Supporting InformationKolbe-Schmitt Type Reaction under Ambient Conditions Mediated byOrganic Base
Yuta Sadamitsu, Akira Okumura, Kodai Saito, and Tohru Yamada*
Contents

1. General ..... S2
2. Supporting results $\&$ discussion
2.1 Confirmation of decarboxylation of $2 n$ ..... S2
2.2 Molecular orbital of HOMO of resorcinol dianion 1a'-1q' (B3LYP/6-311++G**) ..... S3
2.3 Examination and consideration of the site-selectivity of $\mathbf{1 q}$ ..... S6
3. General procedure $\&$ characterization data
3.1 Procedure for the preparation of resorcinols ..... S7
3.2 Procedure for Kolbe-Schmitt reaction on resorcinols ..... S13
4. NMR Spectra ..... S20

## 1. General

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded with a JEOL model AL-400, alpha-400 or ECX400 spectrometer using $\mathrm{CD}_{3} \mathrm{CN}$, Acetone- $d_{6}$ or DMSO- $d_{6}$ as the solvent. IR spectra were measured with a Thermo Electron Corporation model NICOLET 6700 FT-IR spectrometer. Melting points were measured with a Stanford Research Systems MPA100. ESI high resolution mass spectra were obtained using a Waters LCT Premier XE mass spectrometer. Column chromatography was conducted on silica gel (CHROMATOREX PSQ 100B Fuji Silysia). DBU was purchased from Tokyo Chemical Industry Co., Ltd., and used without further purification. Dehydrated $\mathrm{CH}_{3} \mathrm{CN}$ was purchased from FUJIFILM Wako Pure Chemical Co..

## 2. Supporting results $\boldsymbol{\&}$ discussion

### 2.1 Confirmation of decarboxylation of $2 n$

When the resorcinol $\mathbf{1 n}$ was treated with 3 equiv of DBU in $\mathrm{CH}_{3} \mathrm{CN}$ under 2 MPa of $\mathrm{CO}_{2}$ atmosphere at $30^{\circ} \mathrm{C}$, the carboxylated product $\mathbf{2 n}$ was not observed. On the other hand, when the salicylic acid $\mathbf{2 n}$ was employed for this reaction condition under Ar atmosphere, the decarboxylation proceeded to afford the resorcinol 1 n $\left(20 \%\right.$ conversion, detected by ${ }^{1} \mathrm{H}$ NMR). It suggested that the reaction rate of decarboxylation of $\mathbf{2 n}$ was faster than that of carboxylation of $\mathbf{1 n}$.


### 2.2 Molecular orbital of HOMO of resorcinol dianion 1a'-1q' (B3LYP/6311++G**)

The HOMO of dianions of resorcinols $\mathbf{1 a} \mathbf{-} \mathbf{- 1 q}$ ' were calculated at the level of B3LYP/ $6-311++\mathrm{G}^{* *}$.








1c'










1g'
1h'











The carboxylation site of $\mathbf{1 q}$ was not matched with the site predicted by the theoretical caluculation.
Please see the detail at the next section (S6).

### 2.3 Examination and consideration of the site-selectivity of $\mathbf{1 q}$

According to the HOMO of dianion 1q' computed by theoretical calculation, the carboxylation should occur at the 2-position of resorcinol 1q. However, when 1q was employed for this reaction, only 6 -carboxylated product $\mathbf{3 q}$ was obtained. In order to elucidate this reason, time course experiment of the carboxylation reaction of $\mathbf{1 q}$ using ${ }^{1} \mathrm{H}$ NMR was conducted. When 3 equiv of DBU was added to $\mathbf{1 q}, \mathrm{H}_{\mathrm{b}}$ was observed in the lowest chemical shift. It suggested that the $\mathrm{H}_{\mathrm{b}}$ (2-position) is the most reactive site. After 2 MPa of $\mathrm{CO}_{2}$ was purged and the reaction was stirred for 1 h , the two doublet peaks appeared. Those could be signals of 2-carboxylated product $\mathbf{2 q}$. Thus, it indicated that carboxylation at $\mathrm{C}_{\mathrm{b}}$ was faster than that of $\mathrm{C}_{\mathrm{a}}$. After furthermore reaction, one singlet peak area was increased and former two doublet peaks were diminished. The singlet peak was assigned as the signal of 6carboxylated product $\mathbf{3 q}$. It indicated that 2-carboxylated product $\mathbf{2 q}$ is not thermodynamically stable and decarboxylation proceeded. Therefore, $\mathbf{3 q}$ was finally obtained.


## 3. General procedure $\mathcal{\&}$ characterization data

### 3.1 Procedure for the preparation of resorcinols

### 3.1.1 The preparation of $1 \mathbf{c}^{1}$



Resorcinol $\mathbf{1 c}$ was prepared by the following procedure ${ }^{1}$. Under $\mathrm{N}_{2}$ atmosphere, $2^{\prime}, 6^{\prime}$ 'dihydroxyacetophenone ( $304.3 \mathrm{mg}, 2.0 \mathrm{mmol}$ ) was dissolved into TFA ( 6.7 mL ). To the solution, triethylsilane ( $0.92 \mathrm{~mL}, 5.8 \mathrm{mmol}$ ) was added dropwise. After being stirred for 3 h at room temperature, the reaction was neutralized by sat. $\mathrm{NaHCO}_{3}$ aq., and extracted three times with EtOAc. The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the solvent was removed under reduced pressure. The residue was purified by column chromatography ( $\mathrm{SiO}_{2}$, eluent: hexane:EtOAc=3:1) to afford the desired resorcinol $\mathbf{1 c}(224.6 \mathrm{mg}, 81 \%)$.

## 2-ethylbenzene-1,3-diol (1c) ${ }^{2}$



H Pale brown solid; ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$ ): $\delta=1.05(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$, $2.56(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.32(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.65-6.69(\mathrm{~m}, 2 \mathrm{H}), 6.82(\mathrm{t}, J$ $=7.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( 100 MHz, DMSO- $d_{6}$ ): $\delta=13.8,16.1,106.2,116.6$, 125.9, 156.0.

### 3.1.2 The preparation of $1 d^{1,3,4}$




Resorcinol 1d was prepared by the following procedure ${ }^{1,3,4}$. Under $\mathrm{N}_{2}$ atmosphere, 2',4'-dihydroxy acetophenone ( $760.8 \mathrm{mg}, 5.0 \mathrm{mmol}$ ), and $\mathrm{K}_{2} \mathrm{CO}_{3}(2.07 \mathrm{~g}, 15 \mathrm{mmol})$ were dissolved into DMF ( 3.1 mL ). To the solution, iodomethane $(0.78 \mathrm{~mL}, 12.5 \mathrm{mmol})$ was added. After being stirred for 16 h at room temperature, the reaction was diluted by water, and extracted three times with EtOAc. The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the solvent was removed under reduced pressure. The residue was purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, eluent: hexane: $\left.\mathrm{EtOAc}=20: 1\right)$ to afford the acetophenone $\mathbf{S 1}$ (826.7 $\mathrm{mg}, 92 \%$ ).

Under $\mathrm{N}_{2}$ atmosphere, the acetophenone $\mathbf{S 1}(826.7 \mathrm{mg}, 4.6 \mathrm{mmol})$ was dissolved into THF ( 9.2 mL ). After cooling at $0^{\circ} \mathrm{C}$, $\mathrm{MeMgBr}(6.9 \mathrm{~mL}, 6.9 \mathrm{mmol}, 1.0 \mathrm{M}$ solution in THF) was added dropwise, and the reaction was warmed to room temperature. The reaction was quenched by sat. $\mathrm{NH}_{4} \mathrm{Cl}$ aq., and extracted three times with EtOAc. The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the solvent was removed under reduced pressure. The residue was purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, eluent: hexane: $\left.\mathrm{EtOAc}=5: 1\right)$ to afford the benzyl alcohol S2 ( $806.8 \mathrm{mg}, 90 \%$ ).

