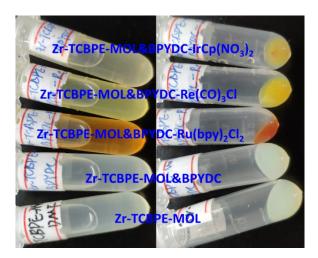
Supporting Information

Energy Transfer on Two-Dimensional Antenna Enhances


Photocatalytic Activity of CO₂ Reduction by Metal-Organic Layers

Xuefu Hu,^a Peican Chen,^a Cankun Zhang,^a Zhiye Wang^a and Cheng Wang^{*a} a. iChem, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China. E-mail: wangchengxmu@xmu.edu.cn

General Methods

All the reagents and solvents were commercially available and used without further purification unless otherwise indicated. ¹H-NMR spectra were recorded on a Bruker NMR 500 DRX spectrometer and a Bruker 400 MHz DRX spectrometer and referenced to the proton resonance resulting from incomplete deuteration of the D₂O (δ 4.7). Electron microscopy images were obtained on a Tecnai F30 and JEOL 2100 High Resolution Transmission Electron Microscope. The powder X-ray diffraction data were collected on Rigaku diffractometers using Cu K α radiation sources (λ = 1.54178 Å). The fluorescence spectrums and decay curve were obtained on a Edinburgh Instrument FL980. ICP-MS analysis of samples were performed on an ELAN ICP-DRC-qMS (PerkinElmer, SCIEX, Canada) instrument.

Zr-TCBPE-MOL-Ru and Zr-TCBPE-MOL-Re were prepared by post-modification of Zr-TCBPE-MOL with DMF solution of 3 mM $[H_2BPYDC-Ru(BPY)_2]Cl_2$ and DMF solution of 1.5 mM H_2BPYDC -Re(CO)₃Cl with stirring at room temperature. Zr-TCBPE-MOL-BPYDC-Ir was prepared in two steps: first preparing a DMF solution of 5mM H_2BPYDC -IrCp*(NO₃)₂ by reacting H_2BPYDC with IrCp*(NO₃)₂ that was prepared by treating $Ir_2Cp*_2Cl_4$ dimmer with AgNO₃, and then modifying Zr-TCBPE-MOL with H_2BPYDC -IrCp*(NO₃)₂ at room temperature.

Materials Characterization

Figure s1 The photo of Zr-TCBPE-MOL and the functionalized MOLs dispersed in DMF(left) and as a solid gel (right)

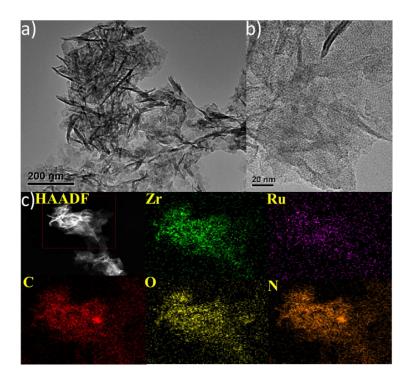


Figure s2 a). The TEM image of Zr-TCBPE-MOL-Ru, b). HRTEM of Zr-TCBPE-MOL-Ru, c). The HAADF image and EDS mapping of Zr-TCBPE-

MOL-Ru

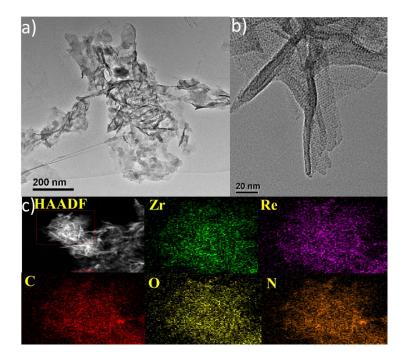


Figure s3 a). The TEM image of Zr-TCBPE-MOL-Re, b). HRTEM of Zr-TCBPE-MOL-Re, c). The HAADF image and EDS mapping of Zr-TCBPE-

