Electronic Supplementary Material (ESI) for Chemical Communications. This journal is © The Royal Society of Chemistry 2019

SUPPORTING INFORMATION

Icosahedral carboranes as scaffolds for congested regioselective polyaryl compounds. The distinct distance tuning of C-C and its antipodal B-B.

Zsolt Kelemen,^a Ariadna Pepiol,^a Marius Lupu,^a Reijo Sillanpää,^b Mikko M. Hänninen,^b Francesc Teixidor,^a Clara Viñas^{a,*}

^a Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus U.A.B. 08193 Bellaterra,

Spain.

^b Department of Chemistry, University of Jyväskylä, FIN-40351, Jyväskylä, Finland.

* clara@icmab.es, Fax: +34 93 580 57 29; Tel: +34 93 580 18 53

Experimental Section:

Synthesis of $9,12-(C_6H_4CH(OCH_3)_2)_2-1,2-closo-C_2B_{10}H_{10}$, Synthesis of $9,12-(C_6H_4CHO)_2-1,2-closo-C_2B_{10}H_{10}$, Synthesis of $8,10-I_2-9,12-Ph_2-1,2-closo-C_2B_{10}H_8$, Synthesis of $8,10-Ph_2-9,12-(CH_2=CHCH_2)_2-1,2-closo-C_2B_{10}H_8$, Synthesis of $8,10,12-Ph_3-9-I-1,2-closo-C_2B_{10}H_8$, **11** and $8,9,10,12-Ph_4-1,2-closo-C_2B_{10}H_8$, Synthesis of $8,10,12-Ph_3-9-I-1,2-closo-C_2B_{10}H_8$, **11** and $8,9,10,12-Ph_4-1,2-closo-C_2B_{10}H_8$, **10** under microwave irradiation

X-ray structure analysis of compounds **3**, **4**, **9**, **10** and **11** Results of the powder X-ray diffraction of **10**

Spectroscopic characterization:

 $\begin{array}{l} 1,2\text{-}c/oso\text{-}C_2B_{10}H_{12} \\ 9,12\text{-}I_2\text{-}1,2\text{-}c/oso\text{-}C_2B_{10}H_{10}, \textbf{1}. \\ 8,9,10,12\text{-}I_4\text{-}1,2\text{-}c/oso\text{-}C_2B_{10}H_8, \textbf{2}. \\ 9,12\text{-}(C_6H_4CH(OCH_3)_2)_2\text{-}1,2\text{-}c/oso\text{-}C_2B_{10}H_{10}, \textbf{3} \\ 9,12\text{-}(C_6H_4CHO)_2\text{-}1,2\text{-}c/oso\text{-}C_2B_{10}H_{10}, \textbf{4} \\ 8,10\text{-}I_2\text{-}9,12\text{-}Ph_2\text{-}1,2\text{-}c/oso\text{-}C_2B_{10}H_8, \textbf{7} \\ 8,10\text{-}Ph_2\text{-}9,12\text{-}(CH_2\text{=}CHCH_2)_2\text{-}1,2\text{-}c/oso\text{-}C_2B_{10}H_8, \textbf{9} \\ 8,9,10,12\text{-}Ph_4\text{-}1,2\text{-}c/oso\text{-}C_2B_{10}H_8, \textbf{10}. \\ 8,10,12\text{-}Ph_3\text{-}9\text{-}1,2\text{-}c/oso\text{-}C_2B_{10}H_8, \textbf{11}. \end{array}$

DFT calculations

Table S1 Bond lengths of the B9-B12 and C1-C2 bonds in case of $9,12-(aryl)_2-1,2-closo-C_2B_{10}B_{10}$ and some related compounds

Experimental Section

Materials and instrumentation: All *o*-carboranes prepared are air and moisture stable. All manipulations were carried out under inert atmosphere. All solvents for the reactions were distilled from sodium prior to use. Reagents were obtained commercially (PhMgBr solution in THF, allyl-MgBr solution in THF as well) and used as purchased. 1,2-*closo*-C₂B₁₀H₁₂ was purchased from Katchem. 9,12-I₂-1,2-*closo*-C₂B₁₀H₁₀, **1**¹ 8,9,10,12-I₄-1,2-*closo*-C₂B₁₀H₈, **2**,¹ 9,12-Ph₂-1,2-*closo*-C₂B₁₀H₈² and 8,10-Ph₂-9,12-I₂-1,2-*closo*-C₂B₁₀H₈, **5**³ were synthetized as reported at the literature.

IR spectra (v, cm⁻¹; KBr pellets) were obtained on a Shimadzu FTIR-8300 spectrophotometer. The ATR-IR spectra recorded on a high-resolution spectrometer FT-IR Perkin Elmer Spectrum ONE. The ¹H- and ¹H{¹¹B}-NMR (300.13 MHz), ¹³C{¹H}-NMR (75.47 MHz) and ¹¹B- and ¹¹B{¹H}-NMR (96.29 MHz) spectra were recorded on a Bruker ARX 300 instrument equipped with the appropriate decoupling accessories. The NMR spectra of compound **3**, **4**, **7**, **9**, **10** and **11** were recorded on a Bruker Advance III 400SB (¹H- and ¹H{¹¹B}-NMR (400.23 MHz), ¹³C{¹H}-NMR (100.62 MHz) and ¹¹B- and ¹¹B{¹H}-NMR (128.38 MHz)). All NMR spectra were performed in deuterated solvent at 22 °C. The ¹¹B- and ¹¹B{¹H}-NMR shifts were referenced to external BF₃·OEt₂, while the ¹H, ¹H{¹¹B}, and ¹³C{¹H}-NMR shifts were referenced to SiMe₄. Chemical shifts are reported in units of parts per million downfield from reference, and all coupling constants in Hz. The LDI-MS spectra were recorded in the negative ion mode using a Bruker Biflex MALDI-TOF-MS [N₂ laser; exc 337 nm (0.5 ns pulses); voltage ion source 20.00 kV (Uis1) and 17.50 kV (Uis2)], and the ESI-MS spectra were recorded using a FIA-ES/MS (Shimadzu AD VP/ API 150) instrument. Elemental analyses were carried out with Flash EA 2000 CHNS, Thermo Fisher Scientific.

Synthesis of 9,12-(C₆H₄CH(OCH₃)₂)₂-1,2-*closo*-C₂B₁₀H₁₀, 3

9,12-l₂-1,2-*closo*-C₂B₁₀H₁₀ (300 mg, 0.75 mmol) in THF (10 ml), [PdCl₂(PPh₃)₂] (53 mg, 10% equiv.) and Cul (15 mg, 10% equiv.) and a solution of 4-benzaldehyde dimethyl acetal magnesium bromide (7.3 ml, 1M, 6.13 mmol), prepared from magnesium turnings (0.32 g) and 4-benzaldehyde dimethyl acetal (1.84 ml), were reacted at 0°C. After 30 min at room temperature the solution was heated under reflux for 3h. Ten drops of water were then added to guench the excess Grignard reagent, the grey precipitate was filtered and the solvent was removed under reduced pressure. The organic layer was separated from the mixture, and the aqueous layer was extracted with diethyl ether (3 x 10 ml). The combined organic phase was dried over MgSO₄ and filtered. Absorption onto active carbon of the ether solution of the compound was then performed, followed by filtration and removal of the solvent in vacuum. Recrystallization from a mixture of chloroform and hexane gave 9,12- $(C_6H_4CH(OCH_3)_2)_2$ -1,2-*closo*-C₂B₁₀H₁₀ as white crystals (239 mg, 71%) suitable for X-ray diffraction. Elemental analysis calcd (%) for C₂₀H₃₂B₁₀O₄: C= 54.03, H= 7.26; found: C=54.63, H= 6.96. IR (KBr): v= 3050, 3033 (C_c-H, C_{alkvl}-H), 2929, 2828, 2736 (C_{arvl}-H), 2589 (B-H), 1693 (C-O). ¹H NMR (CDCl₃): δ= 7.23-7.16 (m, 8H, C₆H₄), 5.29(s, 2H, O-**CH**-O) 3.67 (s, 2H, C_c-H), 3.29 (s, 12H, CH₃), 2.74-2.40 (B-H). ¹H{¹¹B} (CD₃COCD₃): δ= 7.23-7.16 (m, 8H, C₆H₄), 5.29(s, 2H, O-**CH**-O) 3.67 (s, 2H, C_c-H), 3.29 (s, 12H, CH₃), 2.74 (s, B-H), 2.40 (s, B-H). ¹³C{¹H} NMR (CDCl₃): δ= 136.5 (s, C₆H₄), 132.8 (s, C₆H₄), 128.6 (s, C₆H₄), 125.4 (s, C₆H₄), 103.5 (O-CH-O), 53.2 (O-CH₃), 49.3 (C_c-H). ¹¹B NMR (CDCl₃): δ = 8.94 (s, 2B-C), -7.9 (d, ¹*J*(B,H)= 140), -12.9 (br s, B-H).

Synthesis of 9,12-(C₆H₄CHO)₂-1,2-closo-C₂B₁₀H₁₀, 4

A rigorous series of three extractions of 9,12-(C₆H₄CH(OCH₃)₂)₂-1,2-*closo*-C₂B₁₀H₁₀ (100 mg, 0.22 mmol) with Et₂O (15 ml) in aqueous HCl solution (3M) was performed. The combined organic phase was dried over MgSO₄, filtered and the solvent removed under reduced pressure to give 9,12-(C₆H₄CHO)₂-1,2-*closo*-C₂B₁₀H₁₀ (76 mg, 96%). Elemental analysis calcd (%) for C₁₆H₂₀B₁₀O₂: C= 54.53, H= 5.72; found: C=55.07, H= 5.79. IR (KBr): v= 3067(C_c-H, C_{alkyl}-H), 2826, 2737 (C_{aryl}-H), 2595 (B-H), 1691 (C=O). ¹H NMR (CDCl₃): δ = 9.91 (s, 2H, CHO), 7.63 (d, 4H, C₆H₄), 7.38 (d, 4H, C₆H₄), 3.81 (s, 2H, C_c-H), 2.81(s, B-H), 2.51 (s, B-H), 2.46 (s, B-H). ¹³C{¹H} NMR (CDCl₃): δ = 192.5 (s, CHO), 133.4 (s, C₆H₄), 128.5 (s, C₆H₄), 50.3 (C_c-H). ¹¹B NMR (CDCl₃): δ = 6.88 (s, 2B-

C), -9.4 (d, ${}^{1}J(B,H)$ = 146), -14.1 (d, ${}^{1}J(B,H)$ = 155), -16.2 (br s, B-H). Good crystals suitable for X-ray diffraction were grown by diffusion of CHCl₃ into hexane.