Under $\mathrm{N}_{2}$ atmosphere, the benzyl alcohol S2 $(392.5 \mathrm{mg}, 2.0 \mathrm{mmol})$ was dissolved into TFA ( 6.7 mL ). To the solution, triethylsilane ( $0.92 \mathrm{~mL}, 5.8 \mathrm{mmol}$ ) was added dropwise. After being stirred for 3 h at room temperature, the reaction was neutralized by sat. $\mathrm{NaHCO}_{3} \mathrm{aq}$., and extracted three times with EtOAc. The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the solvent was removed under reduced pressure. The residue was purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, eluent: hexane: $\left.\mathrm{EtOAc}=50: 1\right)$ to afford the desired dimethoxybenzene S3 ( $266.6 \mathrm{mg}, 74 \%$ ).

Under $\mathrm{N}_{2}$ atmosphere, dimethoxybenzene $\mathbf{S 3}(855.3 \mathrm{mg}, 4.7 \mathrm{mmol})$ was dissolved into $\mathrm{DCM}(4.7 \mathrm{~mL})$. After cooling at $0^{\circ} \mathrm{C}, \mathrm{BBr}_{3}(11.3 \mathrm{~mL}, 11.3 \mathrm{mmol}, 1.0 \mathrm{M}$ solution in DCM$)$ was added dropwise, and the reaction was warmed to room temperature. The reaction was quenched by water, and extracted three times with EtOAc. The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the solvent was removed under reduced pressure. The residue was purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, eluent: hexane: $\left.\mathrm{EtOAc}=3: 1\right)$ to afford the resorcinol 1d (424.1 mg, 59\%).

4-isopropylbenzene-1,3-diol (1d) ${ }^{5}$


### 3.1.3 The preparation of $\mathbf{1 f}^{6}$





Resorcinol 1f was prepared by the following procedure ${ }^{6}$. Under $\mathrm{N}_{2}$ atmosphere, pyrogallol ( $630.6 \mathrm{mg}, 5.0 \mathrm{mmol}$ ), and $\mathrm{Li}_{2} \mathrm{CO}_{3}(923.6 \mathrm{mg}, 12.5 \mathrm{mmol}$ ) were dissolved into DMF ( 19 mL ). To the solution, iodomethane ( $0.78 \mathrm{~mL}, 12.5 \mathrm{mmol}$ ) was added and the reaction mixture was stirred at $50{ }^{\circ} \mathrm{C}$ overnight. The reaction was diluted by water, and extracted three times with EtOAc. The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the solvent was removed under reduced pressure. The residue was purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, eluent: hexane: $\mathrm{EtOAc}=5: 1$ to 3:1) to afford the resorcinol $\mathbf{1 f}$ (138.9 $\mathrm{mg}, 20 \%$ ).

## 2-methoxybenzene-1,3-diol (1f) ${ }^{6}$



OH White solid; ${ }^{1} \mathrm{H}$ NMR ( 400 MHz , DMSO- $d_{6}$ ): $\delta=3.65(\mathrm{~s}, 3 \mathrm{H}), 6.26(\mathrm{~d}, J=8.4$ $\mathrm{Hz}, 2 \mathrm{H}), 6.65(\mathrm{t}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.99(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( 100 MHz , DMSO- $d_{6}$ ): $\delta=59.8,107.4,123.5,135.7,151.0$.

### 3.1.4 The preparation of $1 \mathrm{~g}^{7,8}$




Resorcinol $\mathbf{1 g}$ was prepared by the following procedure ${ }^{7,8}$. Under $\mathrm{N}_{2}$ atmosphere, isovanillin ( $1.52 \mathrm{~g}, 10 \mathrm{mmol}$ ), DMAP ( 2 pieces, cat.), and pyridine ( $1.6 \mathrm{~mL}, 20 \mathrm{mmol}$ ) were dissolved into $\mathrm{DCM}(20 \mathrm{~mL})$. After cooling at $0^{\circ} \mathrm{C}, \mathrm{AcCl}(0.71 \mathrm{~mL}, 12.5 \mathrm{mmol})$ was added
dropwise. The reaction was quenched by water, and extracted three times with EtOAc. The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the solvent was removed under reduced pressure. The residue was purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, eluent: hexane: $\mathrm{EtOAc}=3: 1$ ) to afford the benzaldehyde $\mathbf{S 4}(1.66 \mathrm{~g}, 86 \%)$.

Under $\mathrm{N}_{2}$ atmosphere, the benzaldehyde $\mathbf{S} 4(918.6 \mathrm{~g}, 4.7 \mathrm{mmol})$ and $m \mathrm{CPBA}(2.33 \mathrm{~g}$, 9.5 mmol , contains ca. $30 \%$ water) were dissolved into $\mathrm{DCM}(16 \mathrm{~mL})$, and the reaction was refluxed. The reaction was quenched by sat. $\mathrm{NaHSO}_{3}$ aq., and extracted three times with DCM, and washed with sat. $\mathrm{NaHCO}_{3}$ aq.. The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the solvent was removed under reduced pressure. The residue was purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, eluent: hexane: $\left.\mathrm{EtOAc}=5: 1\right)$ to afford the methoxybenzene $\mathbf{S 5}$ (732.3 $\mathrm{mg}, 74 \%$ ).

The methoxybenzene $\mathbf{S 5}$ ( $732.3 \mathrm{mg}, 3.5 \mathrm{mmol}$ ) and $\mathrm{NaHCO}_{3}(588.1 \mathrm{mg}, 7.0 \mathrm{mmol})$ were dissolved into $\mathrm{MeOH}(7 \mathrm{~mL})$, and the reaction was stirred at room temperature. The reaction was diluted with water and extracted three times with EtOAc. The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the solvent was removed under reduced pressure. The residue was purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, eluent: hexane: $\left.\mathrm{EtOAc}=3: 1\right)$ to afford the resorcinol $\mathbf{1 g}(348.8 \mathrm{~g}, 72 \%)$.

4-methoxybenzene-1,3-diol (1g) ${ }^{9}$


### 3.1.5 The preparation of $\mathbf{1} \mathbf{i}^{10,11}$




Resorcinol $\mathbf{1 i}$ was prepared by the following procedure ${ }^{10,11}$. Under $\mathrm{N}_{2}$ atmosphere, 1,3dimethoxybenzene ( $1.3 \mathrm{~mL}, 10 \mathrm{mmol}$ ) was dissolved into THF ( 59 mL ). The reaction was cooled at $0{ }^{\circ} \mathrm{C}$, and ${ }^{n} \mathrm{BuLi}(0.92 \mathrm{~mL}, 8.0 \mathrm{mmol}, 1.57 \mathrm{M}$ solution in $n$-hexane) was added, dropwise. After being stirred for 4 h at $0^{\circ} \mathrm{C}$, the reaction was cooled at $-78^{\circ} \mathrm{C}$, and $\mathrm{B}(\mathrm{OMe})_{3}$ ( $2.2 \mathrm{~mL}, 20 \mathrm{mmol}$ ) was added. After stirred overnight at room temperature, the reaction was quenched with 1 N HCl aq., and stirred for 1 h . The reaction mixture was extracted three times with EtOAc. The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the solvent was removed under reduced pressure. The residue was purified by column chromatography ( $\mathrm{SiO}_{2}$, eluent: hexane:EtOAc=3:1) to afford the desired phenyl boronic acid $\mathbf{S 6}(1.48 \mathrm{~g}, 81 \%)$.

To the vial, the aryl boronic acid $\mathbf{S 6}$ ( $364.0 \mathrm{mg}, 2.0 \mathrm{mmol}$ ), Hydroxylamine- $O$-sulfonic acid ( $339.3 \mathrm{mg}, 3.0 \mathrm{mmol}$ ), $\mathrm{MeCN}(10 \mathrm{~mL}$ ), and $\mathrm{NaOH}(10 \mathrm{mmol}, 10 \mathrm{~mL}, 1 \mathrm{~N}$ solution in $\mathrm{H}_{2} \mathrm{O}$ ) were added. The vial tube was sealed and heated with microwave at $100{ }^{\circ} \mathrm{C}$ for 1 h . After the reaction was cooled to room temperature, the reaction mixture was extracted three times with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the solvent was removed under reduced pressure. The residue was purified by column chromatography ( $\mathrm{SiO}_{2}$, eluent: hexane:EtOAc=5:1) to afford the desired aniline $\mathbf{S 7}(244.7 \mathrm{mg}, 80 \%)$.