MOL-Re

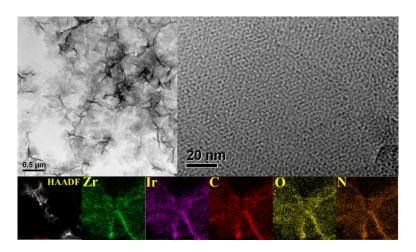


Figure s4 a). The TEM image of Zr-TCBPE-MOL-Ir, b). HRTEM of Zr-TCBPE-MOL-Ir, c). The HAADF image and EDS mapping of Zr-TCBPE-

a) 150k – Zr-TCBPE-mol Ex380 H-H – Zr-TCBPE-mol Ex380 H-V – Zr-TCBPE-mol Ex380 V-H – Zr-TCBPE-mol Ex380 V-V Zr-TCBPE-MOL&BPYDC-Ru(bpy)2 Ex380-V--Zr-TCBPE-MOL&BPYDC-Ru(bpy)2 Ex380-V--Zr-TCBPE-MOL&BPYDC-Ru(bpy)2 Ex380-H--Zr-TCBPE-MOL&BPYDC-Ru(bpy)2 Ex380-Hc) 100k Intensity 80 80 Intensity 100k 40k 50k 20k 0 450 500 550 Wavelength/nm 400 600 650 450 400 ⁵⁰⁰ Wavelength/nm 650 700 **d**)^{0.2} **b)** 0.2 Zr-TCBPE-MOL-Ru TCBPE-MOL Emission Anisotropy(r) Emission Anisotropy(r) -0.2 -0.2 500 550 Wavelength/nm 400 450 600 650 500 550 600 Wavelength/nm 700 400 450 650

MOL-Ir

Figure s5 The polarized fluorescence spectrum and corresponding emission anisotropy value of Zr-TCBPE-MOL(a&b) and Zr-TCBPE-MOL-

Ru (c&d)

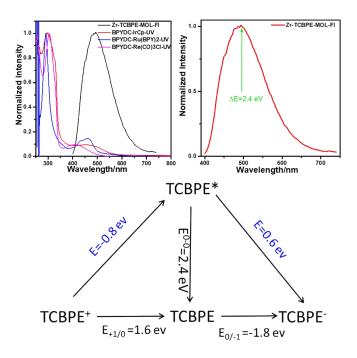


Figure s6 The normalized UV-Vis spectrum of [H₂BPYDC-Ru(BPY)₂]Cl₂, H₂BPYDC-Re(CO)₃Cl, and [H₂BPYDC-IrCp*OH]NO₃ and the fluorescence spectrum of Zr-TCBPE-MOL, and the redox potential calculation of ligand TCBPE.

The redox potentials of TCBPE should be close to that of the TPE core, which are E_{ox1} =1.6v (vs NHE, TPE⁺/TPE⁰), E_{ox2} =1.91v (vs NHE, TPE^{2+}/TPE^+) (J. Org. Chem. 2007, 72, 8054-8061) and E_{re1} =-1.8v (vs NHE, TPE^0/TPE^-) (J Electroanal Chem, 1984, 162, 189-206). In the meantime, the fluorescence spectrum of the TCBPE ligand indicates a ΔE value close to 2.4eV. Combining this ground state/excited state energy difference with the redox potentials of the TPE, we can estimate the redox potential of TCBPE⁺/TCBPE⁺ and TCBPE⁺/TCBPE⁻ to be -0.8 V and 0.6 V vs NHE, respectively. These redox potentials are not sufficient for electron transfer to/from [H₂BPYDC-Ru(BPY)₂]Cl₂ (E_{ox1}=1.26v VS NHE for [H₂BPYDC-Ru(BPY)₂]³⁺/[H₂BPYDC-Ru(BPY)₂]²⁺ and E_{re1}=-1.28v NHE vs for $[H_2BPYDC-Ru(BPY)_2]^{2+} [H_2BPYDC-Ru(BPY)_2]^+), H_2BPYDC-Re(CO)_3CI (E_{re1}=-0.9v vs NHE for [H_2BPYDC-Re(CO)_3]^+ [H_2BPYDC-Re(CO)_3]^0), and (H_2BPYDC-Ru(BPY)_2)^+ (H_2BPYDC-R$ $Fc^{+/0}$ [H₂BPYDC-IrCp*OH]NO₃ (E_{ox1}=~1.5v vs NHE $[H_2BPYDC-IrCp^*(OH)]^+/[H_2BPYDC-IrCp^*(OH)]^0$, E_{re1}=-1.07v vs [BPY-IrCp*CH₃CN]²⁺/[BPY-IrCp*CH₃CN]⁺).