Synthesis of 9,12-Ph₂-8,10-I₂-1,2-closo-C₂B₁₀H₈, 7

A thick-walled Pyrex tube charged with 9,12-Ph₂-1,2-*closo*-C₂B₁₀H₁₀ (50 mg, 0.2 mmol) and iodine (432 mg, 1.7 mmol) was put under vacuum, cooled down with liquid nitrogen and sealed. The tube was then placed in a furnace and the temperature gradually raised to 210°C during 20 minutes, maintained for 5h and allowed to drop slowly to room temperature. Excess iodine was effectively separated by sublimation from the reaction mixture a 50°C under reduced pressure. The resulting solid was purified by thin layer chromatography (TLC), using chloroform as the eluting solvent, to give 9,12-Ph₂-1,2-*closo*-C₂B₁₀H₁₀ Yield: 67 mg (73%). %). Elemental Analysis for C₁₄B₁₀H₁₈I₂: calc: C 30.67, H 3.31; found: C 29.57, H 2.42. IR (KBr): v [cm⁻¹] = 3045 (s, C_C-H st.), 2972, 2924, 2858 (vs, vs(CH₂)), 2609 (s, B-H st.), 1430 (vs, vs(C-C_{phenyl})). ¹H NMR: δ [ppm] =7.52 (d, 1 J(H,H)=9 Hz, 4H, H_{phenyl-meta}), 7.24 (m, 6H, H_{phenyl-meta}), 7.26 (D₁ + 0.26) (C_{phenyl}

Synthesis of 8,10-Ph₂-9,12-(CH₂=CHCH₂)₂-1,2-c/oso-C₂B₁₀H₈, 9.

To a stirring solution of 8,10-Ph₂-9,12-I₂-1,2-*closo*-C₂B₁₀H₈ (120 mg, 0.27 mmol) in THF (5 mL) cooled to 0 °C in an ice-water bath was added, dropwise, a solution of allylmagnesium chloride in THF (0.55 mL, 2 M, 1.1 mmol). After stirring at room temperature for 30 minutes, *cis*-[PdCl₂(PPh₃)₂] (7.7 mg, 4% equiv.) and Cul (2.1 mg, 4% equiv.) were added in a single portion, following which the reaction was heated to reflux overnight. The solvent was removed and 5 mL of diethyl ether were added to the residue. The excess of Grignard reagent was destroyed by slow addition of dilute HCI. The organic layer was separated from the mixture, and the aqueous layer was extracted with diethyl ether (3 x 5 mL). The combined organic phases were dried over MgSO₄, filtered and the solvent removed under reduced pressure. The crude product was purified by flash silica gel chromatography, using hexane/chloroform (3:1 by volume) mixture as the eluting solvent, to give 8,10-Ph-9,12-

(CH₂=CHCH₂)₂-1,2-*closo*-C₂B₁₀H₈. Yield: 130 mg (75%). Elemental Analysis for C₂₀B₁₀H₂₈: calc: C 63.82, H 7.45; found: C 63.97, H 7.39. IR (KBr): [cm⁻¹] = 3072 (vs, s(C_{cluster}-H and =CH₂)), 2954, 2923, 2854 (vs, s(=CH and CH₂)), 2600 (vs, s(B-H)), 1633 (vs, s(C=C)) ¹H NMR: [ppm]=7.70 (m, 4H, H_{phenyl}), 7.36 (m, 6H, H_{phenyl}), 5.93 (m, 2H, CH₂=CH-CH₂), 4.87-4.82 (m, 4H, CH₂=CH-CH₂), 4.62 (s, 2H, C_{cluster}-H), 3.10–1.00 (m, 6H, B-*H_{terminal}*), 1.33 (s, 4H, CH₂=CH-CH₂).¹H{¹¹B} NMR: [ppm]=7.70 (m, 4H, H_{phenyl}), 7.36 (m, 6H, H_{phenyl}), 5.93 (m, 2H, CH₂=CH-CH₂), 4.87-4.82 (m, 4H, CH₂=CH-CH₂), 4.62 (s, 2H, C_{cluster}-H), 2.41 (br s, 4H, B(4,5,7,11)H), 2.32 (br s, 2H, B(3,6)H), 1.33 (d, ³J(B,H)=9.0 Hz, 4H, CH₂=CH-CH₂), ¹³C{¹H} NMR: [ppm] =139.4 (s, CH₂=CH-CH₂), 134.3, 127.3 (C_{phenyl}), 112.4 (s, CH₂=CH-CH₂), 49.3 (s, C_{cluster}), 21.4 (br m, CH₂=CH-CH₂). ¹¹B NMR: [ppm] =7.3 (s, 2B, B(9,12)), 2.2 (s, 2B, B(8,10)-Ph), -14.9(d, ¹J(B,H)=161 Hz, 4B, B(4,5,7,11)), -17.0 (d, ¹J(B,H)=167 Hz, 2B, B(3,6)). ESI MS: *m/z* (%) = 399.4 (100) [M+23]*.

Synthesis of 8,10,12-Ph₃-9-I-1,2-c/oso-C₂B₁₀H₈, 11 and 8,9,10,12-Ph₄-1,2-c/oso-C₂B₁₀H₈, 10

To a stirring solution of 8,9,10,12- I_4 -1,2-*closo*-C₂B₁₀H₈ (300 mg, 0.46 mmol) in dry solvent (5 mL, entry 1: 1,4-dioxane, entry 2: toluene, entry 3: diglyme (bis(2-methoxyethyl)ether), entry 4: mesitylene) cooled to 0 °C in an ice-water bath was added dropwise phenylmagnesium bromide solution in THF (5.6 mL, 1M, 5.6 mmol). After stirring at room temperature for 30 minutes, *cis*-[PdCl₂(PPh₃)₂] (25.0 mg, 8% equiv.) and Cul (7.0 mg, 8% equiv.) were added in a single portion. The solvents evaporated under reduced pressure to about one-half volume to remove the THF of the Grignard reagent) and the reaction was heated to reflux for 16 h. The solvent was removed and 20 mL of diethyl ether were added to the residue. The excess of Grignard reagent was destroyed by slow addition of dilute HCI. The organic layers were separated from the mixture, and the aqueous layer was extracted with diethyl ether (3 x 10 mL). The combined organic phases were dried over MgSO₄, filtered and the solvent removed under reduced pressure. The crude product was further purified by silicagel chromatography, using hexane/chloroform (1:1 by volume) eluent. (R_F=0.4 for **11** and R_F=0.5 for **10**) Both compounds (**10** and **11**) were recrystallized from aceton/pentane mixture.

Entry	Solvent	Yield	
		8,9,10,12-Ph₃l-1,2-	8,9,10,12-Ph ₄ -1,2-
		closo-C ₂ B ₁₀ H ₈	closo-C ₂ B ₁₀ H ₈
1	dioxane	136 mg (59 %)	38 mg (18 %)
2	toluene	134 mg (59 %)	43 mg (21 %)
3	diglyme	101 mg (44 %)	34 mg (16 %)
4	mesitylene	89 mg (39 %)	26 mg (12 %)
5	toluene (5days)	107 mg (47 %)	71 mg (34 %)

8,9,10,12-Ph₄-1,2-*closo*-C₂B₁₀H₈, 10

Elemental Analysis for C₂₆B₁₀H₂₈: calc: C 69.61 , H 6.21 ; found: C 71.66, H 5.26. ATR-IR (KBr): v [cm⁻¹] = 3047 (vs, $vs(C_{cluster}-H)$), 2580 (vs, vs(B-H)) ¹H NMR: δ [ppm]=7.52-7.27 (m, 15 H, H_{phenyl}), 5.07 (s, 1H, C_{cluster}-H), 4.80 (s, 1H, C_{cluster}-H). ¹H{¹¹B} NMR: δ [ppm]= 7.52-7.27 (m, 15H, H_{phenyl}), 5.07 (s, 1H, C_{cluster}-H), 4.80 (s, 1H, C_{cluster}-H), 2.74, (br, 2H, B-H_{terminal}), 2.54 (br, 4H, B-H_{terminal}). ¹³C{¹H} NMR: δ [ppm]=135.7, 135.1, 128.0, 127.9, 127.6 (s C_{phenyl}), 50.0 (s, C_{cluster}). ¹¹B NMR: δ [ppm]=4.0 (s, 2B, B(9,12)), -1.1 (s, 2B, B(8,10)), -16.6 (d, ¹J(B,H)=195 Hz 4B, B(4,5,7,11)), -18.8 (br, 2B, B(3,6)). LDI MS: m/z (%)=446.7 (100) [M-1]⁻

8,10,12-Ph₃-9-I-1,2-closo-C₂B₁₀H₈, 11

Elemental Analysis for C₂₀B₁₀H₂₃I: calc: C 48.21, H 4.61 ; found: C 47.40, H 4.68. ATR-IR: v [cm⁻¹] = 3053 (vs, $vs(C_{cluster}-H)$), 2594 (s, vs(B-H). ¹H NMR: δ [ppm]=7.41-7.34 (m, 6H, H_{phenyl}), 7.21-7.04 (m, 9H, H_{phenyl}), 5.19 (s, 1H, C_{cluster}-H), 4.95 (s, 1H, C_{cluster}-H), ¹H{¹¹B} NMR: δ [ppm]=7.41-7.34 (m, 6H, H_{phenyl}), 7.21-7.04 (m, 9H, H_{phenyl}), 5.19 (s, 1H, C_{cluster}-H), 4.95 (s, 1H, C_{cluster}-H), 2.97, (br, 2H, B-H_{terminal}), 2.86, (br, 2H, B-H_{terminal}), 2.58 (br, 2H, B-H_{terminal}). ¹³C{¹H} NMR: δ [ppm]=135.2, 134.9, 128.4, 128.3 128.0, 127.7, (s C_{phenyl}), 51.9 (s, C_{cluster}), 50.9 (s, C_{cluster}). ¹¹B NMR: δ [ppm]=3.46 (s, 1B, B(9)), -1.4 (s, 2B, B(8,10)), -11.7 (s, 1B, B(12)), -16.5 (d, ¹J(B,H)=170 Hz, 4B, B(4,5,7,11)), -18.8 (d, ¹J(B,H)=194 Hz, 2B, B(3,6)). LDI MS: m/z (%)=496.6 (100) [M-1]⁻.

Synthesis of 8,10,12-Ph₃-9-I-1,2-*closo*-C₂B₁₀H₈, 11 and 8,9,10,12-Ph₄-1,2-*closo*-C₂B₁₀H₈ 10 under microwave irradiation

To a stirring solution of $8,9,10,12-I_4-1,2-c/oso-C_2B_{10}H_8$ (300 mg, 0.46 mmol) in dry toluene cooled to 0 °C in an ice-water bath was added dropwise phenylmagnesium bromide solution in THF (5.6 mL, 1M, 5.6 mmol). After stirring at room temperature for 30 minutes, *cis*-[PdCl₂(PPh₃)₂] (25.0 mg, 8% equiv.) and Cul (7.0 mg, 8% equiv.) were added in a single portion. The solvents evaporated under reduced pressure to about one-half volume to remove the THF of the Grignard reagent). The reaction mixture was transferred to the microwave vial and it was sealed under N₂, than it is was exposed to microwave irradiation at 120 °C (temperature was monitored at the external surface vessel using an in-built infrared sensor system). After 15 min irradiation only the doubly substituted product formed according the ¹H NMR spectra of the crude product. After 2 hours **11** and **10** formed with the similar ratio (3:1) to the reaction under reflux (16 h).