Under $\mathrm{N}_{2}$ atmosphere, the aniline $\mathbf{S 7}(408.6 \mathrm{mg}, 2.7 \mathrm{mmol})$ was dissolved into DCM ( 3 $\mathrm{mL})$. The reaction was cooled at $0^{\circ} \mathrm{C}$, and $\mathrm{AcCl}(0.19 \mathrm{~mL}, 2.7 \mathrm{mmol})$ was added, dropwise. After stirred overnight at room temperature, the reaction was quenched with water, and extracted three times with EtOAc. The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the solvent was removed under reduced pressure. The residue was purified by column chromatography ( $\mathrm{SiO}_{2}$, eluent: hexane:EtOAc=1:1) to afford the desired amide $\mathbf{S 8}(484.3 \mathrm{mg}$, $93 \%$ ).

Under $\mathrm{N}_{2}$ atmosphere, amide $\mathbf{S 3}$ ( $484.3 \mathrm{mg}, 2.5 \mathrm{mmol}$ ) was dissolved into DCM ( 25 $\mathrm{mL})$. After cooling at $0{ }^{\circ} \mathrm{C}, \mathrm{BBr}_{3}(6.0 \mathrm{~mL}, 6.0 \mathrm{mmol}, 1.0 \mathrm{M}$ solution in DCM) was added dropwise, and the reaction was warmed at room temperature. The reaction was quenched by water, and extracted three times with EtOAc. The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the solvent was removed under reduced pressure. The residue was purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, eluent: hexane: $\left.\mathrm{EtOAc}=2: 1\right)$ to afford the resorcinol $\mathbf{1 i}(344.1$ $\mathrm{mg}, 83 \%$ )
$N$-(2,6-dihydroxyphenyl)acetamide (1i) ${ }^{12}$


### 3.1.6 The preparation of $11^{13}$



Resorcinol 11 was prepared by the following literature ${ }^{13}$. Under $\mathrm{N}_{2}$ atmosphere, resorcinol ( $220.2 \mathrm{mg}, 2.0 \mathrm{mmol}$ ) was dissolved into $\mathrm{CHCl}_{3}\left(2.0 \mathrm{~mL}\right.$ ). After cooling at $0^{\circ} \mathrm{C}$, $\mathrm{Br}_{2}(0.36 \mathrm{~mL}, 7.0 \mathrm{mmol})$ was added dropwise, and the reaction was warmed at room temperature. After being stirred, the solvent was removed, and the crude was dissolved into $\mathrm{MeOH}(0.8 \mathrm{~mL})$. To the reaction, $\mathrm{NaOH}(160.0 \mathrm{mg}, 4.0 \mathrm{mmol}), \mathrm{Na}_{2} \mathrm{SO}_{3}(504.2 \mathrm{mg}, 4.0$ mmol ), and water ( 4 mL ) was added and stirred for 1 h . The reaction was quenched by 1 N HCl aq., and extracted three times with EtOAc. The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the solvent was removed under reduced pressure. The residue was purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, eluent: hexane: $\left.\mathrm{EtOAc}=3: 1\right)$ to afford the resorcinol $\mathbf{1 1}$ (325.0 $\mathrm{mg}, 86 \%$ )

## 2-bromobenzene-1,3-diol (11) ${ }^{14}$



### 3.1.7 The preparation of $\mathbf{1} \mathbf{n}^{4}$



Resorcinol $\mathbf{1 n}$ was prepared by the following procedure ${ }^{4}$. Under $\mathrm{N}_{2}$ atmosphere, 5-bromo-1,3-dimethoxybenzene ( $1.09 \mathrm{~g}, 5.0 \mathrm{mmol}$ ) was dissolved into DCM ( 5 mL ). After cooling at $0^{\circ} \mathrm{C}, \mathrm{BBr}_{3}(12 \mathrm{~mL}, 12 \mathrm{mmol}, 1.0 \mathrm{M}$ solution in DCM$)$ was added dropwise, and the reaction was warmed at room temperature. The reaction was quenched by water, and extracted three times with EtOAc. The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the solvent was removed under reduced pressure. The residue was purified by column chromatography ( $\mathrm{SiO}_{2}$, eluent: hexane: $\mathrm{EtOAc}=3: 1$ ) to afford the resorcinol $1 \mathrm{n}(562.8 \mathrm{mg}$, 60\%)

## 5-bromobenzene-1,3-diol (1n) ${ }^{4}$



### 3.1.8 The preparation of $\mathbf{1 q}{ }^{15}$



Resorcinol 1q was prepared by the following literature ${ }^{15}$. Under $\mathrm{N}_{2}$ atmosphere, phloroglucinol ( $630.6 \mathrm{mg}, 5.0 \mathrm{mmol}$ ) was dissolved into $\mathrm{MeOH}(7 \mathrm{~mL})$. To the reaction, $\mathrm{H}_{2} \mathrm{SO}_{4}(1.0 \mathrm{~mL}, 19.5 \mathrm{mmol})$ was added dropwise, and the reaction was refluxed for 3 h . The reaction was quenched by sat. $\mathrm{NaHCO}_{3}$ aq., and extracted three times with EtOAc. The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the solvent was removed under reduced pressure. The residue was purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, eluent: hexane: $\mathrm{EtOAc}=4: 1$ to $2: 1$ ) to afford the resorcinol $1 \mathrm{n}(442.7 \mathrm{mg}, 63 \%)$

## 5-methoxybenzene-1,3-diol (1q) ${ }^{16}$



White solid; ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$ ): $\delta=3.60(\mathrm{~s}, 3 \mathrm{H}), 5.78(\mathrm{~s}, 2 \mathrm{H})$, $5.81(\mathrm{~s}, 1 \mathrm{H}), 9.19(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$ ): $\delta=54.7,92.6$, 95.5, 159.1, 161.2.

### 3.2 Procedure for Kolbe-Schmitt reaction on resorcinols

The reaction was performed using a pressure test tube equipped with a stirring bar in a 30 mL autoclave. To a solution of resorcinol $1 \mathbf{1 a}(11.0 \mathrm{mg}, 0.100 \mathrm{mmol})$ in dry $\mathrm{CH}_{3} \mathrm{CN}(1.0$ $\mathrm{mL})$ in a pressure test tube was added $\mathrm{DBU}(44.9 \mu \mathrm{~L}, 0.300 \mathrm{mmol})$. The pressure test tube containing the reaction mixture was placed in the autoclave. $\mathrm{CO}_{2}(2.0 \mathrm{MPa})$ was charged and the reaction mixture was stirred at $30^{\circ} \mathrm{C}$ for 24 h . After the $\mathrm{CO}_{2}$ was carefully vented, 1 M HCl aq. (ca. 3.0 mL ) was added to the mixture. The resulting mixture was extracted with ethyl acetate three times and volatile materials were removed under reduced pressure. The residue was purified by flash silica-gel column chromatography (eluent: $\mathrm{EtOAc}: \mathrm{AcOH}=99: 1$, $\mathrm{v} / \mathrm{v}$ ) to afford 2a ( $15.4 \mathrm{mg}, 0.999 \mathrm{mmol}$ ) in $>99 \%$ as a white solid.

The larger scale reaction was carried out as follows. The reaction was performed using
a 1 L three necked round bottom flask. To a solution of resorcinol $\mathbf{1 a}(11.0 \mathrm{~g}, 0.100 \mathrm{~mol})$ in dry $\mathrm{CH}_{3} \mathrm{CN}(500 \mathrm{~mL})$ in a flask was added DBU $(44.9 \mathrm{~mL}, 0.300 \mathrm{~mol}) . \mathrm{CO}_{2}$ (balloon) was charged and the reaction mixture was stirred at room temperature for 28 h . After the $\mathrm{CO}_{2}$ balloon was removed, 1 M HCl aq. (ca. 500 mL ) was added to the mixture. The resulting mixture was extracted with ethyl acetate several times (checked by TLC) and volatile materials were removed under reduced pressure. The residue was purified by recrystallization (hexane/EtOAc) to afford $\mathbf{2 a}(12.9 \mathrm{~g}, 0.838 \mathrm{~mol})$ in $84 \%$ as a white solid.