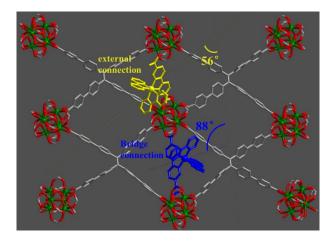


Figure s7 The two possible connection modes of linear dicarboxylate ligands on the MOL

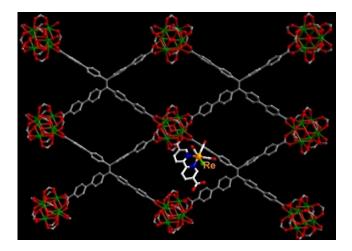


Figure s8 The structure model of Zr-TCBPE-MOL-Re

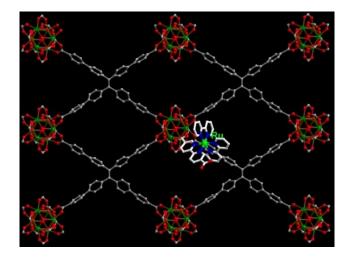


Figure s9 The structure model of Zr-TCBPE-MOL-Ru

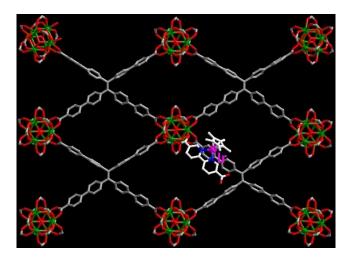


Figure s10 The structure model of Zr-TCBPE-MOL-Ir

Table s1 The ICP-MS analysis of Zr-TCBPE-MOL-Ir and Zr-TCBPE-MOL-Re

Sample ^a	Zr	Re	lr	Zr ₆ :Re	Zr ₆ :Ir
Zr-TCBPE-Re	305.5ppb	17.5ppb	×	6:1	x
Zr-TCBPE-Ir	715.6 ppb	x	19.6 ppb	X	12.8:1

^aThe samples for ICP-MS analysis were prepared by the following procedure: 2.5 mg of catalyst was put in a teflon reactor, followed by adding 0.6 mL of concentrated HCl and 0.2 mL of concentrated HNO₃ and 0.1 mL of H_2O_2 . The teflon reactor was sealed and kept at 160 °C for 5h. After cooling down, the solution was diluted to a total volume of 10 mL. The solution was then diluted for 100 times for the test.

Table s2 The reaction condition and catalysis result of CO2 reduction

Catalyst		Solvent	Light	Entry
Zr-TCBPE-Ir	2.5 mg	1 mL THF and 1 mL H $_2$ O	400 nm LED	CO ₂ &H ₂ =1:3 1 bar
Zr-TCBPE-Re	35 mg	27 mL MeCN, 1mL TEOA and 1mL H ₂ O	400 nm LED	CO ₂ 1 bar

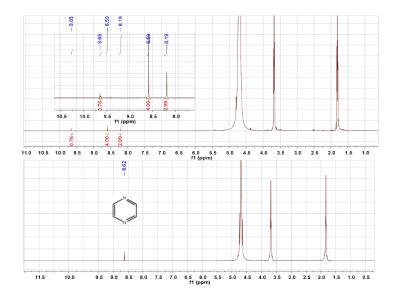


Figure s11 The ¹H-NMR of the reaction mixture after catalysis of CO₂ hydrogenation using Zr-TCBPE-MOL-Ir. Pyrazine was added as an internal standard and the solvent was H₂O/D₂O

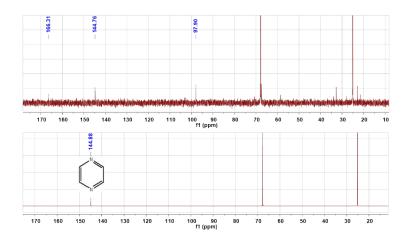


Figure s12 The ¹³C-NMR of the reaction mixture after catalysis of CO₂ hydrogenation using Zr-TCBPE-MOL-Ir. Pyrazine was added as an internal standard and the solvent was H₂O/D₂O