X-ray structure analysis of compounds 3, 7, 9, 10 and 11

X-ray structure determination for **9** and **11** was carried out on a Bruker D8 QUEST ECO diffractometer using doubly curved silicon crystal Bruker Triumph-monochromated Mo K radiation (=0.71073 Å) with APEX 3 software suite.⁴ When needed, the data sets were corrected for absorption using analytical numeric correction using multifaceted crystal was performed as implemented in CrysAlisPro program⁵ or SADABS program⁶. The data for compound **3**, **4**, **10** was collected using SuperNova diffractometer equipped with Atlas detector using Cu-K α radiation with the CrysAlisPro program.⁵ An absorption correction using spherical harmonics, was applied as implemented in SCALE3 ABSPACK scaling algorithm.⁷ The structure was solved by direct methods using the and refined with the full-matrix least squares method on F⁷ using the SHELX and Olex2 program packages.^{8,9} Powder X-ray Diffractometer (Panalytical) using Cu K_P (I = 1.5405 Å) radiation.

Compound	3	4	9	10	11
Formula	C ₂₀ H ₃₂ B ₁₀ O ₄	C ₁₆ H ₂₀ B ₁₀ O ₂	C ₁₈ H ₂₀ B ₁₀	C ₂₆ H ₂₈ B ₁₀	C ₂₀ H ₂₃ B ₁₀ I
Mr	444.56	352.42	344.44	448.58	498.38
Crystal system	triclinic	monoclinic	orthorhombic	monoclinic	triclinic
Space group (no.)	<i>P</i> -1 (2)	P21/c (14)	<i>P</i> nma	P21	P1
a (Å)	13.0593(7)	6.9997(2)	28.315(8)	10.0809(3)	8.2721(3)
b (Å)	13.3337(6)	25.3248(7)	21.003(6)	9.02379(19)	8.3343(3)
c (Å)	16.6231(9)	10.7346(3)	8.077(2)	13.9208(3)	9.0538(3)
α (°)	95.700(4)	90	90	90	70.7871(9)
β (°)	110.824(5)	94.777(3)	90	90	71.3375(9)
γ (°)	111.529(4)	90	90	100.834(2)	81.5210(10)
V (Å)	2427.2(2)	1896.27(9)	4804(2)	1243.77(5)	557.811 Å
Z	4	4	8	4	1
<i>D_c</i> (g cm ⁻³)	1.217	1.234	0.953	1.198	1.484
Т(К)	123	150	298	120	100
μ(mm ⁻¹)	0.569 ^d	0.069	0.048	0.446	0.223
Observed reflections	14258	9536	57992	4729	39095
Rint	0.0333	0.0198	0.0896	0.0383	0.0208
Parameters	666	253	1424	468	246
R₁ª	0.0739	0.0642	0.1271	0.0417	0.0105
	(0.0617) ^b	(0.0521) ^b			
wR2 ^c	0.1817	0.01383	0.2873	0.0989	0.0268

[a] $R_1 = \Sigma ||F_o| - |F_c||/\Sigma |F_o|$. [b] Values in parentheses for reflections with $I > 2\sigma(I)$. [c] $wR_2 = \{\Sigma ||w(F_o^2 - F_c^2)^2]/\Sigma ||w(F_o^2)^2]\}^{1/2}$ and $w = 1/[\sigma^2(F_o^2) + (aP)^2 + (bP)]$, where $P = (2F_c^2 + F_o^2)/3$. [d]Cu-K α radition.

Results of the powder X-ray diffraction of 10

Solid powder of **10** was obtained from an acetone solution of the compound by fast precipitation by adding hexane. The powder X-ray diffraction (PXRD) of this solid was run (pattern in red) and compared with the calculated pattern from the X-ray structure of the compound **10** (pattern in blue). Both patterns match very well.

1,2-closo-C2B10H12

IR (KBr), v (cm⁻¹) = 3070 (I, v(C_{clúster}-H)), 2576 (mI, v(B-H)). ¹H_{NMR} (CD₃COCD₃, 300 MHz, TMS): δ (ppm) = 3.55 (s(a), 2H, C_{clúster}-H), 3.50 – 1.00 (m(a), 10H, B-H_{terminal}). ¹H{¹¹B} <u>NMR</u> (CD₃COCD₃, 300 MHz, TMS): δ (ppm) = 3.55 (s(a), 2H, C_{clúster}-H), 2.32 (s(a), 2H, B-H_{terminal}), 2.20 (s(a), 2H, B-H_{terminal}), 2.11 (s(a), 6H, B-H_{terminal}). ¹³C{¹H} NMR (CD₃COCD₃, 75 MHz, TMS): δ (ppm) = 56.12 (s, C_{clúster}). ¹¹B NMR (CD₃COCD₃, 96 MHz, BF₃· Et₂O): δ = -3.1 (d, 2B, ¹J(B,H) = 147 Hz, B(9,12)), -9.6 (d, 2B, ¹J(B,H) = 150 Hz, B(8,10)), -13.6 (d, 4B, ¹J(B,H) = 166 Hz, B(4,5,7,11)). -14.3 (d, 2B, ¹J(B,H) = 178 Hz, B(3,6)).

¹H-NMR

H{11B}-NMR

¹¹**B-**NMR

IR (KBr), v (cm⁻¹) = 3060, 3037 (ml, v(C_{clúster}-H)), 2645, 2611, 2586 (ml, v(B-H)). ¹H NMR (CD₃COCD₃, 300 MHz, TMS): δ (ppm) = 5.15 (s(a), 2H, C_{clúster}-H), 3.80 – 1.50 (m(a), 8H, B-H_{terminal}). ¹H{¹¹B} NMR (CD₃COCD₃, 300 MHz, TMS): δ (ppm) = 5.15 (s(a), 2H, C_{clúster}-H), 3.50 (s(a), 2H, B-H_{terminal}), 2.97 (s(a), 2H, B-H_{terminal}), 2.47 (s(a), 2H, B-H_{terminal}), 1.82 (s(a), 2H, B-H_{terminal}). ¹³C{¹H} NMR (CD₃COCD₃, 75 MHz, TMS): δ (ppm) = 54.47 (s, C_{clúster}).¹¹B NMR (CD₃COCD₃, 96 MHz, BF₃· Et₂O): δ = -6.3 (d, 2B, ¹J(B,H) = 156 Hz, B(8,10)), -12.8 (d, 4B, ¹J(B,H) = 167 Hz, B(4,5,7,11)), -14.2 (d, 2B, ¹J(B,H) = 105 Hz, B(3,6)), -14.9 (s(a), 2B, B(9,12)).

IR

H{11B}-NMR

¹¹**B-**NMR

8,9,10,12-I₄-1,2-*closo*-C₂B₁₀H₈

Elemental analysis $C_2B_{10}H_8I_4$: C, 3.71; H, 1.24. Experimental: C, 3.82; H, 1.05. IR (KBr), v (cm⁻¹) = 3024 (mI, v(C_{clúster}-H)), 2623 (I, v(B-H)). ¹H_{NMR} (CD₃COCD₃, 300 MHz, TMS): δ (ppm) = 5.57 (s(a), 2H, C_{clúster}-H), 4.00 – 1.50 (m(a), 6H, B-H_{terminal}). ¹H{¹¹B}_{NMR} (CD₃COCD₃, 300 MHz, TMS): δ (ppm) = 5.57 (s(a), 2H, C_{clúster}-H), 3.37 (s(a), 2H, B(3,6)-H_{terminal}), 3.02 (s(a), 4H, B(4,5,7,11)-H_{terminal}). ¹³C{¹H}_{NMR} (CD₃COCD₃, 75 MHz, TMS): δ (ppm) = 56.21 (C_{clúster}). ¹¹B_{NMR} (CD₃COCD₃, 96 MHz, BF₃· Et₂O): δ = -7.1(s(a), 2B, B(9,12)), -9.5 (d, 4B, ¹J(B,H) = 176 Hz, B(4,5,7,11)), -13.2 (d, 2B, ¹J(B,H) = 190 Hz, B(3,6)). -16.3 (s(a), 2B, B(8,10)).

¹H-NMR

H{11B}-NMR

¹¹B-NMR

9,12-(C₆H₄CH(OCH₃)₂)₂-1,2-*closo*-C₂B₁₀H₁₀, 3

Elemental analysis calcd (%) for C₂₀H₃₂B₁₀O₄: C= 54.03, H= 7.26; found: C=54.63, H= 6.96. IR (KBr): v= 3050, 3033 (C_c-H, C_{alkyl}-H), 2929, 2828, 2736 (C_{aryl}-H), 2589 (B-H), 1693 (C-O). ¹H NMR (CDCI₃): δ = 7.23-7.16 (m, 8H, C₆H₄), 5.29(s, 2H, O-CH-O) 3.67 (s, 2H, C_c-H), 3.29 (s, 12H, CH₃), 2.74-2.40 (B-H). ¹H{¹¹B} (CD₃COCD₃): δ = 7.23-7.16 (m, 8H, C₆H₄), 5.29(s, 2H, O-CH-O) 3.67 (s, 2H, O-CH-O) 3.67 (s, 2H, C_c-H), 3.29 (s, 12H, CH₃), 2.74 (s, B-H), 2.40 (s, B-H). ¹³C{¹H} NMR (CDCI₃): δ = 136.5 (s, C₆H₄), 132.8 (s, C₆H₄), 128.6 (s, C₆H₄), 125.4 (s, C₆H₄), 103.5 (O-CH-O), 53.2 (O-CH₃), 49.3 (C_c-H). ¹¹B NMR (CDCI₃): δ = 8.94 (s, 2B-C), -7.9 (d, ¹J(B,H)= 140), -12.9 (br s, B-H).

9,12-(C₆H₄CHO)₂-1,2-closo-C₂B₁₀H₁₀, 4

Elemental analysis calcd (%) for C₁₆H₂₀B₁₀O₂: C= 54.53, H= 5.72; found: C=55.07, H= 5.79. IR (KBr): v= 3067(C_c-H, C_{alkyl}-H), 2826, 2737 (C_{aryl}-H), 2595 (B-H), 1691 (C=O). ¹H NMR (CDCl₃): δ = 9.91 (s, 2H, CHO), 7.63 (d, 4H, C₆H₄), 7.38 (d, 4H, C₆H₄), 3.81 (s, 2H, C_c-H), 2.81-2.46 (B-*H*). ¹H{¹¹B} (CD₃COCD₃): δ = 9.91 (s, 2H, CHO), 7.63 (d, 4H, C₆H₄), 7.38 (d, 4H, C₆H₄), 3.81 (s, 2H, C_c-H), 2.81-2.46 (B-*H*). ¹H{¹¹B} (CD₃COCD₃): δ = 9.91 (s, 2H, CHO), 7.63 (d, 4H, C₆H₄), 7.38 (d, 4H, C₆H₄), 3.81 (s, 2H, C_c-H), 2.81(s, B-H), 2.51 (s, B-*H*), 2.46 (s, B-H). ¹³C{¹H} NMR (CDCl₃): δ = 192.5 (s, CHO), 133.4 (s, C₆H₄), 128.5 (s, C₆H₄), 50.3 (C_c-H). ¹¹B NMR (CDCl₃): δ = 6.88 (s, 2B-C), -9.4 (d, ¹J(B,H)= 146), -14.1 (d, ¹J(B,H)= 155), -16.2 (br s, B-H).