2,4-dihydroxybenzoic acid (2a) ${ }^{17}$

|  | White solid; ${ }^{1} \mathrm{H}$ NMR ( 400 MHz, DMSO- $d_{6}$ ): $\delta=6.25(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H})$, $6.33(\mathrm{dd}, J=2.4 \mathrm{~Hz}, 8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 10.42(\mathrm{bs}, 1 \mathrm{H})$ |
| :---: | :---: | 132.1, 163.5, 164.2, 172.1.

## 2,4-dihydroxy-3-methylbenzoic acid (2b)



The reaction was carried out with $\mathbf{1 b}(12.4 \mathrm{mg}, 0.1 \mathrm{mmol}), \mathrm{DBU}(44.9 \mu \mathrm{~L}$, 0.3 mmol ) in $\mathrm{CH}_{3} \mathrm{CN}$ at $30^{\circ} \mathrm{C}$ for 24 h ; White solid ( $16.0 \mathrm{mg}, 95 \%$ ); mp $182{ }^{\circ} \mathrm{C}$ (decomp.)(lit. ${ }^{18}$, 213-214 ${ }^{\circ} \mathrm{C}$, decomp); ${ }^{1} \mathrm{H}$ NMR ( 400 MHz , DMSO- $d_{6}$ ): $\delta=1.95(\mathrm{~s}, 3 \mathrm{H}), 6.39(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 10.29(\mathrm{~s}, 1 \mathrm{H})$, 11.72 (bs, 1H); ${ }^{13} \mathrm{C}$ NMR ( 100 MHz, DMSO- $d_{6}$ ): $\delta=7.9,103.9,107.0,110.2,128.5,161.4$, 161.6, 172.6.; IR (KBr): 3426, 1645, 1622, 1504, 1420, 1300, 1084, 781; HRMS (ESI): $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{O}_{4}{ }^{+}, 169.0495$; found, $\mathrm{m} / \mathrm{z} 169.0498$.

## 3-ethyl-2,4-dihydroxybenzoic acid (2c)



The reaction was carried out with $1 \mathrm{c}(13.8 \mathrm{mg}, 0.1 \mathrm{mmol})$, DBU (44.9 $\mu \mathrm{L}, 0.3 \mathrm{mmol}$ ) in $\mathrm{CH}_{3} \mathrm{CN}$ at $30^{\circ} \mathrm{C}$ for 24 h ; White solid ( 18.2 mg , quant); mp $167{ }^{\circ} \mathrm{C}$ (decomp.); ${ }^{1} \mathrm{H}$ NMR ( 400 MHz , DMSO- $d_{6}$ ): $\delta=1.01(\mathrm{t}, J=$ $7.2 \mathrm{~Hz}, 3 \mathrm{H}), 2.52(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.39(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{~d}, J$ $=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 10.22(\mathrm{~s}, 1 \mathrm{H}), 11.71(\mathrm{bs}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $\left.100 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right): \delta=13.3,15.6$, $104.0,107.2$, 116.5, 128.7, 161.2, 161.3, 172.6 ; IR (KBr): 3415, 1621, 1423, 1278, 1098, 792 ; HRMS (ESI): $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{O}_{4}{ }^{+}, 183.0652$; found, $\mathrm{m} / \mathrm{z} 183.0657$.

## 2,4-dihydroxy-5-isopropylbenzoic acid (2d) ${ }^{19}$



The reaction was carried out with $1 \mathbf{d}(15.2 \mathrm{mg}, 0.1 \mathrm{mmol}), \mathrm{DBU}(44.9 \mu \mathrm{~L}$, 0.3 mmol ) in $\mathrm{CH}_{3} \mathrm{CN}$ at $30^{\circ} \mathrm{C}$ for 24 h ; White solid ( $16.6 \mathrm{mg}, 85 \%$ ); ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- $d_{6}$ ): $\delta=1.11(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 6 \mathrm{H}), 3.06$ (sept, $J=$ $7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.31(\mathrm{~s}, 1 \mathrm{H}), 7.48(\mathrm{~s}, 1 \mathrm{H}), 10.34(\mathrm{~s}, 1 \mathrm{H}), 11.30(\mathrm{bs}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$ ): $\delta=22.5,25.8,102.0,103.8,126.7,127.4$,
161.3, 161.4, 172.1.

## 2,4-dihydroxy-6-methylbenzoic acid (2e) ${ }^{20}$



The reaction was carried out with $\mathbf{1 e}(12.4 \mathrm{mg}, 0.1 \mathrm{mmol})$, $\mathrm{DBU}(44.9 \mu \mathrm{~L}$, 0.3 mmol ) in $\mathrm{CH}_{3} \mathrm{CN}$ at $40{ }^{\circ} \mathrm{C}$ for 24 h ; White solid ( $16.0 \mathrm{mg}, 95 \%$ ); ; ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- $d_{6}$ ): $\delta=2.46(\mathrm{~s}, 3 \mathrm{H}), 6.16(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H})$, $6.21(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 10.10(\mathrm{bs}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$ ): $\delta=23.5,100.5$, 104.9, 111.1, 143.0, 162.0, 164.5, 173.4.

## 2,4-dihydroxy-3-methoxybenzoic acid (2f) $)^{21}$

$$
\begin{aligned}
& \text { The reaction was carried out with } 1 \mathbf{f}(14.0 \mathrm{mg}, 0.1 \mathrm{mmol}), \mathrm{DBU}(44.9 \mu \mathrm{~L} \text {, } \\
& 0.3 \mathrm{mmol}) \text { in } \mathrm{CH}_{3} \mathrm{CN} \text { at } 30^{\circ} \mathrm{C} \text { for } 24 \mathrm{~h} ; \text { White solid }(15.2 \mathrm{mg}, 83 \%) ;{ }^{1} \mathrm{H} \\
& \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right): \delta=3.69(\mathrm{~s}, 3 \mathrm{H}), 6.33(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), \\
& 7.36(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 9.91(\mathrm{bs}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right): \delta=59.8,105.3 \text {, } \\
& 107.8,125.7,134.8,156.2,156.4,172.3 .
\end{aligned}
$$

## 2,4-dihydroxy-5-methoxybenzoic acid (2g)



The reaction was carried out with $\mathbf{1 g}(14.0 \mathrm{mg}, 0.1 \mathrm{mmol}), \mathrm{DBU}(44.9 \mu \mathrm{~L}$, 0.3 mmol ) in $\mathrm{CH}_{3} \mathrm{CN}$ at $30^{\circ} \mathrm{C}$ for 24 h ; White solid ( $17.9 \mathrm{mg}, 97 \%$ ); mp $174{ }^{\circ} \mathrm{C}$ (decomp.)(lit. ${ }^{22}$, $201{ }^{\circ} \mathrm{C}$, decomp.); ${ }^{1} \mathrm{H}$ NMR ( 400 MHz, DMSO$\left.d_{6}\right): \delta=3.69(\mathrm{~s}, 3 \mathrm{H}), 6.32(\mathrm{~s}, 1 \mathrm{H}), 7.14(\mathrm{~s}, 1 \mathrm{H}), 10.31(\mathrm{bs}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- $d_{6}$ ): $\delta=56.3,102.8,103.5,112.2,141.4,154.5,158.0,172.1$; IR (KBr): 3488, 1654, 1624, 1259, 1171, 1025, 868; HRMS (ESI): $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{O}_{5}{ }^{+}$, 185.0444; found, m/z 185.0458 .

## 5,7-dihydroxyisobenzofuran-1(3H)-one (2h)

$\delta=5.10(\mathrm{~s}, 2 \mathrm{H}), 6.28(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.33(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 10.30-10.59(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$
$\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right): \delta=68.1,100.2,102.2,102.9,151.5,158.2,164.6,168.5 ;$ IR
$(\mathrm{KBr}): 3358,3213,1717,1617,1487,1351,1217,1167,1053$; HRMS (ESI): [M+H $]^{+}$calcd
for $\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{O}_{4}^{+}, 167.3339$; found, $\mathrm{m} / \mathrm{z} 167.3338$.

