |
| $Ni_{0.8}Co_{0.1}Fe_{0.1}O_xH_y$                        | 1 M KOH | 1.58                          | 180,000 s (100% of ~ 1.58 V at 10 mA cm $^{-2})$       | ACS Catal. <b>2018</b> , <i>8</i> , 5621      |
| CoP/NCNHP                                               | 1 M KOH | 1.64                          | 129,600 s                                              | J. Am. Chem. Soc. <b>2018</b> , 140, 2610     |
| NiCoP/CC                                                | 1 M KOH | 1.52                          | 40,000 s (~ 95% of ~ 1.78 V at 100 mA cm^2)            | ACS Catal. 2017, 7, 4131                      |
| Cr-doped FeNi-P/NCN                                     | 1 M KOH | 1.50                          | 72,000 s (~ 98% of 1.50 V at 10 mA cm <sup>-2</sup> )  | Adv. Mater. <b>2019</b> , <i>31</i> , 1900178 |
| O-CoMoS                                                 | 1 M KOH | 1.60                          | 36,000 s (100% of ~ 10 mA cm $^{-2}$ at 1.6 V))        | ACS Catal. 2018, 8, 4612                      |
| VOP NS                                                  | 1 M KOH | 1.51                          | 72,000 s & 1,000 cycles (100%)                         | This work                                     |