IR

9.92	7.63 7.7.38 7.28 7.28	3.81 3.51 3.49	2.81 2.51 2.46	1.60	1.¢J
		$\langle \cdot \rangle$	$ \leq $		

¹H{¹¹B}-NMR

ld.5 1d.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 f1 (ppm)

	1	

¹ H-NMR			
9.91	7.63 7.61 7.38 7.35 7.28	3.81	1.61 1.25 1.23 1.20
		$\langle \cdot \rangle$	

¹³C{¹H}-NMR

9,12-Ph₂-8,10-I₂-1,2-closo-C₂B₁₀H₈

IR (KBr): v [cm⁻¹] = 3045 (s, C_{cluster}-H st.), 2972, 2924, 2858 (vs, v_s (CH₂)), 2609 (s, B-H st.), 1430 (vs, v_s (C-C_{phenyl})). ¹H NMR: δ [ppm] =7.52 (d, ¹J(H,H)=9 Hz, 4H, H_{phenyl-meta}), 7.24 (m, 6H, H_{phenyl-ortho,para}), 5.06 (br s, 2H, C_{cluster}H), 4.0–1.6 (br m, 6H, BH). ¹H{¹¹B} NMR: δ [ppm]=7.52 (d, ¹J(H,H)=9 Hz, 4H, H_{phenyl-meta}), 7.24 (m, 6H, H_{phenyl-ortho,para}), 5.06 (br s, 2H, C_{cluster}H), 3.36 (br s, 4H, B(4,5,7,11)H), 2.88 (br s, 2H, B(3,6)H).¹³C{¹H} NMR: δ [ppm] =134.3, 127.9, 126.8 (C_{phenyl}), 52.7 (C_{cluster}). ¹¹B NMR: δ [ppm] =5.01 (s, 2B, B(9,12)-Ph), -12.1 (d, ¹J(B,H)=164 Hz, 4B, B(4,5,7,11)), -14.8 (d, ¹J(B,H)=186 Hz, 2B, B(3,6)). -20.1 (s, 2B, B(8,10)-I). ESI MS: m/z (%)= 537 (100) [M-B-H]⁻, 547 (20) [M-H]⁻, 663 (75) [M-B+I]⁻.

28

¹H{¹¹B}-RMN

¹³C{¹H}-RMN

ESI-MS

8,10-Ph₂-9,12-(CH₂=CHCH₂)₂-1,2-c/oso-C₂B₁₀H₈

IR

Elemental Analysis for C₂₀B₁₀H₂₈: calc: C 63.82, H 7.45; found: C 63.97, H 7.39. IR (KBr): [cm⁻¹] = 3072 (vs, s(C_{cluster}-H and =CH₂)), 2954, 2923, 2854 (vs, s(=CH and CH₂)), 2600 (vs, s(B-H)), 1633 (vs, s(C=C)) ¹H NMR: [ppm]=7.70 (m, 4H, H_{phenyl}), 7.36 (m, 6H, H_{phenyl}), 5.93 (m, 2H, CH₂=CH-CH₂), 4.87-4.82 (m, 4H, CH₂=CH-CH₂), 4.62 (s, 2H, C_{cluster}-H), 3.10–1.00 (m, 6H, B*-H_{terminal}*), 1.33 (s, 4H, CH₂=CH-CH₂).¹H{¹¹B} NMR: [ppm]=7.70 (m, 4H, H_{phenyl}), 7.36 (m, 6H, H_{phenyl}), 5.93 (m, 2H, CH₂=CH-CH₂), 4.62 (s, 2H, C_{cluster}-H), 2.41 (br s, 4H, B(4,5,7,11)H), 2.32 (br s, 2H, CH₂=CH-CH₂), 4.87-4.82 (m, 4H, CH₂=CH-CH₂).¹³C{¹H} NMR: [ppm] =139.4 (s, CH₂=CH-CH₂), 134.3, 127.3 (C_{phenyl}), 112.4 (s, CH₂=CH-CH₂), 49.3 (s, C_{cluster}), 21.4 (br m, CH₂=CH-CH₂). ¹¹B NMR: [ppm] =7.3 (s, 2B, B(9,12)), 2.2 (s, 2B, B(8,10)-*Ph*), -14.9(d, ¹J(B,H)=161 Hz, 4B, B(4,5,7,11)), -17.0 (d, ¹J(B,H)=167 Hz, 2B, B(3,6)). ESI MS: *m*/*z* (%)= 399.4 (100) [M+23]*.

¹³C{¹H}-NMR

ESI-MS

¹H-NMR

H{11B}-NMR

8,9,10,12-Ph₄-1,2-*closo*- $C_2B_{10}H_8, 10$

Elemental Analysis for $C_{26}B_{10}H_{28}$: calc: C 69.61 , H 6.21 ; found: C 71.66, H 5.26. IR (KBr): v [cm⁻¹] = 3047 (vs, $vs(C_{cluster}-H)$), 2580 (vs, vs(B-H)) ¹H NMR: δ [ppm]=7.27-6.95 (m, 15 H, H_{phenyl}), 4.83 (s, 2H, C_{cluster}-H), ¹H{¹¹B} NMR: δ [ppm]= 7.27-6.95 (m, 15H, H_{phenyl}), 4.83 (s, 2H, C_{cluster}-H), 2.74, (br, 2H, B-H_{terminal}), 2.54 (br, 4H, B-H_{terminal}). ¹³C{¹H} NMR: δ [ppm]=135.7, 135.1, 128.0, 127.9, 127.6 (s C_{phenyl}), 50.0 (s, C_{cluster}). ¹¹B NMR: δ [ppm]=4.0 (s, 2B, B(9,12)), -1.1 (s, 2B, B(8,10)), -16.6 (d, ¹J(B,H)=195 Hz 4B, B(4,5,7,11)), -18.8 (br, 2B, B(3,6)). LDI MS: m/z (%)=446.714 (100) [M-1]

ATR-IR

¹H NMR

¹H{¹¹B} NMR

¹¹B{¹H} NMR

¹¹B NMR

¹³C{¹H} NMR

LDI-MS

8,10,12-Ph₃-9-I-1,2-closo-C₂B₁₀H₈, 11

Elemental Analysis for C₂₀B₁₀H₂₃I: calc: C 48.21, H 4.61 ; found: C 47.40, H 4.68. IR (KBr): v [cm⁻¹] =3053 (vs, $vs(C_{cluster}-H)$), 2594 (s, vs(B-H). ¹H NMR: δ [ppm]=7.41-7.34 (m, 6H, H_{phenyl}), 7.21-7.04 (m, 9H, H_{phenyl}), 5.19 (s, 1H, C_{cluster}-H), 4.95 (s, 1H, C_{cluster}-H), ¹H{¹¹B} NMR: δ [ppm]=7.41-7.34 (m, 6H, H_{phenyl}), 7.21-7.04 (m, 9H, H_{phenyl}), 5.19 (s, 1H, C_{cluster}-H), 4.95 (s, 1H, C_{cluster}-H), 2.97, (br, 2H, B-H_{terminal}), 2.86, (br, 2H, B-H_{terminal}), 2.58 (br, 2H, B-H_{terminal}). ¹³C{¹H} NMR: δ [ppm]=135.2, 134.9, 128.4, 128.3 128.0, 127.7, (s C_{phenyl}), 51.9 (s, C_{cluster}), 50.9 (s, C_{cluster}). ¹¹B NMR: δ [ppm]=3.46 (s, 1B, B(9)), -1.4 (s, 2B, B(8,10)), -11.7 (s, 1B, B(12)), -16.5 (d, ¹J(B,H)=170 Hz, 4B, B(4,5,7,11)), -18.8 (d, ¹J(B,H)=194 Hz, 2B, B(3,6)). ESI MS: m/z (%)=496.589 (100) [M-1]⁻.

ATR-IR

¹H{¹¹B} NMR

¹¹B{¹H} NMR

¹H{¹¹B} NMR

¹³C{¹¹B} NMR

LDI-MS

Details of the DFT calculations

All calculations were carried out with the Gaussian 09 program package¹⁰ at ω B97XD/6-31+G* level of theory as it was implemented in G09. Full geometry optimization calculations were performed and harmonic vibrational frequencies were calculated to establish the nature of the stationary points obtained, as characterized by none negative eigenvalue of the Hessian for minima structures. For the visualization of the molecules and orbitals the MOLDEN¹¹ and VMD program¹² were used.

Figure S1. Optimized structures (at ωB97XD/6-31+G* level of theory) of different 8,9,10,12tetrasubstituted-1,2-*closo*-carboranes (R=Me, tBu, Ph). According the structural parameters the phenyl derivative is not sterically crowded.

Figure S2. Different isodesmic reactions to estimate the steric repulsion between the substituents of 10. The negative ΔE values indicate that there is no steric hindrance in the tetra- and threesubstituated products

Figure S3. Isodesmic reaction at ωB97XD/6-31+G* level of theory to compare the destabilization effect of the different substituent in the 8,9,10,12-tetrasubstituted-1,2-*closo*-carboranes. Single point calculations at ω-B97XD-cc-pVTZ//ω-B97XD/6-31+G* level of theory give -2.9 kcal/mol isodesmic reaction energy in case of R=Ph, which verifies the accuracy of the 6-31+G* basis set.