## 3-acetamido-2,4-dihydroxybenzoic acid (2i)



The reaction was carried out with $\mathbf{1 i}(16.7 \mathrm{mg}, 0.1 \mathrm{mmol}), \mathrm{DBU}(44.9$ $\mu \mathrm{L}, 0.3 \mathrm{mmol}$ ) in $\mathrm{CH}_{3} \mathrm{CN}$ at $30^{\circ} \mathrm{C}$ for 24 h ; White solid ( 18.9 mg , $90 \%$ ); mp $169{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$ ): $\delta=2.01$ (s, 3H), $6.42(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 9.04(\mathrm{~s}, 1 \mathrm{H}), 10.21(\mathrm{~s}, 1 \mathrm{H}), 11.81(\mathrm{bs}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ( 100 MHz, DMSO- $d_{6}$ ): $\delta=22.8,104.5,107.9,112.8,129.0,159.0,159.3,169.2$, 172.3; IR (KBr): 3385, 1660, 1617, 1426, 1267, 1241, 756 ; HRMS (ESI): $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}_{5} \mathrm{~N}^{+}, 212.0553$; found, $\mathrm{m} / \mathrm{z} 212.0555$.

## 3-acetyl-2,4-dihydroxybenzoic acid (2j)



The reaction was carried out with $\mathbf{1 j}(15.2 \mathrm{mg}, 0.1 \mathrm{mmol})$, DBU (44.9 $\mu \mathrm{L}, 0.3 \mathrm{mmol}$ ) in $\mathrm{CH}_{3} \mathrm{CN}$ at $40^{\circ} \mathrm{C}$ for 24 h ; White solid ( $14.5 \mathrm{mg}, 74 \%$ ); $\operatorname{mp} 159{ }^{\circ} \mathrm{C}$ (decomp.); ${ }^{1} \mathrm{H}$ NMR ( 400 MHz, DMSO- $d_{6}$ ): $\delta=2.62(\mathrm{~s}, 3 \mathrm{H})$, $6.44(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.84(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 12.88(\mathrm{bs}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( 100 MHz , DMSO- $d_{6}$ ): $\delta=32.3,104.1,108.3,111.4,135.8,164.1,166.2,171.9,203.5$; IR (KBr): 3437, $2843,1629,1585,1480,1451,1261,1235$; HRMS (ESI): $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{O}_{5}{ }^{+}$, 197.0444; found, m/z 197.0446.

## 2-acetyl-4,6-dihydroxybenzoic acid (2k)



The reaction was carried out with $\mathbf{1 k}(15.2 \mathrm{mg}, 0.1 \mathrm{mmol}), \mathrm{DBU}(44.9 \mu \mathrm{~L}$, 0.3 mmol ) in $\mathrm{CH}_{3} \mathrm{CN}$ at $40^{\circ} \mathrm{C}$ for 24 h ; White solid ( $13.7 \mathrm{mg}, 70 \%$ ); mp $153{ }^{\circ} \mathrm{C}$ (decomp.); ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$ ): $\delta=1.59(\mathrm{~s}, 3 \mathrm{H}), 6.31$ $(\mathrm{s}, 1 \mathrm{H}), 6.32(\mathrm{~s}, 1 \mathrm{H}), 7.43(\mathrm{bs}, 1 \mathrm{H}), 10.47-10.55(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{DMSO}-d_{6}\right): \delta=26.5,100.5,103.3,103.4,103.6,155.1,157.8,164.8,166.0$; IR (KBr): 3458, 3251, 1726, 1618, 1268, 1216, 1167, 1154; HRMS (ESI): $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{O}_{5}{ }^{+}, 197.0444$; found, $\mathrm{m} / \mathrm{z}$ 197.0446.

3-bromo-2,4-dihydroxybenzoic acid (2l) ${ }^{24}$
 The reaction was carried out with $\mathbf{1 1}(18.9 \mathrm{mg}, 0.1 \mathrm{mmol})$, $\mathrm{DBU}(44.9 \mu \mathrm{~L}$, 0.3 mmol ) in $\mathrm{CH}_{3} \mathrm{CN}$ at $30{ }^{\circ} \mathrm{C}$ for 24 h ; White solid ( $21.5 \mathrm{mg}, 92 \%$ ); ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- $d_{6}$ ): $\delta=6.54(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.63(\mathrm{~d}, J=8.8$ $\mathrm{Hz}, 1 \mathrm{H}), 11.22$ (bs, 1H), 12.28 (bs, 1H); ${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- $d_{6}$ ): $\delta=97.2,105.2,107.5,130.2,160.2,160.7,172.0$.

## 5-bromo-2,4-dihydroxybenzoic acid ( 2 m$)^{25}$



The reaction was carried out with $1 \mathbf{m}(18.9 \mathrm{mg}, 0.1 \mathrm{mmol}), \mathrm{DBU}(44.9 \mu \mathrm{~L}$, 0.3 mmol ) in $\mathrm{CH}_{3} \mathrm{CN}$ at $30{ }^{\circ} \mathrm{C}$ for 24 h ; White solid ( $21.9 \mathrm{mg}, 94 \%$ ); ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- $d_{6}$ ): $\delta=6.47$ (s, 1H), 7.81 (s, 1H), 10.58-11.94 (m, 2H); ${ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$ ): $\delta=99.8,103.4,106.2,134.1$, 160.2, 162.3, 170.9.

## 2-bromo-4,6-dihydroxybenzoic acid (2n)



The reaction was carried out with $\mathbf{1 n}(18.9 \mathrm{mg}, 0.1 \mathrm{mmol}), \mathrm{DBU}(44.9 \mu \mathrm{~L}$, 0.3 mmol ) in $\mathrm{CH}_{3} \mathrm{CN}$ at $40{ }^{\circ} \mathrm{C}$ for 24 h ; White solid ( $4.6 \mathrm{mg}, 20 \%$ ); mp $131{ }^{\circ} \mathrm{C}$ (decomp.); ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$ ): $\delta=6.29$ (d, $J=2.4 \mathrm{~Hz}$, $1 \mathrm{H}), 6.47(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 10.01(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( 100 MHz , DMSO$\left.d_{6}\right): \delta=102.0,111.0,114.6,119.9,158.1,159.8,168.3$; IR (KBr): 3855, 3646, 1644, 1595, 1454, 1269, 1169, 854; HRMS (ESI): $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{O}_{4} \mathrm{Br}^{+}$, 232.9444; found, m/z 232.9453.

## 3-acetyl-2,6-dihydroxybenzoic acid (3o)



The reaction was carried out with $10(15.2 \mathrm{mg}, 0.1 \mathrm{mmol}), \mathrm{DBU}(44.9 \mu \mathrm{~L}$, 0.3 mmol ) in DMF at $100^{\circ} \mathrm{C}$ for 48 h . The residue was purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, eluent: hexane: $\mathrm{EtOAc}=1: 1$ to $\left.\mathrm{EtOAc}: \mathrm{AcOH}=99: 1\right)$; White solid ( $8.4 \mathrm{mg}, 43 \%$ ); mp $185{ }^{\circ} \mathrm{C}$ (decomp.)(lit. ${ }^{26}, 245-246$, decomp.); ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$ ): $\delta=2.46(\mathrm{~s}, 3 \mathrm{H}), 6.15(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H})$, $7.60(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$ ): $\delta=31.6,103.4,106.5,115.7$, 133.6, 165.6, 167.8, 175.6, 195.4; IR (KBr): 3245, 3439, 1650, 1610, 1408, 1368, 1256, 604; HRMS (ESI): $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{O}_{5}{ }^{+}, 197.0444$; found, m/z 197.0437.

5,7-dihydroxy-4-methyl-2-oxo-2H-chromene-6-carboxylic acid (3p)


The reaction was carried out with $\mathbf{1 p}(19.2 \mathrm{mg}, 0.1 \mathrm{mmol}), ~ \mathrm{DBU}(44.9$ $\mu \mathrm{L}, 0.3 \mathrm{mmol}$ ) in $\mathrm{CH}_{3} \mathrm{CN}$ at $50^{\circ} \mathrm{C}$ for 24 h . The residue was purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, eluent: $\left.\mathrm{EtOAc}: \mathrm{AcOH}=50: 1\right)$; Pale yellow solid (19.3 mg, 82\%); mp $103{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ( 400 MHz , DMSO- $d_{6}$ ): $\delta=$ $2.48(\mathrm{~s}, 3 \mathrm{H}), 5.78(\mathrm{~s}, 1 \mathrm{H}), 6.00-6.03(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( 100 MHz , DMSO- $d_{6}$ ): $\delta=23.3,93.0,99.7,101.3,107.9,155.8,158.1,160.0,164.4,165.4,175.0$; IR $(\mathrm{KBr}): 3408,2933,1686,1604,1391,1369,1263,559$; HRMS (ESI): $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{O}_{6}{ }^{+}, 237.0394$; found, $\mathrm{m} / \mathrm{z} 237.0373$.

## 2,6-dihydroxy-4-methoxybenzoic acid (3q)



The reaction was carried out with $\mathbf{1 q}(14.0 \mathrm{mg}, 0.1 \mathrm{mmol})$, DBU ( 44.9 $\mu \mathrm{L}, 0.3 \mathrm{mmol}$ ) in $\mathrm{CH}_{3} \mathrm{CN}$ at $30^{\circ} \mathrm{C}$ for 24 h ; White solid ( 18.4 mg , quant); $\mathrm{mp} 132{ }^{\circ} \mathrm{C}$ (decomp.); ${ }^{1} \mathrm{H}$ NMR ( 400 MHz , Acetone- $d_{6}$ ): $\delta=3.72(\mathrm{~s}, 3 \mathrm{H})$, 5.80 (s, 2H), 12.69 (bs, 1H); ${ }^{13} \mathrm{C}$ NMR ( 100 MHz , DMSO- $d_{6}$ ): $\delta=54.7$, 91.0, 92.7, 95.5, 159.0, 161.1; IR (KBr): 3555, 3493, 3442, 1655, 1591, 1372, 1159; HRMS (ESI): $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{O}_{5}^{+}$, 185.0444; found, $\mathrm{m} / \mathrm{z} 185.0469$.

## References

1) J. R. Moran, J. L. Ericson, E. Dalcanale, J. A. Bryant, C. B. Knobler, D. J. Cram, J. Am. Chem. Soc. 1991, 113, 5707-5714.
2) R. Robinson, R. C. Shah, J. Chem. Soc. 1934, 1491-1498.
3) G.-H. Zheng, J.-J. Shen, Y.-C. Zhan, H. Yi, S.-T. Xue, Z. Wang, X.-Y. Ji, Z.-R. Li, Eur. J. Med. Chem. 2014, 81, 277-288.
4) K. Maeda, K. Morioka, E. Yashima, Macromolecules 2007, 40, 1349-1352.
5) P. A. Brough, W. Aherne, X. Barril, J. Borgognoni, K. Boxall, J. E. Cansfield, K.-M. J. Cheung, I. Collins, N. G. M. Davies, M. J. Drysdale, B. Dymock, S. A. Eccles, H. Finch, A. Fink, A. Hayes, R. Howes, R. E. Hubbard, K. James, A. M. Jordan, A. Lockie, V. Martins, A. Massey, T. P. Matthews, E. McDonald, C. J. Northfield, L. H. Pearl, C. Prodromou, S. Ray, F. I. Raynaud, S. D. Roughley, S. Y. Sharp, A. Surgenor, D. L. Walmsley, P. Webb, M. Wood, P. Workman, L. Wright, J. Med. Chem. 2008, 51, 196-218.
6) A. C. Donnelly, J. R. Mays, J. A. Burlison, J. T. Nelson, G. Vielhauer, J. Holzbeierlein, B. S. J. Blagg, J. Org. Chem. 2008, 73, 8901-8920.
7) A. B. Naidu, D. Ganapathy, G. Sekar, Synthesis 2010, 2010, 3509-3519.
8) X. Sun, J. Qiu, J. Wasley, U.S. Patent 20120295966 A1, 2012.
9) M. C. Foti, C. Daquino, I. D. Mackie, G. A. DiLabio, K. U. Ingold, J. Org. Chem. 2008, 73, 9270-9282.
10)T. Tu, Z. Sun, W. Fang, M. Xu, Y. Zhou, Org. Lett. 2012, 14, 4250-4253.
11)D. Kuik, J. A. McCubbin, G. K. Tranmer, Synthesis 2017, 49, 2555-2561.
12)J. Kalisiak, E. Kalisiak, J. Jurczak, Tetrahedron 2006, 62, 5905-5914.
13)T. Ikawa, S. Masuda, A. Takagi, S. Akai, Chem. Sci. 2016, 7, 5206-5211.
14)M. Weimar, G. Dürner, J. W. Bats, M. W. Göbel, J. Org. Chem. 2010, 75, 2718-2721.
15)M. Hayashi, L. E. Brown, J. A. Porco, Jr. Eur. J. Org. Chem. 2016, 4800-4804.
16)I. Thomsen, K. B. G. Torssell, Acta. Chem. Scand. 1991, 45, 539-542.
17)R. Das, D. Chakraborty, Appl. Organometal. Chem. 2011, 25, 437.
18)C. A. Townsend, S. B. Christensen, S. G. Davis, J. Chem. Soc. Perkin Trans. 1988, 839-861.
19)J. H. Jeong, Y. J. Oh, Y. Lho, S. Y. Park, K.-H. Liu, E. Ha, Y. H. Seo, Eur. J. Med. Chem. 2016, 124, 10691080.
20)M. Vansteelandt, E. Blanchet, M. Egorov, F. Petit, L. Toupet, A. Bondon, F. Monteau, B. L. Bizec, O. P. Thomas, Y. F. Pouchus, R. L. Bot, O. Grovel, J. Nat. Prod. 2013, 76, 297-301.
21)N. Guo, J. Liu, L. Qin, D. Jiang, X. You, K. Lu, Y.-O. Teng, P. Yu, J. Asian Nat. Prod. Res. 2015, 17, 377383.
22)A. Ueno, Yakugaku Zasshi 1962, 82, 486-488.
23)W. R. Allison, G. T. Newbold, J. Chem. Soc. 1959, 3335-3340.
24)M. Saifuzzaman, R. Morrison, Z. Zheng, S. Orive, J. Hamilton, P. E. Thompson, J. M.A. Al-rawi, Bioorg. Med. Chem. 2017, 25, 5531-5536.
25)G. Shen, M. Wang, T. R. Welch, B. S. J. Blagg, J. Org. Chem. 2006, 71, 7618-7631.
26)M. Nakajima, H. Fukami, K. Konishi, J. Oda, Agr. Biol. Chem. 1963, 27, 700-705.



OBNUC
EXMOD
OBFRQ
OBSET
OBFIN
OBFINT
FREQU
SREQU
ACQTM
ACQ
PD
PW
PD
PW1
IRNUC IRNUC CTEMP EXREF EXREF RGAIN

## DFILE COMNT <br> DATIM <br> 20180326 1,2,3 Et bcm DM auto

13 C
BCM
100.40 MHz
125.00 KHz 10500.00 Hz 32768
27118.64 Hz

128
1.2083 sec 3.0000 sec 4.70 usec

1H
$\mathrm{MSO}^{17.1 \mathrm{c}}$ 39.50 ppm 39.50 ppm 0.12 H
21


1c


DFILE
COMNT
DATIM
OBNUC
EXMOD
OBFRQ
OBSET
OBFIN
POINT
FREQU
FREQU
ACANS ACQ
PD
PW1 PD
PWNUC IRNUC
CTEMP SLVNT EXREF BF
RGAIN auto
399.65 MHz
124.00 KHz 10500.00 Hz

16384 7992.01 Hz

8
2.0500 sec 2.0000 sec 1H 13.4 DMSO 2.49 ppm 0.12 Hz

13


1d

COMNT
DATIM
OBNUC
EXMOD
OBFRQ
OBSET
OBFIN
FREQU
SCANS
ACQTM
PD
PW1
RNUC
CTEMP EXREF EXRE RGAIN ${ }^{-19.8}$ MSO 39.50 ppm 0.12 Hz
23








DFI
COMNT
DATIM
OBNUC
EXMOD
OBFRQ
OBFRQ
OBFIN
OBFIN
POINT
FREQU
FREQU
ACQTM
ACQTM
PD
PW1
IRNUC
CTEMP EXREF EXRE BF
RGAIN

20180326 1,2,3_OMe_bcm.a auto
Mon Mar 26 14:50:56 2018 13C BCM
100.40 MHz
125.00 KHz 10500.00 Hz 32768 27118.64 Hz 32 1.2083 sec 3.0000 sec 1 H DMSO ${ }^{18.1}$ MSO
39.50 ppm 0.12 Hz