The calculated Mulliken charges of boron atoms in the B-I vertices (the position of the B-I in brackets):

compound	1	2	5	11
Mulliken	0.63 (8, 10)	0.66 (9, 12)	0.31 (8, 10)	0.13
charge of the		0.11 (8, 10)		
boron atoms				
in the B-I				
vertices				

XYZ coordinates and total energies (in atomic unit) of the investigated systems

$8{,}9{,}10{,}12{-}tetraiodo{-}1{,}2{-}closo{-}C_2B_{10}H_8$

E(u	υB97XD/6-3΄	1+G*)= -375.	3438063
С	0.000818	0.803953	3.193500
В	1.454927	-0.003956	2.776206
В	0.890539	-1.440329	1.895633
С	0.000980	-0.811954	3.191717
В	-1.453224	-0.002841	2.776948
В	-0.889524	-1.439867	1.896571
В	-0.000027	-0.899828	0.449820
I	-0.000526	-2.124259	-1.331369
В	-0.889266	1.435489	1.899580
В	0.000474	0.898285	0.451765
I	-0.000083	2.127954	-1.325910
В	0.890719	1.435158	1.899486
В	1.459072	-0.001591	1.010495
Ι	3.363346	-0.000260	-0.013845
В	-1.458228	-0.001270	1.011370
Ι	-3.363588	-0.000003	-0.013109
Н	-2.341085	-0.004802	3.556849
Н	-1.478781	-2.456146	2.042187
Н	0.000787	-1.298413	4.159471
Н	-1.478148	2.451603	2.047987
Н	0.001572	1.287789	4.162579
Н	1.480393	2.450901	2.047219
Н	2.343234	-0.004050	3.555655
Н	1.478976	-2.457043	2.041706

$8\text{-}Ph\text{-}9,10,12\text{-}I_3\text{-}1.2\text{-}closo\text{-}C_2B_{10}H_8$

Ε(ω	E(ωB97XD/6-31+G*)= -595.507192					
С	-0.003275	-0.084997	0.147018			
В	0.607162	-1.491636	-0.607692			
В	2.333629	-1.468629	-0.194798			
С	1.488975	-0.028550	-0.471334			
В	1.158655	0.916313	0.919827			
В	2.670203	0.008337	0.739581			
В	2.485238	-1.554800	1.576938			
I	4.270919	-2.461728	2.412029			
В	0.021694	-0.090968	1.832296			
В	0.822629	-1.632110	2.292212			
С	0.420757	-2.349657	3.643723			
В	-0.318076	-1.566304	0.909253			
В	1.195555	-2.478785	0.733859			
Ι	1.181187	-4.631955	0.444801			
В	1.744560	-0.072249	2.261226			
Ι	2.415441	0.918985	4.067467			
Н	1.062216	2.088428	0.799278			
Н	3.670720	0.611684	0.547568			
Η	1.611562	0.525711	-1.393838			

Н	-0.851476	0.471792	2.401124
Н	-0.775160	0.441432	-0.400927
Н	-1.417594	-2.005137	0.868783
Н	0.183670	-1.798294	-1.668025
Н	3.110395	-1.845930	-1.004723
С	1.038250	-3.532590	4.072472
С	0.681889	-4.142332	5.273208
С	-0.305315	-3.580489	6.078545
С	-0.934245	-2.405678	5.671558
С	-0.572794	-1.803039	4.469996
Н	1.811872	-3.992175	3.466941
Н	1.181318	-5.057453	5.578979
Н	-0.582351	-4.052495	7.017218
Н	-1.703931	-1.954731	6.291952
Н	-1.074929	-0.883948	4.181330

$9\text{-}Ph\text{-}8,10,12\text{-}I_3\text{-}1.2\text{-}closo\text{-}C_2B_{10}H_8$

E(u	0B97XD/6-31	+G*)= -595.	508682
С	0.077463	-0.131016	-0.024910
В	0.727154	-1.568988	-0.703128
В	2.416392	-1.539704	-0.173657
С	1.606579	-0.102753	-0.539463
В	1.188035	0.878723	0.800650
В	2.704448	-0.046657	0.748876
В	2.447864	-1.588532	1.602598
Ι	4.105922	-2.518929	2.641671
В	-0.019626	-0.097084	1.665606
В	0.751621	-1.619787	2.173425
Ι	0.090752	-2.593333	3.992735
В	-0.298380	-1.589999	0.739776
В	1.214397	-2.548845	0.691150
С	1.201334	-4.123018	0.565045
В	1.677836	-0.073668	2.203443
Ι	2.263611	0.976707	4.004259
Н	1.113760	2.048184	0.643775
Н	3.719958	0.546832	0.613093
Н	1.798772	0.432086	-1.461460
Н	-0.929830	0.460596	2.177902
Н	-0.650590	0.387011	-0.637001
Н	-1.401684	-2.011264	0.642542
Н	0.369363	-1.889134	-1.783986
Н	3.250031	-1.925132	-0.922496
С	2.328113	-4.822715	0.112174
С	2.311970	-6.208600	-0.025198
С	1.160552	-6.927203	0.289500
С	0.029937	-6.250896	0.742904
С	0.053953	-4.864828	0.877499
Н	3.240518	-4.283273	-0.129154
Н	3.200893	-6.726217	-0.374973
Н	1.146152	-8.008849	0.186919

Н	-0.871772	-6.801689	0.995850
Н	-0.836216	-4.359063	1.242801

$8,10\text{-}Ph_2\text{-}9,12\text{-}I_2\text{-}1,2\text{-}c/oso\text{-}C_2B_{10}H_8$

E(c	ωB97XD/6-31	+G*)= -815.6	673479
C	0.170086	-0.298128	0.057615
В	0.078852	-0.043674	4.261991
Н	2.969015	0.067690	1.601193
С	1.561327	-0.100495	5.073463
С	2.796821	0.167446	4.076852
В	2.275011	0.432557	2.490194
В	1.325852	1.929604	2.588371
В	-0.041448	1.632941	3.691067
Ι	-1.988724	2.575020	3.504542
В	2.391874	1.395816	5.205195
В	0.626632	1.290691	5.299749
В	1.402799	2.545870	4.288324
В	2.822888	1.766796	3.528210
В	1.493716	-0.791576	3.503845
В	0.490649	0.323767	2.559984
С	-0.359929	-0.240455	1.353837
С	-1.661494	-0.722857	1.547914
С	-2.406742	-1.240861	0.491374
С	-1.860958	-1.288710	-0.789664
С	-0.568503	-0.814618	-1.004328
С	1.409262	4.069546	4.706585
С	2.349321	4.962988	4.175136
С	2.371977	6.302217	4.557212
С	1.449374	6.778113	5.486469
С	0.506506	5.906512	6.027418
С	0.490485	4.568761	5.639915
I	1.256561	3.280702	0.890095
Н	3.106046	1.558125	6.134109
Н	0.108616	1.455648	6.353087
Н	1.731248	-0.799653	5.882848
Н	3.874254	2.271319	3.315767
Н	3./14239	-0.369807	4.283020
н	1.662362	-1.957731	3.399440
Н	-0.796165	-0.748701	4.639180
н	1.1/2454	0.076139	-0.134436
Н	-0.134492	-0.843353	-2.000023
Н	-2.440017	-1.009901	-1.010490
п	-3.415000	-1.004202	0.009724
п	-2.110702	-0.00/034	2.000900
п	-0.200729	3.900/// 6 267702	0.000272
П	-U.ZZUIIZ	U.201193 7 800851	5 78/791
Ц	3 1000/5	6 072820	1 125056
Н	3 072806	4 615637	3 1/2000
11	0.012000	T.010001	0.772113

$8,\!10\text{-}Ph_2\!\!\cdot\!\!9,\!12\!\!\cdot\!\!(allyl)_2\!\!\cdot\!\!1,\!2\!\!\cdot\!\!c/\!oso\!\!\cdot\!C_2B_{10}H_8$

E(ωB97XD/6-31+G*)= -1256.016381

С	0.783356	1.420733	-1.720111
С	0.106982	1.830401	-0.561922
С	-0.442406	3.120178	-0.564102
С	-0.349049	3.955348	-1.675151
С	0.312585	3.518224	-2.820083
С	0.883745	2.247600	-2.835663
В	0.023623	0.902218	0.723887
В	0.914052	1.409522	2.181132
В	1.457170	-0.029239	3.055222
В	0.857424	-1.443306	2.180404
С	-0.016938	-0.805310	3.477914
В	-1.456494	0.028178	3.055623
В	-0.913622	-1.410319	2.180813
В	-0.023576	-0.902415	0.723495
С	-0.107296	-1.830184	-0.562584
С	-0.784457	-1.420310	-1.720251
С	-0.885018	-2.246742	-2.836121
С	-0.313239	-3.517101	-2.821415
Ċ	0.349158	-3.954445	-1.677012
Ċ	0.442675	-3.119721	-0.565644
В	-1.466546	0.030591	1.283365
C	-2.847992	0.044525	0.511374
Ċ	-3.447127	1.244414	0.107384
C	-4 653690	1 256155	-0 589547
C	-5 292264	0.057339	-0 897344
C	-4 713750	-1 148468	-0 505239
C	-3 506828	-1 149946	0 188377
B	-0.857061	1 442593	2 181161
С	0.017639	0 804074	3 478252
R	1 466713	-0.030997	1 283000
c.	2 848070	-0.044673	0.510810
c.	3 447615	-1 244508	0 107250
C.	4 654223	-1 256119	-0 589597
C	5 202/155	-0.057212	-0.303337
C.	4 713512	1 148541	-0 506119
C	3 506552	1 1/10886	0.000110
н	-2 330306	0.047730	3 844206
н	-1 512862	-2 422407	2 340686
н	-0.025576	-1 200428	<i>A A A A A A A A A A</i>
н	-0.025570	2 470182	2 357355
н	0.026/85	1 288873	Z.3373333 A AA6301
Ц	1 513317	2 /21567	2 3/1211
н	2 3/0157	_0 0/0061	2.041211
н	1 425620	-0.03001	2 326222
Ц	1.420020 2 061710	-2.410323	2.000220 N 202161
Ц	2.301/10 5 002762	-2.130003	0.020104 _0 20/702
Ц	5.052103 6 232060	-2.202439	-0.034133
Ц	5 102501	2 000 1700	- 1.442 102 0 7/6000
11	0.190001	2.030123	-0.140900

Н	3.058973	2.101868	0.461659
Н	-2.960949	2.190446	0.328013
Н	-5.091914	2.202492	-0.895139
Н	-6.232725	0.062006	-1.441819
Н	-5.199031	-2.090580	-0.745809
Н	-3.059551	-2.101968	0.462932
Н	-1.250049	-0.440219	-1.753036
Н	-1.415937	-1.895986	-3.717019
Н	-0.388687	-4.163342	-3.691882
Н	0.792273	-4.946424	-1.646309
Н	0.949849	-3.492461	0.321050
Н	-0.949014	3.492727	0.322996
Н	-0.791687	4.947523	-1.643796
Н	0.387908	4.164865	-3.690266
Н	1.414035	1.896964	-3.716984
Н	1.248448	0.440440	-1.753581

$9,12\text{-}Ph_2\text{-}8,10\text{-}I_2\text{-}1.2\text{-}c/oso\text{-}C_2B_{10}H_8$

E(ω	B97XD/6-3	1+G*)= -815.0	670946
С	0.024614	-0.193204	0.036810
В	-0.030344	-0.187836	1.721397
В	1.668619	-0.086106	2.225419
В	2.666250	0.024400	0.759359
В	2.530918	-1.548635	1.614345
В	1.306846	-2.516375	0.702883
В	-0.259227	-1.682320	0.796403
В	0.823372	-1.683312	2.228747
В	1.102773	0.863282	0.851769
С	1.543159	-0.070223	-0.507470
В	2.432966	-1.462820	-0.176150
В	0.734115	-1.573845	-0.672669
Н	0.954337	2.028534	0.716482
Ι	1.421588	-4.669776	0.397081
Н	3.641075	0.680895	0.608077
Ι	2.169514	1.043691	4.018949
Н	1.682903	0.480026	-1.429735
Н	-0.953517	0.338847	2.245132
Н	-0.740964	0.296542	-0.552189
Н	-1.334461	-2.171936	0.705244
Н	0.379805	-1.903586	-1.751502
С	0.402191	-2.419275	3.567154
Н	3.244850	-1.804411	-0.968685
С	3.793205	-2.210414	2.306546
С	-0.579828	-1.874003	4.407342
С	-0.949797	-2.497544	5.596664
С	-0.339653	-3.690946	5.976808
С	0.639919	-4.249591	5.159058
С	1.003841	-3.619097	3.972004
Н	-1.063530	-0.938237	4.140207

Н	-1.709984	-2.046107	6.228324
Н	-0.622343	-4.179550	6.905326
Н	1.128484	-5.176870	5.445749
Н	1.780441	-4.068633	3.362239
С	3.937462	-2.247408	3.700561
С	5.041700	-2.847001	4.300724
С	6.034337	-3.430012	3.516421
С	5.911429	-3.408104	2.128831
С	4.803692	-2.805717	1.537036
Н	3.172170	-1.814701	4.336237
Н	5.121373	-2.861796	5.384314
Н	6.894930	-3.901640	3.983049
Н	6.674044	-3.865723	1.504593
Н	4.727065	-2.812643	0.453037

8,9,10,12-Ph₄-1,2-closo-C₂B₁₀H₈

Ε(ω	B97XD/6-31	+G*)= -1256	5.0163811
С	0.783356	1.420733	-1.720111
С	0.106982	1.830401	-0.561922
С	-0.442406	3.120178	-0.564102
С	-0.349049	3.955348	-1.675151
С	0.312585	3.518224	-2.820083
С	0.883745	2.247600	-2.835663
В	0.023623	0.902218	0.723887
В	0.914052	1.409522	2.181132
В	1.457170	-0.029239	3.055222
В	0.857424	-1.443306	2.180404
С	-0.016938	-0.805310	3.477914
В	-1.456494	0.028178	3.055623
В	-0.913622	-1.410319	2.180813
В	-0.023576	-0.902415	0.723495
С	-0.107296	-1.830184	-0.562584
С	-0.784457	-1.420310	-1.720251
С	-0.885018	-2.246742	-2.836121
С	-0.313239	-3.517101	-2.821415
С	0.349158	-3.954445	-1.677012
С	0.442675	-3.119721	-0.565644
В	-1.466546	0.030591	1.283365
С	-2.847992	0.044525	0.511374
С	-3.447127	1.244414	0.107384
С	-4.653690	1.256155	-0.589547
С	-5.292264	0.057339	-0.897344
С	-4.713750	-1.148468	-0.505239
С	-3.506828	-1.149946	0.188377
В	-0.857061	1.442593	2.181161
С	0.017639	0.804074	3.478252
В	1.466713	-0.030997	1.283000
С	2.848070	-0.044673	0.510810
С	3.447615	-1.244508	0.107250
С	4.654223	-1.256119	-0.589597

С	5.292455	-0.057212	-0.897755
С	4.713512	1.148541	-0.506119
С	3.506552	1.149886	0.187438
Н	-2.339306	0.047730	3.844206
Н	-1.512862	-2.422407	2.340686
Н	-0.025576	-1.290428	4.445804
Н	-1.425189	2.470182	2.357355
Н	0.026485	1.288873	4.446301
Н	1.513317	2.421567	2.341211
Н	2.340157	-0.049061	3.843596
Н	1.425620	-2.470923	2.356223
Н	2.961710	-2.190609	0.328164
Н	5.092763	-2.202439	-0.894793
Н	6.232960	-0.061760	-1.442152
Н	5.198501	2.090729	-0.746980
Н	3.058973	2.101868	0.461659
Н	-2.960949	2.190446	0.328013
Н	-5.091914	2.202492	-0.895139
Н	-6.232725	0.062006	-1.441819
Н	-5.199031	-2.090580	-0.745809
Η	-3.059551	-2.101968	0.462932
Η	-1.250049	-0.440219	-1.753036
Н	-1.415937	-1.895986	-3.717019
Η	-0.388687	-4.163342	-3.691882
Н	0.792273	-4.946424	-1.646309
Н	0.949849	-3.492461	0.321050
Η	-0.949014	3.492727	0.322996
Η	-0.791687	4.947523	-1.643796
Н	0.387908	4.164865	-3.690266
Н	1.414035	1.896964	-3.716984
Н	1.248448	0.440440	-1.753581

$8,\!10,\!12\text{-}Ph_3\text{-}9\text{-}I\text{-}1.2\text{-}closo\text{-}C_2B_{10}H_8$

B97XD/6-31	+G*)= -1035	.836307
3.427380	0.993765	0.635465
2.819232	-0.253706	0.436990
3.483534	-1.181491	-0.376315
4.708233	-0.880486	-0.968028
5.296607	0.364746	-0.756515
4.651697	1.302756	0.047911
1.422760	-0.594277	1.094953
0.793955	-2.264633	1.200614
1.353948	-1.431864	2.656260
0.829981	0.255804	2.547642
-0.015061	0.510083	0.998094
-1.519467	-0.513946	1.032732
-2.871461	-0.110865	0.320990
-3.571314	-1.023962	-0.479856
-4.762539	-0.672084	-1.109458
	DB97XD/6-31 3.427380 2.819232 3.483534 4.708233 5.296607 4.651697 1.422760 0.793955 1.353948 0.829981 -0.015061 -1.519467 -2.871461 -3.571314 -4.762539	bB97XD/6-31+G*)= -1035 3.427380 0.993765 2.819232 -0.253706 3.483534 -1.181491 4.708233 -0.880486 5.296607 0.364746 4.651697 1.302756 1.422760 -0.594277 0.793955 -2.264633 1.353948 -1.431864 0.829981 0.255804 -0.015061 0.510083 -1.519467 -0.513946 -2.871461 -0.110865 -3.571314 -1.023962 -4.762539 -0.672084

С	-5.283251	0.610689	-0.949848
С	-4.602601	1.534714	-0.159811
С	-3.411551	1.174178	0.466399
В	-0.941578	0.297994	2.510783
В	-1.557982	-1.354583	2.595271
В	-0.983414	-2.217572	1.165664
В	-0.045847	-1.086050	0.173389
Ι	-0.045906	-1.434823	-1.981868
С	-0.102151	-0.882127	3.377306
С	-0.125475	-2.301608	2.619135
С	0.082973	1.941247	0.322585
Н	-1.576912	-3.179650	0.807625
Η	2.213522	-1.826631	3.367363
Н	1.424525	1.065254	3.179287
Η	-0.127411	-0.910754	4.459598
Н	1.351555	-3.256399	0.866682
Η	-0.162326	-3.187170	3.241429
Н	-2.464901	-1.701531	3.271598
Η	-1.527707	1.122810	3.130254
Н	-3.174833	-2.025284	-0.628391
Н	-5.281494	-1.398385	-1.729183
Н	-6.211056	0.889460	-1.442060
Н	-4.996523	2.539586	-0.033287
Н	-2.890265	1.913837	1.067816
Н	2.928583	1.746349	1.241260
Η	5.098384	2.279635	0.212325
Η	6.249849	0.604360	-1.219932
Н	5.199282	-1.616418	-1.599013
Η	3.033863	-2.153310	-0.564206
С	0.662977	2.130258	-0.938884
С	0.778414	3.398432	-1.503322
С	0.319026	4.517877	-0.813342
С	-0.248291	4.357268	0.449226
С	-0.357348	3.085162	1.005513
Н	1.048527	1.278408	-1.488880
Н	1.235399	3.510235	-2.482756
Н	0.408531	5.507678	-1.252870
Н	-0.603296	5.222304	1.003383
Н	-0.793281	2.987865	1.997089

$9,10,12\text{-}Ph_{3}\text{-}8\text{-}I\text{-}1.2\text{-}c/oso\text{-}C_{2}B_{10}H_{8}$

Ε(ω)B97XD/6-31	+G*)= -1035	.836540
Ċ	-0.474184	-3.127935	0.799097
С	-0.134201	-1.766678	0.824633
С	0.090550	-1.183390	2.078859
С	-0.043717	-1.917518	3.255388
С	-0.399698	-3.263222	3.206320
С	-0.609484	-3.870214	1.969640
В	0.021858	-0.953009	-0.527254
В	-0.662642	-1.603332	-2.043911

В	-1.071918	-0.263114	-3.120162
С	0.410301	-1.121130	-3.255492
В	1.806115	-0.289088	-2.713999
В	1.091355	-1.627050	-1.793055
В	1.550007	-0.116946	-0.976105
I	3.305821	-0.043953	0.306612
В	1.151998	1.224782	-2.063504
В	0.053552	0.850840	-0.696103
С	-0.109519	1.902227	0.481715
С	0.809265	2.950552	0.636350
С	0.678431	3.891557	1.655424
С	-0.384521	3.804931	2.551581
С	-1.307467	2.768986	2.420645
С	-1.167995	1.831427	1.400045
С	0.441629	0.485015	-3.407255
В	-0.601675	1.238884	-2.311882
В	-1.333532	-0.093205	-1.376908
С	-2.819937	-0.018935	-0.837874
Н	2.796440	-0.368748	-3.356048
Н	1.676884	-2.657362	-1.761067
Н	0.535038	-1.694620	-4.165591
Н	1.783160	2.212198	-2.242301
Н	0.590793	0.875896	-4.406141
Н	-1.124801	2.247965	-2.651058
Н	-1.841320	-0.333594	-4.016734
Н	-1.251529	-2.622302	-2.195531
Н	1.653501	3.035070	-0.043019
Н	1.411393	4.688218	1.750749
Н	-0.490482	4.537042	3.347729
Н	-2.137466	2.685043	3.117118
Н	-1.892023	1.025696	1.330905
Н	0.380546	-0.140307	2.146768
Н	0.134833	-1.434277	4.212136
Н	-0.504674	-3.836033	4.123782
Н	-0.873528	-4.923116	1.914421
Н	-0.634745	-3.625826	-0.154573
С	-3.414157	-1.111686	-0.192161
С	-4.714289	-1.039558	0.305285
С	-5.452466	0.133650	0.165048
С	-4.881549	1.230655	-0.478208
С	-3.582135	1.150171	-0.971823
Н	-2.851307	-2.031232	-0.057131
Н	5 1/7353	-1.900603	0.807183
	-0.147.000		
н	-6.463813	0.194861	0.557874
н Н	-6.463813 -5.444511	0.194861 2.153561	0.557874 -0.589045