21

$1 f$



DFILE
COMNT
DATIM
OBNUC
EXMOD
OBFRQ
OBFRQ
OBFIN
POINT
FREQU
FREQU
SCANS
ACQTM
ACQTM
PD 1 PW1
IRNUC
IRNUC
CTEMP
EXREF EXRE RGAIN


1 g



DFILE
COMNT
DATIM
OBNUC
EXMOD
OBFRQ
OBFRQ
OBFIN
POINT
FREQU
FREQU
SCANS
ACQTM
ACQ
PD
PD
PW1
IRNUC
CTEMP
EXREF
EXREF
BF
RGAIN
20180326 1,2,3_amide_bcm.i auto Mon Mar 26 17:34:02 2018 13C
100.40 MHz
125.00 KHz 10500.00 Hz 32768
27118.64 Hz 64 1.2083 sec 3.0000 sec 4.70 usec

1H DMSO 39.50 ppm 39.50 ppm
0.12 Hz 0.12

$1 i$


## DFILE <br> COMNT <br> DATIM <br> OBNUC <br> EXMOD <br> OBFRQ OBSET <br> OBFIN <br> POINT <br> FREQU SCANS <br> SCANS <br> ACQTM <br> ACQT PD PW1 <br> PD PWNUC <br> IRNUC <br> CTEMP auto <br> 1H <br> NON <br> 1H

EXREF
EXRE
RGAIN

20180326 1,2,3_Br.als
Mon Mar 26 13:07:53 2018
399.65 MHz
124.00 KHz 10500.00 Hz

16384
7992.01 Hz

8
8
2.0500 sec
2.0000 sec 6.60 usec

SO
MSO
2.49 ppm
0.12
11


11


DFIL
COMNT
DATIM
OBNUC
EXMOD
OBFRQ
OBFRQ
OBFIN
POINT
POINT
FREQU
FREQU
SCANS
ACQTM
ACQT
PD
PW1
IRNUC
CTEMP EXREF EXRE BF
RGAIN

20180326 1,2,3_Br_bcm.als auto
Mon Mar 26 13:15:24 2018 13C
BCM
100.40 MHz
125.00 KHz 10500.00 Hz 32768
7118.64 Hz

64
12083
1.2083 sec
3.0000 sec 1H ${ }^{17}$ DMSO
39.50 ppm 39.50 ppm
0.12 Hz
0.12
21


11


DFILE
COMNT
DATIM
OBNUC
EXMOD
OBFRQ
OBFRQ
OBFIN
POINT
FREQU
SCANS
ACQTM
ACQTM
PD
PW1
IRNUC
CTEMP
EXREF EXRE RGAIN auto
Mon Mar 26 13:20:17 2018
NON
399.65 MHz
124.00 KHz 10500.00 Hz

16384
7992.01 Hz

8
2.0500 sec
2.0000 sec 6.60 use

1H DMSO 23.4 c

MSO
2.49 ppm
0.12 Hz

12


1n


DFIL
DFILE
DATIM
OBNUC
EXMOD
OBFRQ
OBFRQ
OBFIN
POINT
FREQU
SCANS
SCANS
ACQTM
PD
PD
PW1
IRNUC
CTEMP EXREF EXRE BF
RGAIN auto Mon Mar 26 13:24:57 2018 BCM
100.40 MHz
125.00 KHz 12500.00 Hz 10500.00
32768 27118.64 Hz 16 1.2083 sec 1.2083 sec
3.0000 sec 3.0000 sec
4.70 use 1H DMSO ${ }^{17.0}$ 17.0 c 39.50 ppm 0.12 Hz

21


1n


DFILE
COMNT
DATIM
OBNUC
EXMOD
OBFRQ
OBSET
OBFIN
PRINT
SREQUS
SCANS
ACQTM
ACQ
PD
PW1
PD
PWNUC
IRNUC
CTEMP EXREF EXRE RGAIN auto auto 0 16:06:31 2018 Fri Apr 06 16:06:31 2018 1 H
NON
399.65 MHz
124.00 KHz 10500.00 Hz

16384 7992.01 Hz

8

2
2.0500 sec 2.0000 sec 1H 22.1 c DMSO 2.49 ppm 0.12 Hz

13


19


DFIL
DFILE
COMNT
OBNUC
EXMOD
OBFRQ
OBFRQ
OBFIN
POINT
FREQU
FREQU
SCANS
ACQTM
PD PW1
IRNUC IRNUC
CLEMP EXREF EXRE RGAIN

$1 q$
20180406 1,3,5_OMe_bcm.a auto
100.40 MHz
125.00 KHz 10500.00 Hz 32768
7118.64 Hz 64 1.2083 sec 3.0000 sec 4.70 usec

1H
6.8 c

DMSO
39.50 ppm 39.50 ppm
0.12 Hz

23




DFILE
COMNT
DATIM
OBNUC
EXMOD
OBFRQ
OBSET
OBFIN
PRINT
FREQU
SCANS
ACQTM
ACQTM
PD PW1
IRNUC
RNUC
CTEMP EXREF EXREF RGAIN

20180628 Kolbe_pro_model_l
Thu Jun 28 10:56:36 2018 13C BCM
100.40 MHz
125.00 KHz 10500.00 Hz 32768
27118.64 Hz 32 1.2083 sec 3.0000 sec 1H 6348.8 DMSO
39.50 ppm 0.12 Hz

23


2a



DFILE
COMNT
DATIM
OBNUC
EXMOD
OBFRQ
OBFRQ
OBFIN
POINT
FREQU SCANS ACQTM PD 1 PW1 RNUC
CTEMP SLVNT EXRE RGAIN

20180628 Kolbe_pro_2Me_bc
Thu Jun 28 11:13:20 2018 13C BCM
100.40 MHz
125.00 KHz 10500.00 Hz 32768
7118.64 Hz 64 1.2083 sec 3.0000 sec 1H 6348.8 c DMSO 39.50 ppm 0.12 Hz

23


2b



DFIL
COMNT
DATIM
OBNUC
EXMOD
OBFRQ
OBSET
OBFIN
POINT
FREQU SCANS
ACQTM ACQTM PD 1 PW1 IRNUC
CTEMP EXREF EXRE BF
RGAIN

20180517 pro-2Et_bcm.als auto
Thu May 17 21:47:55 2018 13C BCM
100.40 MHz
125.00 KHz 10500.00 Hz 32768 27118.64 Hz 32 1.2083 sec 3.0000 sec 1H DMSO ${ }^{-19.8}$
39.50 ppm 0.92 Hz 22


2c



DFILE
COMNT
DATIM
OBNUC
EXMOD
OBFRQ
OBFRQ
OBFIN
POINT
FREQU
ACQTM
ACQ
PD
PD
PW1
IRNUC
CTEMP EXREF EXRE RGAIN

20180331 4-ipr-prod(ao277 single pulse decoupled gater 2018-03-31 18:36:48
13C
single pulse dec 98.52 MHz 4.64 KHz
8.74 Hz

26214 24630.17 Hz

128
1.0643 sec 2.0000 sec 1H 21.3 DMSO 39.50 ppm 0.12 Hz

48




DFILE
COMNT
DATIM
OBNUC
EXMOD
OBFRQ
OBFRQ
OBFIN
POINT
FREQU
FREQU
SCANS
ACQTM
PD 1 PW1 IRNUC
CTEMP EXREF EXRE RGAIN

20180421 5-methyl-prod(ac single pulse decoupled gater 2018-04-21 15:35:21
13C
single pulse dec 98.52 MHz 4.64 KHz
8.74 Hz

26214 24630.17 Hz

256
1.0643 sec 1.0643 sec
2.0000 sec 3.00 usec

1H 21.4 c DMSO 39.50 ppm 0.12 Hz
0.12
40


2e


[^0]

DFILE
COMNT
DATIM
OBNUC
EXMOD
OBFRQ
OBSET
OBFIN
POINT POINT
FREQU FREQU ACQTM ACQ
PD
PW1 PD RNUC
CTEMP EXREF EXRE RGAIN

20180404 2-methoxy-prod( single pulse decoupled gater 2018-04-14 17:08:10
13C
single_pulse_dec 98.52 MHz 4.64 KHz
8.64 Hz