8,10-Ph₂-1,2-closo-C₂B₁₀H₁₀

E(ωB97XD/6-31+G*)=-794.024031

C 0.001554 0.008931 -0.000649

С	-0.000620	-0.002380	1.400695
С	1.241014	-0.008062	2.050560
С	2.435789	-0.003889	1.334459
С	2.414679	0.006966	-0.058606
С	1.191480	0.013970	-0.725504
В	-1.347782	-0.022292	2.232432
В	-1.470986	0.522674	3.936738
В	-1.605511	-1.202132	3.550259
С	-3.274720	-1.490283	3.554289
С	-4.025898	-0.658421	2.393435
В	-2.500467	-1.353169	2.026473
В	-2.944194	0.278350	1.490332
В	-2.297276	1.440458	2.661476
В	-4.015421	1.003850	2.707405
В	-4.256816	-0.160931	4.021834
В	-2.677978	-0.474859	4.766300
В	-3.111998	1.176353	4.237497
С	-3.403231	2.341982	5.267903
С	-4.129024	3.480298	4.892466
С	-4.378703	4.512326	5.794382
С	-3.901085	4.428142	7.100476
С	-3.171031	3.308281	7.493195
С	-2.926493	2.281294	6.584151
Н	-0.529768	0.948328	4.528379
Н	-1.954402	2.526921	2.319265
Н	-0.879215	-2.090618	3.853655
Η	-5.300880	-0.395500	4.528812
Н	-4.953980	1.640253	2.355660
Н	-4.878558	-1.140373	1.931349
Н	-2.666511	-0.884393	5.880707
Η	-3.679365	-2.468617	3.782493
Н	-2.481770	-2.308400	1.326680
Η	-3.180532	0.438898	0.337958
Н	1.276889	-0.013373	3.137286
Η	3.384075	-0.008911	1.865331
Н	3.344347	0.009981	-0.621167
Н	1.162774	0.022885	-1.811900
Н	-0.942683	0.015706	-0.540451
Н	-4.502725	3.567859	3.874864
Н	-4.943202	5.384580	5.475563
Н	-4.094225	5.231344	7.806397
Н	-2.788196	3.235435	8.507717
Н	-2.348055	1.418473	6.906686

9,12-Ph₂-1,2-closo-C₂B₁₀H₁₀

E(ωB97XD/6-31+G*)= -794.027523

С	-0.012345	-0.018235	-0.005325
С	-0.008340	-0.002987	1.395688
С	1.235195	0.023607	2.040871

С	2.428139	0.027119	1.321046
С	2.400701	0.007328	-0.071768
С	1.174676	-0.014834	-0.733629
В	-1.358649	0.038916	2.219244
В	-1.422415	-0.400375	3.946787
В	-2.649395	0.608246	4.738205
С	-2.993341	-0.980879	4.179835
В	-2.221208	-1.435308	2.740047
В	-3.960890	-1.083335	2.768193
С	-4.098997	0.174201	3.932199
В	-3.384413	1.651287	3.504109
В	-4.186761	0.613910	2.301841
В	-2.950412	-0.383651	1.511672
В	-2.588226	1.318059	1.940889
В	-1.647564	1.292750	3.466501
С	-2.394266	2.422209	0.824393
С	-1.245968	3.224187	0.787855
С	-1.053750	4.169514	-0.216566
С	-2.011375	4.332373	-1.215627
С	-3.158945	3.542471	-1.201240
С	-3.342186	2.599341	-0.192176
Н	-0.835492	2.119386	3.736840
Н	-3.080232	-0.740993	0.384141
Н	-4.814095	-1.904627	2.743491
Н	-1.883755	-2.566160	2.616764
Н	-3.220758	-1.703680	4.953329
Н	-5.244830	0.928523	1.864441
Н	-4.983389	0.132230	4.555529
Н	-3.908989	2.653421	3.862507
Н	-2.705293	0.804214	5.905065
Н	-0.555783	-0.846694	4.624694
Н	-4.240356	1.985612	-0.203804
Η	-3.910050	3.656275	-1.978625
Η	-1.861459	5.066624	-2.002656
Н	-0.150411	4.773504	-0.222716
Н	-0.479220	3.098007	1.548056
Н	-0.959390	-0.016390	-0.539022
Η	1.140789	-0.021069	-1.819757
Η	3.328131	0.014138	-0.638196
Н	3.378358	0.050581	1.848273
Н	1.277543	0.048949	3.127642

8,10-Me₂-1,2-*closo*-C₂B₁₀H₁₀

E(ωB97XD/6-31+G*)= -410.669328				
С	0.007006	0.011864	0.016449	
В	0.010598	0.013247	1.709150	
В	1.738515	0.003858	2.171009	
В	0.805466	1.536190	2.132047	
В	1.180053	2.439054	0.627168	
В	-0.327642	1.488085	0.774182	

В	0.615512	1.436564	-0.725170
В	2.333062	1.424111	-0.289127
В	2.450406	1.496663	1.474677
В	2.671306	-0.050707	0.645883
С	1.507789	-0.024215	-0.583291
В	1.169052	-0.977076	0.805000
Н	3.367206	2.043150	2.004989
Н	0.529915	2.111276	3.138898
С	2.259908	-0.677140	3.516881
С	1.180090	4.032251	0.531297
Η	0.194442	1.720756	-1.796077
Η	3.112047	1.800069	-1.103487
Н	1.641817	-0.577442	-1.504485
Н	-1.436835	1.909349	0.714405
Н	-0.747470	-0.520078	-0.549610
Н	-0.873546	-0.546635	2.271439
Н	1.081999	-2.149974	0.657902
Н	3.675311	-0.655950	0.453531
Н	2.568827	0.082868	4.242577
Н	1.482956	-1.286582	3.992490
Н	3.123810	-1.327047	3.336389
Η	1.560451	4.477281	1.457013
Н	1.813406	4.391000	-0.288146
Η	0.172239	4.430487	0.367203

9,12-Me₂-1,2-*closo*-C₂B₁₀H₁₀

Ε(ω)B97XD/6-31	+G*)= -410.6	670549
С	0.014420	0.028568	0.033296
В	0.013830	0.032711	1.728009
В	1.730220	0.029144	2.165580
В	0.809690	1.566259	2.174842
В	1.193237	2.421953	0.645607
В	-0.317321	1.507296	0.792634
В	0.628003	1.451364	-0.708948
В	2.346486	1.434006	-0.266065
В	2.478335	1.521981	1.511961
В	2.679022	-0.038845	0.669899
С	1.515995	-0.012463	-0.563240
В	1.171932	-0.964366	0.825245
С	3.698212	2.255666	2.232716
С	0.453760	2.344431	3.522001
Н	2.116269	-0.484534	3.168594
Н	1.193554	3.610721	0.569325
Н	0.209523	1.734289	-1.780756
Н	3.135159	1.802290	-1.074584
Н	1.651149	-0.566958	-1.483390
Н	-1.427539	1.926267	0.735822
Н	-0.741010	-0.501111	-0.533447
Н	-0.878908	-0.517379	2.286370

Н	1.081765	-2.136469	0.676940
Н	3.683705	-0.642378	0.475734
Н	-0.587882	2.186145	3.824239
Н	1.089642	2.014317	4.351363
Н	0.600863	3.424553	3.407414
Н	3.361748	3.154585	2.762075
Н	4.179316	1.604306	2.971263
Н	4.468116	2.566937	1.517327

8,9,10,12-Me₄-1,2-*closo*-C₂B₁₀H₈

E(u	0B97XD/6-31	+G*)= -489.	301917
С	0.003061	0.003919	-0.004280
В	-0.000504	-0.000544	1.591586
В	1.517331	0.000111	2.520362
С	1.141548	0.824635	3.949001
В	1.257798	-0.886451	4.029240
В	0.488218	-1.454305	2.537562
С	0.925629	-2.824100	1.844831
В	0.476866	1.437588	2.519843
В	-1.228032	0.914422	2.538449
В	-1.220888	-0.885375	2.558642
В	-0.431232	-1.410118	4.064190
В	-1.473053	0.025553	4.064302
С	0.039158	0.026348	4.822528
В	-0.448820	1.469530	4.028060
С	-2.387441	1.760287	1.839737
С	-2.395491	-1.741637	1.899669
Н	0.136987	0.098144	5.898430
Н	-0.713320	-2.341798	4.746720
Н	2.627228	0.079188	2.101568
Н	2.121907	-1.349533	4.695911
Н	-0.617473	2.433549	4.697248
Н	-2.444987	0.051436	4.748583
Н	0.894047	2.470082	2.103310
Н	1.892408	1.369222	4.507502
Н	-0.395390	-0.932170	-0.412908
Н	-0.611543	0.818069	-0.406198
Н	1.014675	0.129135	-0.407731
Н	-3.370857	-1.258637	2.031282
Н	-2.242971	-1.875654	0.822336
Н	-2.465632	-2.741408	2.344001
Н	0.134797	-3.579160	1.921714
Н	1.132639	-2.679709	0.778314
Н	1.828744	-3.249374	2.297393
Η	-2.866347	1.182611	1.040654
Н	-3.172507	2.048183	2.548310
Н	-2.000445	2.680757	1.387526

8,10-*t*Bu₂-1,2-*closo*-C₂B₁₀H₁₀

Ε(ω	B97XD/6-31	+G*)= -646.4	192531
С	0.013194	0.018845	0.024688
В	0.014503	0.021130	1.715558
В	1.744917	0.008973	2.187441
В	0.808223	1.542162	2.139984
В	1.184828	2.453618	0.637420
В	-0.322622	1.492580	0.782632
В	0.620248	1.446033	-0.714562
В	2.335827	1.428172	-0.279517
В	2.454231	1.502306	1.482347
В	2.672964	-0.043254	0.653448
С	1.509246	-0.017399	-0.573018
В	1.173736	-0.969701	0.817102
Н	3.379415	2.043327	2.001285
Н	0.518547	2.112572	3.144318
С	2.272255	-0.696567	3.550059
С	1.179648	4.071942	0.526402
Н	0.199078	1.728580	-1.786008
Н	3.119743	1.787078	-1.095046
Н	1.645070	-0.570273	-1.494143
Н	-1.436747	1.897407	0.725437
Н	-0.742589	-0.512489	-0.540170
Н	-0.880226	-0.531552	2.265489
Н	1.085871	-2.142471	0.668430
Н	3.676262	-0.641892	0.445003
С	2.708767	0.361742	4.577963
С	1.160379	-1.552074	4.182640
С	3.476819	-1.608379	3.256922
С	1.712422	4.708606	1.821754
С	2.068801	4.537860	-0.640062
С	-0.247854	4.593847	0.285263
Н	3.817759	-2.099274	4.178693
Н	3.226575	-2.395371	2.534401
Н	4.322276	-1.040783	2.850808
Н	1.528025	-2.043620	5.093738
Н	0.292556	-0.942839	4.461214
Н	0.810801	-2.336654	3.499820
Н	3.063891	-0.125944	5.496301
Н	3.523782	0.985597	4.194703
Н	1.881094	1.025558	4.851159
Н	-0.243692	5.688350	0.190787
Н	-0.682736	4.182639	-0.634412
Н	-0.916889	4.334700	1.114196
Н	2.046340	5.633006	-0.723903
Н	3.113150	4.237313	-0.495498
Η	1.733230	4.124259	-1.599407