26214
24630.17 Hz

1024
1.0643 sec 2.0000 sec 1H

21 DMSO 39.50 ppm 0.12 Hz
0.12
44

$2 f$





DFIL
COMNT
DATIM
OBNUC
EXMOD
OBFRQ
OBSET
OBFIN
POINT
FREQU
FREQU
SCANS
ACQTM
PD
PD
IRNUC
CTEMP SLVNT EXRE RGAIN 6348.8 DMSO 39.50 ppm 0.12 Hz

22


2h



DFILE
COMNT
DATIM
OBNUC
EXMOD
OBFRQ
OBFRQ
OBFIN
OBFIN
FREQU
FREQU
SCANS
ACQ
PD PW1
IRNUC
IRNUC
CTEMP
EXREF EXRE BF
RGAIN

20190426 kolbe_pro_2amide
Fri Apr 26 20:20:27 2019 13C
SING
100.50 MHz
0.00 KHz
135159.00 Hz

32768
27100.27 Hz

128
1.2091 sec 1.0000 sec 80 use
1H
23.1 c

DMSO
39.50 ppm 0.62 Hz

33

$2 i$


DFILE
COMNT
DATIM
OBNUC
EXMOD
OBFRQ
OBSET
PBFINT
POINT
FREQU
FREQU
ACQTM
PD
PD
PWNUC
IRNUC
CTEMP
SLVNT
EXREF BF
RGAIN

20190427 kolbe_pro_2Ac_no:
Sat Apr 27 13:34:53 2019 1 H SINGL
400.05 MHz 0.00 KHz 130800.00 Hz 16384 8000.00 Hz $\stackrel{8}{2} 2$ 2.0000 sec 2.0000 sec
5.30 usec 1H 69.7 c DMSO
2.49 ppm 0.62 Hz

18


2j


DFILE
COMNT
DATIM
OBNUC
EXMOD
OBFRQ
OBFRQ
OBFIN
PRINT
FREQU
ACQTM
ACQ
PD PD1 IRNUC
IRTEMP
CTEMP EXREF EXREF BF
RGAIN

20190427 kolbe_pro_2Ac_bcı
Sat Apr 27 14:40:41 2019 13C
SING
100.50 MHz
0.00 KHz
135159.00 Hz

32768
27100.27 Hz

200
1.2091 sec 1.0000 sec 80 use
1H
69.7 c

DMSO
39.50 ppm 0.62 Hz

32


2j



DFILE
COMNT
DATIM
OBNUC
EXMOD
OBFRQ
OBFRQ
OBFIN POINT
FREQU FREQU SCANS
ACQTM ACQ
PD
PW1 PD IRNUC
CTEMP EXREF EXRE RGAIN

201805015 pro_5_Ac_bcm-1 single pulse decoupled gater 2018-05-15 16:03:24
13C
single_pulse_dec 98.52 MHz 4.64 KHz 8.64 KH
8.74

32768
30788.18 Hz

1024
1.0643 sec 2.0000 sec

1H 21.8 c DMSO 39.50 ppm 0.12 Hz 42


2k



DFILE
COMNT
DATIM
OBNUC
EXMOD
OBFRQ
OBSET
OBFIN
PRINT
FREQU
ACQTM
ACQ
PD PD
PW1 PW1
IRNUC IRNUC
CTEMP EXREF EXREF RGAIN

## 20190426 kolbe_pro_2Br_bcr

Fri Apr 26 20:29:15 2019 13C
SINGL
100.50 MHz
0.00 KHz
135159.00 Hz

32768
27100.27 Hz

64
1.2091 sec 1.0000 sec 1H
23.0

DMSO
39.50 ppm 0.62 Hz

32


21



DFILE
COMNT
DATIM
OBNUC
EXMOD
OBFRQ
OBFIN
OBFIN
POINT
FREQU
ACQTM
ACQ
PD PD
PWNUC
IRNUC
CTEMP EXREF EXRE RGAIN

20190427 kolbe_pro_4Br_bcr
Sat Apr 27 13:11:56 2019 13C
SING
100.50 MHz
0.00 KHz
135159.00 Hz

32768
27100.27 Hz

64
1.2091 sec
1.0000 sec 4.80 usec

1H
DMSO
SO
39.50 ppm
0.62


2m



DFILE
COMNT
DATIM
OBNUC
EXMOD
OBFRQ
OBSET
OBFIN
POINT
FREQU
FREQU
ACANS
ACQ
PD PD
PWNUC IRNUC
CTEMP EXREF EXRE RGAIN

20190426 kolbe_pro_5Br_bcr
Fri Apr 26 19:47:37 2019 13C
SINGL
100.50 MHz
0.00 KHz
135159.00 Hz

32768
27100.27 Hz

128
1.2091 sec 1.0000 sec 1H 22.8 c DMSO 39.50 ppm 0.62 Hz

32


2n


DFILE
COMNT
DATIM
OBNUC
EXMOD
OBFRQ
OBSET
OBFIN
POINT
FREQU
ACQTM
ACQ
PD
PW1
PD
PWNUC
IRNUC
CTEMP
EXREF EXRE BF
RGAIN

20190427 resorcinol-4-OAs auto
Sat Apr 27 15:57:16 2019 1H
NON
399.65 MHz
124.00 KHz 10500.00 Hz

16384 7992.01 Hz
$\stackrel{8}{8}$ 2.0500 sec 2.0000 sec

1H 6348.8 c DMSO 2.49 ppm 2.49 ppm
0.12 Hz

15


DFILE
COMNT
DATIM
OBNUC
EXMOD
OBFRQ
OBFRQ
OBFIN
POINT
POINT
FREQU
SCANS
ACQTM
PD
RNUC
IRNUC
CTEMP EXREF EXRE BF
RGAIN

20180507 4-acetyl-prod(ao: single pulse decoupled gatec 2018-05-07 20:12:18
13C
single_pulse_dec 98.52 MHz 4.64 KHz
8.74 Hz

| 86214 |
| :--- | 24630.17 Hz

1.0643 se
2.0000 sec 3.00 usec

1H
21.4 c

DMSO
39.50 ppm 0.12 Hz

50




DFILE
COMNT
DATIM
OBNUC
EXMOD
OBFRQ
OBSET
OBFIN
POINT
SCANS
ACQTM
PD PD1
RNUC
CTEMP EXREF EXRE BF
RGAIN

20180724 coumarin_pro_bcn.
Tue Jul 24 14:40:37 2018 13C BCM
100.40 MHz
125.00 KHz 10500.00 Hz 32768 27118.64 Hz 128 1.2083 sec 3.0000 sec 1H $-81.8$ DMSO 39.50 ppm 39.50 pp
0.12 Hz 22




DFIL
COMNT
DATIM
OBNUC
EXMOD
OBFRQ
OBSET
OBSET
POINT
FREQU
FREQU
ACQTM
ACQ
PD
PW1 PD
PWNUC RNUC
CTEMP EXREF EXRE RGAIN

20190427 kolbe_pro_5OMe_1
Sat Apr 27 15:25:33 2019 13C
SING
100.50 MHz
0.00 KHz
135159.00 Hz

32768
27100.27 Hz

736
1.2091 sec
1.2091 sec
1.0000 sec 4.80 usec

1H
39.8 c

DMSO
39.50 ppm 0.62 Hz

32

$3 q$


[^0]:    DFILE
    COMNT
    DATIM
    OBNUC
    EXMOD
    OBFRQ
    OBSET
    PBFINT
    FREQU
    FREQU
    ACQTM
    ACQT
    PD
    PD1
    IRNUC
    CTEMP
    EXREF
    EXREF
    BF
    20180404 2-methoxy-prod( single_pulse
    2018-04-04 17:33:02
    1H
    single_pulse.ex2
    391.78 MHz
    8.51 KHz
    8.51 KH
    3.34 Hz

    26214
    5882.26 Hz

    16
    4.4564 sec
    3.0000 sec 3.0000 sec

    1H
    21.2 c

    DMSO
    2.49 ppm
    0.12 Hz

    RGAIN
    44
    
    $2 f$