Н	1.704824	5.804031	1.736434
Н	1.098849	4.436970	2.687828
Н	2.741664	4.397261	2.031668

9,12-*t*Bu₂-1,2-*closo*-C₂B₁₀H₁₀

E(u)B97XD/6-31	+G*)= -646.4	185343
С	0.028438	0.184372	0.043871
В	0.021576	0.129109	1.730455
В	1.729003	0.087925	2.194263
В	0.825275	1.642350	2.266560
В	1.254813	2.534536	0.754420
В	-0.273162	1.641908	0.852105
В	0.670852	1.619953	-0.640903
В	2.376288	1.547988	-0.195004
В	2.536083	1.588965	1.592469
В	2.676837	0.044502	0.697315
С	1.526001	0.132245	-0.542220
В	1.161079	-0.855638	0.811837
С	3.918839	2.207726	2.208514
С	0.263867	2.348169	3.630648
Н	2.090809	-0.498303	3.164713
Н	1.266014	3.722471	0.683337
Н	0.265411	1.952976	-1.703109
Н	3.160174	1.916806	-1.004695
Н	1.662210	-0.391061	-1.480263
Н	-1.372767	2.087478	0.797122
Н	-0.738572	-0.309840	-0.539023
Н	-0.884040	-0.436238	2.246565
Н	1.050246	-2.021036	0.629802
Н	3.667327	-0.577048	0.489259
С	-1.138506	1.810349	3.988086
С	1.153076	2.066560	4.853817
С	0.123472	3.869768	3.438052
С	3.748636	3.648637	2.719046
С	4.452096	1.319435	3.348182
С	5.021964	2.263337	1.129892
Н	0.692882	2.486798	5.758627
Н	1.281156	0.989835	5.015848
Н	2.146862	2.507901	4.761602
Н	-1.530041	2.347468	4.862552
Н	-1.856308	1.943777	3.170979
Н	-1.112932	0.745202	4.243359
Н	-0.251396	4.336387	4.359539
Н	1.071684	4.350520	3.181751
Н	-0.587933	4.103345	2.636235
Н	4.718616	4.050483	3.042693
Η	3.361483	4.308181	1.933444
Η	3.070334	3.715521	3.571286
Η	5.379007	1.743509	3.758527
Η	3.738536	1.217084	4.170545

Н	4.681916	0.308956	2.988101
Н	5.962206	2.611627	1.578396
Н	5.214772	1.282666	0.680639
Н	4.767495	2.959286	0.322871

8,9,10,12-*t*Bu₄-1.2-*closo*-C₂B₁₀H₈

E(u	B97XD/6-31ئB97XD	+G*)= -960.8	395637
С	-0.025476	2.125790	-1.223810
В	-0.007221	0.946318	-0.043293
В	0.007215	-0.946334	-0.043295
С	0.025472	-2.125821	-1.223787
В	0.864341	1.426754	1.457216
В	-0.893606	1.405676	1.461704
В	-1.438373	-0.017587	2.337007
С	0.008622	-0.802684	2.759318
В	-0.864338	-1.426733	1.457235
В	0.893607	-1.405660	1.461714
В	1.502787	0.011665	0.551488
С	3.072764	0.020619	0.028984
В	-1.502785	-0.011651	0.551491
С	-3.072763	-0.020605	0.028983
С	-0.008619	0.802716	2.759306
В	1.438353	0.017610	2.337003
Н	0.014579	-1.295260	3.723267
Н	1.488960	-2.406880	1.673916
Н	1.431234	2.446763	1.663684
Н	2.319815	0.028369	3.128432
Н	-2.319800	-0.028317	3.128475
Н	-1.431232	-2.446739	1.663721
Н	-1.488959	2.406901	1.673877
Н	-0.014576	1.295294	3.723253
С	-0.160113	1.609015	-2.664022
С	-1.181098	3.126723	-1.001532
С	1.244018	3.004050	-1.210778
С	-1.243999	-3.004112	-1.210713
С	0.160075	-1.609081	-2.664015
С	1.181117	-3.126727	-1.001496
С	3.873743	-1.154290	0.637424
С	3.236486	-0.072143	-1.498293
С	3.805205	1.292964	0.514696
С	-3.236481	0.072171	-1.498294
С	-3.805215	-1.292941	0.514701
С	-3.873731	1.154313	0.637419
Н	4.855726	1.257102	0.195981
Н	3.373437	2.214703	0.122275
Н	3.800010	1.368565	1.608275
Н	4.285485	0.103799	-1.773408
Η	2.970714	-1.062034	-1.875861
Н	2.629155	0.657270	-2.037998
Н	4.909194	-1.118349	0.272619

Н	3.911479	-1.098781	1.731273
Н	3.467352	-2.133141	0.373482
Н	1.182310	-3.866343	-1.812951
Н	2.160952	-2.649067	-0.998362
Н	1.071934	-3.677284	-0.062105
Н	0.198043	-2.460930	-3.357068
Н	-0.690311	-0.992380	-2.958899
Н	1.069529	-1.026799	-2.816719
Н	-1.137440	-3.800370	-1.959810
Н	-1.406911	-3.490614	-0.244574
Н	-2.143810	-2.445492	-1.468224
Н	1.137481	3.800280	-1.959910
Н	1.406942	3.490592	-0.244661
Н	2.143817	2.445399	-1.468262
Н	-0.198000	2.460845	-3.357103
Η	0.690223	0.992227	-2.958877
Н	-1.069617	1.026808	-2.816716
Η	-1.182291	3.866315	-1.813010
Н	-2.160945	2.649084	-0.998366
Н	-1.071888	3.677308	-0.062162
Н	-4.285481	-0.103760	-1.773414
Н	-2.970698	1.062062	-1.875856
Н	-2.629156	-0.657244	-2.038005
Н	-4.909185	1.118372	0.272621
Н	-3.911461	1.098825	1.731269
Η	-3.467336	2.133156	0.373453
Н	-4.855732	-1.257079	0.195971
Η	-3.373445	-2.214684	0.122298
Н	-3.800038	-1.368531	1.608282

Table S1 Bond lengths of the B9-B12 and C1-C2 bonds in case of $9,12$ -(aryl) ₂ -1,2- <i>closo</i> -C ₂ B ₁₀ B ₁₀
and some related compounds

Substituents at the	d(B9-B12), in Å	Substituents at	d(C1-C2), in	Database
9,12 vertexes of o-		the 1,2 vertexes	A	Identifier
carborane		of o-carborane		
Н	1.776 ¹³	Н	1.630 ¹³	TOKGIJ
C ₆ H ₅ -	1.809 ²	H	1.621 ²	TAHBAG
4-CH ₃ O-C ₆ H ₄ -	1.812 ²	Н	1.612 ²	TAHBEK
4-CI-C ₆ H ₄ -	1.806/1.814 ²	H	1.609/1.613 ²	TAHBIO
4-OH-C ₆ H ₄ -	1.824 ²	Н	1.625 ²	TAHBOU
4-F-C ₆ H ₄ -	1.807/1.803/1.800/1.78114	Н	1.62014	XEHVUB
2,5-F ₂ -C ₆ H ₃ -	1.80314	Н	1.62814	XEHWAI
4-COOCH ₃ -C ₆ H ₄ -	1.80815	Н	1.63715	HIMHEQ
-C ₆ H ₄ CH(OCH ₃) ₂	1.804/1.80316	Н	1.624/1.62916	
compound 2				
4-CHO-C ₆ H ₄ -	1.79816	Н	1.63016	
compound 3				
Н	1.760/1.75717	1,2-(C ₆ H ₅) ₂ -	1.720/1.73317	
Н	1.77518	3-C ₆ H ₅ -1,2-	1.76318*	XILFOP
		(C ₆ H ₅) ₂ -		
Н	1.774 ¹⁸	3-C₀H₅-1,2-	1.63218*	XILFUV
		(C ₆ H ₅) ₂ -		
Н	1.77518	3,6-(C ₆ H ₅) ₂ -1,2-	1.704 ¹⁸	XILGAC
		(C ₆ H ₅) ₂ -		
Substituents at the				
8,9,10,12 vertexes of				
o-carborane				
(C ₆ H ₅) ₄ Compound 10	1.82216	Н	1.623 ¹⁶	
(C ₆ H ₅) ₃ I Compound	1.824 ¹⁶	Н	1.629 ¹⁶	
11				
4,5,7,8,9,10,11,12-	1.788 ¹⁹	Н	1.635 ¹⁹	FASPIY
octamethyl-o-				
carborane				

References

¹ Vaca, A.; Teixidor, F.; Kivekäs, R.; Sillanpää, R.; Viñas, C. *Dalton Trans.* 2006, 4884-4885. 2285-2286.

² M. J. Bayer, A. Herzog, M. Diaz, G. A. Harakas, H. Lee, C. B. Knobler, M. F. Hawthorne, *Chem. Eur. J.*, 2003, **9**, 2732–2744.

³ Vaca, A.; Teixidor, F.; Sillanpää, R.; Kivekäs, R.; Viñas, C. *Chem. Commun.* 2011, **47**, 2252–2254. ⁴ Bruker Advanced X-ray Solutions. APEX3 Version 2017.3-0

⁵ Sheldrick, G. M. SADABS, University of Göttingen, Germany, 2008.

⁶ CrysAlisPro, 2015, Agilent Technologies Ltd, Yarnton, England

⁷ Sheldrick, G.M. Acta Cryst. 2015, **C71**, 3-8.

⁸ Dolomanov, O.V., Bourhis, L.J., Gildea, R.J, Howard, J.A.K. & Puschmann, H., *J. Appl. Cryst.* 2009, **42**, 339-341.

⁹ DIAMOND, J. Appl. Cryst. 1999, 32, 1028.

¹⁰ Gaussian 09, Revision B.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian Inc., Wallingford CT, **2010**

¹¹ G. Schaftenaar, J. H. Noordik, J. Comput. Aided Mol. Design 2000, 14, 123.

¹² W. Humphrey, A.Dalke, K. J. Schulten, *Molec. Graphics*, 1996, **14**, 33-38.

¹³ M. G. Davidson, T. G. Hibbert, J. A. K. Howard, A. Mackinnon, K. Wade, *Chem. Commun.* 1996, **19**,

¹⁴ H. Lee, C. B. Knobler and M. F. Hawthorne, *Chem. Commun.*, 2000, 2485–2486.

¹⁵ G. Harakas, T. Vu, C. B. Knobler and M. F. Hawthorne, *J. Am. Chem. Soc.*, 1998, **120**, 6405-6406. ¹⁶ This communication.

¹⁷ Z.G. Lewis, A. J. Welch, Acta Cryst. 1993. C49, 705-710.

¹⁸ G. F. Jin, J.-H. Hwang, J.-D. Lee, K.-R. Wee, II-H. Suh, S. O. Kang, *Chem. Commun.* 2013, **49**, 9398-9400.

¹⁹ A. Herzog, A. Maderna, G. N. Harakas, C. B. Knobler and M. F. Hawthorne, *Chem. Eur. J.*, 1999, **5(4)**, 1212-1217.